truncate.c revision 83f786680aec8d030184f7ced1a0a3dd8ac81764
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/backing-dev.h>
12#include <linux/mm.h>
13#include <linux/swap.h>
14#include <linux/module.h>
15#include <linux/pagemap.h>
16#include <linux/highmem.h>
17#include <linux/pagevec.h>
18#include <linux/task_io_accounting_ops.h>
19#include <linux/buffer_head.h>	/* grr. try_to_release_page,
20				   do_invalidatepage */
21#include "internal.h"
22
23
24/**
25 * do_invalidatepage - invalidate part or all of a page
26 * @page: the page which is affected
27 * @offset: the index of the truncation point
28 *
29 * do_invalidatepage() is called when all or part of the page has become
30 * invalidated by a truncate operation.
31 *
32 * do_invalidatepage() does not have to release all buffers, but it must
33 * ensure that no dirty buffer is left outside @offset and that no I/O
34 * is underway against any of the blocks which are outside the truncation
35 * point.  Because the caller is about to free (and possibly reuse) those
36 * blocks on-disk.
37 */
38void do_invalidatepage(struct page *page, unsigned long offset)
39{
40	void (*invalidatepage)(struct page *, unsigned long);
41	invalidatepage = page->mapping->a_ops->invalidatepage;
42#ifdef CONFIG_BLOCK
43	if (!invalidatepage)
44		invalidatepage = block_invalidatepage;
45#endif
46	if (invalidatepage)
47		(*invalidatepage)(page, offset);
48}
49
50static inline void truncate_partial_page(struct page *page, unsigned partial)
51{
52	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
53	if (page_has_private(page))
54		do_invalidatepage(page, partial);
55}
56
57/*
58 * This cancels just the dirty bit on the kernel page itself, it
59 * does NOT actually remove dirty bits on any mmap's that may be
60 * around. It also leaves the page tagged dirty, so any sync
61 * activity will still find it on the dirty lists, and in particular,
62 * clear_page_dirty_for_io() will still look at the dirty bits in
63 * the VM.
64 *
65 * Doing this should *normally* only ever be done when a page
66 * is truncated, and is not actually mapped anywhere at all. However,
67 * fs/buffer.c does this when it notices that somebody has cleaned
68 * out all the buffers on a page without actually doing it through
69 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
70 */
71void cancel_dirty_page(struct page *page, unsigned int account_size)
72{
73	if (TestClearPageDirty(page)) {
74		struct address_space *mapping = page->mapping;
75		if (mapping && mapping_cap_account_dirty(mapping)) {
76			dec_zone_page_state(page, NR_FILE_DIRTY);
77			dec_bdi_stat(mapping->backing_dev_info,
78					BDI_RECLAIMABLE);
79			if (account_size)
80				task_io_account_cancelled_write(account_size);
81		}
82	}
83}
84EXPORT_SYMBOL(cancel_dirty_page);
85
86/*
87 * If truncate cannot remove the fs-private metadata from the page, the page
88 * becomes orphaned.  It will be left on the LRU and may even be mapped into
89 * user pagetables if we're racing with filemap_fault().
90 *
91 * We need to bale out if page->mapping is no longer equal to the original
92 * mapping.  This happens a) when the VM reclaimed the page while we waited on
93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
95 */
96static int
97truncate_complete_page(struct address_space *mapping, struct page *page)
98{
99	if (page->mapping != mapping)
100		return -EIO;
101
102	if (page_has_private(page))
103		do_invalidatepage(page, 0);
104
105	cancel_dirty_page(page, PAGE_CACHE_SIZE);
106
107	clear_page_mlock(page);
108	remove_from_page_cache(page);
109	ClearPageMappedToDisk(page);
110	page_cache_release(page);	/* pagecache ref */
111	return 0;
112}
113
114/*
115 * This is for invalidate_mapping_pages().  That function can be called at
116 * any time, and is not supposed to throw away dirty pages.  But pages can
117 * be marked dirty at any time too, so use remove_mapping which safely
118 * discards clean, unused pages.
119 *
120 * Returns non-zero if the page was successfully invalidated.
121 */
122static int
123invalidate_complete_page(struct address_space *mapping, struct page *page)
124{
125	int ret;
126
127	if (page->mapping != mapping)
128		return 0;
129
130	if (page_has_private(page) && !try_to_release_page(page, 0))
131		return 0;
132
133	clear_page_mlock(page);
134	ret = remove_mapping(mapping, page);
135
136	return ret;
137}
138
139int truncate_inode_page(struct address_space *mapping, struct page *page)
140{
141	if (page_mapped(page)) {
142		unmap_mapping_range(mapping,
143				   (loff_t)page->index << PAGE_CACHE_SHIFT,
144				   PAGE_CACHE_SIZE, 0);
145	}
146	return truncate_complete_page(mapping, page);
147}
148
149/*
150 * Safely invalidate one page from its pagecache mapping.
