vmalloc.c revision 2dca6999eed58d44b67e9de7d6ec230f6250553d
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/debugobjects.h>
21#include <linux/kallsyms.h>
22#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
26#include <linux/pfn.h>
27#include <linux/kmemleak.h>
28#include <linux/highmem.h>
29#include <asm/atomic.h>
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32#include <asm/shmparam.h>
33
34
35/*** Page table manipulation functions ***/
36
37static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38{
39	pte_t *pte;
40
41	pte = pte_offset_kernel(pmd, addr);
42	do {
43		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45	} while (pte++, addr += PAGE_SIZE, addr != end);
46}
47
48static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49{
50	pmd_t *pmd;
51	unsigned long next;
52
53	pmd = pmd_offset(pud, addr);
54	do {
55		next = pmd_addr_end(addr, end);
56		if (pmd_none_or_clear_bad(pmd))
57			continue;
58		vunmap_pte_range(pmd, addr, next);
59	} while (pmd++, addr = next, addr != end);
60}
61
62static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63{
64	pud_t *pud;
65	unsigned long next;
66
67	pud = pud_offset(pgd, addr);
68	do {
69		next = pud_addr_end(addr, end);
70		if (pud_none_or_clear_bad(pud))
71			continue;
72		vunmap_pmd_range(pud, addr, next);
73	} while (pud++, addr = next, addr != end);
74}
75
76static void vunmap_page_range(unsigned long addr, unsigned long end)
77{
78	pgd_t *pgd;
79	unsigned long next;
80
81	BUG_ON(addr >= end);
82	pgd = pgd_offset_k(addr);
83	do {
84		next = pgd_addr_end(addr, end);
85		if (pgd_none_or_clear_bad(pgd))
86			continue;
87		vunmap_pud_range(pgd, addr, next);
88	} while (pgd++, addr = next, addr != end);
89}
90
91static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
92		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93{
94	pte_t *pte;
95
96	/*
97	 * nr is a running index into the array which helps higher level
98	 * callers keep track of where we're up to.
99	 */
100
101	pte = pte_alloc_kernel(pmd, addr);
102	if (!pte)
103		return -ENOMEM;
104	do {
105		struct page *page = pages[*nr];
106
107		if (WARN_ON(!pte_none(*pte)))
108			return -EBUSY;
109		if (WARN_ON(!page))
110			return -ENOMEM;
111		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
112		(*nr)++;
113	} while (pte++, addr += PAGE_SIZE, addr != end);
114	return 0;
115}
116
117static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119{
120	pmd_t *pmd;
121	unsigned long next;
122
123	pmd = pmd_alloc(&init_mm, pud, addr);
124	if (!pmd)
125		return -ENOMEM;
126	do {
127		next = pmd_addr_end(addr, end);
128		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
129			return -ENOMEM;
130	} while (pmd++, addr = next, addr != end);
131	return 0;
132}
133
134static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136{
137	pud_t *pud;
138	unsigned long next;
139
140	pud = pud_alloc(&init_mm, pgd, addr);
141	if (!pud)
142		return -ENOMEM;
143	do {
144		next = pud_addr_end(addr, end);
145		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
146			return -ENOMEM;
147	} while (pud++, addr = next, addr != end);
148	return 0;
149}
150
151/*
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
154 *
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 */
157static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158				   pgprot_t prot, struct page **pages)
159{
160	pgd_t *pgd;
161	unsigned long next;
162	unsigned long addr = start;
163	int err = 0;
164	int nr = 0;
165
166	BUG_ON(addr >= end);
167	pgd = pgd_offset_k(addr);
168	do {
169		next = pgd_addr_end(addr, end);
170		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
171		if (err)
172			return err;
173	} while (pgd++, addr = next, addr != end);
174
175	return nr;
176}
177
178static int vmap_page_range(unsigned long start, unsigned long end,
179			   pgprot_t prot, struct page **pages)
180{
181	int ret;
182
183	ret = vmap_page_range_noflush(start, end, prot, pages);
184	flush_cache_vmap(start, end);
185	return ret;
186}
187
188int is_vmalloc_or_module_addr(const void *x)
189{
190	/*
191	 * ARM, x86-64 and sparc64 put modules in a special place,
192	 * and fall back on vmalloc() if that fails. Others
193	 * just put it in the vmalloc space.
194	 */
195#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196	unsigned long addr = (unsigned long)x;
197	if (addr >= MODULES_VADDR && addr < MODULES_END)
198		return 1;
199#endif
200	return is_vmalloc_addr(x);
201}
202
203/*
204 * Walk a vmap address to the struct page it maps.
205 */
206struct page *vmalloc_to_page(const void *vmalloc_addr)
207{
208	unsigned long addr = (unsigned long) vmalloc_addr;
209	struct page *page = NULL;
210	pgd_t *pgd = pgd_offset_k(addr);
211
212	/*
213	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214	 * architectures that do not vmalloc module space
215	 */
216	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
217
218	if (!pgd_none(*pgd)) {
219		pud_t *pud = pud_offset(pgd, addr);
220		if (!pud_none(*pud)) {
221			pmd_t *pmd = pmd_offset(pud, addr);
222			if (!pmd_none(*pmd)) {
223				pte_t *ptep, pte;
224
225				ptep = pte_offset_map(pmd, addr);
226				pte = *ptep;
227				if (pte_present(pte))
228					page = pte_page(pte);
229				pte_unmap(ptep);
230			}
231		}
232	}
233	return page;
234}
235EXPORT_SYMBOL(vmalloc_to_page);
236
237/*
238 * Map a vmalloc()-space virtual address to the physical page frame number.
239 */
240unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
241{
242	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243}
244EXPORT_SYMBOL(vmalloc_to_pfn);
245
246
247/*** Global kva allocator ***/
248
249#define VM_LAZY_FREE	0x01
250#define VM_LAZY_FREEING	0x02
251#define VM_VM_AREA	0x04
252
253struct vmap_area {
254	unsigned long va_start;
255	unsigned long va_end;
256	unsigned long flags;
257	struct rb_node rb_node;		/* address sorted rbtree */
258	struct list_head list;		/* address sorted list */
259	struct list_head purge_list;	/* "lazy purge" list */
260	void *private;
261	struct rcu_head rcu_head;
262};
263
264static DEFINE_SPINLOCK(vmap_area_lock);
265static struct rb_root vmap_area_root = RB_ROOT;
266static LIST_HEAD(vmap_area_list);
267static unsigned long vmap_area_pcpu_hole;
268
269static struct vmap_area *__find_vmap_area(unsigned long addr)
270{
271	struct rb_node *n = vmap_area_root.rb_node;
272
273	while (n) {
274		struct vmap_area *va;
275
276		va = rb_entry(n, struct vmap_area, rb_node);
277		if (addr < va->va_start)
278			n = n->rb_left;
279		else if (addr > va->va_start)
280			n = n->rb_right;
281		else
282			return va;
283	}
284
285	return NULL;
286}
287
288static void __insert_vmap_area(struct vmap_area *va)
289{
290	struct rb_node **p = &vmap_area_root.rb_node;
291	struct rb_node *parent = NULL;
292	struct rb_node *tmp;
293
294	while (*p) {
295		struct vmap_area *tmp;
296
297		parent = *p;
298		tmp = rb_entry(parent, struct vmap_area, rb_node);
299		if (va->va_start < tmp->va_end)
300			p = &(*p)->rb_left;
301		else if (va->va_end > tmp->va_start)
302			p = &(*p)->rb_right;
303		else
304			BUG();
305	}
306
307	rb_link_node(&va->rb_node, parent, p);
308	rb_insert_color(&va->rb_node, &vmap_area_root);
309
310	/* address-sort this list so it is usable like the vmlist */
311	tmp = rb_prev(&va->rb_node);
312	if (tmp) {
313		struct vmap_area *prev;
314		prev = rb_entry(tmp, struct vmap_area, rb_node);
315		list_add_rcu(&va->list, &prev->list);
316	} else
317		list_add_rcu(&va->list, &vmap_area_list);
318}
319
320static void purge_vmap_area_lazy(void);
321
322/*
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
325 */
326static struct vmap_area *alloc_vmap_area(unsigned long size,
327				unsigned long align,
328				unsigned long vstart, unsigned long vend,
329				int node, gfp_t gfp_mask)
330{
331	struct vmap_area *va;
