vmalloc.c revision 43ebdac42f16037263b52a5aeedcd1bfa4a9bb29
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/debugobjects.h>
21#include <linux/kallsyms.h>
22#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
26#include <linux/pfn.h>
27
28#include <asm/atomic.h>
29#include <asm/uaccess.h>
30#include <asm/tlbflush.h>
31
32
33/*** Page table manipulation functions ***/
34
35static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36{
37	pte_t *pte;
38
39	pte = pte_offset_kernel(pmd, addr);
40	do {
41		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43	} while (pte++, addr += PAGE_SIZE, addr != end);
44}
45
46static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
47{
48	pmd_t *pmd;
49	unsigned long next;
50
51	pmd = pmd_offset(pud, addr);
52	do {
53		next = pmd_addr_end(addr, end);
54		if (pmd_none_or_clear_bad(pmd))
55			continue;
56		vunmap_pte_range(pmd, addr, next);
57	} while (pmd++, addr = next, addr != end);
58}
59
60static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
61{
62	pud_t *pud;
63	unsigned long next;
64
65	pud = pud_offset(pgd, addr);
66	do {
67		next = pud_addr_end(addr, end);
68		if (pud_none_or_clear_bad(pud))
69			continue;
70		vunmap_pmd_range(pud, addr, next);
71	} while (pud++, addr = next, addr != end);
72}
73
74static void vunmap_page_range(unsigned long addr, unsigned long end)
75{
76	pgd_t *pgd;
77	unsigned long next;
78
79	BUG_ON(addr >= end);
80	pgd = pgd_offset_k(addr);
81	do {
82		next = pgd_addr_end(addr, end);
83		if (pgd_none_or_clear_bad(pgd))
84			continue;
85		vunmap_pud_range(pgd, addr, next);
86	} while (pgd++, addr = next, addr != end);
87}
88
89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
91{
92	pte_t *pte;
93
94	/*
95	 * nr is a running index into the array which helps higher level
96	 * callers keep track of where we're up to.
97	 */
98
99	pte = pte_alloc_kernel(pmd, addr);
100	if (!pte)
101		return -ENOMEM;
102	do {
103		struct page *page = pages[*nr];
104
105		if (WARN_ON(!pte_none(*pte)))
106			return -EBUSY;
107		if (WARN_ON(!page))
108			return -ENOMEM;
109		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110		(*nr)++;
111	} while (pte++, addr += PAGE_SIZE, addr != end);
112	return 0;
113}
114
115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
117{
118	pmd_t *pmd;
119	unsigned long next;
120
121	pmd = pmd_alloc(&init_mm, pud, addr);
122	if (!pmd)
123		return -ENOMEM;
124	do {
125		next = pmd_addr_end(addr, end);
126		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127			return -ENOMEM;
128	} while (pmd++, addr = next, addr != end);
129	return 0;
130}
131
132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
134{
135	pud_t *pud;
136	unsigned long next;
137
138	pud = pud_alloc(&init_mm, pgd, addr);
139	if (!pud)
140		return -ENOMEM;
141	do {
142		next = pud_addr_end(addr, end);
143		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144			return -ENOMEM;
145	} while (pud++, addr = next, addr != end);
146	return 0;
147}
148
149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
155static int vmap_page_range_noflush(unsigned long start, unsigned long end,
156				   pgprot_t prot, struct page **pages)
157{
158	pgd_t *pgd;
159	unsigned long next;
160	unsigned long addr = start;
161	int err = 0;
162	int nr = 0;
163
164	BUG_ON(addr >= end);
165	pgd = pgd_offset_k(addr);
166	do {
167		next = pgd_addr_end(addr, end);
168		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
169		if (err)
170			break;
171	} while (pgd++, addr = next, addr != end);
172
173	if (unlikely(err))
174		return err;
175	return nr;
176}
177
178static int vmap_page_range(unsigned long start, unsigned long end,
179			   pgprot_t prot, struct page **pages)
180{
181	int ret;
182
183	ret = vmap_page_range_noflush(start, end, prot, pages);
184	flush_cache_vmap(start, end);
185	return ret;
186}
187
188static inline int is_vmalloc_or_module_addr(const void *x)
189{
190	/*
191	 * ARM, x86-64 and sparc64 put modules in a special place,
192	 * and fall back on vmalloc() if that fails. Others
193	 * just put it in the vmalloc space.
194	 */
195#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196	unsigned long addr = (unsigned long)x;
197	if (addr >= MODULES_VADDR && addr < MODULES_END)
198		return 1;
199#endif
200	return is_vmalloc_addr(x);
201}
202
203/*
204 * Walk a vmap address to the struct page it maps.
205 */
206struct page *vmalloc_to_page(const void *vmalloc_addr)
207{
208	unsigned long addr = (unsigned long) vmalloc_addr;
209	struct page *page = NULL;
210	pgd_t *pgd = pgd_offset_k(addr);
211
212	/*
213	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214	 * architectures that do not vmalloc module space
215	 */
216	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
217
218	if (!pgd_none(*pgd)) {
219		pud_t *pud = pud_offset(pgd, addr);
220		if (!pud_none(*pud)) {
221			pmd_t *pmd = pmd_offset(pud, addr);
222			if (!pmd_none(*pmd)) {
223				pte_t *ptep, pte;
224
225				ptep = pte_offset_map(pmd, addr);
226				pte = *ptep;
227				if (pte_present(pte))
228					page = pte_page(pte);
229				pte_unmap(ptep);
230			}
231		}
232	}
233	return page;
234}
235EXPORT_SYMBOL(vmalloc_to_page);
236
237/*
238 * Map a vmalloc()-space virtual address to the physical page frame number.
