vmalloc.c revision 3ee48b6af49cf534ca2f481ecc484b156a41451d
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/debugobjects.h>
22#include <linux/kallsyms.h>
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
27#include <linux/pfn.h>
28#include <linux/kmemleak.h>
29#include <asm/atomic.h>
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32#include <asm/shmparam.h>
33
34bool vmap_lazy_unmap __read_mostly = true;
35
36/*** Page table manipulation functions ***/
37
38static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
39{
40	pte_t *pte;
41
42	pte = pte_offset_kernel(pmd, addr);
43	do {
44		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
45		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
46	} while (pte++, addr += PAGE_SIZE, addr != end);
47}
48
49static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
50{
51	pmd_t *pmd;
52	unsigned long next;
53
54	pmd = pmd_offset(pud, addr);
55	do {
56		next = pmd_addr_end(addr, end);
57		if (pmd_none_or_clear_bad(pmd))
58			continue;
59		vunmap_pte_range(pmd, addr, next);
60	} while (pmd++, addr = next, addr != end);
61}
62
63static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
64{
65	pud_t *pud;
66	unsigned long next;
67
68	pud = pud_offset(pgd, addr);
69	do {
70		next = pud_addr_end(addr, end);
71		if (pud_none_or_clear_bad(pud))
72			continue;
73		vunmap_pmd_range(pud, addr, next);
74	} while (pud++, addr = next, addr != end);
75}
76
77static void vunmap_page_range(unsigned long addr, unsigned long end)
78{
79	pgd_t *pgd;
80	unsigned long next;
81
82	BUG_ON(addr >= end);
83	pgd = pgd_offset_k(addr);
84	do {
85		next = pgd_addr_end(addr, end);
86		if (pgd_none_or_clear_bad(pgd))
87			continue;
88		vunmap_pud_range(pgd, addr, next);
89	} while (pgd++, addr = next, addr != end);
90}
91
92static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
93		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
94{
95	pte_t *pte;
96
97	/*
98	 * nr is a running index into the array which helps higher level
99	 * callers keep track of where we're up to.
100	 */
101
102	pte = pte_alloc_kernel(pmd, addr);
103	if (!pte)
104		return -ENOMEM;
105	do {
106		struct page *page = pages[*nr];
107
108		if (WARN_ON(!pte_none(*pte)))
109			return -EBUSY;
110		if (WARN_ON(!page))
111			return -ENOMEM;
112		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
113		(*nr)++;
114	} while (pte++, addr += PAGE_SIZE, addr != end);
115	return 0;
116}
117
118static int vmap_pmd_range(pud_t *pud, unsigned long addr,
119		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
120{
121	pmd_t *pmd;
122	unsigned long next;
123
124	pmd = pmd_alloc(&init_mm, pud, addr);
125	if (!pmd)
126		return -ENOMEM;
127	do {
128		next = pmd_addr_end(addr, end);
129		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
130			return -ENOMEM;
131	} while (pmd++, addr = next, addr != end);
132	return 0;
133}
134
135static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
136		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137{
138	pud_t *pud;
139	unsigned long next;
140
141	pud = pud_alloc(&init_mm, pgd, addr);
142	if (!pud)
143		return -ENOMEM;
144	do {
145		next = pud_addr_end(addr, end);
146		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
147			return -ENOMEM;
148	} while (pud++, addr = next, addr != end);
149	return 0;
150}
151
152/*
153 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154 * will have pfns corresponding to the "pages" array.
155 *
156 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157 */
158static int vmap_page_range_noflush(unsigned long start, unsigned long end,
159				   pgprot_t prot, struct page **pages)
160{
161	pgd_t *pgd;
162	unsigned long next;
163	unsigned long addr = start;
164	int err = 0;
165	int nr = 0;
166
167	BUG_ON(addr >= end);
168	pgd = pgd_offset_k(addr);
169	do {
170		next = pgd_addr_end(addr, end);
171		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
172		if (err)
173			return err;
174	} while (pgd++, addr = next, addr != end);
175
176	return nr;
177}
178
179static int vmap_page_range(unsigned long start, unsigned long end,
180			   pgprot_t prot, struct page **pages)
181{
182	int ret;
183
184	ret = vmap_page_range_noflush(start, end, prot, pages);
185	flush_cache_vmap(start, end);
186	return ret;
187}
188
189int is_vmalloc_or_module_addr(const void *x)
190{
191	/*
192	 * ARM, x86-64 and sparc64 put modules in a special place,
193	 * and fall back on vmalloc() if that fails. Others
194	 * just put it in the vmalloc space.
195	 */
196#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197	unsigned long addr = (unsigned long)x;
198	if (addr >= MODULES_VADDR && addr < MODULES_END)
199		return 1;
200#endif
201	return is_vmalloc_addr(x);
202}
203
204/*
205 * Walk a vmap address to the struct page it maps.
206 */
207struct page *vmalloc_to_page(const void *vmalloc_addr)
208{
209	unsigned long addr = (unsigned long) vmalloc_addr;
210	struct page *page = NULL;
211	pgd_t *pgd = pgd_offset_k(addr);
212
213	/*
214	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215	 * architectures that do not vmalloc module space
216	 */
217	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218
219	if (!pgd_none(*pgd)) {
220		pud_t *pud = pud_offset(pgd, addr);
221		if (!pud_none(*pud)) {
222			pmd_t *pmd = pmd_offset(pud, addr);
223			if (!pmd_none(*pmd)) {
224				pte_t *ptep, pte;
225
226				ptep = pte_offset_map(pmd, addr);
227				pte = *ptep;
228				if (pte_present(pte))
229					page = pte_page(pte);
230				pte_unmap(ptep);
231			}
232		}
233	}
234	return page;
235}
236EXPORT_SYMBOL(vmalloc_to_page);
237
238/*
239 * Map a vmalloc()-space virtual address to the physical page frame number.
240 */
241unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242{
243	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244}
245EXPORT_SYMBOL(vmalloc_to_pfn);
246
247
248/*** Global kva allocator ***/
249
250#define VM_LAZY_FREE	0x01
251#define VM_LAZY_FREEING	0x02
252#define VM_VM_AREA	0x04
253
254struct vmap_area {
255	unsigned long va_start;
256	unsigned long va_end;
257	unsigned long flags;
258	struct rb_node rb_node;		/* address sorted rbtree */
259	struct list_head list;		/* address sorted list */
260	struct list_head purge_list;	/* "lazy purge" list */
261	void *private;
262	struct rcu_head rcu_head;
263};
264
265static DEFINE_SPINLOCK(vmap_area_lock);
266static struct rb_root vmap_area_root = RB_ROOT;
267static LIST_HEAD(vmap_area_list);
268static unsigned long vmap_area_pcpu_hole;
269
270static struct vmap_area *__find_vmap_area(unsigned long addr)
271{
272	struct rb_node *n = vmap_area_root.rb_node;
273
274	while (n) {
275		struct vmap_area *va;
276
277		va = rb_entry(n, struct vmap_area, rb_node);
278		if (addr < va->va_start)
279			n = n->rb_left;
280		else if (addr > va->va_start)
281			n = n->rb_right;
282		else
283			return va;
284	}
285
286	return NULL;
287}
288
289static void __insert_vmap_area(struct vmap_area *va)
290{
291	struct rb_node **p = &vmap_area_root.rb_node;
292	struct rb_node *parent = NULL;
293	struct rb_node *tmp;
294
295	while (*p) {
296		struct vmap_area *tmp;
297
298		parent = *p;
299		tmp = rb_entry(parent, struct vmap_area, rb_node);
300		if (va->va_start < tmp->va_end)
301			p = &(*p)->rb_left;
302		else if (va->va_end > tmp->va_start)
303			p = &(*p)->rb_right;
304		else
305			BUG();
306	}
307
308	rb_link_node(&va->rb_node, parent, p);
309	rb_insert_color(&va->rb_node, &vmap_area_root);
310
311	/* address-sort this list so it is usable like the vmlist */
312	tmp = rb_prev(&va->rb_node);
313	if (tmp) {
314		struct vmap_area *prev;
315		prev = rb_entry(tmp, struct vmap_area, rb_node);
316		list_add_rcu(&va->list, &prev->list);
317	} else
318		list_add_rcu(&va->list, &vmap_area_list);
319}
320
321static void purge_vmap_area_lazy(void);
322
323/*
324 * Allocate a region of KVA of the specified size and alignment, within the
325 * vstart and vend.