332	struct rb_node *n;
333	unsigned long addr;
334	int purged = 0;
335
336	BUG_ON(!size);
337	BUG_ON(size & ~PAGE_MASK);
338
339	va = kmalloc_node(sizeof(struct vmap_area),
340			gfp_mask & GFP_RECLAIM_MASK, node);
341	if (unlikely(!va))
342		return ERR_PTR(-ENOMEM);
343
344retry:
345	addr = ALIGN(vstart, align);
346
347	spin_lock(&vmap_area_lock);
348	if (addr + size - 1 < addr)
349		goto overflow;
350
351	/* XXX: could have a last_hole cache */
352	n = vmap_area_root.rb_node;
353	if (n) {
354		struct vmap_area *first = NULL;
355
356		do {
357			struct vmap_area *tmp;
358			tmp = rb_entry(n, struct vmap_area, rb_node);
359			if (tmp->va_end >= addr) {
360				if (!first && tmp->va_start < addr + size)
361					first = tmp;
362				n = n->rb_left;
363			} else {
364				first = tmp;
365				n = n->rb_right;
366			}
367		} while (n);
368
369		if (!first)
370			goto found;
371
372		if (first->va_end < addr) {
373			n = rb_next(&first->rb_node);
374			if (n)
375				first = rb_entry(n, struct vmap_area, rb_node);
376			else
377				goto found;
378		}
379
380		while (addr + size > first->va_start && addr + size <= vend) {
381			addr = ALIGN(first->va_end + PAGE_SIZE, align);
382			if (addr + size - 1 < addr)
383				goto overflow;
384
385			n = rb_next(&first->rb_node);
386			if (n)
387				first = rb_entry(n, struct vmap_area, rb_node);
388			else
389				goto found;
390		}
391	}
392found:
393	if (addr + size > vend) {
394overflow:
395		spin_unlock(&vmap_area_lock);
396		if (!purged) {
397			purge_vmap_area_lazy();
398			purged = 1;
399			goto retry;
400		}
401		if (printk_ratelimit())
402			printk(KERN_WARNING
403				"vmap allocation for size %lu failed: "
404				"use vmalloc=<size> to increase size.\n", size);
405		kfree(va);
406		return ERR_PTR(-EBUSY);
407	}
408
409	BUG_ON(addr & (align-1));
410
411	va->va_start = addr;
412	va->va_end = addr + size;
413	va->flags = 0;
414	__insert_vmap_area(va);
415	spin_unlock(&vmap_area_lock);
416
417	return va;
418}
419
420static void rcu_free_va(struct rcu_head *head)
421{
422	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423
424	kfree(va);
425}
426
427static void __free_vmap_area(struct vmap_area *va)
428{
429	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430	rb_erase(&va->rb_node, &vmap_area_root);
431	RB_CLEAR_NODE(&va->rb_node);
432	list_del_rcu(&va->list);
433
434	/*
435	 * Track the highest possible candidate for pcpu area
436	 * allocation.  Areas outside of vmalloc area can be returned
437	 * here too, consider only end addresses which fall inside
438	 * vmalloc area proper.
439	 */
440	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
442
443	call_rcu(&va->rcu_head, rcu_free_va);
444}
445
446/*
447 * Free a region of KVA allocated by alloc_vmap_area
448 */
449static void free_vmap_area(struct vmap_area *va)
450{
451	spin_lock(&vmap_area_lock);
452	__free_vmap_area(va);
453	spin_unlock(&vmap_area_lock);
454}
455
456/*
457 * Clear the pagetable entries of a given vmap_area
458 */
459static void unmap_vmap_area(struct vmap_area *va)
460{
461	vunmap_page_range(va->va_start, va->va_end);
462}
463
464static void vmap_debug_free_range(unsigned long start, unsigned long end)
465{
466	/*
467	 * Unmap page tables and force a TLB flush immediately if
468	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469	 * bugs similarly to those in linear kernel virtual address
470	 * space after a page has been freed.
471	 *
472	 * All the lazy freeing logic is still retained, in order to
473	 * minimise intrusiveness of this debugging feature.
474	 *
475	 * This is going to be *slow* (linear kernel virtual address
476	 * debugging doesn't do a broadcast TLB flush so it is a lot
477	 * faster).
478	 */
479#ifdef CONFIG_DEBUG_PAGEALLOC
480	vunmap_page_range(start, end);
481	flush_tlb_kernel_range(start, end);
482#endif
483}
484
485/*
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
488 *
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
500 */
501static unsigned long lazy_max_pages(void)
502{
503	unsigned int log;
504
505	log = fls(num_online_cpus());
506
507	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
508}
509
510static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
511
512/*
513 * Purges all lazily-freed vmap areas.
514 *
515 * If sync is 0 then don't purge if there is already a purge in progress.
516 * If force_flush is 1, then flush kernel TLBs between *start and *end even
517 * if we found no lazy vmap areas to unmap (callers can use this to optimise
518 * their own TLB flushing).
519 * Returns with *start = min(*start, lowest purged address)
520 *              *end = max(*end, highest purged address)
521 */
522static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
523					int sync, int force_flush)
524{
525	static DEFINE_SPINLOCK(purge_lock);
526	LIST_HEAD(valist);
527	struct vmap_area *va;
528	struct vmap_area *n_va;
529	int nr = 0;
530
531	/*
532	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
533	 * should not expect such behaviour. This just simplifies locking for
534	 * the case that isn't actually used at the moment anyway.
535	 */
536	if (!sync && !force_flush) {
537		if (!spin_trylock(&purge_lock))
538			return;
539	} else
540		spin_lock(&purge_lock);
541
542	rcu_read_lock();
543	list_for_each_entry_rcu(va, &vmap_area_list, list) {
544		if (va->flags & VM_LAZY_FREE) {
545			if (va->va_start < *start)
546				*start = va->va_start;
547			if (va->va_end > *end)
548				*end = va->va_end;
549			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
550			unmap_vmap_area(va);
551			list_add_tail(&va->purge_list, &valist);
552			va->flags |= VM_LAZY_FREEING;
553			va->flags &= ~VM_LAZY_FREE;
554		}
555	}
556	rcu_read_unlock();
557
558	if (nr) {
559		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
560		atomic_sub(nr, &vmap_lazy_nr);
561	}
562
563	if (nr || force_flush)
564		flush_tlb_kernel_range(*start, *end);
565
566	if (nr) {
567		spin_lock(&vmap_area_lock);
568		list_for_each_entry_safe(va, n_va, &valist, purge_list)
569			__free_vmap_area(va);
570		spin_unlock(&vmap_area_lock);
571	}
572	spin_unlock(&purge_lock);
573}
574
575/*
576 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
577 * is already purging.
578 */
579static void try_purge_vmap_area_lazy(void)
580{
581	unsigned long start = ULONG_MAX, end = 0;
582
583	__purge_vmap_area_lazy(&start, &end, 0, 0);
584}
585
586/*
587 * Kick off a purge of the outstanding lazy areas.
588 */
589static void purge_vmap_area_lazy(void)
590{
591	unsigned long start = ULONG_MAX, end = 0;
592
593	__purge_vmap_area_lazy(&start, &end, 1, 0);
594}
595
596/*
597 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
598 * called for the correct range previously.
599 */
600static void free_unmap_vmap_area_noflush(struct vmap_area *va)
601{
602	va->flags |= VM_LAZY_FREE;
603	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
604	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
605		try_purge_vmap_area_lazy();
606}
607
608/*
609 * Free and unmap a vmap area
610 */
611static void free_unmap_vmap_area(struct vmap_area *va)
612{
613	flush_cache_vunmap(va->va_start, va->va_end);
614	free_unmap_vmap_area_noflush(va);
615}
616
617static struct vmap_area *find_vmap_area(unsigned long addr)
618{
619	struct vmap_area *va;
620
621	spin_lock(&vmap_area_lock);
622	va = __find_vmap_area(addr);
623	spin_unlock(&vmap_area_lock);
624
625	return va;
626}
627
628static void free_unmap_vmap_area_addr(unsigned long addr)
629{
630	struct vmap_area *va;
631
632	va = find_vmap_area(addr);
633	BUG_ON(!va);
634	free_unmap_vmap_area(va);
635}
636
637
638/*** Per cpu kva allocator ***/
639
640/*
641 * vmap space is limited especially on 32 bit architectures. Ensure there is
642 * room for at least 16 percpu vmap blocks per CPU.