239 */
240unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
241{
242	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243}
244EXPORT_SYMBOL(vmalloc_to_pfn);
245
246
247/*** Global kva allocator ***/
248
249#define VM_LAZY_FREE	0x01
250#define VM_LAZY_FREEING	0x02
251#define VM_VM_AREA	0x04
252
253struct vmap_area {
254	unsigned long va_start;
255	unsigned long va_end;
256	unsigned long flags;
257	struct rb_node rb_node;		/* address sorted rbtree */
258	struct list_head list;		/* address sorted list */
259	struct list_head purge_list;	/* "lazy purge" list */
260	void *private;
261	struct rcu_head rcu_head;
262};
263
264static DEFINE_SPINLOCK(vmap_area_lock);
265static struct rb_root vmap_area_root = RB_ROOT;
266static LIST_HEAD(vmap_area_list);
267
268static struct vmap_area *__find_vmap_area(unsigned long addr)
269{
270	struct rb_node *n = vmap_area_root.rb_node;
271
272	while (n) {
273		struct vmap_area *va;
274
275		va = rb_entry(n, struct vmap_area, rb_node);
276		if (addr < va->va_start)
277			n = n->rb_left;
278		else if (addr > va->va_start)
279			n = n->rb_right;
280		else
281			return va;
282	}
283
284	return NULL;
285}
286
287static void __insert_vmap_area(struct vmap_area *va)
288{
289	struct rb_node **p = &vmap_area_root.rb_node;
290	struct rb_node *parent = NULL;
291	struct rb_node *tmp;
292
293	while (*p) {
294		struct vmap_area *tmp;
295
296		parent = *p;
297		tmp = rb_entry(parent, struct vmap_area, rb_node);
298		if (va->va_start < tmp->va_end)
299			p = &(*p)->rb_left;
300		else if (va->va_end > tmp->va_start)
301			p = &(*p)->rb_right;
302		else
303			BUG();
304	}
305
306	rb_link_node(&va->rb_node, parent, p);
307	rb_insert_color(&va->rb_node, &vmap_area_root);
308
309	/* address-sort this list so it is usable like the vmlist */
310	tmp = rb_prev(&va->rb_node);
311	if (tmp) {
312		struct vmap_area *prev;
313		prev = rb_entry(tmp, struct vmap_area, rb_node);
314		list_add_rcu(&va->list, &prev->list);
315	} else
316		list_add_rcu(&va->list, &vmap_area_list);
317}
318
319static void purge_vmap_area_lazy(void);
320
321/*
322 * Allocate a region of KVA of the specified size and alignment, within the
323 * vstart and vend.
324 */
325static struct vmap_area *alloc_vmap_area(unsigned long size,
326				unsigned long align,
327				unsigned long vstart, unsigned long vend,
328				int node, gfp_t gfp_mask)
329{
330	struct vmap_area *va;
331	struct rb_node *n;
332	unsigned long addr;
333	int purged = 0;
334
335	BUG_ON(!size);
336	BUG_ON(size & ~PAGE_MASK);
337
338	va = kmalloc_node(sizeof(struct vmap_area),
339			gfp_mask & GFP_RECLAIM_MASK, node);
340	if (unlikely(!va))
341		return ERR_PTR(-ENOMEM);
342
343retry:
344	addr = ALIGN(vstart, align);
345
346	spin_lock(&vmap_area_lock);
347	if (addr + size - 1 < addr)
348		goto overflow;
349
350	/* XXX: could have a last_hole cache */
351	n = vmap_area_root.rb_node;
352	if (n) {
353		struct vmap_area *first = NULL;
354
355		do {
356			struct vmap_area *tmp;
357			tmp = rb_entry(n, struct vmap_area, rb_node);
358			if (tmp->va_end >= addr) {
359				if (!first && tmp->va_start < addr + size)
360					first = tmp;
361				n = n->rb_left;
362			} else {
363				first = tmp;
364				n = n->rb_right;
365			}
366		} while (n);
367
368		if (!first)
369			goto found;
370
371		if (first->va_end < addr) {
372			n = rb_next(&first->rb_node);
373			if (n)
374				first = rb_entry(n, struct vmap_area, rb_node);
375			else
376				goto found;
377		}
378
379		while (addr + size > first->va_start && addr + size <= vend) {
380			addr = ALIGN(first->va_end + PAGE_SIZE, align);
381			if (addr + size - 1 < addr)
382				goto overflow;
383
384			n = rb_next(&first->rb_node);
385			if (n)
386				first = rb_entry(n, struct vmap_area, rb_node);
387			else
388				goto found;
389		}
390	}
391found:
392	if (addr + size > vend) {
393overflow:
394		spin_unlock(&vmap_area_lock);
395		if (!purged) {
396			purge_vmap_area_lazy();
397			purged = 1;
398			goto retry;
399		}
400		if (printk_ratelimit())
401			printk(KERN_WARNING
402				"vmap allocation for size %lu failed: "
403				"use vmalloc=<size> to increase size.\n", size);
404		kfree(va);
405		return ERR_PTR(-EBUSY);
406	}
407
408	BUG_ON(addr & (align-1));
409
410	va->va_start = addr;
411	va->va_end = addr + size;
412	va->flags = 0;
413	__insert_vmap_area(va);
414	spin_unlock(&vmap_area_lock);
415
416	return va;
417}
418
419static void rcu_free_va(struct rcu_head *head)
420{
421	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
422
423	kfree(va);
424}
425
426static void __free_vmap_area(struct vmap_area *va)
427{
428	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
429	rb_erase(&va->rb_node, &vmap_area_root);
430	RB_CLEAR_NODE(&va->rb_node);
431	list_del_rcu(&va->list);
432
433	call_rcu(&va->rcu_head, rcu_free_va);
434}
435
436/*
437 * Free a region of KVA allocated by alloc_vmap_area
438 */
439static void free_vmap_area(struct vmap_area *va)
440{
441	spin_lock(&vmap_area_lock);
442	__free_vmap_area(va);
443	spin_unlock(&vmap_area_lock);
444}
445
446/*
447 * Clear the pagetable entries of a given vmap_area
448 */
449static void unmap_vmap_area(struct vmap_area *va)
450{
451	vunmap_page_range(va->va_start, va->va_end);
452}
453
454static void vmap_debug_free_range(unsigned long start, unsigned long end)
455{
456	/*
457	 * Unmap page tables and force a TLB flush immediately if
458	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
459	 * bugs similarly to those in linear kernel virtual address
460	 * space after a page has been freed.