326 */
327static struct vmap_area *alloc_vmap_area(unsigned long size,
328				unsigned long align,
329				unsigned long vstart, unsigned long vend,
330				int node, gfp_t gfp_mask)
331{
332	struct vmap_area *va;
333	struct rb_node *n;
334	unsigned long addr;
335	int purged = 0;
336
337	BUG_ON(!size);
338	BUG_ON(size & ~PAGE_MASK);
339
340	va = kmalloc_node(sizeof(struct vmap_area),
341			gfp_mask & GFP_RECLAIM_MASK, node);
342	if (unlikely(!va))
343		return ERR_PTR(-ENOMEM);
344
345retry:
346	addr = ALIGN(vstart, align);
347
348	spin_lock(&vmap_area_lock);
349	if (addr + size - 1 < addr)
350		goto overflow;
351
352	/* XXX: could have a last_hole cache */
353	n = vmap_area_root.rb_node;
354	if (n) {
355		struct vmap_area *first = NULL;
356
357		do {
358			struct vmap_area *tmp;
359			tmp = rb_entry(n, struct vmap_area, rb_node);
360			if (tmp->va_end >= addr) {
361				if (!first && tmp->va_start < addr + size)
362					first = tmp;
363				n = n->rb_left;
364			} else {
365				first = tmp;
366				n = n->rb_right;
367			}
368		} while (n);
369
370		if (!first)
371			goto found;
372
373		if (first->va_end < addr) {
374			n = rb_next(&first->rb_node);
375			if (n)
376				first = rb_entry(n, struct vmap_area, rb_node);
377			else
378				goto found;
379		}
380
381		while (addr + size > first->va_start && addr + size <= vend) {
382			addr = ALIGN(first->va_end + PAGE_SIZE, align);
383			if (addr + size - 1 < addr)
384				goto overflow;
385
386			n = rb_next(&first->rb_node);
387			if (n)
388				first = rb_entry(n, struct vmap_area, rb_node);
389			else
390				goto found;
391		}
392	}
393found:
394	if (addr + size > vend) {
395overflow:
396		spin_unlock(&vmap_area_lock);
397		if (!purged) {
398			purge_vmap_area_lazy();
399			purged = 1;
400			goto retry;
401		}
402		if (printk_ratelimit())
403			printk(KERN_WARNING
404				"vmap allocation for size %lu failed: "
405				"use vmalloc=<size> to increase size.\n", size);
406		kfree(va);
407		return ERR_PTR(-EBUSY);
408	}
409
410	BUG_ON(addr & (align-1));
411
412	va->va_start = addr;
413	va->va_end = addr + size;
414	va->flags = 0;
415	__insert_vmap_area(va);
416	spin_unlock(&vmap_area_lock);
417
418	return va;
419}
420
421static void rcu_free_va(struct rcu_head *head)
422{
423	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424
425	kfree(va);
426}
427
428static void __free_vmap_area(struct vmap_area *va)
429{
430	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
431	rb_erase(&va->rb_node, &vmap_area_root);
432	RB_CLEAR_NODE(&va->rb_node);
433	list_del_rcu(&va->list);
434
435	/*
436	 * Track the highest possible candidate for pcpu area
437	 * allocation.  Areas outside of vmalloc area can be returned
438	 * here too, consider only end addresses which fall inside
439	 * vmalloc area proper.
440	 */
441	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
442		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
443
444	call_rcu(&va->rcu_head, rcu_free_va);
445}
446
447/*
448 * Free a region of KVA allocated by alloc_vmap_area
449 */
450static void free_vmap_area(struct vmap_area *va)
451{
452	spin_lock(&vmap_area_lock);
453	__free_vmap_area(va);
454	spin_unlock(&vmap_area_lock);
455}
456
457/*
458 * Clear the pagetable entries of a given vmap_area
459 */
460static void unmap_vmap_area(struct vmap_area *va)
461{
462	vunmap_page_range(va->va_start, va->va_end);
463}
464
465static void vmap_debug_free_range(unsigned long start, unsigned long end)
466{
467	/*
468	 * Unmap page tables and force a TLB flush immediately if
469	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470	 * bugs similarly to those in linear kernel virtual address
471	 * space after a page has been freed.
472	 *
473	 * All the lazy freeing logic is still retained, in order to
474	 * minimise intrusiveness of this debugging feature.
475	 *
476	 * This is going to be *slow* (linear kernel virtual address
477	 * debugging doesn't do a broadcast TLB flush so it is a lot
478	 * faster).
479	 */
480#ifdef CONFIG_DEBUG_PAGEALLOC
481	vunmap_page_range(start, end);
482	flush_tlb_kernel_range(start, end);
483#endif
484}
485
486/*
487 * lazy_max_pages is the maximum amount of virtual address space we gather up
488 * before attempting to purge with a TLB flush.
489 *
490 * There is a tradeoff here: a larger number will cover more kernel page tables
491 * and take slightly longer to purge, but it will linearly reduce the number of
492 * global TLB flushes that must be performed. It would seem natural to scale
493 * this number up linearly with the number of CPUs (because vmapping activity
494 * could also scale linearly with the number of CPUs), however it is likely
495 * that in practice, workloads might be constrained in other ways that mean
496 * vmap activity will not scale linearly with CPUs. Also, I want to be
497 * conservative and not introduce a big latency on huge systems, so go with
498 * a less aggressive log scale. It will still be an improvement over the old
499 * code, and it will be simple to change the scale factor if we find that it
500 * becomes a problem on bigger systems.
501 */
502static unsigned long lazy_max_pages(void)
503{
504	unsigned int log;
505
506	if (!vmap_lazy_unmap)
507		return 0;
508
509	log = fls(num_online_cpus());
510
511	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
512}
513
514static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
515
516/* for per-CPU blocks */
517static void purge_fragmented_blocks_allcpus(void);
518
519/*
520 * called before a call to iounmap() if the caller wants vm_area_struct's
521 * immediately freed.
522 */
523void set_iounmap_nonlazy(void)
524{
525	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
526}
527
528/*
529 * Purges all lazily-freed vmap areas.
530 *
531 * If sync is 0 then don't purge if there is already a purge in progress.
532 * If force_flush is 1, then flush kernel TLBs between *start and *end even
533 * if we found no lazy vmap areas to unmap (callers can use this to optimise
534 * their own TLB flushing).
535 * Returns with *start = min(*start, lowest purged address)
536 *              *end = max(*end, highest purged address)
537 */
538static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
539					int sync, int force_flush)
540{
541	static DEFINE_SPINLOCK(purge_lock);
542	LIST_HEAD(valist);
543	struct vmap_area *va;
544	struct vmap_area *n_va;
545	int nr = 0;
546
547	/*
548	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
549	 * should not expect such behaviour. This just simplifies locking for
550	 * the case that isn't actually used at the moment anyway.
551	 */
552	if (!sync && !force_flush) {
553		if (!spin_trylock(&purge_lock))
554			return;
555	} else
556		spin_lock(&purge_lock);
557
558	if (sync)
559		purge_fragmented_blocks_allcpus();
560
561	rcu_read_lock();
562	list_for_each_entry_rcu(va, &vmap_area_list, list) {
563		if (va->flags & VM_LAZY_FREE) {
564			if (va->va_start < *start)
565				*start = va->va_start;
566			if (va->va_end > *end)
567				*end = va->va_end;
568			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
569			unmap_vmap_area(va);
570			list_add_tail(&va->purge_list, &valist);
571			va->flags |= VM_LAZY_FREEING;
572			va->flags &= ~VM_LAZY_FREE;
573		}
574	}
575	rcu_read_unlock();
576
577	if (nr)
578		atomic_sub(nr, &vmap_lazy_nr);
579
580	if (nr || force_flush)
581		flush_tlb_kernel_range(*start, *end);
582
583	if (nr) {
584		spin_lock(&vmap_area_lock);
585		list_for_each_entry_safe(va, n_va, &valist, purge_list)
586			__free_vmap_area(va);
587		spin_unlock(&vmap_area_lock);
588	}
589	spin_unlock(&purge_lock);
590}
591
592/*
593 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
594 * is already purging.
595 */
596static void try_purge_vmap_area_lazy(void)
597{
598	unsigned long start = ULONG_MAX, end = 0;
599
600	__purge_vmap_area_lazy(&start, &end, 0, 0);
601}
602
603/*
604 * Kick off a purge of the outstanding lazy areas.
605 */
606static void purge_vmap_area_lazy(void)
607{
608	unsigned long start = ULONG_MAX, end = 0;
609
610	__purge_vmap_area_lazy(&start, &end, 1, 0);
611}
612
613/*
614 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
615 * called for the correct range previously.
616 */
617static void free_unmap_vmap_area_noflush(struct vmap_area *va)
618{
619	va->flags |= VM_LAZY_FREE;
620	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
621	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
622		try_purge_vmap_area_lazy();
623}
624
625/*
626 * Free and unmap a vmap area
627 */
628static void free_unmap_vmap_area(struct vmap_area *va)
629{
630	flush_cache_vunmap(va->va_start, va->va_end);
631	free_unmap_vmap_area_noflush(va);
632}
633
634static struct vmap_area *find_vmap_area(unsigned long addr)
635{
636	struct vmap_area *va;
637
638	spin_lock(&vmap_area_lock);
639	va = __find_vmap_area(addr);
640	spin_unlock(&vmap_area_lock);
641
642	return va;
643}
644
645static void free_unmap_vmap_area_addr(unsigned long addr)
646{
647	struct vmap_area *va;
648
649	va = find_vmap_area(addr);
650	BUG_ON(!va);
651	free_unmap_vmap_area(va);
652}
653
654
655/*** Per cpu kva allocator ***/
656
657/*
658 * vmap space is limited especially on 32 bit architectures. Ensure there is
659 * room for at least 16 percpu vmap blocks per CPU.