643 */
644/*
645 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
646 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
647 * instead (we just need a rough idea)
648 */
649#if BITS_PER_LONG == 32
650#define VMALLOC_SPACE		(128UL*1024*1024)
651#else
652#define VMALLOC_SPACE		(128UL*1024*1024*1024)
653#endif
654
655#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
656#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
657#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
658#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
659#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
660#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
661#define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
662					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
663						VMALLOC_PAGES / NR_CPUS / 16))
664
665#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
666
667static bool vmap_initialized __read_mostly = false;
668
669struct vmap_block_queue {
670	spinlock_t lock;
671	struct list_head free;
672	struct list_head dirty;
673	unsigned int nr_dirty;
674};
675
676struct vmap_block {
677	spinlock_t lock;
678	struct vmap_area *va;
679	struct vmap_block_queue *vbq;
680	unsigned long free, dirty;
681	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
682	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
683	union {
684		struct list_head free_list;
685		struct rcu_head rcu_head;
686	};
687};
688
689/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
690static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
691
692/*
693 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
694 * in the free path. Could get rid of this if we change the API to return a
695 * "cookie" from alloc, to be passed to free. But no big deal yet.
696 */
697static DEFINE_SPINLOCK(vmap_block_tree_lock);
698static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
699
700/*
701 * We should probably have a fallback mechanism to allocate virtual memory
702 * out of partially filled vmap blocks. However vmap block sizing should be
703 * fairly reasonable according to the vmalloc size, so it shouldn't be a
704 * big problem.
705 */
706
707static unsigned long addr_to_vb_idx(unsigned long addr)
708{
709	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
710	addr /= VMAP_BLOCK_SIZE;
711	return addr;
712}
713
714static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
715{
716	struct vmap_block_queue *vbq;
717	struct vmap_block *vb;
718	struct vmap_area *va;
719	unsigned long vb_idx;
720	int node, err;
721
722	node = numa_node_id();
723
724	vb = kmalloc_node(sizeof(struct vmap_block),
725			gfp_mask & GFP_RECLAIM_MASK, node);
726	if (unlikely(!vb))
727		return ERR_PTR(-ENOMEM);
728
729	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
730					VMALLOC_START, VMALLOC_END,
731					node, gfp_mask);
732	if (unlikely(IS_ERR(va))) {
733		kfree(vb);
734		return ERR_PTR(PTR_ERR(va));
735	}
736
737	err = radix_tree_preload(gfp_mask);
738	if (unlikely(err)) {
739		kfree(vb);
740		free_vmap_area(va);
741		return ERR_PTR(err);
742	}
743
744	spin_lock_init(&vb->lock);
745	vb->va = va;
746	vb->free = VMAP_BBMAP_BITS;
747	vb->dirty = 0;
748	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
749	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
750	INIT_LIST_HEAD(&vb->free_list);
751
752	vb_idx = addr_to_vb_idx(va->va_start);
753	spin_lock(&vmap_block_tree_lock);
754	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
755	spin_unlock(&vmap_block_tree_lock);
756	BUG_ON(err);
757	radix_tree_preload_end();
758
759	vbq = &get_cpu_var(vmap_block_queue);
760	vb->vbq = vbq;
761	spin_lock(&vbq->lock);
762	list_add(&vb->free_list, &vbq->free);
763	spin_unlock(&vbq->lock);
764	put_cpu_var(vmap_cpu_blocks);
765
766	return vb;
767}
768
769static void rcu_free_vb(struct rcu_head *head)
770{
771	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
772
773	kfree(vb);
774}
775
776static void free_vmap_block(struct vmap_block *vb)
777{
778	struct vmap_block *tmp;
779	unsigned long vb_idx;
780
781	BUG_ON(!list_empty(&vb->free_list));
782
783	vb_idx = addr_to_vb_idx(vb->va->va_start);
784	spin_lock(&vmap_block_tree_lock);
785	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
786	spin_unlock(&vmap_block_tree_lock);
787	BUG_ON(tmp != vb);
788
789	free_unmap_vmap_area_noflush(vb->va);
790	call_rcu(&vb->rcu_head, rcu_free_vb);
791}
792
793static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
794{
795	struct vmap_block_queue *vbq;
796	struct vmap_block *vb;
797	unsigned long addr = 0;
798	unsigned int order;
799
800	BUG_ON(size & ~PAGE_MASK);
801	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
802	order = get_order(size);
803
804again:
805	rcu_read_lock();
806	vbq = &get_cpu_var(vmap_block_queue);
807	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
808		int i;
809
810		spin_lock(&vb->lock);
811		i = bitmap_find_free_region(vb->alloc_map,
812						VMAP_BBMAP_BITS, order);
813
814		if (i >= 0) {
815			addr = vb->va->va_start + (i << PAGE_SHIFT);
816			BUG_ON(addr_to_vb_idx(addr) !=
817					addr_to_vb_idx(vb->va->va_start));
818			vb->free -= 1UL << order;
819			if (vb->free == 0) {
820				spin_lock(&vbq->lock);
821				list_del_init(&vb->free_list);
822				spin_unlock(&vbq->lock);
823			}
824			spin_unlock(&vb->lock);
825			break;
826		}
827		spin_unlock(&vb->lock);
828	}
829	put_cpu_var(vmap_cpu_blocks);
830	rcu_read_unlock();
831
832	if (!addr) {
833		vb = new_vmap_block(gfp_mask);
834		if (IS_ERR(vb))
835			return vb;
836		goto again;
837	}
838
839	return (void *)addr;
840}
841
842static void vb_free(const void *addr, unsigned long size)
843{
844	unsigned long offset;
845	unsigned long vb_idx;
846	unsigned int order;
847	struct vmap_block *vb;
848
849	BUG_ON(size & ~PAGE_MASK);
850	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
851
852	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
853
854	order = get_order(size);
855
856	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
857
858	vb_idx = addr_to_vb_idx((unsigned long)addr);
859	rcu_read_lock();
860	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
861	rcu_read_unlock();
862	BUG_ON(!vb);
863
864	spin_lock(&vb->lock);
865	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
866
867	vb->dirty += 1UL << order;
868	if (vb->dirty == VMAP_BBMAP_BITS) {
869		BUG_ON(vb->free || !list_empty(&vb->free_list));
870		spin_unlock(&vb->lock);
871		free_vmap_block(vb);
872	} else
873		spin_unlock(&vb->lock);
874}
875
876/**
877 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
878 *
879 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
880 * to amortize TLB flushing overheads. What this means is that any page you
881 * have now, may, in a former life, have been mapped into kernel virtual
882 * address by the vmap layer and so there might be some CPUs with TLB entries
883 * still referencing that page (additional to the regular 1:1 kernel mapping).
884 *
885 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
886 * be sure that none of the pages we have control over will have any aliases
887 * from the vmap layer.
888 */
889void vm_unmap_aliases(void)
890{
891	unsigned long start = ULONG_MAX, end = 0;
892	int cpu;
893	int flush = 0;
894
895	if (unlikely(!vmap_initialized))
896		return;
897
898	for_each_possible_cpu(cpu) {
899		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
900		struct vmap_block *vb;
901
902		rcu_read_lock();
903		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
904			int i;
905
906			spin_lock(&vb->lock);
907			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
908			while (i < VMAP_BBMAP_BITS) {
909				unsigned long s, e;
910				int j;
911				j = find_next_zero_bit(vb->dirty_map,
912					VMAP_BBMAP_BITS, i);
913
914				s = vb->va->va_start + (i << PAGE_SHIFT);
915				e = vb->va->va_start + (j << PAGE_SHIFT);
916				vunmap_page_range(s, e);
917				flush = 1;
918
919				if (s < start)
920					start = s;
921				if (e > end)
922					end = e;
923
924				i = j;
925				i = find_next_bit(vb->dirty_map,
926							VMAP_BBMAP_BITS, i);
927			}
928			spin_unlock(&vb->lock);
929		}
930		rcu_read_unlock();
931	}
932
933	__purge_vmap_area_lazy(&start, &end, 1, flush);
934}
935EXPORT_SYMBOL_GPL(vm_unmap_aliases);
936
937/**
938 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
939 * @mem: the pointer returned by vm_map_ram
940 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
941 */
942void vm_unmap_ram(const void *mem, unsigned int count)
943{
944	unsigned long size = count << PAGE_SHIFT;
945	unsigned long addr = (unsigned long)mem;
946
947	BUG_ON(!addr);
948	BUG_ON(addr < VMALLOC_START);
949	BUG_ON(addr > VMALLOC_END);
950	BUG_ON(addr & (PAGE_SIZE-1));
951
952	debug_check_no_locks_freed(mem, size);
953	vmap_debug_free_range(addr, addr+size);
954
955	if (likely(count <= VMAP_MAX_ALLOC))
956		vb_free(mem, size);
957	else
958		free_unmap_vmap_area_addr(addr);
959}
960EXPORT_SYMBOL(vm_unmap_ram);
961
962/**
963 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
964 * @pages: an array of pointers to the pages to be mapped
965 * @count: number of pages
966 * @node: prefer to allocate data structures on this node
967 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
968 *
969 * Returns: a pointer to the address that has been mapped, or %NULL on failure
970 */
971void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
972{
973	unsigned long size = count << PAGE_SHIFT;
974	unsigned long addr;
975	void *mem;
976
977	if (likely(count <= VMAP_MAX_ALLOC)) {
978		mem = vb_alloc(size, GFP_KERNEL);
979		if (IS_ERR(mem))
980			return NULL;
981		addr = (unsigned long)mem;
982	} else {
983		struct vmap_area *va;
984		va = alloc_vmap_area(size, PAGE_SIZE,
985				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
986		if (IS_ERR(va))
987			return NULL;
988
989		addr = va->va_start;
990		mem = (void *)addr;
991	}
992	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
993		vm_unmap_ram(mem, count);
994		return NULL;
995	}
996	return mem;
997}
998EXPORT_SYMBOL(vm_map_ram);
999
1000/**
1001 * vm_area_register_early - register vmap area early during boot
1002 * @vm: vm_struct to register
1003 * @align: requested alignment
1004 *
1005 * This function is used to register kernel vm area before
1006 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1007 * proper values on entry and other fields should be zero.  On return,
1008 * vm->addr contains the allocated address.