461	 *
462	 * All the lazy freeing logic is still retained, in order to
463	 * minimise intrusiveness of this debugging feature.
464	 *
465	 * This is going to be *slow* (linear kernel virtual address
466	 * debugging doesn't do a broadcast TLB flush so it is a lot
467	 * faster).
468	 */
469#ifdef CONFIG_DEBUG_PAGEALLOC
470	vunmap_page_range(start, end);
471	flush_tlb_kernel_range(start, end);
472#endif
473}
474
475/*
476 * lazy_max_pages is the maximum amount of virtual address space we gather up
477 * before attempting to purge with a TLB flush.
478 *
479 * There is a tradeoff here: a larger number will cover more kernel page tables
480 * and take slightly longer to purge, but it will linearly reduce the number of
481 * global TLB flushes that must be performed. It would seem natural to scale
482 * this number up linearly with the number of CPUs (because vmapping activity
483 * could also scale linearly with the number of CPUs), however it is likely
484 * that in practice, workloads might be constrained in other ways that mean
485 * vmap activity will not scale linearly with CPUs. Also, I want to be
486 * conservative and not introduce a big latency on huge systems, so go with
487 * a less aggressive log scale. It will still be an improvement over the old
488 * code, and it will be simple to change the scale factor if we find that it
489 * becomes a problem on bigger systems.
490 */
491static unsigned long lazy_max_pages(void)
492{
493	unsigned int log;
494
495	log = fls(num_online_cpus());
496
497	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
498}
499
500static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
501
502/*
503 * Purges all lazily-freed vmap areas.
504 *
505 * If sync is 0 then don't purge if there is already a purge in progress.
506 * If force_flush is 1, then flush kernel TLBs between *start and *end even
507 * if we found no lazy vmap areas to unmap (callers can use this to optimise
508 * their own TLB flushing).
509 * Returns with *start = min(*start, lowest purged address)
510 *              *end = max(*end, highest purged address)
511 */
512static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
513					int sync, int force_flush)
514{
515	static DEFINE_SPINLOCK(purge_lock);
516	LIST_HEAD(valist);
517	struct vmap_area *va;
518	struct vmap_area *n_va;
519	int nr = 0;
520
521	/*
522	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
523	 * should not expect such behaviour. This just simplifies locking for
524	 * the case that isn't actually used at the moment anyway.
525	 */
526	if (!sync && !force_flush) {
527		if (!spin_trylock(&purge_lock))
528			return;
529	} else
530		spin_lock(&purge_lock);
531
532	rcu_read_lock();
533	list_for_each_entry_rcu(va, &vmap_area_list, list) {
534		if (va->flags & VM_LAZY_FREE) {
535			if (va->va_start < *start)
536				*start = va->va_start;
537			if (va->va_end > *end)
538				*end = va->va_end;
539			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
540			unmap_vmap_area(va);
541			list_add_tail(&va->purge_list, &valist);
542			va->flags |= VM_LAZY_FREEING;
543			va->flags &= ~VM_LAZY_FREE;
544		}
545	}
546	rcu_read_unlock();
547
548	if (nr) {
549		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
550		atomic_sub(nr, &vmap_lazy_nr);
551	}
552
553	if (nr || force_flush)
554		flush_tlb_kernel_range(*start, *end);
555
556	if (nr) {
557		spin_lock(&vmap_area_lock);
558		list_for_each_entry_safe(va, n_va, &valist, purge_list)
559			__free_vmap_area(va);
560		spin_unlock(&vmap_area_lock);
561	}
562	spin_unlock(&purge_lock);
563}
564
565/*
566 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
567 * is already purging.
568 */
569static void try_purge_vmap_area_lazy(void)
570{
571	unsigned long start = ULONG_MAX, end = 0;
572
573	__purge_vmap_area_lazy(&start, &end, 0, 0);
574}
575
576/*
577 * Kick off a purge of the outstanding lazy areas.
578 */
579static void purge_vmap_area_lazy(void)
580{
581	unsigned long start = ULONG_MAX, end = 0;
582
583	__purge_vmap_area_lazy(&start, &end, 1, 0);
584}
585
586/*
587 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
588 * called for the correct range previously.
589 */
590static void free_unmap_vmap_area_noflush(struct vmap_area *va)
591{
592	va->flags |= VM_LAZY_FREE;
593	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
594	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
595		try_purge_vmap_area_lazy();
596}
597
598/*
599 * Free and unmap a vmap area
600 */
601static void free_unmap_vmap_area(struct vmap_area *va)
602{
603	flush_cache_vunmap(va->va_start, va->va_end);
604	free_unmap_vmap_area_noflush(va);
605}
606
607static struct vmap_area *find_vmap_area(unsigned long addr)
608{
609	struct vmap_area *va;
610
611	spin_lock(&vmap_area_lock);
612	va = __find_vmap_area(addr);
613	spin_unlock(&vmap_area_lock);
614
615	return va;
616}
617
618static void free_unmap_vmap_area_addr(unsigned long addr)
619{
620	struct vmap_area *va;
621
622	va = find_vmap_area(addr);
623	BUG_ON(!va);
624	free_unmap_vmap_area(va);
625}
626
627
628/*** Per cpu kva allocator ***/
629
630/*
631 * vmap space is limited especially on 32 bit architectures. Ensure there is
632 * room for at least 16 percpu vmap blocks per CPU.