660 */
661/*
662 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
663 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
664 * instead (we just need a rough idea)
665 */
666#if BITS_PER_LONG == 32
667#define VMALLOC_SPACE		(128UL*1024*1024)
668#else
669#define VMALLOC_SPACE		(128UL*1024*1024*1024)
670#endif
671
672#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
673#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
674#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
675#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
676#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
677#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
678#define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
679					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
680						VMALLOC_PAGES / NR_CPUS / 16))
681
682#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
683
684static bool vmap_initialized __read_mostly = false;
685
686struct vmap_block_queue {
687	spinlock_t lock;
688	struct list_head free;
689};
690
691struct vmap_block {
692	spinlock_t lock;
693	struct vmap_area *va;
694	struct vmap_block_queue *vbq;
695	unsigned long free, dirty;
696	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
697	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
698	struct list_head free_list;
699	struct rcu_head rcu_head;
700	struct list_head purge;
701};
702
703/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
704static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
705
706/*
707 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
708 * in the free path. Could get rid of this if we change the API to return a
709 * "cookie" from alloc, to be passed to free. But no big deal yet.
710 */
711static DEFINE_SPINLOCK(vmap_block_tree_lock);
712static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
713
714/*
715 * We should probably have a fallback mechanism to allocate virtual memory
716 * out of partially filled vmap blocks. However vmap block sizing should be
717 * fairly reasonable according to the vmalloc size, so it shouldn't be a
718 * big problem.
719 */
720
721static unsigned long addr_to_vb_idx(unsigned long addr)
722{
723	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
724	addr /= VMAP_BLOCK_SIZE;
725	return addr;
726}
727
728static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
729{
730	struct vmap_block_queue *vbq;
731	struct vmap_block *vb;
732	struct vmap_area *va;
733	unsigned long vb_idx;
734	int node, err;
735
736	node = numa_node_id();
737
738	vb = kmalloc_node(sizeof(struct vmap_block),
739			gfp_mask & GFP_RECLAIM_MASK, node);
740	if (unlikely(!vb))
741		return ERR_PTR(-ENOMEM);
742
743	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
744					VMALLOC_START, VMALLOC_END,
745					node, gfp_mask);
746	if (unlikely(IS_ERR(va))) {
747		kfree(vb);
748		return ERR_CAST(va);
749	}
750
751	err = radix_tree_preload(gfp_mask);
752	if (unlikely(err)) {
753		kfree(vb);
754		free_vmap_area(va);
755		return ERR_PTR(err);
756	}
757
758	spin_lock_init(&vb->lock);
759	vb->va = va;
760	vb->free = VMAP_BBMAP_BITS;
761	vb->dirty = 0;
762	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
763	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
764	INIT_LIST_HEAD(&vb->free_list);
765
766	vb_idx = addr_to_vb_idx(va->va_start);
767	spin_lock(&vmap_block_tree_lock);
768	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
769	spin_unlock(&vmap_block_tree_lock);
770	BUG_ON(err);
771	radix_tree_preload_end();
772
773	vbq = &get_cpu_var(vmap_block_queue);
774	vb->vbq = vbq;
775	spin_lock(&vbq->lock);
776	list_add_rcu(&vb->free_list, &vbq->free);
777	spin_unlock(&vbq->lock);
778	put_cpu_var(vmap_block_queue);
779
780	return vb;
781}
782
783static void rcu_free_vb(struct rcu_head *head)
784{
785	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
786
787	kfree(vb);
788}
789
790static void free_vmap_block(struct vmap_block *vb)
791{
792	struct vmap_block *tmp;
793	unsigned long vb_idx;
794
795	vb_idx = addr_to_vb_idx(vb->va->va_start);
796	spin_lock(&vmap_block_tree_lock);
797	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
798	spin_unlock(&vmap_block_tree_lock);
799	BUG_ON(tmp != vb);
800
801	free_unmap_vmap_area_noflush(vb->va);
802	call_rcu(&vb->rcu_head, rcu_free_vb);
803}
804
805static void purge_fragmented_blocks(int cpu)
806{
807	LIST_HEAD(purge);
808	struct vmap_block *vb;
809	struct vmap_block *n_vb;
810	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
811
812	rcu_read_lock();
813	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
814
815		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
816			continue;
817
818		spin_lock(&vb->lock);
819		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
820			vb->free = 0; /* prevent further allocs after releasing lock */
821			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
822			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
823			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
824			spin_lock(&vbq->lock);
825			list_del_rcu(&vb->free_list);
826			spin_unlock(&vbq->lock);
827			spin_unlock(&vb->lock);
828			list_add_tail(&vb->purge, &purge);
829		} else
830			spin_unlock(&vb->lock);
831	}
832	rcu_read_unlock();
833
834	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
835		list_del(&vb->purge);
836		free_vmap_block(vb);
837	}
838}
839
840static void purge_fragmented_blocks_thiscpu(void)
841{
842	purge_fragmented_blocks(smp_processor_id());
843}
844
845static void purge_fragmented_blocks_allcpus(void)
846{
847	int cpu;
848
849	for_each_possible_cpu(cpu)
850		purge_fragmented_blocks(cpu);
851}
852
853static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
854{
855	struct vmap_block_queue *vbq;
856	struct vmap_block *vb;
857	unsigned long addr = 0;
858	unsigned int order;
859	int purge = 0;
860
861	BUG_ON(size & ~PAGE_MASK);
862	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
863	order = get_order(size);
864
865again:
866	rcu_read_lock();
867	vbq = &get_cpu_var(vmap_block_queue);
868	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
869		int i;
870
871		spin_lock(&vb->lock);
872		if (vb->free < 1UL << order)
873			goto next;
874
875		i = bitmap_find_free_region(vb->alloc_map,
876						VMAP_BBMAP_BITS, order);
877
878		if (i < 0) {
879			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
880				/* fragmented and no outstanding allocations */
881				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
882				purge = 1;
883			}
884			goto next;
885		}
886		addr = vb->va->va_start + (i << PAGE_SHIFT);
887		BUG_ON(addr_to_vb_idx(addr) !=
888				addr_to_vb_idx(vb->va->va_start));
889		vb->free -= 1UL << order;
890		if (vb->free == 0) {
891			spin_lock(&vbq->lock);
892			list_del_rcu(&vb->free_list);
893			spin_unlock(&vbq->lock);
894		}
895		spin_unlock(&vb->lock);
896		break;
897next:
898		spin_unlock(&vb->lock);
899	}
900
901	if (purge)
902		purge_fragmented_blocks_thiscpu();
903
904	put_cpu_var(vmap_block_queue);
905	rcu_read_unlock();
906
907	if (!addr) {
908		vb = new_vmap_block(gfp_mask);
909		if (IS_ERR(vb))
910			return vb;
911		goto again;
912	}
913
914	return (void *)addr;
915}
916
917static void vb_free(const void *addr, unsigned long size)
918{
919	unsigned long offset;
920	unsigned long vb_idx;
921	unsigned int order;
922	struct vmap_block *vb;
923
924	BUG_ON(size & ~PAGE_MASK);
925	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
926
927	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
928
929	order = get_order(size);
930
931	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
932
933	vb_idx = addr_to_vb_idx((unsigned long)addr);
934	rcu_read_lock();
935	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
936	rcu_read_unlock();
937	BUG_ON(!vb);
938
939	spin_lock(&vb->lock);
940	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
941
942	vb->dirty += 1UL << order;
943	if (vb->dirty == VMAP_BBMAP_BITS) {
944		BUG_ON(vb->free);
945		spin_unlock(&vb->lock);
946		free_vmap_block(vb);
947	} else
948		spin_unlock(&vb->lock);
949}
950
951/**
952 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
953 *
954 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
955 * to amortize TLB flushing overheads. What this means is that any page you
956 * have now, may, in a former life, have been mapped into kernel virtual
957 * address by the vmap layer and so there might be some CPUs with TLB entries
958 * still referencing that page (additional to the regular 1:1 kernel mapping).
959 *
960 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
961 * be sure that none of the pages we have control over will have any aliases
962 * from the vmap layer.