1009 *
1010 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1011 */
1012void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1013{
1014	static size_t vm_init_off __initdata;
1015	unsigned long addr;
1016
1017	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1018	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1019
1020	vm->addr = (void *)addr;
1021
1022	vm->next = vmlist;
1023	vmlist = vm;
1024}
1025
1026void __init vmalloc_init(void)
1027{
1028	struct vmap_area *va;
1029	struct vm_struct *tmp;
1030	int i;
1031
1032	for_each_possible_cpu(i) {
1033		struct vmap_block_queue *vbq;
1034
1035		vbq = &per_cpu(vmap_block_queue, i);
1036		spin_lock_init(&vbq->lock);
1037		INIT_LIST_HEAD(&vbq->free);
1038		INIT_LIST_HEAD(&vbq->dirty);
1039		vbq->nr_dirty = 0;
1040	}
1041
1042	/* Import existing vmlist entries. */
1043	for (tmp = vmlist; tmp; tmp = tmp->next) {
1044		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1045		va->flags = tmp->flags | VM_VM_AREA;
1046		va->va_start = (unsigned long)tmp->addr;
1047		va->va_end = va->va_start + tmp->size;
1048		__insert_vmap_area(va);
1049	}
1050
1051	vmap_area_pcpu_hole = VMALLOC_END;
1052
1053	vmap_initialized = true;
1054}
1055
1056/**
1057 * map_kernel_range_noflush - map kernel VM area with the specified pages
1058 * @addr: start of the VM area to map
1059 * @size: size of the VM area to map
1060 * @prot: page protection flags to use
1061 * @pages: pages to map
1062 *
1063 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1064 * specify should have been allocated using get_vm_area() and its
1065 * friends.
1066 *
1067 * NOTE:
1068 * This function does NOT do any cache flushing.  The caller is
1069 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1070 * before calling this function.
1071 *
1072 * RETURNS:
1073 * The number of pages mapped on success, -errno on failure.
1074 */
1075int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1076			     pgprot_t prot, struct page **pages)
1077{
1078	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1079}
1080
1081/**
1082 * unmap_kernel_range_noflush - unmap kernel VM area
1083 * @addr: start of the VM area to unmap
1084 * @size: size of the VM area to unmap
1085 *
1086 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1087 * specify should have been allocated using get_vm_area() and its
1088 * friends.
1089 *
1090 * NOTE:
1091 * This function does NOT do any cache flushing.  The caller is
1092 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1093 * before calling this function and flush_tlb_kernel_range() after.
1094 */
1095void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1096{
1097	vunmap_page_range(addr, addr + size);
1098}
1099
1100/**
1101 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1102 * @addr: start of the VM area to unmap
1103 * @size: size of the VM area to unmap
1104 *
1105 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1106 * the unmapping and tlb after.
1107 */
1108void unmap_kernel_range(unsigned long addr, unsigned long size)
1109{
1110	unsigned long end = addr + size;
1111
1112	flush_cache_vunmap(addr, end);
1113	vunmap_page_range(addr, end);
1114	flush_tlb_kernel_range(addr, end);
1115}
1116
1117int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1118{
1119	unsigned long addr = (unsigned long)area->addr;
1120	unsigned long end = addr + area->size - PAGE_SIZE;
1121	int err;
1122
1123	err = vmap_page_range(addr, end, prot, *pages);
1124	if (err > 0) {
1125		*pages += err;
1126		err = 0;
1127	}
1128
1129	return err;
1130}
1131EXPORT_SYMBOL_GPL(map_vm_area);
1132
1133/*** Old vmalloc interfaces ***/
1134DEFINE_RWLOCK(vmlist_lock);
1135struct vm_struct *vmlist;
1136
1137static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1138			      unsigned long flags, void *caller)
1139{
1140	struct vm_struct *tmp, **p;
1141
1142	vm->flags = flags;
1143	vm->addr = (void *)va->va_start;
1144	vm->size = va->va_end - va->va_start;
1145	vm->caller = caller;
1146	va->private = vm;
1147	va->flags |= VM_VM_AREA;
1148
1149	write_lock(&vmlist_lock);
1150	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1151		if (tmp->addr >= vm->addr)
1152			break;
1153	}
1154	vm->next = *p;
1155	*p = vm;
1156	write_unlock(&vmlist_lock);
1157}
1158
1159static struct vm_struct *__get_vm_area_node(unsigned long size,
1160		unsigned long align, unsigned long flags, unsigned long start,
1161		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1162{
1163	static struct vmap_area *va;
1164	struct vm_struct *area;
1165
1166	BUG_ON(in_interrupt());
1167	if (flags & VM_IOREMAP) {
1168		int bit = fls(size);
1169
1170		if (bit > IOREMAP_MAX_ORDER)
1171			bit = IOREMAP_MAX_ORDER;
1172		else if (bit < PAGE_SHIFT)
1173			bit = PAGE_SHIFT;
1174
1175		align = 1ul << bit;
1176	}
1177
1178	size = PAGE_ALIGN(size);
1179	if (unlikely(!size))
1180		return NULL;
1181
1182	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1183	if (unlikely(!area))
1184		return NULL;
1185
1186	/*
1187	 * We always allocate a guard page.
1188	 */
1189	size += PAGE_SIZE;
1190
1191	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1192	if (IS_ERR(va)) {
1193		kfree(area);
1194		return NULL;
1195	}
1196
1197	insert_vmalloc_vm(area, va, flags, caller);
1198	return area;
1199}
1200
1201struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1202				unsigned long start, unsigned long end)
1203{
1204	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1205						__builtin_return_address(0));
1206}
1207EXPORT_SYMBOL_GPL(__get_vm_area);
1208
1209struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1210				       unsigned long start, unsigned long end,
1211				       void *caller)
1212{
1213	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1214				  caller);
1215}
1216
1217/**
1218 *	get_vm_area  -  reserve a contiguous kernel virtual area
1219 *	@size:		size of the area
1220 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1221 *
1222 *	Search an area of @size in the kernel virtual mapping area,
1223 *	and reserved it for out purposes.  Returns the area descriptor
1224 *	on success or %NULL on failure.
1225 */
1226struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1227{
1228	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1229				-1, GFP_KERNEL, __builtin_return_address(0));
1230}
1231
1232struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1233				void *caller)
1234{
1235	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1236						-1, GFP_KERNEL, caller);
1237}
1238
1239struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1240				   int node, gfp_t gfp_mask)
1241{
1242	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1243				  node, gfp_mask, __builtin_return_address(0));
1244}
1245
1246static struct vm_struct *find_vm_area(const void *addr)
1247{
1248	struct vmap_area *va;
1249
1250	va = find_vmap_area((unsigned long)addr);
1251	if (va && va->flags & VM_VM_AREA)
1252		return va->private;
1253
1254	return NULL;
1255}
1256
1257/**
1258 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1259 *	@addr:		base address
1260 *
1261 *	Search for the kernel VM area starting at @addr, and remove it.
1262 *	This function returns the found VM area, but using it is NOT safe
1263 *	on SMP machines, except for its size or flags.
