truncate.c revision 7bb46a6734a7e1ad4beaecc11cae7ed3ff81d30f
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/backing-dev.h>
12#include <linux/gfp.h>
13#include <linux/mm.h>
14#include <linux/swap.h>
15#include <linux/module.h>
16#include <linux/pagemap.h>
17#include <linux/highmem.h>
18#include <linux/pagevec.h>
19#include <linux/task_io_accounting_ops.h>
20#include <linux/buffer_head.h>	/* grr. try_to_release_page,
21				   do_invalidatepage */
22#include "internal.h"
23
24
25/**
26 * do_invalidatepage - invalidate part or all of a page
27 * @page: the page which is affected
28 * @offset: the index of the truncation point
29 *
30 * do_invalidatepage() is called when all or part of the page has become
31 * invalidated by a truncate operation.
32 *
33 * do_invalidatepage() does not have to release all buffers, but it must
34 * ensure that no dirty buffer is left outside @offset and that no I/O
35 * is underway against any of the blocks which are outside the truncation
36 * point.  Because the caller is about to free (and possibly reuse) those
37 * blocks on-disk.
38 */
39void do_invalidatepage(struct page *page, unsigned long offset)
40{
41	void (*invalidatepage)(struct page *, unsigned long);
42	invalidatepage = page->mapping->a_ops->invalidatepage;
43#ifdef CONFIG_BLOCK
44	if (!invalidatepage)
45		invalidatepage = block_invalidatepage;
46#endif
47	if (invalidatepage)
48		(*invalidatepage)(page, offset);
49}
50
51static inline void truncate_partial_page(struct page *page, unsigned partial)
52{
53	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
54	if (page_has_private(page))
55		do_invalidatepage(page, partial);
56}
57
58/*
59 * This cancels just the dirty bit on the kernel page itself, it
60 * does NOT actually remove dirty bits on any mmap's that may be
61 * around. It also leaves the page tagged dirty, so any sync
62 * activity will still find it on the dirty lists, and in particular,
63 * clear_page_dirty_for_io() will still look at the dirty bits in
64 * the VM.
65 *
66 * Doing this should *normally* only ever be done when a page
67 * is truncated, and is not actually mapped anywhere at all. However,
68 * fs/buffer.c does this when it notices that somebody has cleaned
69 * out all the buffers on a page without actually doing it through
70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
71 */
72void cancel_dirty_page(struct page *page, unsigned int account_size)
73{
74	if (TestClearPageDirty(page)) {
75		struct address_space *mapping = page->mapping;
76		if (mapping && mapping_cap_account_dirty(mapping)) {
77			dec_zone_page_state(page, NR_FILE_DIRTY);
78			dec_bdi_stat(mapping->backing_dev_info,
79					BDI_RECLAIMABLE);
80			if (account_size)
81				task_io_account_cancelled_write(account_size);
82		}
83	}
84}
85EXPORT_SYMBOL(cancel_dirty_page);
86
87/*
88 * If truncate cannot remove the fs-private metadata from the page, the page
89 * becomes orphaned.  It will be left on the LRU and may even be mapped into
90 * user pagetables if we're racing with filemap_fault().
91 *
92 * We need to bale out if page->mapping is no longer equal to the original
93 * mapping.  This happens a) when the VM reclaimed the page while we waited on
94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
96 */
97static int
98truncate_complete_page(struct address_space *mapping, struct page *page)
99{
100	if (page->mapping != mapping)
101		return -EIO;
102
103	if (page_has_private(page))
104		do_invalidatepage(page, 0);
105
106	cancel_dirty_page(page, PAGE_CACHE_SIZE);
107
108	clear_page_mlock(page);
109	remove_from_page_cache(page);
110	ClearPageMappedToDisk(page);
111	page_cache_release(page);	/* pagecache ref */
112	return 0;
113}
114
115/*
116 * This is for invalidate_mapping_pages().  That function can be called at
117 * any time, and is not supposed to throw away dirty pages.  But pages can
118 * be marked dirty at any time too, so use remove_mapping which safely
119 * discards clean, unused pages.
120 *
121 * Returns non-zero if the page was successfully invalidated.