963 */
964void vm_unmap_aliases(void)
965{
966	unsigned long start = ULONG_MAX, end = 0;
967	int cpu;
968	int flush = 0;
969
970	if (unlikely(!vmap_initialized))
971		return;
972
973	for_each_possible_cpu(cpu) {
974		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
975		struct vmap_block *vb;
976
977		rcu_read_lock();
978		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
979			int i;
980
981			spin_lock(&vb->lock);
982			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
983			while (i < VMAP_BBMAP_BITS) {
984				unsigned long s, e;
985				int j;
986				j = find_next_zero_bit(vb->dirty_map,
987					VMAP_BBMAP_BITS, i);
988
989				s = vb->va->va_start + (i << PAGE_SHIFT);
990				e = vb->va->va_start + (j << PAGE_SHIFT);
991				vunmap_page_range(s, e);
992				flush = 1;
993
994				if (s < start)
995					start = s;
996				if (e > end)
997					end = e;
998
999				i = j;
1000				i = find_next_bit(vb->dirty_map,
1001							VMAP_BBMAP_BITS, i);
1002			}
1003			spin_unlock(&vb->lock);
1004		}
1005		rcu_read_unlock();
1006	}
1007
1008	__purge_vmap_area_lazy(&start, &end, 1, flush);
1009}
1010EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1011
1012/**
1013 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1014 * @mem: the pointer returned by vm_map_ram
1015 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1016 */
1017void vm_unmap_ram(const void *mem, unsigned int count)
1018{
1019	unsigned long size = count << PAGE_SHIFT;
1020	unsigned long addr = (unsigned long)mem;
1021
1022	BUG_ON(!addr);
1023	BUG_ON(addr < VMALLOC_START);
1024	BUG_ON(addr > VMALLOC_END);
1025	BUG_ON(addr & (PAGE_SIZE-1));
1026
1027	debug_check_no_locks_freed(mem, size);
1028	vmap_debug_free_range(addr, addr+size);
1029
1030	if (likely(count <= VMAP_MAX_ALLOC))
1031		vb_free(mem, size);
1032	else
1033		free_unmap_vmap_area_addr(addr);
1034}
1035EXPORT_SYMBOL(vm_unmap_ram);
1036
1037/**
1038 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1039 * @pages: an array of pointers to the pages to be mapped
1040 * @count: number of pages
1041 * @node: prefer to allocate data structures on this node
1042 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1043 *
1044 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1045 */
1046void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1047{
1048	unsigned long size = count << PAGE_SHIFT;
1049	unsigned long addr;
1050	void *mem;
1051
1052	if (likely(count <= VMAP_MAX_ALLOC)) {
1053		mem = vb_alloc(size, GFP_KERNEL);
1054		if (IS_ERR(mem))
1055			return NULL;
1056		addr = (unsigned long)mem;
1057	} else {
1058		struct vmap_area *va;
1059		va = alloc_vmap_area(size, PAGE_SIZE,
1060				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1061		if (IS_ERR(va))
1062			return NULL;
1063
1064		addr = va->va_start;
1065		mem = (void *)addr;
1066	}
1067	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1068		vm_unmap_ram(mem, count);
1069		return NULL;
1070	}
1071	return mem;
1072}
1073EXPORT_SYMBOL(vm_map_ram);
1074
1075/**
1076 * vm_area_register_early - register vmap area early during boot
1077 * @vm: vm_struct to register
1078 * @align: requested alignment
1079 *
1080 * This function is used to register kernel vm area before
1081 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1082 * proper values on entry and other fields should be zero.  On return,
1083 * vm->addr contains the allocated address.
1084 *
1085 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1086 */
1087void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1088{
1089	static size_t vm_init_off __initdata;
1090	unsigned long addr;
1091
1092	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1093	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1094
1095	vm->addr = (void *)addr;
1096
1097	vm->next = vmlist;
1098	vmlist = vm;
1099}
1100
1101void __init vmalloc_init(void)
1102{
1103	struct vmap_area *va;
1104	struct vm_struct *tmp;
1105	int i;
1106
1107	for_each_possible_cpu(i) {
1108		struct vmap_block_queue *vbq;
1109
1110		vbq = &per_cpu(vmap_block_queue, i);
1111		spin_lock_init(&vbq->lock);
1112		INIT_LIST_HEAD(&vbq->free);
1113	}
1114
1115	/* Import existing vmlist entries. */
1116	for (tmp = vmlist; tmp; tmp = tmp->next) {
1117		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1118		va->flags = tmp->flags | VM_VM_AREA;
1119		va->va_start = (unsigned long)tmp->addr;
1120		va->va_end = va->va_start + tmp->size;
1121		__insert_vmap_area(va);
1122	}
1123
1124	vmap_area_pcpu_hole = VMALLOC_END;
1125
1126	vmap_initialized = true;
1127}
1128
1129/**
1130 * map_kernel_range_noflush - map kernel VM area with the specified pages
1131 * @addr: start of the VM area to map
1132 * @size: size of the VM area to map
1133 * @prot: page protection flags to use
1134 * @pages: pages to map
1135 *
1136 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1137 * specify should have been allocated using get_vm_area() and its
1138 * friends.
1139 *
1140 * NOTE:
1141 * This function does NOT do any cache flushing.  The caller is
1142 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1143 * before calling this function.
1144 *
1145 * RETURNS:
1146 * The number of pages mapped on success, -errno on failure.
1147 */
1148int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1149			     pgprot_t prot, struct page **pages)
1150{
1151	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1152}
1153
1154/**
1155 * unmap_kernel_range_noflush - unmap kernel VM area
1156 * @addr: start of the VM area to unmap
1157 * @size: size of the VM area to unmap
1158 *
1159 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1160 * specify should have been allocated using get_vm_area() and its
1161 * friends.
1162 *
1163 * NOTE:
1164 * This function does NOT do any cache flushing.  The caller is
1165 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1166 * before calling this function and flush_tlb_kernel_range() after.
1167 */
1168void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1169{
1170	vunmap_page_range(addr, addr + size);
1171}
1172
1173/**
1174 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1175 * @addr: start of the VM area to unmap
1176 * @size: size of the VM area to unmap
1177 *
1178 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1179 * the unmapping and tlb after.
1180 */
1181void unmap_kernel_range(unsigned long addr, unsigned long size)
1182{
1183	unsigned long end = addr + size;
1184
1185	flush_cache_vunmap(addr, end);
1186	vunmap_page_range(addr, end);
1187	flush_tlb_kernel_range(addr, end);
1188}
1189
1190int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1191{
1192	unsigned long addr = (unsigned long)area->addr;
1193	unsigned long end = addr + area->size - PAGE_SIZE;
1194	int err;
1195
1196	err = vmap_page_range(addr, end, prot, *pages);
1197	if (err > 0) {
1198		*pages += err;
1199		err = 0;
1200	}
1201
1202	return err;
1203}
1204EXPORT_SYMBOL_GPL(map_vm_area);
1205
1206/*** Old vmalloc interfaces ***/
1207DEFINE_RWLOCK(vmlist_lock);
1208struct vm_struct *vmlist;
1209
1210static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1211			      unsigned long flags, void *caller)
1212{
1213	struct vm_struct *tmp, **p;
1214
1215	vm->flags = flags;
1216	vm->addr = (void *)va->va_start;
1217	vm->size = va->va_end - va->va_start;
1218	vm->caller = caller;
1219	va->private = vm;
1220	va->flags |= VM_VM_AREA;
1221
1222	write_lock(&vmlist_lock);
1223	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1224		if (tmp->addr >= vm->addr)
1225			break;
1226	}
1227	vm->next = *p;
1228	*p = vm;
1229	write_unlock(&vmlist_lock);
1230}
1231
1232static struct vm_struct *__get_vm_area_node(unsigned long size,
1233		unsigned long align, unsigned long flags, unsigned long start,
1234		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1235{
1236	static struct vmap_area *va;
1237	struct vm_struct *area;
1238
1239	BUG_ON(in_interrupt());
1240	if (flags & VM_IOREMAP) {
1241		int bit = fls(size);
1242
1243		if (bit > IOREMAP_MAX_ORDER)
1244			bit = IOREMAP_MAX_ORDER;
1245		else if (bit < PAGE_SHIFT)
1246			bit = PAGE_SHIFT;
1247
1248		align = 1ul << bit;
1249	}
1250
1251	size = PAGE_ALIGN(size);
1252	if (unlikely(!size))
1253		return NULL;
1254
1255	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1256	if (unlikely(!area))
1257		return NULL;
1258
1259	/*
1260	 * We always allocate a guard page.
1261	 */
1262	size += PAGE_SIZE;
1263
1264	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1265	if (IS_ERR(va)) {
1266		kfree(area);
1267		return NULL;
1268	}
1269
1270	insert_vmalloc_vm(area, va, flags, caller);
1271	return area;
1272}
1273
1274struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1275				unsigned long start, unsigned long end)
1276{
1277	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1278						__builtin_return_address(0));
1279}
1280EXPORT_SYMBOL_GPL(__get_vm_area);
1281
1282struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1283				       unsigned long start, unsigned long end,
1284				       void *caller)
1285{
1286	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1287				  caller);
1288}
1289
1290/**
1291 *	get_vm_area  -  reserve a contiguous kernel virtual area
1292 *	@size:		size of the area
1293 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1294 *
1295 *	Search an area of @size in the kernel virtual mapping area,
1296 *	and reserved it for out purposes.  Returns the area descriptor
1297 *	on success or %NULL on failure.