1264 */
1265struct vm_struct *remove_vm_area(const void *addr)
1266{
1267	struct vmap_area *va;
1268
1269	va = find_vmap_area((unsigned long)addr);
1270	if (va && va->flags & VM_VM_AREA) {
1271		struct vm_struct *vm = va->private;
1272		struct vm_struct *tmp, **p;
1273		/*
1274		 * remove from list and disallow access to this vm_struct
1275		 * before unmap. (address range confliction is maintained by
1276		 * vmap.)
1277		 */
1278		write_lock(&vmlist_lock);
1279		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1280			;
1281		*p = tmp->next;
1282		write_unlock(&vmlist_lock);
1283
1284		vmap_debug_free_range(va->va_start, va->va_end);
1285		free_unmap_vmap_area(va);
1286		vm->size -= PAGE_SIZE;
1287
1288		return vm;
1289	}
1290	return NULL;
1291}
1292
1293static void __vunmap(const void *addr, int deallocate_pages)
1294{
1295	struct vm_struct *area;
1296
1297	if (!addr)
1298		return;
1299
1300	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1301		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1302		return;
1303	}
1304
1305	area = remove_vm_area(addr);
1306	if (unlikely(!area)) {
1307		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1308				addr);
1309		return;
1310	}
1311
1312	debug_check_no_locks_freed(addr, area->size);
1313	debug_check_no_obj_freed(addr, area->size);
1314
1315	if (deallocate_pages) {
1316		int i;
1317
1318		for (i = 0; i < area->nr_pages; i++) {
1319			struct page *page = area->pages[i];
1320
1321			BUG_ON(!page);
1322			__free_page(page);
1323		}
1324
1325		if (area->flags & VM_VPAGES)
1326			vfree(area->pages);
1327		else
1328			kfree(area->pages);
1329	}
1330
1331	kfree(area);
1332	return;
1333}
1334
1335/**
1336 *	vfree  -  release memory allocated by vmalloc()
1337 *	@addr:		memory base address
1338 *
1339 *	Free the virtually continuous memory area starting at @addr, as
1340 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1341 *	NULL, no operation is performed.
1342 *
1343 *	Must not be called in interrupt context.
1344 */
1345void vfree(const void *addr)
1346{
1347	BUG_ON(in_interrupt());
1348
1349	kmemleak_free(addr);
1350
1351	__vunmap(addr, 1);
1352}
1353EXPORT_SYMBOL(vfree);
1354
1355/**
1356 *	vunmap  -  release virtual mapping obtained by vmap()
1357 *	@addr:		memory base address
1358 *
1359 *	Free the virtually contiguous memory area starting at @addr,
1360 *	which was created from the page array passed to vmap().
1361 *
1362 *	Must not be called in interrupt context.
1363 */
1364void vunmap(const void *addr)
1365{
1366	BUG_ON(in_interrupt());
1367	might_sleep();
1368	__vunmap(addr, 0);
1369}
1370EXPORT_SYMBOL(vunmap);
1371
1372/**
1373 *	vmap  -  map an array of pages into virtually contiguous space
1374 *	@pages:		array of page pointers
1375 *	@count:		number of pages to map
1376 *	@flags:		vm_area->flags
1377 *	@prot:		page protection for the mapping
1378 *
1379 *	Maps @count pages from @pages into contiguous kernel virtual
1380 *	space.
1381 */
1382void *vmap(struct page **pages, unsigned int count,
1383		unsigned long flags, pgprot_t prot)
1384{
1385	struct vm_struct *area;
1386
1387	might_sleep();
1388
1389	if (count > totalram_pages)
1390		return NULL;
1391
1392	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1393					__builtin_return_address(0));
1394	if (!area)
1395		return NULL;
1396
1397	if (map_vm_area(area, prot, &pages)) {
1398		vunmap(area->addr);
1399		return NULL;
1400	}
1401
1402	return area->addr;
1403}
1404EXPORT_SYMBOL(vmap);
1405
1406static void *__vmalloc_node(unsigned long size, unsigned long align,
1407			    gfp_t gfp_mask, pgprot_t prot,
1408			    int node, void *caller);
1409static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1410				 pgprot_t prot, int node, void *caller)
1411{
1412	struct page **pages;
1413	unsigned int nr_pages, array_size, i;
1414
1415	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1416	array_size = (nr_pages * sizeof(struct page *));
1417
1418	area->nr_pages = nr_pages;
1419	/* Please note that the recursion is strictly bounded. */
1420	if (array_size > PAGE_SIZE) {
1421		pages = __vmalloc_node(array_size, 1, gfp_mask | __GFP_ZERO,
1422				PAGE_KERNEL, node, caller);
1423		area->flags |= VM_VPAGES;
1424	} else {
1425		pages = kmalloc_node(array_size,
1426				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1427				node);
1428	}
1429	area->pages = pages;
1430	area->caller = caller;
1431	if (!area->pages) {
1432		remove_vm_area(area->addr);
1433		kfree(area);
1434		return NULL;
1435	}
1436
1437	for (i = 0; i < area->nr_pages; i++) {
1438		struct page *page;
1439
1440		if (node < 0)
1441			page = alloc_page(gfp_mask);
1442		else
1443			page = alloc_pages_node(node, gfp_mask, 0);
1444
1445		if (unlikely(!page)) {
1446			/* Successfully allocated i pages, free them in __vunmap() */
1447			area->nr_pages = i;
1448			goto fail;
1449		}
1450		area->pages[i] = page;
1451	}
1452
1453	if (map_vm_area(area, prot, &pages))
1454		goto fail;
1455	return area->addr;
1456
1457fail:
1458	vfree(area->addr);
1459	return NULL;
1460}
1461
1462void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1463{
1464	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1465					 __builtin_return_address(0));
1466
1467	/*
1468	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1469	 * structures allocated in the __get_vm_area_node() function contain
1470	 * references to the virtual address of the vmalloc'ed block.
1471	 */
1472	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1473
1474	return addr;
1475}
1476
1477/**
1478 *	__vmalloc_node  -  allocate virtually contiguous memory
1479 *	@size:		allocation size
1480 *	@align:		desired alignment
1481 *	@gfp_mask:	flags for the page level allocator
1482 *	@prot:		protection mask for the allocated pages
1483 *	@node:		node to use for allocation or -1
1484 *	@caller:	caller's return address
1485 *
1486 *	Allocate enough pages to cover @size from the page level
1487 *	allocator with @gfp_mask flags.  Map them into contiguous
1488 *	kernel virtual space, using a pagetable protection of @prot.
1489 */
1490static void *__vmalloc_node(unsigned long size, unsigned long align,
1491			    gfp_t gfp_mask, pgprot_t prot,
1492			    int node, void *caller)
1493{
1494	struct vm_struct *area;
1495	void *addr;
1496	unsigned long real_size = size;
1497
1498	size = PAGE_ALIGN(size);
1499	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1500		return NULL;
1501
1502	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1503				  VMALLOC_END, node, gfp_mask, caller);
1504
1505	if (!area)
1506		return NULL;
1507
1508	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1509
1510	/*
1511	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1512	 * structures allocated in the __get_vm_area_node() function contain
1513	 * references to the virtual address of the vmalloc'ed block.
1514	 */
1515	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1516
1517	return addr;
1518}
1519
1520void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1521{
1522	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1523				__builtin_return_address(0));
1524}
1525EXPORT_SYMBOL(__vmalloc);
1526
1527/**
1528 *	vmalloc  -  allocate virtually contiguous memory
1529 *	@size:		allocation size
1530 *	Allocate enough pages to cover @size from the page level
1531 *	allocator and map them into contiguous kernel virtual space.
1532 *
1533 *	For tight control over page level allocator and protection flags
1534 *	use __vmalloc() instead.
1535 */
1536void *vmalloc(unsigned long size)
1537{
1538	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1539					-1, __builtin_return_address(0));
1540}
1541EXPORT_SYMBOL(vmalloc);
1542
1543/**
1544 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1545 * @size: allocation size
1546 *
1547 * The resulting memory area is zeroed so it can be mapped to userspace
1548 * without leaking data.
1549 */
1550void *vmalloc_user(unsigned long size)
1551{
1552	struct vm_struct *area;
1553	void *ret;
1554
1555	ret = __vmalloc_node(size, SHMLBA,
1556			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1557			     PAGE_KERNEL, -1, __builtin_return_address(0));
1558	if (ret) {
1559		area = find_vm_area(ret);
1560		area->flags |= VM_USERMAP;
1561	}
1562	return ret;
1563}
1564EXPORT_SYMBOL(vmalloc_user);
1565
1566/**
1567 *	vmalloc_node  -  allocate memory on a specific node
1568 *	@size:		allocation size
1569 *	@node:		numa node
1570 *
1571 *	Allocate enough pages to cover @size from the page level
1572 *	allocator and map them into contiguous kernel virtual space.
