truncate.c revision fc0ecff698165ae8e178efa086e0dd1f385206b1
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002	akpm@zip.com.au
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/mm.h>
12#include <linux/swap.h>
13#include <linux/module.h>
14#include <linux/pagemap.h>
15#include <linux/pagevec.h>
16#include <linux/task_io_accounting_ops.h>
17#include <linux/buffer_head.h>	/* grr. try_to_release_page,
18				   do_invalidatepage */
19
20
21/**
22 * do_invalidatepage - invalidate part of all of a page
23 * @page: the page which is affected
24 * @offset: the index of the truncation point
25 *
26 * do_invalidatepage() is called when all or part of the page has become
27 * invalidated by a truncate operation.
28 *
29 * do_invalidatepage() does not have to release all buffers, but it must
30 * ensure that no dirty buffer is left outside @offset and that no I/O
31 * is underway against any of the blocks which are outside the truncation
32 * point.  Because the caller is about to free (and possibly reuse) those
33 * blocks on-disk.
34 */
35void do_invalidatepage(struct page *page, unsigned long offset)
36{
37	void (*invalidatepage)(struct page *, unsigned long);
38	invalidatepage = page->mapping->a_ops->invalidatepage;
39#ifdef CONFIG_BLOCK
40	if (!invalidatepage)
41		invalidatepage = block_invalidatepage;
42#endif
43	if (invalidatepage)
44		(*invalidatepage)(page, offset);
45}
46
47static inline void truncate_partial_page(struct page *page, unsigned partial)
48{
49	memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);
50	if (PagePrivate(page))
51		do_invalidatepage(page, partial);
52}
53
54/*
55 * This cancels just the dirty bit on the kernel page itself, it
56 * does NOT actually remove dirty bits on any mmap's that may be
57 * around. It also leaves the page tagged dirty, so any sync
58 * activity will still find it on the dirty lists, and in particular,
59 * clear_page_dirty_for_io() will still look at the dirty bits in
60 * the VM.
61 *
62 * Doing this should *normally* only ever be done when a page
63 * is truncated, and is not actually mapped anywhere at all. However,
64 * fs/buffer.c does this when it notices that somebody has cleaned
65 * out all the buffers on a page without actually doing it through
66 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
67 */
68void cancel_dirty_page(struct page *page, unsigned int account_size)
69{
70	if (TestClearPageDirty(page)) {
71		struct address_space *mapping = page->mapping;
72		if (mapping && mapping_cap_account_dirty(mapping)) {
73			dec_zone_page_state(page, NR_FILE_DIRTY);
74			if (account_size)
75				task_io_account_cancelled_write(account_size);
76		}
77	}
78}
79EXPORT_SYMBOL(cancel_dirty_page);
80
81/*
82 * If truncate cannot remove the fs-private metadata from the page, the page
83 * becomes anonymous.  It will be left on the LRU and may even be mapped into
84 * user pagetables if we're racing with filemap_nopage().
85 *
86 * We need to bale out if page->mapping is no longer equal to the original
87 * mapping.  This happens a) when the VM reclaimed the page while we waited on
88 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
89 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
90 */
91static void
92truncate_complete_page(struct address_space *mapping, struct page *page)
93{
94	if (page->mapping != mapping)
95		return;
96
97	cancel_dirty_page(page, PAGE_CACHE_SIZE);
98
99	if (PagePrivate(page))
100		do_invalidatepage(page, 0);
101
102	ClearPageUptodate(page);
103	ClearPageMappedToDisk(page);
104	remove_from_page_cache(page);
105	page_cache_release(page);	/* pagecache ref */
106}
107
108/*
109 * This is for invalidate_mapping_pages().  That function can be called at
110 * any time, and is not supposed to throw away dirty pages.  But pages can
111 * be marked dirty at any time too, so use remove_mapping which safely
112 * discards clean, unused pages.
113 *
114 * Returns non-zero if the page was successfully invalidated.
115 */
116static int
117invalidate_complete_page(struct address_space *mapping, struct page *page)
118{
119	int ret;
120
121	if (page->mapping != mapping)
122		return 0;
123
124	if (PagePrivate(page) && !try_to_release_page(page, 0))
125		return 0;
126
127	ret = remove_mapping(mapping, page);
128
129	return ret;
130}
131
132/**
133 * truncate_inode_pages - truncate range of pages specified by start and
134 * end byte offsets
135 * @mapping: mapping to truncate
136 * @lstart: offset from which to truncate
137 * @lend: offset to which to truncate
138 *
139 * Truncate the page cache, removing the pages that are between
140 * specified offsets (and zeroing out partial page
141 * (if lstart is not page aligned)).