633 */
634/*
635 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
636 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
637 * instead (we just need a rough idea)
638 */
639#if BITS_PER_LONG == 32
640#define VMALLOC_SPACE		(128UL*1024*1024)
641#else
642#define VMALLOC_SPACE		(128UL*1024*1024*1024)
643#endif
644
645#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
646#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
647#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
648#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
649#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
650#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
651#define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
652					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
653						VMALLOC_PAGES / NR_CPUS / 16))
654
655#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
656
657static bool vmap_initialized __read_mostly = false;
658
659struct vmap_block_queue {
660	spinlock_t lock;
661	struct list_head free;
662	struct list_head dirty;
663	unsigned int nr_dirty;
664};
665
666struct vmap_block {
667	spinlock_t lock;
668	struct vmap_area *va;
669	struct vmap_block_queue *vbq;
670	unsigned long free, dirty;
671	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
672	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
673	union {
674		struct list_head free_list;
675		struct rcu_head rcu_head;
676	};
677};
678
679/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
680static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
681
682/*
683 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
684 * in the free path. Could get rid of this if we change the API to return a
685 * "cookie" from alloc, to be passed to free. But no big deal yet.
686 */
687static DEFINE_SPINLOCK(vmap_block_tree_lock);
688static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
689
690/*
691 * We should probably have a fallback mechanism to allocate virtual memory
692 * out of partially filled vmap blocks. However vmap block sizing should be
693 * fairly reasonable according to the vmalloc size, so it shouldn't be a
694 * big problem.
695 */
696
697static unsigned long addr_to_vb_idx(unsigned long addr)
698{
699	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
700	addr /= VMAP_BLOCK_SIZE;
701	return addr;
702}
703
704static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
705{
706	struct vmap_block_queue *vbq;
707	struct vmap_block *vb;
708	struct vmap_area *va;
709	unsigned long vb_idx;
710	int node, err;
711
712	node = numa_node_id();
713
714	vb = kmalloc_node(sizeof(struct vmap_block),
715			gfp_mask & GFP_RECLAIM_MASK, node);
716	if (unlikely(!vb))
717		return ERR_PTR(-ENOMEM);
718
719	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
720					VMALLOC_START, VMALLOC_END,
721					node, gfp_mask);
722	if (unlikely(IS_ERR(va))) {
723		kfree(vb);
724		return ERR_PTR(PTR_ERR(va));
725	}
726
727	err = radix_tree_preload(gfp_mask);
728	if (unlikely(err)) {
729		kfree(vb);
730		free_vmap_area(va);
731		return ERR_PTR(err);
732	}
733
734	spin_lock_init(&vb->lock);
735	vb->va = va;
736	vb->free = VMAP_BBMAP_BITS;
737	vb->dirty = 0;
738	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
739	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
740	INIT_LIST_HEAD(&vb->free_list);
741
742	vb_idx = addr_to_vb_idx(va->va_start);
743	spin_lock(&vmap_block_tree_lock);
744	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
745	spin_unlock(&vmap_block_tree_lock);
746	BUG_ON(err);
747	radix_tree_preload_end();
748
749	vbq = &get_cpu_var(vmap_block_queue);
750	vb->vbq = vbq;
751	spin_lock(&vbq->lock);
752	list_add(&vb->free_list, &vbq->free);
753	spin_unlock(&vbq->lock);
754	put_cpu_var(vmap_cpu_blocks);
755
756	return vb;
757}
758
759static void rcu_free_vb(struct rcu_head *head)
760{
761	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
762
763	kfree(vb);
764}
765
766static void free_vmap_block(struct vmap_block *vb)
767{
768	struct vmap_block *tmp;
769	unsigned long vb_idx;
770
771	BUG_ON(!list_empty(&vb->free_list));
772
773	vb_idx = addr_to_vb_idx(vb->va->va_start);
774	spin_lock(&vmap_block_tree_lock);
775	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
776	spin_unlock(&vmap_block_tree_lock);
777	BUG_ON(tmp != vb);
778
779	free_unmap_vmap_area_noflush(vb->va);
780	call_rcu(&vb->rcu_head, rcu_free_vb);
781}
782
783static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
784{
785	struct vmap_block_queue *vbq;
786	struct vmap_block *vb;
787	unsigned long addr = 0;
788	unsigned int order;
789
790	BUG_ON(size & ~PAGE_MASK);
791	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
792	order = get_order(size);
793
794again:
795	rcu_read_lock();
796	vbq = &get_cpu_var(vmap_block_queue);
797	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
798		int i;
799
800		spin_lock(&vb->lock);
801		i = bitmap_find_free_region(vb->alloc_map,
802						VMAP_BBMAP_BITS, order);
803
804		if (i >= 0) {
805			addr = vb->va->va_start + (i << PAGE_SHIFT);
806			BUG_ON(addr_to_vb_idx(addr) !=
807					addr_to_vb_idx(vb->va->va_start));
808			vb->free -= 1UL << order;
809			if (vb->free == 0) {
810				spin_lock(&vbq->lock);
811				list_del_init(&vb->free_list);
812				spin_unlock(&vbq->lock);
813			}
814			spin_unlock(&vb->lock);
815			break;
816		}
817		spin_unlock(&vb->lock);
818	}
819	put_cpu_var(vmap_cpu_blocks);
820	rcu_read_unlock();
821
822	if (!addr) {
823		vb = new_vmap_block(gfp_mask);
824		if (IS_ERR(vb))
825			return vb;
826		goto again;
827	}
828
829	return (void *)addr;
830}
831
832static void vb_free(const void *addr, unsigned long size)
833{
834	unsigned long offset;
835	unsigned long vb_idx;
836	unsigned int order;
837	struct vmap_block *vb;
838
839	BUG_ON(size & ~PAGE_MASK);
840	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
841
842	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
843
844	order = get_order(size);
845
846	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
847
848	vb_idx = addr_to_vb_idx((unsigned long)addr);
849	rcu_read_lock();
850	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
851	rcu_read_unlock();
852	BUG_ON(!vb);
853
854	spin_lock(&vb->lock);
855	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
856
857	vb->dirty += 1UL << order;
858	if (vb->dirty == VMAP_BBMAP_BITS) {
859		BUG_ON(vb->free || !list_empty(&vb->free_list));
860		spin_unlock(&vb->lock);
861		free_vmap_block(vb);
862	} else
863		spin_unlock(&vb->lock);
864}
865
866/**
867 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
868 *
869 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
870 * to amortize TLB flushing overheads. What this means is that any page you
871 * have now, may, in a former life, have been mapped into kernel virtual
872 * address by the vmap layer and so there might be some CPUs with TLB entries
873 * still referencing that page (additional to the regular 1:1 kernel mapping).