1573 *
1574 *	For tight control over page level allocator and protection flags
1575 *	use __vmalloc() instead.
1576 */
1577void *vmalloc_node(unsigned long size, int node)
1578{
1579	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1580					node, __builtin_return_address(0));
1581}
1582EXPORT_SYMBOL(vmalloc_node);
1583
1584#ifndef PAGE_KERNEL_EXEC
1585# define PAGE_KERNEL_EXEC PAGE_KERNEL
1586#endif
1587
1588/**
1589 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1590 *	@size:		allocation size
1591 *
1592 *	Kernel-internal function to allocate enough pages to cover @size
1593 *	the page level allocator and map them into contiguous and
1594 *	executable kernel virtual space.
1595 *
1596 *	For tight control over page level allocator and protection flags
1597 *	use __vmalloc() instead.
1598 */
1599
1600void *vmalloc_exec(unsigned long size)
1601{
1602	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1603			      -1, __builtin_return_address(0));
1604}
1605
1606#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1607#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1608#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1609#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1610#else
1611#define GFP_VMALLOC32 GFP_KERNEL
1612#endif
1613
1614/**
1615 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1616 *	@size:		allocation size
1617 *
1618 *	Allocate enough 32bit PA addressable pages to cover @size from the
1619 *	page level allocator and map them into contiguous kernel virtual space.
1620 */
1621void *vmalloc_32(unsigned long size)
1622{
1623	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1624			      -1, __builtin_return_address(0));
1625}
1626EXPORT_SYMBOL(vmalloc_32);
1627
1628/**
1629 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1630 *	@size:		allocation size
1631 *
1632 * The resulting memory area is 32bit addressable and zeroed so it can be
1633 * mapped to userspace without leaking data.
1634 */
1635void *vmalloc_32_user(unsigned long size)
1636{
1637	struct vm_struct *area;
1638	void *ret;
1639
1640	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1641			     -1, __builtin_return_address(0));
1642	if (ret) {
1643		area = find_vm_area(ret);
1644		area->flags |= VM_USERMAP;
1645	}
1646	return ret;
1647}
1648EXPORT_SYMBOL(vmalloc_32_user);
1649
1650/*
1651 * small helper routine , copy contents to buf from addr.
1652 * If the page is not present, fill zero.
1653 */
1654
1655static int aligned_vread(char *buf, char *addr, unsigned long count)
1656{
1657	struct page *p;
1658	int copied = 0;
1659
1660	while (count) {
1661		unsigned long offset, length;
1662
1663		offset = (unsigned long)addr & ~PAGE_MASK;
1664		length = PAGE_SIZE - offset;
1665		if (length > count)
1666			length = count;
1667		p = vmalloc_to_page(addr);
1668		/*
1669		 * To do safe access to this _mapped_ area, we need
1670		 * lock. But adding lock here means that we need to add
1671		 * overhead of vmalloc()/vfree() calles for this _debug_
1672		 * interface, rarely used. Instead of that, we'll use
1673		 * kmap() and get small overhead in this access function.
1674		 */
1675		if (p) {
1676			/*
1677			 * we can expect USER0 is not used (see vread/vwrite's
1678			 * function description)
1679			 */
1680			void *map = kmap_atomic(p, KM_USER0);
1681			memcpy(buf, map + offset, length);
1682			kunmap_atomic(map, KM_USER0);
1683		} else
1684			memset(buf, 0, length);
1685
1686		addr += length;
1687		buf += length;
1688		copied += length;
1689		count -= length;
1690	}
1691	return copied;
1692}
1693
1694static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1695{
1696	struct page *p;
1697	int copied = 0;
1698
1699	while (count) {
1700		unsigned long offset, length;
1701
1702		offset = (unsigned long)addr & ~PAGE_MASK;
1703		length = PAGE_SIZE - offset;
1704		if (length > count)
1705			length = count;
1706		p = vmalloc_to_page(addr);
1707		/*
1708		 * To do safe access to this _mapped_ area, we need
1709		 * lock. But adding lock here means that we need to add
1710		 * overhead of vmalloc()/vfree() calles for this _debug_
1711		 * interface, rarely used. Instead of that, we'll use
1712		 * kmap() and get small overhead in this access function.
1713		 */
1714		if (p) {
1715			/*
1716			 * we can expect USER0 is not used (see vread/vwrite's
1717			 * function description)
1718			 */
1719			void *map = kmap_atomic(p, KM_USER0);
1720			memcpy(map + offset, buf, length);
1721			kunmap_atomic(map, KM_USER0);
1722		}
1723		addr += length;
1724		buf += length;
1725		copied += length;
1726		count -= length;
1727	}
1728	return copied;
1729}
1730
1731/**
1732 *	vread() -  read vmalloc area in a safe way.
1733 *	@buf:		buffer for reading data
1734 *	@addr:		vm address.
1735 *	@count:		number of bytes to be read.
1736 *
1737 *	Returns # of bytes which addr and buf should be increased.
1738 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1739 *	includes any intersect with alive vmalloc area.
1740 *
1741 *	This function checks that addr is a valid vmalloc'ed area, and
1742 *	copy data from that area to a given buffer. If the given memory range
1743 *	of [addr...addr+count) includes some valid address, data is copied to
1744 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1745 *	IOREMAP area is treated as memory hole and no copy is done.
1746 *
1747 *	If [addr...addr+count) doesn't includes any intersects with alive
1748 *	vm_struct area, returns 0.
1749 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1750 *	the caller should guarantee KM_USER0 is not used.
1751 *
1752 *	Note: In usual ops, vread() is never necessary because the caller
1753 *	should know vmalloc() area is valid and can use memcpy().
1754 *	This is for routines which have to access vmalloc area without
1755 *	any informaion, as /dev/kmem.
1756 *
1757 */
1758
1759long vread(char *buf, char *addr, unsigned long count)
1760{
1761	struct vm_struct *tmp;
1762	char *vaddr, *buf_start = buf;
1763	unsigned long buflen = count;
1764	unsigned long n;
1765
1766	/* Don't allow overflow */
1767	if ((unsigned long) addr + count < count)
1768		count = -(unsigned long) addr;
1769
1770	read_lock(&vmlist_lock);
1771	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1772		vaddr = (char *) tmp->addr;
1773		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1774			continue;
1775		while (addr < vaddr) {
1776			if (count == 0)
1777				goto finished;
1778			*buf = '\0';
1779			buf++;
1780			addr++;
1781			count--;
1782		}
1783		n = vaddr + tmp->size - PAGE_SIZE - addr;
1784		if (n > count)
1785			n = count;
1786		if (!(tmp->flags & VM_IOREMAP))
1787			aligned_vread(buf, addr, n);
1788		else /* IOREMAP area is treated as memory hole */
1789			memset(buf, 0, n);
1790		buf += n;
1791		addr += n;
1792		count -= n;
1793	}
1794finished:
1795	read_unlock(&vmlist_lock);
1796
1797	if (buf == buf_start)
1798		return 0;
1799	/* zero-fill memory holes */
1800	if (buf != buf_start + buflen)
1801		memset(buf, 0, buflen - (buf - buf_start));
1802
1803	return buflen;
1804}
1805
1806/**
1807 *	vwrite() -  write vmalloc area in a safe way.
1808 *	@buf:		buffer for source data
1809 *	@addr:		vm address.
1810 *	@count:		number of bytes to be read.
1811 *
1812 *	Returns # of bytes which addr and buf should be incresed.
1813 *	(same number to @count).
1814 *	If [addr...addr+count) doesn't includes any intersect with valid
1815 *	vmalloc area, returns 0.
1816 *
1817 *	This function checks that addr is a valid vmalloc'ed area, and
1818 *	copy data from a buffer to the given addr. If specified range of
1819 *	[addr...addr+count) includes some valid address, data is copied from
1820 *	proper area of @buf. If there are memory holes, no copy to hole.
1821 *	IOREMAP area is treated as memory hole and no copy is done.
1822 *
1823 *	If [addr...addr+count) doesn't includes any intersects with alive
1824 *	vm_struct area, returns 0.
1825 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1826 *	the caller should guarantee KM_USER0 is not used.