122 */
123static int
124invalidate_complete_page(struct address_space *mapping, struct page *page)
125{
126	int ret;
127
128	if (page->mapping != mapping)
129		return 0;
130
131	if (page_has_private(page) && !try_to_release_page(page, 0))
132		return 0;
133
134	clear_page_mlock(page);
135	ret = remove_mapping(mapping, page);
136
137	return ret;
138}
139
140int truncate_inode_page(struct address_space *mapping, struct page *page)
141{
142	if (page_mapped(page)) {
143		unmap_mapping_range(mapping,
144				   (loff_t)page->index << PAGE_CACHE_SHIFT,
145				   PAGE_CACHE_SIZE, 0);
146	}
147	return truncate_complete_page(mapping, page);
148}
149
150/*
151 * Used to get rid of pages on hardware memory corruption.
152 */
153int generic_error_remove_page(struct address_space *mapping, struct page *page)
154{
155	if (!mapping)
156		return -EINVAL;
157	/*
158	 * Only punch for normal data pages for now.
159	 * Handling other types like directories would need more auditing.
160	 */
161	if (!S_ISREG(mapping->host->i_mode))
162		return -EIO;
163	return truncate_inode_page(mapping, page);
164}
165EXPORT_SYMBOL(generic_error_remove_page);
166
167/*
168 * Safely invalidate one page from its pagecache mapping.
169 * It only drops clean, unused pages. The page must be locked.
170 *
171 * Returns 1 if the page is successfully invalidated, otherwise 0.
172 */
173int invalidate_inode_page(struct page *page)
174{
175	struct address_space *mapping = page_mapping(page);
176	if (!mapping)
177		return 0;
178	if (PageDirty(page) || PageWriteback(page))
179		return 0;
180	if (page_mapped(page))
181		return 0;
182	return invalidate_complete_page(mapping, page);
183}
184
185/**
186 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
187 * @mapping: mapping to truncate
188 * @lstart: offset from which to truncate
189 * @lend: offset to which to truncate
190 *
191 * Truncate the page cache, removing the pages that are between
192 * specified offsets (and zeroing out partial page
193 * (if lstart is not page aligned)).
194 *
195 * Truncate takes two passes - the first pass is nonblocking.  It will not
196 * block on page locks and it will not block on writeback.  The second pass
197 * will wait.  This is to prevent as much IO as possible in the affected region.
198 * The first pass will remove most pages, so the search cost of the second pass
199 * is low.
200 *
201 * When looking at page->index outside the page lock we need to be careful to
202 * copy it into a local to avoid races (it could change at any time).
203 *
204 * We pass down the cache-hot hint to the page freeing code.  Even if the
205 * mapping is large, it is probably the case that the final pages are the most
206 * recently touched, and freeing happens in ascending file offset order.
207 */
208void truncate_inode_pages_range(struct address_space *mapping,
209				loff_t lstart, loff_t lend)
210{
211	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
212	pgoff_t end;
213	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
214	struct pagevec pvec;
215	pgoff_t next;
216	int i;
217
218	if (mapping->nrpages == 0)
219		return;
220
221	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
222	end = (lend >> PAGE_CACHE_SHIFT);
223
224	pagevec_init(&pvec, 0);
225	next = start;
226	while (next <= end &&
227	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
228		for (i = 0; i < pagevec_count(&pvec); i++) {
229			struct page *page = pvec.pages[i];
230			pgoff_t page_index = page->index;
231
232			if (page_index > end) {
233				next = page_index;
234				break;
235			}
236
237			if (page_index > next)
238				next = page_index;
239			next++;
240			if (!trylock_page(page))
241				continue;
242			if (PageWriteback(page)) {
243				unlock_page(page);
244				continue;
245			}
246			truncate_inode_page(mapping, page);
247			unlock_page(page);
248		}
249		pagevec_release(&pvec);
250		cond_resched();
251	}
252
253	if (partial) {
254		struct page *page = find_lock_page(mapping, start - 1);
255		if (page) {
256			wait_on_page_writeback(page);
257			truncate_partial_page(page, partial);
258			unlock_page(page);
259			page_cache_release(page);
260		}
261	}
262
263	next = start;
264	for ( ; ; ) {
265		cond_resched();
266		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
267			if (next == start)
268				break;
269			next = start;
270			continue;
271		}
272		if (pvec.pages[0]->index > end) {
273			pagevec_release(&pvec);
274			break;
275		}
276		mem_cgroup_uncharge_start();
277		for (i = 0; i < pagevec_count(&pvec); i++) {
278			struct page *page = pvec.pages[i];
279
280			if (page->index > end)
281				break;
282			lock_page(page);
283			wait_on_page_writeback(page);
284			truncate_inode_page(mapping, page);
285			if (page->index > next)
286				next = page->index;
287			next++;
288			unlock_page(page);
289		}
290		pagevec_release(&pvec);
291		mem_cgroup_uncharge_end();
292	}
293}
294EXPORT_SYMBOL(truncate_inode_pages_range);
295
296/**
297 * truncate_inode_pages - truncate *all* the pages from an offset
298 * @mapping: mapping to truncate
299 * @lstart: offset from which to truncate
300 *
301 * Called under (and serialised by) inode->i_mutex.