151 * It only drops clean, unused pages. The page must be locked.
152 *
153 * Returns 1 if the page is successfully invalidated, otherwise 0.
154 */
155int invalidate_inode_page(struct page *page)
156{
157	struct address_space *mapping = page_mapping(page);
158	if (!mapping)
159		return 0;
160	if (PageDirty(page) || PageWriteback(page))
161		return 0;
162	if (page_mapped(page))
163		return 0;
164	return invalidate_complete_page(mapping, page);
165}
166
167/**
168 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
169 * @mapping: mapping to truncate
170 * @lstart: offset from which to truncate
171 * @lend: offset to which to truncate
172 *
173 * Truncate the page cache, removing the pages that are between
174 * specified offsets (and zeroing out partial page
175 * (if lstart is not page aligned)).
176 *
177 * Truncate takes two passes - the first pass is nonblocking.  It will not
178 * block on page locks and it will not block on writeback.  The second pass
179 * will wait.  This is to prevent as much IO as possible in the affected region.
180 * The first pass will remove most pages, so the search cost of the second pass
181 * is low.
182 *
183 * When looking at page->index outside the page lock we need to be careful to
184 * copy it into a local to avoid races (it could change at any time).
185 *
186 * We pass down the cache-hot hint to the page freeing code.  Even if the
187 * mapping is large, it is probably the case that the final pages are the most
188 * recently touched, and freeing happens in ascending file offset order.
189 */
190void truncate_inode_pages_range(struct address_space *mapping,
191				loff_t lstart, loff_t lend)
192{
193	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
194	pgoff_t end;
195	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
196	struct pagevec pvec;
197	pgoff_t next;
198	int i;
199
200	if (mapping->nrpages == 0)
201		return;
202
203	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
204	end = (lend >> PAGE_CACHE_SHIFT);
205
206	pagevec_init(&pvec, 0);
207	next = start;
208	while (next <= end &&
209	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
210		for (i = 0; i < pagevec_count(&pvec); i++) {
211			struct page *page = pvec.pages[i];
212			pgoff_t page_index = page->index;
213
214			if (page_index > end) {
215				next = page_index;
216				break;
217			}
218
219			if (page_index > next)
220				next = page_index;
221			next++;
222			if (!trylock_page(page))
223				continue;
224			if (PageWriteback(page)) {
225				unlock_page(page);
226				continue;
227			}
228			truncate_inode_page(mapping, page);
229			unlock_page(page);
230		}
231		pagevec_release(&pvec);
232		cond_resched();
233	}
234
235	if (partial) {
236		struct page *page = find_lock_page(mapping, start - 1);
237		if (page) {
238			wait_on_page_writeback(page);
239			truncate_partial_page(page, partial);
240			unlock_page(page);
241			page_cache_release(page);
242		}
243	}
244
245	next = start;
246	for ( ; ; ) {
247		cond_resched();
248		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
249			if (next == start)
250				break;
251			next = start;
252			continue;
253		}
254		if (pvec.pages[0]->index > end) {
255			pagevec_release(&pvec);
256			break;
257		}
258		for (i = 0; i < pagevec_count(&pvec); i++) {
259			struct page *page = pvec.pages[i];
260
261			if (page->index > end)
262				break;
263			lock_page(page);
264			wait_on_page_writeback(page);
265			truncate_inode_page(mapping, page);
266			if (page->index > next)
267				next = page->index;
268			next++;
269			unlock_page(page);
270		}
271		pagevec_release(&pvec);
272	}
273}
274EXPORT_SYMBOL(truncate_inode_pages_range);
275
276/**
277 * truncate_inode_pages - truncate *all* the pages from an offset
278 * @mapping: mapping to truncate
279 * @lstart: offset from which to truncate
280 *
281 * Called under (and serialised by) inode->i_mutex.
282 */
283void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
284{
285	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
286}
287EXPORT_SYMBOL(truncate_inode_pages);
288
289/**
290 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
291 * @mapping: the address_space which holds the pages to invalidate
292 * @start: the offset 'from' which to invalidate
293 * @end: the offset 'to' which to invalidate (inclusive)
294 *
295 * This function only removes the unlocked pages, if you want to
296 * remove all the pages of one inode, you must call truncate_inode_pages.
297 *
298 * invalidate_mapping_pages() will not block on IO activity. It will not
299 * invalidate pages which are dirty, locked, under writeback or mapped into
300 * pagetables.
301 */
302unsigned long invalidate_mapping_pages(struct address_space *mapping,
303				       pgoff_t start, pgoff_t end)
304{
305	struct pagevec pvec;
306	pgoff_t next = start;
307	unsigned long ret = 0;
308	int i;
309
310	pagevec_init(&pvec, 0);
311	while (next <= end &&
312			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
313		for (i = 0; i < pagevec_count(&pvec); i++) {
314			struct page *page = pvec.pages[i];
315			pgoff_t index;
316			int lock_failed;
317
318			lock_failed = !trylock_page(page);
319
320			/*
321			 * We really shouldn't be looking at the ->index of an
322			 * unlocked page.  But we're not allowed to lock these
323			 * pages.  So we rely upon nobody altering the ->index
324			 * of this (pinned-by-us) page.