1827 *
1828 *	Note: In usual ops, vwrite() is never necessary because the caller
1829 *	should know vmalloc() area is valid and can use memcpy().
1830 *	This is for routines which have to access vmalloc area without
1831 *	any informaion, as /dev/kmem.
1832 *
1833 *	The caller should guarantee KM_USER1 is not used.
1834 */
1835
1836long vwrite(char *buf, char *addr, unsigned long count)
1837{
1838	struct vm_struct *tmp;
1839	char *vaddr;
1840	unsigned long n, buflen;
1841	int copied = 0;
1842
1843	/* Don't allow overflow */
1844	if ((unsigned long) addr + count < count)
1845		count = -(unsigned long) addr;
1846	buflen = count;
1847
1848	read_lock(&vmlist_lock);
1849	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1850		vaddr = (char *) tmp->addr;
1851		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1852			continue;
1853		while (addr < vaddr) {
1854			if (count == 0)
1855				goto finished;
1856			buf++;
1857			addr++;
1858			count--;
1859		}
1860		n = vaddr + tmp->size - PAGE_SIZE - addr;
1861		if (n > count)
1862			n = count;
1863		if (!(tmp->flags & VM_IOREMAP)) {
1864			aligned_vwrite(buf, addr, n);
1865			copied++;
1866		}
1867		buf += n;
1868		addr += n;
1869		count -= n;
1870	}
1871finished:
1872	read_unlock(&vmlist_lock);
1873	if (!copied)
1874		return 0;
1875	return buflen;
1876}
1877
1878/**
1879 *	remap_vmalloc_range  -  map vmalloc pages to userspace
1880 *	@vma:		vma to cover (map full range of vma)
1881 *	@addr:		vmalloc memory
1882 *	@pgoff:		number of pages into addr before first page to map
1883 *
1884 *	Returns:	0 for success, -Exxx on failure
1885 *
1886 *	This function checks that addr is a valid vmalloc'ed area, and
1887 *	that it is big enough to cover the vma. Will return failure if
1888 *	that criteria isn't met.
1889 *
1890 *	Similar to remap_pfn_range() (see mm/memory.c)
1891 */
1892int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1893						unsigned long pgoff)
1894{
1895	struct vm_struct *area;
1896	unsigned long uaddr = vma->vm_start;
1897	unsigned long usize = vma->vm_end - vma->vm_start;
1898
1899	if ((PAGE_SIZE-1) & (unsigned long)addr)
1900		return -EINVAL;
1901
1902	area = find_vm_area(addr);
1903	if (!area)
1904		return -EINVAL;
1905
1906	if (!(area->flags & VM_USERMAP))
1907		return -EINVAL;
1908
1909	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1910		return -EINVAL;
1911
1912	addr += pgoff << PAGE_SHIFT;
1913	do {
1914		struct page *page = vmalloc_to_page(addr);
1915		int ret;
1916
1917		ret = vm_insert_page(vma, uaddr, page);
1918		if (ret)
1919			return ret;
1920
1921		uaddr += PAGE_SIZE;
1922		addr += PAGE_SIZE;
1923		usize -= PAGE_SIZE;
1924	} while (usize > 0);
1925
1926	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1927	vma->vm_flags |= VM_RESERVED;
1928
1929	return 0;
1930}
1931EXPORT_SYMBOL(remap_vmalloc_range);
1932
1933/*
1934 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1935 * have one.
1936 */
1937void  __attribute__((weak)) vmalloc_sync_all(void)
1938{
1939}
1940
1941
1942static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1943{
1944	/* apply_to_page_range() does all the hard work. */
1945	return 0;
1946}
1947
1948/**
1949 *	alloc_vm_area - allocate a range of kernel address space
1950 *	@size:		size of the area
1951 *
1952 *	Returns:	NULL on failure, vm_struct on success
1953 *
1954 *	This function reserves a range of kernel address space, and
1955 *	allocates pagetables to map that range.  No actual mappings
1956 *	are created.  If the kernel address space is not shared
1957 *	between processes, it syncs the pagetable across all
1958 *	processes.
1959 */
1960struct vm_struct *alloc_vm_area(size_t size)
1961{
1962	struct vm_struct *area;
1963
1964	area = get_vm_area_caller(size, VM_IOREMAP,
1965				__builtin_return_address(0));
1966	if (area == NULL)
1967		return NULL;
1968
1969	/*
1970	 * This ensures that page tables are constructed for this region
1971	 * of kernel virtual address space and mapped into init_mm.
1972	 */
1973	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1974				area->size, f, NULL)) {
1975		free_vm_area(area);
1976		return NULL;
1977	}
1978
1979	/* Make sure the pagetables are constructed in process kernel
1980	   mappings */
1981	vmalloc_sync_all();
1982
1983	return area;
1984}
1985EXPORT_SYMBOL_GPL(alloc_vm_area);
1986
1987void free_vm_area(struct vm_struct *area)
1988{
1989	struct vm_struct *ret;
1990	ret = remove_vm_area(area->addr);
1991	BUG_ON(ret != area);
1992	kfree(area);
1993}
1994EXPORT_SYMBOL_GPL(free_vm_area);
1995
1996static struct vmap_area *node_to_va(struct rb_node *n)
1997{
1998	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
1999}
2000
2001/**
2002 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2003 * @end: target address
2004 * @pnext: out arg for the next vmap_area
2005 * @pprev: out arg for the previous vmap_area
2006 *
2007 * Returns: %true if either or both of next and prev are found,
2008 *	    %false if no vmap_area exists
2009 *
2010 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2011 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2012 */
2013static bool pvm_find_next_prev(unsigned long end,
2014			       struct vmap_area **pnext,
2015			       struct vmap_area **pprev)
2016{
2017	struct rb_node *n = vmap_area_root.rb_node;
2018	struct vmap_area *va = NULL;
2019
2020	while (n) {
2021		va = rb_entry(n, struct vmap_area, rb_node);
2022		if (end < va->va_end)
2023			n = n->rb_left;
2024		else if (end > va->va_end)
2025			n = n->rb_right;
2026		else
2027			break;
2028	}
2029
2030	if (!va)
2031		return false;
2032
2033	if (va->va_end > end) {
2034		*pnext = va;
2035		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2036	} else {
2037		*pprev = va;
2038		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2039	}
2040	return true;
2041}
2042
2043/**
2044 * pvm_determine_end - find the highest aligned address between two vmap_areas
2045 * @pnext: in/out arg for the next vmap_area
2046 * @pprev: in/out arg for the previous vmap_area
2047 * @align: alignment
2048 *
2049 * Returns: determined end address
2050 *
2051 * Find the highest aligned address between *@pnext and *@pprev below
2052 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2053 * down address is between the end addresses of the two vmap_areas.
2054 *
2055 * Please note that the address returned by this function may fall
2056 * inside *@pnext vmap_area.  The caller is responsible for checking
2057 * that.
2058 */
2059static unsigned long pvm_determine_end(struct vmap_area **pnext,
2060				       struct vmap_area **pprev,
2061				       unsigned long align)
2062{
2063	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2064	unsigned long addr;
2065
2066	if (*pnext)
2067		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2068	else
2069		addr = vmalloc_end;
2070
2071	while (*pprev && (*pprev)->va_end > addr) {
2072		*pnext = *pprev;
2073		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2074	}
2075
2076	return addr;
2077}
2078
2079/**
2080 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2081 * @offsets: array containing offset of each area
2082 * @sizes: array containing size of each area
2083 * @nr_vms: the number of areas to allocate
2084 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2085 * @gfp_mask: allocation mask
2086 *
2087 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2088 *	    vm_structs on success, %NULL on failure
2089 *
2090 * Percpu allocator wants to use congruent vm areas so that it can
2091 * maintain the offsets among percpu areas.  This function allocates
2092 * congruent vmalloc areas for it.  These areas tend to be scattered
2093 * pretty far, distance between two areas easily going up to
2094 * gigabytes.  To avoid interacting with regular vmallocs, these areas
2095 * are allocated from top.
2096 *
2097 * Despite its complicated look, this allocator is rather simple.  It
2098 * does everything top-down and scans areas from the end looking for
2099 * matching slot.  While scanning, if any of the areas overlaps with
2100 * existing vmap_area, the base address is pulled down to fit the
2101 * area.  Scanning is repeated till all the areas fit and then all
2102 * necessary data structres are inserted and the result is returned.