142 *
143 * Truncate takes two passes - the first pass is nonblocking.  It will not
144 * block on page locks and it will not block on writeback.  The second pass
145 * will wait.  This is to prevent as much IO as possible in the affected region.
146 * The first pass will remove most pages, so the search cost of the second pass
147 * is low.
148 *
149 * When looking at page->index outside the page lock we need to be careful to
150 * copy it into a local to avoid races (it could change at any time).
151 *
152 * We pass down the cache-hot hint to the page freeing code.  Even if the
153 * mapping is large, it is probably the case that the final pages are the most
154 * recently touched, and freeing happens in ascending file offset order.
155 */
156void truncate_inode_pages_range(struct address_space *mapping,
157				loff_t lstart, loff_t lend)
158{
159	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
160	pgoff_t end;
161	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
162	struct pagevec pvec;
163	pgoff_t next;
164	int i;
165
166	if (mapping->nrpages == 0)
167		return;
168
169	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
170	end = (lend >> PAGE_CACHE_SHIFT);
171
172	pagevec_init(&pvec, 0);
173	next = start;
174	while (next <= end &&
175	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
176		for (i = 0; i < pagevec_count(&pvec); i++) {
177			struct page *page = pvec.pages[i];
178			pgoff_t page_index = page->index;
179
180			if (page_index > end) {
181				next = page_index;
182				break;
183			}
184
185			if (page_index > next)
186				next = page_index;
187			next++;
188			if (TestSetPageLocked(page))
189				continue;
190			if (PageWriteback(page)) {
191				unlock_page(page);
192				continue;
193			}
194			truncate_complete_page(mapping, page);
195			unlock_page(page);
196		}
197		pagevec_release(&pvec);
198		cond_resched();
199	}
200
201	if (partial) {
202		struct page *page = find_lock_page(mapping, start - 1);
203		if (page) {
204			wait_on_page_writeback(page);
205			truncate_partial_page(page, partial);
206			unlock_page(page);
207			page_cache_release(page);
208		}
209	}
210
211	next = start;
212	for ( ; ; ) {
213		cond_resched();
214		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
215			if (next == start)
216				break;
217			next = start;
218			continue;
219		}
220		if (pvec.pages[0]->index > end) {
221			pagevec_release(&pvec);
222			break;
223		}
224		for (i = 0; i < pagevec_count(&pvec); i++) {
225			struct page *page = pvec.pages[i];
226
227			if (page->index > end)
228				break;
229			lock_page(page);
230			wait_on_page_writeback(page);
231			if (page->index > next)
232				next = page->index;
233			next++;
234			truncate_complete_page(mapping, page);
235			unlock_page(page);
236		}
237		pagevec_release(&pvec);
238	}
239}
240EXPORT_SYMBOL(truncate_inode_pages_range);
241
242/**
243 * truncate_inode_pages - truncate *all* the pages from an offset
244 * @mapping: mapping to truncate
245 * @lstart: offset from which to truncate
246 *
247 * Called under (and serialised by) inode->i_mutex.
248 */
249void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
250{
251	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
252}
253EXPORT_SYMBOL(truncate_inode_pages);
254
255/**
256 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
257 * @mapping: the address_space which holds the pages to invalidate
258 * @start: the offset 'from' which to invalidate
259 * @end: the offset 'to' which to invalidate (inclusive)
260 *
261 * This function only removes the unlocked pages, if you want to
262 * remove all the pages of one inode, you must call truncate_inode_pages.
263 *
264 * invalidate_mapping_pages() will not block on IO activity. It will not
265 * invalidate pages which are dirty, locked, under writeback or mapped into
266 * pagetables.
267 */
268unsigned long invalidate_mapping_pages(struct address_space *mapping,
269				pgoff_t start, pgoff_t end)
270{
271	struct pagevec pvec;
272	pgoff_t next = start;
273	unsigned long ret = 0;
274	int i;
275
276	pagevec_init(&pvec, 0);
277	while (next <= end &&
278			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
279		for (i = 0; i < pagevec_count(&pvec); i++) {
280			struct page *page = pvec.pages[i];
281			pgoff_t index;
282			int lock_failed;
283
284			lock_failed = TestSetPageLocked(page);
285
286			/*
287			 * We really shouldn't be looking at the ->index of an
288			 * unlocked page.  But we're not allowed to lock these
289			 * pages.  So we rely upon nobody altering the ->index
290			 * of this (pinned-by-us) page.