874 *
875 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
876 * be sure that none of the pages we have control over will have any aliases
877 * from the vmap layer.
878 */
879void vm_unmap_aliases(void)
880{
881	unsigned long start = ULONG_MAX, end = 0;
882	int cpu;
883	int flush = 0;
884
885	if (unlikely(!vmap_initialized))
886		return;
887
888	for_each_possible_cpu(cpu) {
889		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
890		struct vmap_block *vb;
891
892		rcu_read_lock();
893		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
894			int i;
895
896			spin_lock(&vb->lock);
897			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
898			while (i < VMAP_BBMAP_BITS) {
899				unsigned long s, e;
900				int j;
901				j = find_next_zero_bit(vb->dirty_map,
902					VMAP_BBMAP_BITS, i);
903
904				s = vb->va->va_start + (i << PAGE_SHIFT);
905				e = vb->va->va_start + (j << PAGE_SHIFT);
906				vunmap_page_range(s, e);
907				flush = 1;
908
909				if (s < start)
910					start = s;
911				if (e > end)
912					end = e;
913
914				i = j;
915				i = find_next_bit(vb->dirty_map,
916							VMAP_BBMAP_BITS, i);
917			}
918			spin_unlock(&vb->lock);
919		}
920		rcu_read_unlock();
921	}
922
923	__purge_vmap_area_lazy(&start, &end, 1, flush);
924}
925EXPORT_SYMBOL_GPL(vm_unmap_aliases);
926
927/**
928 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
929 * @mem: the pointer returned by vm_map_ram
930 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
931 */
932void vm_unmap_ram(const void *mem, unsigned int count)
933{
934	unsigned long size = count << PAGE_SHIFT;
935	unsigned long addr = (unsigned long)mem;
936
937	BUG_ON(!addr);
938	BUG_ON(addr < VMALLOC_START);
939	BUG_ON(addr > VMALLOC_END);
940	BUG_ON(addr & (PAGE_SIZE-1));
941
942	debug_check_no_locks_freed(mem, size);
943	vmap_debug_free_range(addr, addr+size);
944
945	if (likely(count <= VMAP_MAX_ALLOC))
946		vb_free(mem, size);
947	else
948		free_unmap_vmap_area_addr(addr);
949}
950EXPORT_SYMBOL(vm_unmap_ram);
951
952/**
953 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
954 * @pages: an array of pointers to the pages to be mapped
955 * @count: number of pages
956 * @node: prefer to allocate data structures on this node
957 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
958 *
959 * Returns: a pointer to the address that has been mapped, or %NULL on failure
960 */
961void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
962{
963	unsigned long size = count << PAGE_SHIFT;
964	unsigned long addr;
965	void *mem;
966
967	if (likely(count <= VMAP_MAX_ALLOC)) {
968		mem = vb_alloc(size, GFP_KERNEL);
969		if (IS_ERR(mem))
970			return NULL;
971		addr = (unsigned long)mem;
972	} else {
973		struct vmap_area *va;
974		va = alloc_vmap_area(size, PAGE_SIZE,
975				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
976		if (IS_ERR(va))
977			return NULL;
978
979		addr = va->va_start;
980		mem = (void *)addr;
981	}
982	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
983		vm_unmap_ram(mem, count);
984		return NULL;
985	}
986	return mem;
987}
988EXPORT_SYMBOL(vm_map_ram);
989
990/**
991 * vm_area_register_early - register vmap area early during boot
992 * @vm: vm_struct to register
993 * @align: requested alignment
994 *
995 * This function is used to register kernel vm area before
996 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
997 * proper values on entry and other fields should be zero.  On return,
998 * vm->addr contains the allocated address.
999 *
1000 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1001 */
1002void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1003{
1004	static size_t vm_init_off __initdata;
1005	unsigned long addr;
1006
1007	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1008	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1009
1010	vm->addr = (void *)addr;
1011
1012	vm->next = vmlist;
1013	vmlist = vm;
1014}
1015
1016void __init vmalloc_init(void)
1017{
1018	struct vmap_area *va;
1019	struct vm_struct *tmp;
1020	int i;
1021
1022	for_each_possible_cpu(i) {
1023		struct vmap_block_queue *vbq;
1024
1025		vbq = &per_cpu(vmap_block_queue, i);
1026		spin_lock_init(&vbq->lock);
1027		INIT_LIST_HEAD(&vbq->free);
1028		INIT_LIST_HEAD(&vbq->dirty);
1029		vbq->nr_dirty = 0;
1030	}
1031
1032	/* Import existing vmlist entries. */
1033	for (tmp = vmlist; tmp; tmp = tmp->next) {
1034		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1035		va->flags = tmp->flags | VM_VM_AREA;
1036		va->va_start = (unsigned long)tmp->addr;
1037		va->va_end = va->va_start + tmp->size;
1038		__insert_vmap_area(va);
1039	}
1040	vmap_initialized = true;
1041}
1042
1043/**
1044 * map_kernel_range_noflush - map kernel VM area with the specified pages
1045 * @addr: start of the VM area to map
1046 * @size: size of the VM area to map
1047 * @prot: page protection flags to use
1048 * @pages: pages to map
1049 *
1050 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1051 * specify should have been allocated using get_vm_area() and its
1052 * friends.