2103 */
2104struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2105				     const size_t *sizes, int nr_vms,
2106				     size_t align, gfp_t gfp_mask)
2107{
2108	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2109	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2110	struct vmap_area **vas, *prev, *next;
2111	struct vm_struct **vms;
2112	int area, area2, last_area, term_area;
2113	unsigned long base, start, end, last_end;
2114	bool purged = false;
2115
2116	gfp_mask &= GFP_RECLAIM_MASK;
2117
2118	/* verify parameters and allocate data structures */
2119	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2120	for (last_area = 0, area = 0; area < nr_vms; area++) {
2121		start = offsets[area];
2122		end = start + sizes[area];
2123
2124		/* is everything aligned properly? */
2125		BUG_ON(!IS_ALIGNED(offsets[area], align));
2126		BUG_ON(!IS_ALIGNED(sizes[area], align));
2127
2128		/* detect the area with the highest address */
2129		if (start > offsets[last_area])
2130			last_area = area;
2131
2132		for (area2 = 0; area2 < nr_vms; area2++) {
2133			unsigned long start2 = offsets[area2];
2134			unsigned long end2 = start2 + sizes[area2];
2135
2136			if (area2 == area)
2137				continue;
2138
2139			BUG_ON(start2 >= start && start2 < end);
2140			BUG_ON(end2 <= end && end2 > start);
2141		}
2142	}
2143	last_end = offsets[last_area] + sizes[last_area];
2144
2145	if (vmalloc_end - vmalloc_start < last_end) {
2146		WARN_ON(true);
2147		return NULL;
2148	}
2149
2150	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2151	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2152	if (!vas || !vms)
2153		goto err_free;
2154
2155	for (area = 0; area < nr_vms; area++) {
2156		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2157		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2158		if (!vas[area] || !vms[area])
2159			goto err_free;
2160	}
2161retry:
2162	spin_lock(&vmap_area_lock);
2163
2164	/* start scanning - we scan from the top, begin with the last area */
2165	area = term_area = last_area;
2166	start = offsets[area];
2167	end = start + sizes[area];
2168
2169	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2170		base = vmalloc_end - last_end;
2171		goto found;
2172	}
2173	base = pvm_determine_end(&next, &prev, align) - end;
2174
2175	while (true) {
2176		BUG_ON(next && next->va_end <= base + end);
2177		BUG_ON(prev && prev->va_end > base + end);
2178
2179		/*
2180		 * base might have underflowed, add last_end before
2181		 * comparing.
2182		 */
2183		if (base + last_end < vmalloc_start + last_end) {
2184			spin_unlock(&vmap_area_lock);
2185			if (!purged) {
2186				purge_vmap_area_lazy();
2187				purged = true;
2188				goto retry;
2189			}
2190			goto err_free;
2191		}
2192
2193		/*
2194		 * If next overlaps, move base downwards so that it's
2195		 * right below next and then recheck.
2196		 */
2197		if (next && next->va_start < base + end) {
2198			base = pvm_determine_end(&next, &prev, align) - end;
2199			term_area = area;
2200			continue;
2201		}
2202
2203		/*
2204		 * If prev overlaps, shift down next and prev and move
2205		 * base so that it's right below new next and then
2206		 * recheck.
2207		 */
2208		if (prev && prev->va_end > base + start)  {
2209			next = prev;
2210			prev = node_to_va(rb_prev(&next->rb_node));
2211			base = pvm_determine_end(&next, &prev, align) - end;
2212			term_area = area;
2213			continue;
2214		}
2215
2216		/*
2217		 * This area fits, move on to the previous one.  If
2218		 * the previous one is the terminal one, we're done.
2219		 */
2220		area = (area + nr_vms - 1) % nr_vms;
2221		if (area == term_area)
2222			break;
2223		start = offsets[area];
2224		end = start + sizes[area];
2225		pvm_find_next_prev(base + end, &next, &prev);
2226	}
2227found:
2228	/* we've found a fitting base, insert all va's */
2229	for (area = 0; area < nr_vms; area++) {
2230		struct vmap_area *va = vas[area];
2231
2232		va->va_start = base + offsets[area];
2233		va->va_end = va->va_start + sizes[area];
2234		__insert_vmap_area(va);
2235	}
2236
2237	vmap_area_pcpu_hole = base + offsets[last_area];
2238
2239	spin_unlock(&vmap_area_lock);
2240
2241	/* insert all vm's */
2242	for (area = 0; area < nr_vms; area++)
2243		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2244				  pcpu_get_vm_areas);
2245
2246	kfree(vas);
2247	return vms;
2248
2249err_free:
2250	for (area = 0; area < nr_vms; area++) {
2251		if (vas)
2252			kfree(vas[area]);
2253		if (vms)
2254			kfree(vms[area]);
2255	}
2256	kfree(vas);
2257	kfree(vms);
2258	return NULL;
2259}
2260
2261/**
2262 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2263 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2264 * @nr_vms: the number of allocated areas
2265 *
2266 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2267 */
2268void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2269{
2270	int i;
2271
2272	for (i = 0; i < nr_vms; i++)
2273		free_vm_area(vms[i]);
2274	kfree(vms);
2275}
2276
2277#ifdef CONFIG_PROC_FS
2278static void *s_start(struct seq_file *m, loff_t *pos)
2279{
2280	loff_t n = *pos;
2281	struct vm_struct *v;
2282
2283	read_lock(&vmlist_lock);
2284	v = vmlist;
2285	while (n > 0 && v) {
2286		n--;
2287		v = v->next;
2288	}
2289	if (!n)
2290		return v;
2291
2292	return NULL;
2293
2294}
2295
2296static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2297{
2298	struct vm_struct *v = p;
2299
2300	++*pos;
2301	return v->next;
2302}
2303
2304static void s_stop(struct seq_file *m, void *p)
2305{
2306	read_unlock(&vmlist_lock);
2307}
2308
2309static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2310{
2311	if (NUMA_BUILD) {
2312		unsigned int nr, *counters = m->private;
2313
2314		if (!counters)
2315			return;
2316
2317		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2318
2319		for (nr = 0; nr < v->nr_pages; nr++)
2320			counters[page_to_nid(v->pages[nr])]++;
2321
2322		for_each_node_state(nr, N_HIGH_MEMORY)
2323			if (counters[nr])
2324				seq_printf(m, " N%u=%u", nr, counters[nr]);
2325	}
2326}
2327
2328static int s_show(struct seq_file *m, void *p)
2329{
2330	struct vm_struct *v = p;
2331
2332	seq_printf(m, "0x%p-0x%p %7ld",
2333		v->addr, v->addr + v->size, v->size);
2334
2335	if (v->caller) {
2336		char buff[KSYM_SYMBOL_LEN];
2337
2338		seq_putc(m, ' ');
2339		sprint_symbol(buff, (unsigned long)v->caller);
2340		seq_puts(m, buff);
2341	}
2342
2343	if (v->nr_pages)
2344		seq_printf(m, " pages=%d", v->nr_pages);
2345
2346	if (v->phys_addr)
2347		seq_printf(m, " phys=%lx", v->phys_addr);
2348
2349	if (v->flags & VM_IOREMAP)
2350		seq_printf(m, " ioremap");
2351
2352	if (v->flags & VM_ALLOC)
2353		seq_printf(m, " vmalloc");
2354
2355	if (v->flags & VM_MAP)
2356		seq_printf(m, " vmap");
2357
2358	if (v->flags & VM_USERMAP)
2359		seq_printf(m, " user");
2360
2361	if (v->flags & VM_VPAGES)
2362		seq_printf(m, " vpages");
2363
2364	show_numa_info(m, v);
2365	seq_putc(m, '\n');
2366	return 0;
2367}
2368
2369static const struct seq_operations vmalloc_op = {
2370	.start = s_start,
2371	.next = s_next,
2372	.stop = s_stop,
2373	.show = s_show,
2374};
2375
2376static int vmalloc_open(struct inode *inode, struct file *file)
2377{
2378	unsigned int *ptr = NULL;
2379	int ret;
2380
2381	if (NUMA_BUILD)
2382		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2383	ret = seq_open(file, &vmalloc_op);
2384	if (!ret) {
2385		struct seq_file *m = file->private_data;
2386		m->private = ptr;
2387	} else
2388		kfree(ptr);
2389	return ret;
2390}
2391
2392static const struct file_operations proc_vmalloc_operations = {
2393	.open		= vmalloc_open,
2394	.read		= seq_read,
2395	.llseek		= seq_lseek,
2396	.release	= seq_release_private,
2397};
2398
2399static int __init proc_vmalloc_init(void)
2400{
2401	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2402	return 0;
2403}
2404module_init(proc_vmalloc_init);
2405#endif
2406
2407