291			 */
292			index = page->index;
293			if (index > next)
294				next = index;
295			next++;
296			if (lock_failed)
297				continue;
298
299			if (PageDirty(page) || PageWriteback(page))
300				goto unlock;
301			if (page_mapped(page))
302				goto unlock;
303			ret += invalidate_complete_page(mapping, page);
304unlock:
305			unlock_page(page);
306			if (next > end)
307				break;
308		}
309		pagevec_release(&pvec);
310	}
311	return ret;
312}
313EXPORT_SYMBOL(invalidate_mapping_pages);
314
315/*
316 * This is like invalidate_complete_page(), except it ignores the page's
317 * refcount.  We do this because invalidate_inode_pages2() needs stronger
318 * invalidation guarantees, and cannot afford to leave pages behind because
319 * shrink_list() has a temp ref on them, or because they're transiently sitting
320 * in the lru_cache_add() pagevecs.
321 */
322static int
323invalidate_complete_page2(struct address_space *mapping, struct page *page)
324{
325	if (page->mapping != mapping)
326		return 0;
327
328	if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
329		return 0;
330
331	write_lock_irq(&mapping->tree_lock);
332	if (PageDirty(page))
333		goto failed;
334
335	BUG_ON(PagePrivate(page));
336	__remove_from_page_cache(page);
337	write_unlock_irq(&mapping->tree_lock);
338	ClearPageUptodate(page);
339	page_cache_release(page);	/* pagecache ref */
340	return 1;
341failed:
342	write_unlock_irq(&mapping->tree_lock);
343	return 0;
344}
345
346static int do_launder_page(struct address_space *mapping, struct page *page)
347{
348	if (!PageDirty(page))
349		return 0;
350	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
351		return 0;
352	return mapping->a_ops->launder_page(page);
353}
354
355/**
356 * invalidate_inode_pages2_range - remove range of pages from an address_space
357 * @mapping: the address_space
358 * @start: the page offset 'from' which to invalidate
359 * @end: the page offset 'to' which to invalidate (inclusive)
360 *
361 * Any pages which are found to be mapped into pagetables are unmapped prior to
362 * invalidation.
363 *
364 * Returns -EIO if any pages could not be invalidated.
365 */
366int invalidate_inode_pages2_range(struct address_space *mapping,
367				  pgoff_t start, pgoff_t end)
368{
369	struct pagevec pvec;
370	pgoff_t next;
371	int i;
372	int ret = 0;
373	int did_range_unmap = 0;
374	int wrapped = 0;
375
376	pagevec_init(&pvec, 0);
377	next = start;
378	while (next <= end && !ret && !wrapped &&
379		pagevec_lookup(&pvec, mapping, next,
380			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
381		for (i = 0; !ret && i < pagevec_count(&pvec); i++) {
382			struct page *page = pvec.pages[i];
383			pgoff_t page_index;
384
385			lock_page(page);
386			if (page->mapping != mapping) {
387				unlock_page(page);
388				continue;
389			}
390			page_index = page->index;
391			next = page_index + 1;
392			if (next == 0)
393				wrapped = 1;
394			if (page_index > end) {
395				unlock_page(page);
396				break;
397			}
398			wait_on_page_writeback(page);
399			while (page_mapped(page)) {
400				if (!did_range_unmap) {
401					/*
402					 * Zap the rest of the file in one hit.
403					 */
404					unmap_mapping_range(mapping,
405					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
406					   (loff_t)(end - page_index + 1)
407							<< PAGE_CACHE_SHIFT,
408					    0);
409					did_range_unmap = 1;
410				} else {
411					/*
412					 * Just zap this page
413					 */
414					unmap_mapping_range(mapping,
415					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
416					  PAGE_CACHE_SIZE, 0);
417				}
418			}
419			ret = do_launder_page(mapping, page);
420			if (ret == 0 && !invalidate_complete_page2(mapping, page))
421				ret = -EIO;
422			unlock_page(page);
423		}
424		pagevec_release(&pvec);
425		cond_resched();
426	}
427	return ret;
428}
429EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
430
431/**
432 * invalidate_inode_pages2 - remove all pages from an address_space
433 * @mapping: the address_space
434 *
435 * Any pages which are found to be mapped into pagetables are unmapped prior to
436 * invalidation.
437 *
438 * Returns -EIO if any pages could not be invalidated.
439 */
440int invalidate_inode_pages2(struct address_space *mapping)
441{
442	return invalidate_inode_pages2_range(mapping, 0, -1);
443}
444EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
445