1053 *
1054 * NOTE:
1055 * This function does NOT do any cache flushing.  The caller is
1056 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1057 * before calling this function.
1058 *
1059 * RETURNS:
1060 * The number of pages mapped on success, -errno on failure.
1061 */
1062int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1063			     pgprot_t prot, struct page **pages)
1064{
1065	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1066}
1067
1068/**
1069 * unmap_kernel_range_noflush - unmap kernel VM area
1070 * @addr: start of the VM area to unmap
1071 * @size: size of the VM area to unmap
1072 *
1073 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1074 * specify should have been allocated using get_vm_area() and its
1075 * friends.
1076 *
1077 * NOTE:
1078 * This function does NOT do any cache flushing.  The caller is
1079 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1080 * before calling this function and flush_tlb_kernel_range() after.
1081 */
1082void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1083{
1084	vunmap_page_range(addr, addr + size);
1085}
1086
1087/**
1088 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1089 * @addr: start of the VM area to unmap
1090 * @size: size of the VM area to unmap
1091 *
1092 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1093 * the unmapping and tlb after.
1094 */
1095void unmap_kernel_range(unsigned long addr, unsigned long size)
1096{
1097	unsigned long end = addr + size;
1098
1099	flush_cache_vunmap(addr, end);
1100	vunmap_page_range(addr, end);
1101	flush_tlb_kernel_range(addr, end);
1102}
1103
1104int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1105{
1106	unsigned long addr = (unsigned long)area->addr;
1107	unsigned long end = addr + area->size - PAGE_SIZE;
1108	int err;
1109
1110	err = vmap_page_range(addr, end, prot, *pages);
1111	if (err > 0) {
1112		*pages += err;
1113		err = 0;
1114	}
1115
1116	return err;
1117}
1118EXPORT_SYMBOL_GPL(map_vm_area);
1119
1120/*** Old vmalloc interfaces ***/
1121DEFINE_RWLOCK(vmlist_lock);
1122struct vm_struct *vmlist;
1123
1124static struct vm_struct *__get_vm_area_node(unsigned long size,
1125		unsigned long flags, unsigned long start, unsigned long end,
1126		int node, gfp_t gfp_mask, void *caller)
1127{
1128	static struct vmap_area *va;
1129	struct vm_struct *area;
1130	struct vm_struct *tmp, **p;
1131	unsigned long align = 1;
1132
1133	BUG_ON(in_interrupt());
1134	if (flags & VM_IOREMAP) {
1135		int bit = fls(size);
1136
1137		if (bit > IOREMAP_MAX_ORDER)
1138			bit = IOREMAP_MAX_ORDER;
1139		else if (bit < PAGE_SHIFT)
1140			bit = PAGE_SHIFT;
1141
1142		align = 1ul << bit;
1143	}
1144
1145	size = PAGE_ALIGN(size);
1146	if (unlikely(!size))
1147		return NULL;
1148
1149	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1150	if (unlikely(!area))
1151		return NULL;
1152
1153	/*
1154	 * We always allocate a guard page.
1155	 */
1156	size += PAGE_SIZE;
1157
1158	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1159	if (IS_ERR(va)) {
1160		kfree(area);
1161		return NULL;
1162	}
1163
1164	area->flags = flags;
1165	area->addr = (void *)va->va_start;
1166	area->size = size;
1167	area->pages = NULL;
1168	area->nr_pages = 0;
1169	area->phys_addr = 0;
1170	area->caller = caller;
1171	va->private = area;
1172	va->flags |= VM_VM_AREA;
1173
1174	write_lock(&vmlist_lock);
1175	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1176		if (tmp->addr >= area->addr)
1177			break;
1178	}
1179	area->next = *p;
1180	*p = area;
1181	write_unlock(&vmlist_lock);
1182
1183	return area;
1184}
1185
1186struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1187				unsigned long start, unsigned long end)
1188{
1189	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1190						__builtin_return_address(0));
1191}
1192EXPORT_SYMBOL_GPL(__get_vm_area);
1193
1194struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1195				       unsigned long start, unsigned long end,
1196				       void *caller)
1197{
1198	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1199				  caller);
1200}
1201
1202/**
1203 *	get_vm_area  -  reserve a contiguous kernel virtual area
1204 *	@size:		size of the area
1205 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1206 *
1207 *	Search an area of @size in the kernel virtual mapping area,
1208 *	and reserved it for out purposes.  Returns the area descriptor
1209 *	on success or %NULL on failure.
1210 */
1211struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1212{
1213	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1214				-1, GFP_KERNEL, __builtin_return_address(0));
1215}
1216
1217struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1218				void *caller)
1219{
1220	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1221						-1, GFP_KERNEL, caller);
1222}
1223
1224struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1225				   int node, gfp_t gfp_mask)
1226{
1227	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1228				  gfp_mask, __builtin_return_address(0));
1229}
1230
1231static struct vm_struct *find_vm_area(const void *addr)
1232{
1233	struct vmap_area *va;
1234
1235	va = find_vmap_area((unsigned long)addr);
1236	if (va && va->flags & VM_VM_AREA)
1237		return va->private;
1238
1239	return NULL;
1240}
1241
1242/**
1243 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1244 *	@addr:		base address
1245 *
1246 *	Search for the kernel VM area starting at @addr, and remove it.