1298 */
1299struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1300{
1301	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1302				-1, GFP_KERNEL, __builtin_return_address(0));
1303}
1304
1305struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1306				void *caller)
1307{
1308	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1309						-1, GFP_KERNEL, caller);
1310}
1311
1312struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1313				   int node, gfp_t gfp_mask)
1314{
1315	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1316				  node, gfp_mask, __builtin_return_address(0));
1317}
1318
1319static struct vm_struct *find_vm_area(const void *addr)
1320{
1321	struct vmap_area *va;
1322
1323	va = find_vmap_area((unsigned long)addr);
1324	if (va && va->flags & VM_VM_AREA)
1325		return va->private;
1326
1327	return NULL;
1328}
1329
1330/**
1331 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1332 *	@addr:		base address
1333 *
1334 *	Search for the kernel VM area starting at @addr, and remove it.
1335 *	This function returns the found VM area, but using it is NOT safe
1336 *	on SMP machines, except for its size or flags.
1337 */
1338struct vm_struct *remove_vm_area(const void *addr)
1339{
1340	struct vmap_area *va;
1341
1342	va = find_vmap_area((unsigned long)addr);
1343	if (va && va->flags & VM_VM_AREA) {
1344		struct vm_struct *vm = va->private;
1345		struct vm_struct *tmp, **p;
1346		/*
1347		 * remove from list and disallow access to this vm_struct
1348		 * before unmap. (address range confliction is maintained by
1349		 * vmap.)
1350		 */
1351		write_lock(&vmlist_lock);
1352		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1353			;
1354		*p = tmp->next;
1355		write_unlock(&vmlist_lock);
1356
1357		vmap_debug_free_range(va->va_start, va->va_end);
1358		free_unmap_vmap_area(va);
1359		vm->size -= PAGE_SIZE;
1360
1361		return vm;
1362	}
1363	return NULL;
1364}
1365
1366static void __vunmap(const void *addr, int deallocate_pages)
1367{
1368	struct vm_struct *area;
1369
1370	if (!addr)
1371		return;
1372
1373	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1374		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1375		return;
1376	}
1377
1378	area = remove_vm_area(addr);
1379	if (unlikely(!area)) {
1380		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1381				addr);
1382		return;
1383	}
1384
1385	debug_check_no_locks_freed(addr, area->size);
1386	debug_check_no_obj_freed(addr, area->size);
1387
1388	if (deallocate_pages) {
1389		int i;
1390
1391		for (i = 0; i < area->nr_pages; i++) {
1392			struct page *page = area->pages[i];
1393
1394			BUG_ON(!page);
1395			__free_page(page);
1396		}
1397
1398		if (area->flags & VM_VPAGES)
1399			vfree(area->pages);
1400		else
1401			kfree(area->pages);
1402	}
1403
1404	kfree(area);
1405	return;
1406}
1407
1408/**
1409 *	vfree  -  release memory allocated by vmalloc()
1410 *	@addr:		memory base address
1411 *
1412 *	Free the virtually continuous memory area starting at @addr, as
1413 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1414 *	NULL, no operation is performed.
1415 *
1416 *	Must not be called in interrupt context.
1417 */
1418void vfree(const void *addr)
1419{
1420	BUG_ON(in_interrupt());
1421
1422	kmemleak_free(addr);
1423
1424	__vunmap(addr, 1);
1425}
1426EXPORT_SYMBOL(vfree);
1427
1428/**
1429 *	vunmap  -  release virtual mapping obtained by vmap()
1430 *	@addr:		memory base address
1431 *
1432 *	Free the virtually contiguous memory area starting at @addr,
1433 *	which was created from the page array passed to vmap().
1434 *
1435 *	Must not be called in interrupt context.
1436 */
1437void vunmap(const void *addr)
1438{
1439	BUG_ON(in_interrupt());
1440	might_sleep();
1441	__vunmap(addr, 0);
1442}
1443EXPORT_SYMBOL(vunmap);
1444
1445/**
1446 *	vmap  -  map an array of pages into virtually contiguous space
1447 *	@pages:		array of page pointers
1448 *	@count:		number of pages to map
1449 *	@flags:		vm_area->flags
1450 *	@prot:		page protection for the mapping
1451 *
1452 *	Maps @count pages from @pages into contiguous kernel virtual
1453 *	space.
1454 */
1455void *vmap(struct page **pages, unsigned int count,
1456		unsigned long flags, pgprot_t prot)
1457{
1458	struct vm_struct *area;
1459
1460	might_sleep();
1461
1462	if (count > totalram_pages)
1463		return NULL;
1464
1465	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1466					__builtin_return_address(0));
1467	if (!area)
1468		return NULL;
1469
1470	if (map_vm_area(area, prot, &pages)) {
1471		vunmap(area->addr);
1472		return NULL;
1473	}
1474
1475	return area->addr;
1476}
1477EXPORT_SYMBOL(vmap);
1478
1479static void *__vmalloc_node(unsigned long size, unsigned long align,
1480			    gfp_t gfp_mask, pgprot_t prot,
1481			    int node, void *caller);
1482static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1483				 pgprot_t prot, int node, void *caller)
1484{
1485	struct page **pages;
1486	unsigned int nr_pages, array_size, i;
1487	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1488
1489	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1490	array_size = (nr_pages * sizeof(struct page *));
1491
1492	area->nr_pages = nr_pages;
1493	/* Please note that the recursion is strictly bounded. */
1494	if (array_size > PAGE_SIZE) {
1495		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1496				PAGE_KERNEL, node, caller);
1497		area->flags |= VM_VPAGES;
1498	} else {
1499		pages = kmalloc_node(array_size, nested_gfp, node);
1500	}
1501	area->pages = pages;
1502	area->caller = caller;
1503	if (!area->pages) {
1504		remove_vm_area(area->addr);
1505		kfree(area);
1506		return NULL;
1507	}
1508
1509	for (i = 0; i < area->nr_pages; i++) {
1510		struct page *page;
1511
1512		if (node < 0)
1513			page = alloc_page(gfp_mask);
1514		else
1515			page = alloc_pages_node(node, gfp_mask, 0);
1516
1517		if (unlikely(!page)) {
1518			/* Successfully allocated i pages, free them in __vunmap() */
1519			area->nr_pages = i;
1520			goto fail;
1521		}
1522		area->pages[i] = page;
1523	}
1524
1525	if (map_vm_area(area, prot, &pages))
1526		goto fail;
1527	return area->addr;
1528
1529fail:
1530	vfree(area->addr);
1531	return NULL;
1532}
1533
1534void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1535{
1536	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1537					 __builtin_return_address(0));
1538
1539	/*
1540	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1541	 * structures allocated in the __get_vm_area_node() function contain
1542	 * references to the virtual address of the vmalloc'ed block.
1543	 */
1544	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1545
1546	return addr;
1547}
1548
1549/**
1550 *	__vmalloc_node  -  allocate virtually contiguous memory
1551 *	@size:		allocation size
1552 *	@align:		desired alignment
1553 *	@gfp_mask:	flags for the page level allocator
1554 *	@prot:		protection mask for the allocated pages
1555 *	@node:		node to use for allocation or -1
1556 *	@caller:	caller's return address
1557 *
1558 *	Allocate enough pages to cover @size from the page level
1559 *	allocator with @gfp_mask flags.  Map them into contiguous
1560 *	kernel virtual space, using a pagetable protection of @prot.
1561 */
1562static void *__vmalloc_node(unsigned long size, unsigned long align,
1563			    gfp_t gfp_mask, pgprot_t prot,
1564			    int node, void *caller)
1565{
1566	struct vm_struct *area;
1567	void *addr;
1568	unsigned long real_size = size;
1569
1570	size = PAGE_ALIGN(size);
1571	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1572		return NULL;
1573
1574	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1575				  VMALLOC_END, node, gfp_mask, caller);
1576
1577	if (!area)
1578		return NULL;
1579
1580	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1581
1582	/*
1583	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1584	 * structures allocated in the __get_vm_area_node() function contain
1585	 * references to the virtual address of the vmalloc'ed block.
1586	 */
1587	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1588
1589	return addr;
1590}
1591
1592void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1593{
1594	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1595				__builtin_return_address(0));
1596}
1597EXPORT_SYMBOL(__vmalloc);
1598
1599/**
1600 *	vmalloc  -  allocate virtually contiguous memory
1601 *	@size:		allocation size
1602 *	Allocate enough pages to cover @size from the page level
1603 *	allocator and map them into contiguous kernel virtual space.