302 */
303void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
304{
305	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
306}
307EXPORT_SYMBOL(truncate_inode_pages);
308
309/**
310 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
311 * @mapping: the address_space which holds the pages to invalidate
312 * @start: the offset 'from' which to invalidate
313 * @end: the offset 'to' which to invalidate (inclusive)
314 *
315 * This function only removes the unlocked pages, if you want to
316 * remove all the pages of one inode, you must call truncate_inode_pages.
317 *
318 * invalidate_mapping_pages() will not block on IO activity. It will not
319 * invalidate pages which are dirty, locked, under writeback or mapped into
320 * pagetables.
321 */
322unsigned long invalidate_mapping_pages(struct address_space *mapping,
323				       pgoff_t start, pgoff_t end)
324{
325	struct pagevec pvec;
326	pgoff_t next = start;
327	unsigned long ret = 0;
328	int i;
329
330	pagevec_init(&pvec, 0);
331	while (next <= end &&
332			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
333		mem_cgroup_uncharge_start();
334		for (i = 0; i < pagevec_count(&pvec); i++) {
335			struct page *page = pvec.pages[i];
336			pgoff_t index;
337			int lock_failed;
338
339			lock_failed = !trylock_page(page);
340
341			/*
342			 * We really shouldn't be looking at the ->index of an
343			 * unlocked page.  But we're not allowed to lock these
344			 * pages.  So we rely upon nobody altering the ->index
345			 * of this (pinned-by-us) page.
346			 */
347			index = page->index;
348			if (index > next)
349				next = index;
350			next++;
351			if (lock_failed)
352				continue;
353
354			ret += invalidate_inode_page(page);
355
356			unlock_page(page);
357			if (next > end)
358				break;
359		}
360		pagevec_release(&pvec);
361		mem_cgroup_uncharge_end();
362		cond_resched();
363	}
364	return ret;
365}
366EXPORT_SYMBOL(invalidate_mapping_pages);
367
368/*
369 * This is like invalidate_complete_page(), except it ignores the page's
370 * refcount.  We do this because invalidate_inode_pages2() needs stronger
371 * invalidation guarantees, and cannot afford to leave pages behind because
372 * shrink_page_list() has a temp ref on them, or because they're transiently
373 * sitting in the lru_cache_add() pagevecs.
374 */
375static int
376invalidate_complete_page2(struct address_space *mapping, struct page *page)
377{
378	if (page->mapping != mapping)
379		return 0;
380
381	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
382		return 0;
383
384	spin_lock_irq(&mapping->tree_lock);
385	if (PageDirty(page))
386		goto failed;
387
388	clear_page_mlock(page);
389	BUG_ON(page_has_private(page));
390	__remove_from_page_cache(page);
391	spin_unlock_irq(&mapping->tree_lock);
392	mem_cgroup_uncharge_cache_page(page);
393	page_cache_release(page);	/* pagecache ref */
394	return 1;
395failed:
396	spin_unlock_irq(&mapping->tree_lock);
397	return 0;
398}
399
400static int do_launder_page(struct address_space *mapping, struct page *page)
401{
402	if (!PageDirty(page))
403		return 0;
404	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
405		return 0;
406	return mapping->a_ops->launder_page(page);
407}
408
409/**
410 * invalidate_inode_pages2_range - remove range of pages from an address_space
411 * @mapping: the address_space
412 * @start: the page offset 'from' which to invalidate
413 * @end: the page offset 'to' which to invalidate (inclusive)
414 *
415 * Any pages which are found to be mapped into pagetables are unmapped prior to
416 * invalidation.
417 *
418 * Returns -EBUSY if any pages could not be invalidated.