1247 *	This function returns the found VM area, but using it is NOT safe
1248 *	on SMP machines, except for its size or flags.
1249 */
1250struct vm_struct *remove_vm_area(const void *addr)
1251{
1252	struct vmap_area *va;
1253
1254	va = find_vmap_area((unsigned long)addr);
1255	if (va && va->flags & VM_VM_AREA) {
1256		struct vm_struct *vm = va->private;
1257		struct vm_struct *tmp, **p;
1258
1259		vmap_debug_free_range(va->va_start, va->va_end);
1260		free_unmap_vmap_area(va);
1261		vm->size -= PAGE_SIZE;
1262
1263		write_lock(&vmlist_lock);
1264		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1265			;
1266		*p = tmp->next;
1267		write_unlock(&vmlist_lock);
1268
1269		return vm;
1270	}
1271	return NULL;
1272}
1273
1274static void __vunmap(const void *addr, int deallocate_pages)
1275{
1276	struct vm_struct *area;
1277
1278	if (!addr)
1279		return;
1280
1281	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1282		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1283		return;
1284	}
1285
1286	area = remove_vm_area(addr);
1287	if (unlikely(!area)) {
1288		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1289				addr);
1290		return;
1291	}
1292
1293	debug_check_no_locks_freed(addr, area->size);
1294	debug_check_no_obj_freed(addr, area->size);
1295
1296	if (deallocate_pages) {
1297		int i;
1298
1299		for (i = 0; i < area->nr_pages; i++) {
1300			struct page *page = area->pages[i];
1301
1302			BUG_ON(!page);
1303			__free_page(page);
1304		}
1305
1306		if (area->flags & VM_VPAGES)
1307			vfree(area->pages);
1308		else
1309			kfree(area->pages);
1310	}
1311
1312	kfree(area);
1313	return;
1314}
1315
1316/**
1317 *	vfree  -  release memory allocated by vmalloc()
1318 *	@addr:		memory base address
1319 *
1320 *	Free the virtually continuous memory area starting at @addr, as
1321 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1322 *	NULL, no operation is performed.
1323 *
1324 *	Must not be called in interrupt context.
1325 */
1326void vfree(const void *addr)
1327{
1328	BUG_ON(in_interrupt());
1329	__vunmap(addr, 1);
1330}
1331EXPORT_SYMBOL(vfree);
1332
1333/**
1334 *	vunmap  -  release virtual mapping obtained by vmap()
1335 *	@addr:		memory base address
1336 *
1337 *	Free the virtually contiguous memory area starting at @addr,
1338 *	which was created from the page array passed to vmap().
1339 *
1340 *	Must not be called in interrupt context.
1341 */
1342void vunmap(const void *addr)
1343{
1344	BUG_ON(in_interrupt());
1345	might_sleep();
1346	__vunmap(addr, 0);
1347}
1348EXPORT_SYMBOL(vunmap);
1349
1350/**
1351 *	vmap  -  map an array of pages into virtually contiguous space
1352 *	@pages:		array of page pointers
1353 *	@count:		number of pages to map
1354 *	@flags:		vm_area->flags
1355 *	@prot:		page protection for the mapping
1356 *
1357 *	Maps @count pages from @pages into contiguous kernel virtual
1358 *	space.
1359 */
1360void *vmap(struct page **pages, unsigned int count,
1361		unsigned long flags, pgprot_t prot)
1362{
1363	struct vm_struct *area;
1364
1365	might_sleep();
1366
1367	if (count > num_physpages)
1368		return NULL;
1369
1370	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1371					__builtin_return_address(0));
1372	if (!area)
1373		return NULL;
1374
1375	if (map_vm_area(area, prot, &pages)) {
1376		vunmap(area->addr);
1377		return NULL;
1378	}
1379
1380	return area->addr;
1381}
1382EXPORT_SYMBOL(vmap);
1383
1384static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1385			    int node, void *caller);
1386static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1387				 pgprot_t prot, int node, void *caller)
1388{
1389	struct page **pages;
1390	unsigned int nr_pages, array_size, i;
1391
1392	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1393	array_size = (nr_pages * sizeof(struct page *));
1394
1395	area->nr_pages = nr_pages;
1396	/* Please note that the recursion is strictly bounded. */
1397	if (array_size > PAGE_SIZE) {
1398		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1399				PAGE_KERNEL, node, caller);
1400		area->flags |= VM_VPAGES;
1401	} else {
1402		pages = kmalloc_node(array_size,
1403				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1404				node);
1405	}
1406	area->pages = pages;
1407	area->caller = caller;
1408	if (!area->pages) {
1409		remove_vm_area(area->addr);
1410		kfree(area);
1411		return NULL;
1412	}
1413
1414	for (i = 0; i < area->nr_pages; i++) {
1415		struct page *page;
1416
1417		if (node < 0)
1418			page = alloc_page(gfp_mask);
1419		else
1420			page = alloc_pages_node(node, gfp_mask, 0);
1421
1422		if (unlikely(!page)) {
1423			/* Successfully allocated i pages, free them in __vunmap() */
1424			area->nr_pages = i;
1425			goto fail;
1426		}
1427		area->pages[i] = page;
1428	}
1429
1430	if (map_vm_area(area, prot, &pages))
1431		goto fail;
1432	return area->addr;
1433
1434fail:
1435	vfree(area->addr);
1436	return NULL;
1437}
1438
1439void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1440{
1441	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1442					__builtin_return_address(0));
1443}
1444
1445/**
1446 *	__vmalloc_node  -  allocate virtually contiguous memory
1447 *	@size:		allocation size
1448 *	@gfp_mask:	flags for the page level allocator
1449 *	@prot:		protection mask for the allocated pages
1450 *	@node:		node to use for allocation or -1
1451 *	@caller:	caller's return address
1452 *
1453 *	Allocate enough pages to cover @size from the page level
1454 *	allocator with @gfp_mask flags.  Map them into contiguous
1455 *	kernel virtual space, using a pagetable protection of @prot.