1604 *
1605 *	For tight control over page level allocator and protection flags
1606 *	use __vmalloc() instead.
1607 */
1608void *vmalloc(unsigned long size)
1609{
1610	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1611					-1, __builtin_return_address(0));
1612}
1613EXPORT_SYMBOL(vmalloc);
1614
1615/**
1616 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1617 * @size: allocation size
1618 *
1619 * The resulting memory area is zeroed so it can be mapped to userspace
1620 * without leaking data.
1621 */
1622void *vmalloc_user(unsigned long size)
1623{
1624	struct vm_struct *area;
1625	void *ret;
1626
1627	ret = __vmalloc_node(size, SHMLBA,
1628			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1629			     PAGE_KERNEL, -1, __builtin_return_address(0));
1630	if (ret) {
1631		area = find_vm_area(ret);
1632		area->flags |= VM_USERMAP;
1633	}
1634	return ret;
1635}
1636EXPORT_SYMBOL(vmalloc_user);
1637
1638/**
1639 *	vmalloc_node  -  allocate memory on a specific node
1640 *	@size:		allocation size
1641 *	@node:		numa node
1642 *
1643 *	Allocate enough pages to cover @size from the page level
1644 *	allocator and map them into contiguous kernel virtual space.
1645 *
1646 *	For tight control over page level allocator and protection flags
1647 *	use __vmalloc() instead.
1648 */
1649void *vmalloc_node(unsigned long size, int node)
1650{
1651	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1652					node, __builtin_return_address(0));
1653}
1654EXPORT_SYMBOL(vmalloc_node);
1655
1656#ifndef PAGE_KERNEL_EXEC
1657# define PAGE_KERNEL_EXEC PAGE_KERNEL
1658#endif
1659
1660/**
1661 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1662 *	@size:		allocation size
1663 *
1664 *	Kernel-internal function to allocate enough pages to cover @size
1665 *	the page level allocator and map them into contiguous and
1666 *	executable kernel virtual space.
1667 *
1668 *	For tight control over page level allocator and protection flags
1669 *	use __vmalloc() instead.
1670 */
1671
1672void *vmalloc_exec(unsigned long size)
1673{
1674	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1675			      -1, __builtin_return_address(0));
1676}
1677
1678#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1679#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1680#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1681#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1682#else
1683#define GFP_VMALLOC32 GFP_KERNEL
1684#endif
1685
1686/**
1687 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1688 *	@size:		allocation size
1689 *
1690 *	Allocate enough 32bit PA addressable pages to cover @size from the
1691 *	page level allocator and map them into contiguous kernel virtual space.
1692 */
1693void *vmalloc_32(unsigned long size)
1694{
1695	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1696			      -1, __builtin_return_address(0));
1697}
1698EXPORT_SYMBOL(vmalloc_32);
1699
1700/**
1701 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1702 *	@size:		allocation size
1703 *
1704 * The resulting memory area is 32bit addressable and zeroed so it can be
1705 * mapped to userspace without leaking data.
1706 */
1707void *vmalloc_32_user(unsigned long size)
1708{
1709	struct vm_struct *area;
1710	void *ret;
1711
1712	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1713			     -1, __builtin_return_address(0));
1714	if (ret) {
1715		area = find_vm_area(ret);
1716		area->flags |= VM_USERMAP;
1717	}
1718	return ret;
1719}
1720EXPORT_SYMBOL(vmalloc_32_user);
1721
1722/*
1723 * small helper routine , copy contents to buf from addr.
1724 * If the page is not present, fill zero.
1725 */
1726
1727static int aligned_vread(char *buf, char *addr, unsigned long count)
1728{
1729	struct page *p;
1730	int copied = 0;
1731
1732	while (count) {
1733		unsigned long offset, length;
1734
1735		offset = (unsigned long)addr & ~PAGE_MASK;
1736		length = PAGE_SIZE - offset;
1737		if (length > count)
1738			length = count;
1739		p = vmalloc_to_page(addr);
1740		/*
1741		 * To do safe access to this _mapped_ area, we need
1742		 * lock. But adding lock here means that we need to add
1743		 * overhead of vmalloc()/vfree() calles for this _debug_
1744		 * interface, rarely used. Instead of that, we'll use
1745		 * kmap() and get small overhead in this access function.
1746		 */
1747		if (p) {
1748			/*
1749			 * we can expect USER0 is not used (see vread/vwrite's
1750			 * function description)
1751			 */
1752			void *map = kmap_atomic(p, KM_USER0);
1753			memcpy(buf, map + offset, length);
1754			kunmap_atomic(map, KM_USER0);
1755		} else
1756			memset(buf, 0, length);
1757
1758		addr += length;
1759		buf += length;
1760		copied += length;
1761		count -= length;
1762	}
1763	return copied;
1764}
1765
1766static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1767{
1768	struct page *p;
1769	int copied = 0;
1770
1771	while (count) {
1772		unsigned long offset, length;
1773
1774		offset = (unsigned long)addr & ~PAGE_MASK;
1775		length = PAGE_SIZE - offset;
1776		if (length > count)
1777			length = count;
1778		p = vmalloc_to_page(addr);
1779		/*
1780		 * To do safe access to this _mapped_ area, we need
1781		 * lock. But adding lock here means that we need to add
1782		 * overhead of vmalloc()/vfree() calles for this _debug_
1783		 * interface, rarely used. Instead of that, we'll use
1784		 * kmap() and get small overhead in this access function.
1785		 */
1786		if (p) {
1787			/*
1788			 * we can expect USER0 is not used (see vread/vwrite's
1789			 * function description)
1790			 */
1791			void *map = kmap_atomic(p, KM_USER0);
1792			memcpy(map + offset, buf, length);
1793			kunmap_atomic(map, KM_USER0);
1794		}
1795		addr += length;
1796		buf += length;
1797		copied += length;
1798		count -= length;
1799	}
1800	return copied;
1801}
1802
1803/**
1804 *	vread() -  read vmalloc area in a safe way.
1805 *	@buf:		buffer for reading data
1806 *	@addr:		vm address.
1807 *	@count:		number of bytes to be read.
1808 *
1809 *	Returns # of bytes which addr and buf should be increased.
1810 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1811 *	includes any intersect with alive vmalloc area.
1812 *
1813 *	This function checks that addr is a valid vmalloc'ed area, and
1814 *	copy data from that area to a given buffer. If the given memory range
1815 *	of [addr...addr+count) includes some valid address, data is copied to
1816 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1817 *	IOREMAP area is treated as memory hole and no copy is done.
1818 *
1819 *	If [addr...addr+count) doesn't includes any intersects with alive
1820 *	vm_struct area, returns 0.
1821 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1822 *	the caller should guarantee KM_USER0 is not used.
1823 *
1824 *	Note: In usual ops, vread() is never necessary because the caller
1825 *	should know vmalloc() area is valid and can use memcpy().
1826 *	This is for routines which have to access vmalloc area without
1827 *	any informaion, as /dev/kmem.
1828 *
1829 */
1830
1831long vread(char *buf, char *addr, unsigned long count)
1832{
1833	struct vm_struct *tmp;
1834	char *vaddr, *buf_start = buf;
1835	unsigned long buflen = count;
1836	unsigned long n;
1837
1838	/* Don't allow overflow */
1839	if ((unsigned long) addr + count < count)
1840		count = -(unsigned long) addr;
1841
1842	read_lock(&vmlist_lock);
1843	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1844		vaddr = (char *) tmp->addr;
1845		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1846			continue;
1847		while (addr < vaddr) {
1848			if (count == 0)
1849				goto finished;
1850			*buf = '\0';
1851			buf++;
1852			addr++;
1853			count--;
1854		}
1855		n = vaddr + tmp->size - PAGE_SIZE - addr;
1856		if (n > count)
1857			n = count;
1858		if (!(tmp->flags & VM_IOREMAP))
1859			aligned_vread(buf, addr, n);
1860		else /* IOREMAP area is treated as memory hole */
1861			memset(buf, 0, n);
1862		buf += n;
1863		addr += n;
1864		count -= n;
1865	}
1866finished:
1867	read_unlock(&vmlist_lock);
1868
1869	if (buf == buf_start)
1870		return 0;
1871	/* zero-fill memory holes */
1872	if (buf != buf_start + buflen)
1873		memset(buf, 0, buflen - (buf - buf_start));
1874
1875	return buflen;
1876}
1877
1878/**
1879 *	vwrite() -  write vmalloc area in a safe way.
1880 *	@buf:		buffer for source data
1881 *	@addr:		vm address.
1882 *	@count:		number of bytes to be read.
1883 *
1884 *	Returns # of bytes which addr and buf should be incresed.
1885 *	(same number to @count).
1886 *	If [addr...addr+count) doesn't includes any intersect with valid
1887 *	vmalloc area, returns 0.