419 */
420int invalidate_inode_pages2_range(struct address_space *mapping,
421				  pgoff_t start, pgoff_t end)
422{
423	struct pagevec pvec;
424	pgoff_t next;
425	int i;
426	int ret = 0;
427	int ret2 = 0;
428	int did_range_unmap = 0;
429	int wrapped = 0;
430
431	pagevec_init(&pvec, 0);
432	next = start;
433	while (next <= end && !wrapped &&
434		pagevec_lookup(&pvec, mapping, next,
435			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
436		mem_cgroup_uncharge_start();
437		for (i = 0; i < pagevec_count(&pvec); i++) {
438			struct page *page = pvec.pages[i];
439			pgoff_t page_index;
440
441			lock_page(page);
442			if (page->mapping != mapping) {
443				unlock_page(page);
444				continue;
445			}
446			page_index = page->index;
447			next = page_index + 1;
448			if (next == 0)
449				wrapped = 1;
450			if (page_index > end) {
451				unlock_page(page);
452				break;
453			}
454			wait_on_page_writeback(page);
455			if (page_mapped(page)) {
456				if (!did_range_unmap) {
457					/*
458					 * Zap the rest of the file in one hit.
459					 */
460					unmap_mapping_range(mapping,
461					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
462					   (loff_t)(end - page_index + 1)
463							<< PAGE_CACHE_SHIFT,
464					    0);
465					did_range_unmap = 1;
466				} else {
467					/*
468					 * Just zap this page
469					 */
470					unmap_mapping_range(mapping,
471					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
472					  PAGE_CACHE_SIZE, 0);
473				}
474			}
475			BUG_ON(page_mapped(page));
476			ret2 = do_launder_page(mapping, page);
477			if (ret2 == 0) {
478				if (!invalidate_complete_page2(mapping, page))
479					ret2 = -EBUSY;
480			}
481			if (ret2 < 0)
482				ret = ret2;
483			unlock_page(page);
484		}
485		pagevec_release(&pvec);
486		mem_cgroup_uncharge_end();
487		cond_resched();
488	}
489	return ret;
490}
491EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
492
493/**
494 * invalidate_inode_pages2 - remove all pages from an address_space
495 * @mapping: the address_space
496 *
497 * Any pages which are found to be mapped into pagetables are unmapped prior to
498 * invalidation.
499 *
500 * Returns -EBUSY if any pages could not be invalidated.
501 */
502int invalidate_inode_pages2(struct address_space *mapping)
503{
504	return invalidate_inode_pages2_range(mapping, 0, -1);
505}
506EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
507
508/**
509 * truncate_pagecache - unmap and remove pagecache that has been truncated
510 * @inode: inode
511 * @old: old file offset
512 * @new: new file offset
513 *
514 * inode's new i_size must already be written before truncate_pagecache
515 * is called.
516 *
517 * This function should typically be called before the filesystem
518 * releases resources associated with the freed range (eg. deallocates
519 * blocks). This way, pagecache will always stay logically coherent
520 * with on-disk format, and the filesystem would not have to deal with
521 * situations such as writepage being called for a page that has already
522 * had its underlying blocks deallocated.
523 */
524void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
525{
526	struct address_space *mapping = inode->i_mapping;
527
528	/*
529	 * unmap_mapping_range is called twice, first simply for
530	 * efficiency so that truncate_inode_pages does fewer
531	 * single-page unmaps.  However after this first call, and
532	 * before truncate_inode_pages finishes, it is possible for
533	 * private pages to be COWed, which remain after
534	 * truncate_inode_pages finishes, hence the second
535	 * unmap_mapping_range call must be made for correctness.
536	 */
537	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
538	truncate_inode_pages(mapping, new);
539	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
540}
541EXPORT_SYMBOL(truncate_pagecache);
542
543/**
544 * vmtruncate - unmap mappings "freed" by truncate() syscall
545 * @inode: inode of the file used
546 * @offset: file offset to start truncating
547 *
548 * NOTE! We have to be ready to update the memory sharing
549 * between the file and the memory map for a potential last
550 * incomplete page.  Ugly, but necessary.
551 *
552 * This function is deprecated and simple_setsize or truncate_pagecache
553 * should be used instead.
554 */
555int vmtruncate(struct inode *inode, loff_t offset)
556{
557	int error;
558
559	error = simple_setsize(inode, offset);
560	if (error)
561		return error;
562
563	if (inode->i_op->truncate)
564		inode->i_op->truncate(inode);
565
566	return error;
567}
568EXPORT_SYMBOL(vmtruncate);
569