325			 */
326			index = page->index;
327			if (index > next)
328				next = index;
329			next++;
330			if (lock_failed)
331				continue;
332
333			ret += invalidate_inode_page(page);
334
335			unlock_page(page);
336			if (next > end)
337				break;
338		}
339		pagevec_release(&pvec);
340		cond_resched();
341	}
342	return ret;
343}
344EXPORT_SYMBOL(invalidate_mapping_pages);
345
346/*
347 * This is like invalidate_complete_page(), except it ignores the page's
348 * refcount.  We do this because invalidate_inode_pages2() needs stronger
349 * invalidation guarantees, and cannot afford to leave pages behind because
350 * shrink_page_list() has a temp ref on them, or because they're transiently
351 * sitting in the lru_cache_add() pagevecs.
352 */
353static int
354invalidate_complete_page2(struct address_space *mapping, struct page *page)
355{
356	if (page->mapping != mapping)
357		return 0;
358
359	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
360		return 0;
361
362	spin_lock_irq(&mapping->tree_lock);
363	if (PageDirty(page))
364		goto failed;
365
366	clear_page_mlock(page);
367	BUG_ON(page_has_private(page));
368	__remove_from_page_cache(page);
369	spin_unlock_irq(&mapping->tree_lock);
370	mem_cgroup_uncharge_cache_page(page);
371	page_cache_release(page);	/* pagecache ref */
372	return 1;
373failed:
374	spin_unlock_irq(&mapping->tree_lock);
375	return 0;
376}
377
378static int do_launder_page(struct address_space *mapping, struct page *page)
379{
380	if (!PageDirty(page))
381		return 0;
382	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
383		return 0;
384	return mapping->a_ops->launder_page(page);
385}
386
387/**
388 * invalidate_inode_pages2_range - remove range of pages from an address_space
389 * @mapping: the address_space
390 * @start: the page offset 'from' which to invalidate
391 * @end: the page offset 'to' which to invalidate (inclusive)
392 *
393 * Any pages which are found to be mapped into pagetables are unmapped prior to
394 * invalidation.
395 *
396 * Returns -EBUSY if any pages could not be invalidated.
397 */
398int invalidate_inode_pages2_range(struct address_space *mapping,
399				  pgoff_t start, pgoff_t end)
400{
401	struct pagevec pvec;
402	pgoff_t next;
403	int i;
404	int ret = 0;
405	int ret2 = 0;
406	int did_range_unmap = 0;
407	int wrapped = 0;
408
409	pagevec_init(&pvec, 0);
410	next = start;
411	while (next <= end && !wrapped &&
412		pagevec_lookup(&pvec, mapping, next,
413			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
414		for (i = 0; i < pagevec_count(&pvec); i++) {
415			struct page *page = pvec.pages[i];
416			pgoff_t page_index;
417
418			lock_page(page);
419			if (page->mapping != mapping) {
420				unlock_page(page);
421				continue;
422			}
423			page_index = page->index;
424			next = page_index + 1;
425			if (next == 0)
426				wrapped = 1;
427			if (page_index > end) {
428				unlock_page(page);
429				break;
430			}
431			wait_on_page_writeback(page);
432			if (page_mapped(page)) {
433				if (!did_range_unmap) {
434					/*
435					 * Zap the rest of the file in one hit.
436					 */
437					unmap_mapping_range(mapping,
438					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
439					   (loff_t)(end - page_index + 1)
440							<< PAGE_CACHE_SHIFT,
441					    0);
442					did_range_unmap = 1;
443				} else {
444					/*
445					 * Just zap this page
446					 */
447					unmap_mapping_range(mapping,
448					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
449					  PAGE_CACHE_SIZE, 0);
450				}
451			}
452			BUG_ON(page_mapped(page));
453			ret2 = do_launder_page(mapping, page);
454			if (ret2 == 0) {
455				if (!invalidate_complete_page2(mapping, page))
456					ret2 = -EBUSY;
457			}
458			if (ret2 < 0)
459				ret = ret2;
460			unlock_page(page);
461		}
462		pagevec_release(&pvec);
463		cond_resched();
464	}
465	return ret;
466}
467EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
468
469/**
470 * invalidate_inode_pages2 - remove all pages from an address_space
471 * @mapping: the address_space
472 *
473 * Any pages which are found to be mapped into pagetables are unmapped prior to
474 * invalidation.
475 *
476 * Returns -EIO if any pages could not be invalidated.
477 */
478int invalidate_inode_pages2(struct address_space *mapping)
479{
480	return invalidate_inode_pages2_range(mapping, 0, -1);
481}
482EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
483