1888 *
1889 *	This function checks that addr is a valid vmalloc'ed area, and
1890 *	copy data from a buffer to the given addr. If specified range of
1891 *	[addr...addr+count) includes some valid address, data is copied from
1892 *	proper area of @buf. If there are memory holes, no copy to hole.
1893 *	IOREMAP area is treated as memory hole and no copy is done.
1894 *
1895 *	If [addr...addr+count) doesn't includes any intersects with alive
1896 *	vm_struct area, returns 0.
1897 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1898 *	the caller should guarantee KM_USER0 is not used.
1899 *
1900 *	Note: In usual ops, vwrite() is never necessary because the caller
1901 *	should know vmalloc() area is valid and can use memcpy().
1902 *	This is for routines which have to access vmalloc area without
1903 *	any informaion, as /dev/kmem.
1904 *
1905 *	The caller should guarantee KM_USER1 is not used.
1906 */
1907
1908long vwrite(char *buf, char *addr, unsigned long count)
1909{
1910	struct vm_struct *tmp;
1911	char *vaddr;
1912	unsigned long n, buflen;
1913	int copied = 0;
1914
1915	/* Don't allow overflow */
1916	if ((unsigned long) addr + count < count)
1917		count = -(unsigned long) addr;
1918	buflen = count;
1919
1920	read_lock(&vmlist_lock);
1921	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1922		vaddr = (char *) tmp->addr;
1923		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1924			continue;
1925		while (addr < vaddr) {
1926			if (count == 0)
1927				goto finished;
1928			buf++;
1929			addr++;
1930			count--;
1931		}
1932		n = vaddr + tmp->size - PAGE_SIZE - addr;
1933		if (n > count)
1934			n = count;
1935		if (!(tmp->flags & VM_IOREMAP)) {
1936			aligned_vwrite(buf, addr, n);
1937			copied++;
1938		}
1939		buf += n;
1940		addr += n;
1941		count -= n;
1942	}
1943finished:
1944	read_unlock(&vmlist_lock);
1945	if (!copied)
1946		return 0;
1947	return buflen;
1948}
1949
1950/**
1951 *	remap_vmalloc_range  -  map vmalloc pages to userspace
1952 *	@vma:		vma to cover (map full range of vma)
1953 *	@addr:		vmalloc memory
1954 *	@pgoff:		number of pages into addr before first page to map
1955 *
1956 *	Returns:	0 for success, -Exxx on failure
1957 *
1958 *	This function checks that addr is a valid vmalloc'ed area, and
1959 *	that it is big enough to cover the vma. Will return failure if
1960 *	that criteria isn't met.
1961 *
1962 *	Similar to remap_pfn_range() (see mm/memory.c)
1963 */
1964int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1965						unsigned long pgoff)
1966{
1967	struct vm_struct *area;
1968	unsigned long uaddr = vma->vm_start;
1969	unsigned long usize = vma->vm_end - vma->vm_start;
1970
1971	if ((PAGE_SIZE-1) & (unsigned long)addr)
1972		return -EINVAL;
1973
1974	area = find_vm_area(addr);
1975	if (!area)
1976		return -EINVAL;
1977
1978	if (!(area->flags & VM_USERMAP))
1979		return -EINVAL;
1980
1981	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1982		return -EINVAL;
1983
1984	addr += pgoff << PAGE_SHIFT;
1985	do {
1986		struct page *page = vmalloc_to_page(addr);
1987		int ret;
1988
1989		ret = vm_insert_page(vma, uaddr, page);
1990		if (ret)
1991			return ret;
1992
1993		uaddr += PAGE_SIZE;
1994		addr += PAGE_SIZE;
1995		usize -= PAGE_SIZE;
1996	} while (usize > 0);
1997
1998	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1999	vma->vm_flags |= VM_RESERVED;
2000
2001	return 0;
2002}
2003EXPORT_SYMBOL(remap_vmalloc_range);
2004
2005/*
2006 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2007 * have one.
2008 */
2009void  __attribute__((weak)) vmalloc_sync_all(void)
2010{
2011}
2012
2013
2014static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2015{
2016	/* apply_to_page_range() does all the hard work. */
2017	return 0;
2018}
2019
2020/**
2021 *	alloc_vm_area - allocate a range of kernel address space
2022 *	@size:		size of the area
2023 *
2024 *	Returns:	NULL on failure, vm_struct on success
2025 *
2026 *	This function reserves a range of kernel address space, and
2027 *	allocates pagetables to map that range.  No actual mappings
2028 *	are created.  If the kernel address space is not shared
2029 *	between processes, it syncs the pagetable across all
2030 *	processes.
2031 */
2032struct vm_struct *alloc_vm_area(size_t size)
2033{
2034	struct vm_struct *area;
2035
2036	area = get_vm_area_caller(size, VM_IOREMAP,
2037				__builtin_return_address(0));
2038	if (area == NULL)
2039		return NULL;
2040
2041	/*
2042	 * This ensures that page tables are constructed for this region
2043	 * of kernel virtual address space and mapped into init_mm.
2044	 */
2045	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2046				area->size, f, NULL)) {
2047		free_vm_area(area);
2048		return NULL;
2049	}
2050
2051	/* Make sure the pagetables are constructed in process kernel
2052	   mappings */
2053	vmalloc_sync_all();
2054
2055	return area;
2056}
2057EXPORT_SYMBOL_GPL(alloc_vm_area);
2058
2059void free_vm_area(struct vm_struct *area)
2060{
2061	struct vm_struct *ret;
2062	ret = remove_vm_area(area->addr);
2063	BUG_ON(ret != area);
2064	kfree(area);
2065}
2066EXPORT_SYMBOL_GPL(free_vm_area);
2067
2068static struct vmap_area *node_to_va(struct rb_node *n)
2069{
2070	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2071}
2072
2073/**
2074 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2075 * @end: target address
2076 * @pnext: out arg for the next vmap_area
2077 * @pprev: out arg for the previous vmap_area
2078 *
2079 * Returns: %true if either or both of next and prev are found,
2080 *	    %false if no vmap_area exists
2081 *
2082 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2083 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2084 */
2085static bool pvm_find_next_prev(unsigned long end,
2086			       struct vmap_area **pnext,
2087			       struct vmap_area **pprev)
2088{
2089	struct rb_node *n = vmap_area_root.rb_node;
2090	struct vmap_area *va = NULL;
2091
2092	while (n) {
2093		va = rb_entry(n, struct vmap_area, rb_node);
2094		if (end < va->va_end)
2095			n = n->rb_left;
2096		else if (end > va->va_end)
2097			n = n->rb_right;
2098		else
2099			break;
2100	}
2101
2102	if (!va)
2103		return false;
2104
2105	if (va->va_end > end) {
2106		*pnext = va;
2107		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2108	} else {
2109		*pprev = va;
2110		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2111	}
2112	return true;
2113}
2114
2115/**
2116 * pvm_determine_end - find the highest aligned address between two vmap_areas
2117 * @pnext: in/out arg for the next vmap_area
2118 * @pprev: in/out arg for the previous vmap_area
2119 * @align: alignment
2120 *
2121 * Returns: determined end address
2122 *
2123 * Find the highest aligned address between *@pnext and *@pprev below
2124 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2125 * down address is between the end addresses of the two vmap_areas.
2126 *
2127 * Please note that the address returned by this function may fall
2128 * inside *@pnext vmap_area.  The caller is responsible for checking
2129 * that.
2130 */
2131static unsigned long pvm_determine_end(struct vmap_area **pnext,
2132				       struct vmap_area **pprev,
2133				       unsigned long align)
2134{
2135	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2136	unsigned long addr;
2137
2138	if (*pnext)
2139		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2140	else
2141		addr = vmalloc_end;
2142
2143	while (*pprev && (*pprev)->va_end > addr) {
2144		*pnext = *pprev;
2145		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2146	}
2147
2148	return addr;
2149}
2150
2151/**
2152 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2153 * @offsets: array containing offset of each area
2154 * @sizes: array containing size of each area
2155 * @nr_vms: the number of areas to allocate
2156 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2157 * @gfp_mask: allocation mask
2158 *
2159 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2160 *	    vm_structs on success, %NULL on failure
2161 *
2162 * Percpu allocator wants to use congruent vm areas so that it can
2163 * maintain the offsets among percpu areas.  This function allocates
2164 * congruent vmalloc areas for it.  These areas tend to be scattered
2165 * pretty far, distance between two areas easily going up to
2166 * gigabytes.  To avoid interacting with regular vmallocs, these areas
2167 * are allocated from top.
2168 *
2169 * Despite its complicated look, this allocator is rather simple.  It
2170 * does everything top-down and scans areas from the end looking for
2171 * matching slot.  While scanning, if any of the areas overlaps with
2172 * existing vmap_area, the base address is pulled down to fit the
2173 * area.  Scanning is repeated till all the areas fit and then all
2174 * necessary data structres are inserted and the result is returned.
2175 */
2176struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2177				     const size_t *sizes, int nr_vms,
2178				     size_t align, gfp_t gfp_mask)
2179{
2180	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2181	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2182	struct vmap_area **vas, *prev, *next;
2183	struct vm_struct **vms;
2184	int area, area2, last_area, term_area;
2185	unsigned long base, start, end, last_end;
2186	bool purged = false;
2187
2188	gfp_mask &= GFP_RECLAIM_MASK;
2189
2190	/* verify parameters and allocate data structures */
2191	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2192	for (last_area = 0, area = 0; area < nr_vms; area++) {
2193		start = offsets[area];
2194		end = start + sizes[area];
2195
2196		/* is everything aligned properly? */
2197		BUG_ON(!IS_ALIGNED(offsets[area], align));
2198		BUG_ON(!IS_ALIGNED(sizes[area], align));
2199
2200		/* detect the area with the highest address */
2201		if (start > offsets[last_area])
2202			last_area = area;
2203
2204		for (area2 = 0; area2 < nr_vms; area2++) {
2205			unsigned long start2 = offsets[area2];
2206			unsigned long end2 = start2 + sizes[area2];
2207
2208			if (area2 == area)
2209				continue;
2210
2211			BUG_ON(start2 >= start && start2 < end);
2212			BUG_ON(end2 <= end && end2 > start);
2213		}
2214	}
2215	last_end = offsets[last_area] + sizes[last_area];
2216
2217	if (vmalloc_end - vmalloc_start < last_end) {
2218		WARN_ON(true);
2219		return NULL;
2220	}
2221
2222	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2223	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2224	if (!vas || !vms)
2225		goto err_free;
2226
2227	for (area = 0; area < nr_vms; area++) {
2228		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2229		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2230		if (!vas[area] || !vms[area])
2231			goto err_free;
2232	}
2233retry:
2234	spin_lock(&vmap_area_lock);
2235
2236	/* start scanning - we scan from the top, begin with the last area */
2237	area = term_area = last_area;
2238	start = offsets[area];
2239	end = start + sizes[area];
2240
2241	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2242		base = vmalloc_end - last_end;
2243		goto found;
2244	}
2245	base = pvm_determine_end(&next, &prev, align) - end;
2246
2247	while (true) {
2248		BUG_ON(next && next->va_end <= base + end);
2249		BUG_ON(prev && prev->va_end > base + end);
2250
2251		/*
2252		 * base might have underflowed, add last_end before
2253		 * comparing.
2254		 */
2255		if (base + last_end < vmalloc_start + last_end) {
2256			spin_unlock(&vmap_area_lock);
2257			if (!purged) {
2258				purge_vmap_area_lazy();
2259				purged = true;
2260				goto retry;
2261			}
2262			goto err_free;
2263		}
2264
2265		/*
2266		 * If next overlaps, move base downwards so that it's
2267		 * right below next and then recheck.
2268		 */
2269		if (next && next->va_start < base + end) {
2270			base = pvm_determine_end(&next, &prev, align) - end;
2271			term_area = area;
2272			continue;
2273		}
2274
2275		/*
2276		 * If prev overlaps, shift down next and prev and move
2277		 * base so that it's right below new next and then
2278		 * recheck.
2279		 */
2280		if (prev && prev->va_end > base + start)  {
2281			next = prev;
2282			prev = node_to_va(rb_prev(&next->rb_node));
2283			base = pvm_determine_end(&next, &prev, align) - end;
2284			term_area = area;
2285			continue;
2286		}
2287
2288		/*
2289		 * This area fits, move on to the previous one.  If
2290		 * the previous one is the terminal one, we're done.
2291		 */
2292		area = (area + nr_vms - 1) % nr_vms;
2293		if (area == term_area)
2294			break;
2295		start = offsets[area];
2296		end = start + sizes[area];
2297		pvm_find_next_prev(base + end, &next, &prev);
2298	}
2299found:
2300	/* we've found a fitting base, insert all va's */
2301	for (area = 0; area < nr_vms; area++) {
2302		struct vmap_area *va = vas[area];
2303
2304		va->va_start = base + offsets[area];
2305		va->va_end = va->va_start + sizes[area];
2306		__insert_vmap_area(va);
2307	}
2308
2309	vmap_area_pcpu_hole = base + offsets[last_area];
2310
2311	spin_unlock(&vmap_area_lock);
2312
2313	/* insert all vm's */
2314	for (area = 0; area < nr_vms; area++)
2315		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2316				  pcpu_get_vm_areas);
2317
2318	kfree(vas);
2319	return vms;
2320
2321err_free:
2322	for (area = 0; area < nr_vms; area++) {
2323		if (vas)
2324			kfree(vas[area]);
2325		if (vms)
2326			kfree(vms[area]);
2327	}
2328	kfree(vas);
2329	kfree(vms);
2330	return NULL;
2331}
2332
2333/**
2334 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2335 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2336 * @nr_vms: the number of allocated areas
2337 *
2338 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2339 */
2340void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2341{
2342	int i;
2343
2344	for (i = 0; i < nr_vms; i++)
2345		free_vm_area(vms[i]);
2346	kfree(vms);
2347}
2348
2349#ifdef CONFIG_PROC_FS
2350static void *s_start(struct seq_file *m, loff_t *pos)
2351{
2352	loff_t n = *pos;
2353	struct vm_struct *v;
2354
2355	read_lock(&vmlist_lock);
2356	v = vmlist;
2357	while (n > 0 && v) {
2358		n--;
2359		v = v->next;
2360	}
2361	if (!n)
2362		return v;
2363
2364	return NULL;
2365
2366}
2367
2368static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2369{
2370	struct vm_struct *v = p;
2371
2372	++*pos;
2373	return v->next;
2374}
2375
2376static void s_stop(struct seq_file *m, void *p)
2377{
2378	read_unlock(&vmlist_lock);
2379}
2380
2381static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2382{
2383	if (NUMA_BUILD) {
2384		unsigned int nr, *counters = m->private;
2385
2386		if (!counters)
2387			return;
2388
2389		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2390
2391		for (nr = 0; nr < v->nr_pages; nr++)
2392			counters[page_to_nid(v->pages[nr])]++;
2393
2394		for_each_node_state(nr, N_HIGH_MEMORY)
2395			if (counters[nr])
2396				seq_printf(m, " N%u=%u", nr, counters[nr]);
2397	}
2398}
2399
2400static int s_show(struct seq_file *m, void *p)
2401{
2402	struct vm_struct *v = p;
2403
2404	seq_printf(m, "0x%p-0x%p %7ld",
2405		v->addr, v->addr + v->size, v->size);
2406
2407	if (v->caller) {
2408		char buff[KSYM_SYMBOL_LEN];
2409
2410		seq_putc(m, ' ');
2411		sprint_symbol(buff, (unsigned long)v->caller);
2412		seq_puts(m, buff);
2413	}
2414
2415	if (v->nr_pages)
2416		seq_printf(m, " pages=%d", v->nr_pages);
2417
2418	if (v->phys_addr)
2419		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2420
2421	if (v->flags & VM_IOREMAP)
2422		seq_printf(m, " ioremap");
2423
2424	if (v->flags & VM_ALLOC)
2425		seq_printf(m, " vmalloc");
2426
2427	if (v->flags & VM_MAP)
2428		seq_printf(m, " vmap");
2429
2430	if (v->flags & VM_USERMAP)
2431		seq_printf(m, " user");
2432
2433	if (v->flags & VM_VPAGES)
2434		seq_printf(m, " vpages");
2435
2436	show_numa_info(m, v);
2437	seq_putc(m, '\n');
2438	return 0;
2439}
2440
2441static const struct seq_operations vmalloc_op = {
2442	.start = s_start,
2443	.next = s_next,
2444	.stop = s_stop,
2445	.show = s_show,
2446};
2447
2448static int vmalloc_open(struct inode *inode, struct file *file)
2449{
2450	unsigned int *ptr = NULL;
2451	int ret;
2452
2453	if (NUMA_BUILD) {
2454		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2455		if (ptr == NULL)
2456			return -ENOMEM;
2457	}
2458	ret = seq_open(file, &vmalloc_op);
2459	if (!ret) {
2460		struct seq_file *m = file->private_data;
2461		m->private = ptr;
2462	} else
2463		kfree(ptr);
2464	return ret;
2465}
2466
2467static const struct file_operations proc_vmalloc_operations = {
2468	.open		= vmalloc_open,
2469	.read		= seq_read,
2470	.llseek		= seq_lseek,
2471	.release	= seq_release_private,
2472};
2473
2474static int __init proc_vmalloc_init(void)
2475{
2476	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2477	return 0;
2478}
2479module_init(proc_vmalloc_init);
2480#endif
2481
2482