1456 */
1457static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1458						int node, void *caller)
1459{
1460	struct vm_struct *area;
1461
1462	size = PAGE_ALIGN(size);
1463	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1464		return NULL;
1465
1466	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1467						node, gfp_mask, caller);
1468
1469	if (!area)
1470		return NULL;
1471
1472	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1473}
1474
1475void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1476{
1477	return __vmalloc_node(size, gfp_mask, prot, -1,
1478				__builtin_return_address(0));
1479}
1480EXPORT_SYMBOL(__vmalloc);
1481
1482/**
1483 *	vmalloc  -  allocate virtually contiguous memory
1484 *	@size:		allocation size
1485 *	Allocate enough pages to cover @size from the page level
1486 *	allocator and map them into contiguous kernel virtual space.
1487 *
1488 *	For tight control over page level allocator and protection flags
1489 *	use __vmalloc() instead.
1490 */
1491void *vmalloc(unsigned long size)
1492{
1493	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1494					-1, __builtin_return_address(0));
1495}
1496EXPORT_SYMBOL(vmalloc);
1497
1498/**
1499 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1500 * @size: allocation size
1501 *
1502 * The resulting memory area is zeroed so it can be mapped to userspace
1503 * without leaking data.
1504 */
1505void *vmalloc_user(unsigned long size)
1506{
1507	struct vm_struct *area;
1508	void *ret;
1509
1510	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1511			     PAGE_KERNEL, -1, __builtin_return_address(0));
1512	if (ret) {
1513		area = find_vm_area(ret);
1514		area->flags |= VM_USERMAP;
1515	}
1516	return ret;
1517}
1518EXPORT_SYMBOL(vmalloc_user);
1519
1520/**
1521 *	vmalloc_node  -  allocate memory on a specific node
1522 *	@size:		allocation size
1523 *	@node:		numa node
1524 *
1525 *	Allocate enough pages to cover @size from the page level
1526 *	allocator and map them into contiguous kernel virtual space.
1527 *
1528 *	For tight control over page level allocator and protection flags
1529 *	use __vmalloc() instead.
1530 */
1531void *vmalloc_node(unsigned long size, int node)
1532{
1533	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1534					node, __builtin_return_address(0));
1535}
1536EXPORT_SYMBOL(vmalloc_node);
1537
1538#ifndef PAGE_KERNEL_EXEC
1539# define PAGE_KERNEL_EXEC PAGE_KERNEL
1540#endif
1541
1542/**
1543 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1544 *	@size:		allocation size
1545 *
1546 *	Kernel-internal function to allocate enough pages to cover @size
1547 *	the page level allocator and map them into contiguous and
1548 *	executable kernel virtual space.
1549 *
1550 *	For tight control over page level allocator and protection flags
1551 *	use __vmalloc() instead.
1552 */
1553
1554void *vmalloc_exec(unsigned long size)
1555{
1556	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1557			      -1, __builtin_return_address(0));
1558}
1559
1560#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1561#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1562#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1563#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1564#else
1565#define GFP_VMALLOC32 GFP_KERNEL
1566#endif
1567
1568/**
1569 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1570 *	@size:		allocation size
1571 *
1572 *	Allocate enough 32bit PA addressable pages to cover @size from the
1573 *	page level allocator and map them into contiguous kernel virtual space.
1574 */
1575void *vmalloc_32(unsigned long size)
1576{
1577	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1578			      -1, __builtin_return_address(0));
1579}
1580EXPORT_SYMBOL(vmalloc_32);
1581
1582/**
1583 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1584 *	@size:		allocation size
1585 *
1586 * The resulting memory area is 32bit addressable and zeroed so it can be
1587 * mapped to userspace without leaking data.
1588 */
1589void *vmalloc_32_user(unsigned long size)
1590{
1591	struct vm_struct *area;
1592	void *ret;
1593
1594	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1595			     -1, __builtin_return_address(0));
1596	if (ret) {
1597		area = find_vm_area(ret);
1598		area->flags |= VM_USERMAP;
1599	}
1600	return ret;
1601}
1602EXPORT_SYMBOL(vmalloc_32_user);
1603
1604long vread(char *buf, char *addr, unsigned long count)
1605{
1606	struct vm_struct *tmp;
1607	char *vaddr, *buf_start = buf;
1608	unsigned long n;
1609
1610	/* Don't allow overflow */
1611	if ((unsigned long) addr + count < count)
1612		count = -(unsigned long) addr;
1613
1614	read_lock(&vmlist_lock);
1615	for (tmp = vmlist; tmp; tmp = tmp->next) {
1616		vaddr = (char *) tmp->addr;
1617		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1618			continue;
1619		while (addr < vaddr) {
1620			if (count == 0)
1621				goto finished;
1622			*buf = '\0';
1623			buf++;
1624			addr++;
1625			count--;
1626		}
1627		n = vaddr + tmp->size - PAGE_SIZE - addr;
1628		do {
1629			if (count == 0)
1630				goto finished;
1631			*buf = *addr;
1632			buf++;
1633			addr++;
1634			count--;
1635		} while (--n > 0);
1636	}
1637finished:
1638	read_unlock(&vmlist_lock);
1639	return buf - buf_start;
1640}
1641
1642long vwrite(char *buf, char *addr, unsigned long count)
1643{
1644	struct vm_struct *tmp;
1645	char *vaddr, *buf_start = buf;
1646	unsigned long n;
1647
1648	/* Don't allow overflow */
1649	if ((unsigned long) addr + count < count)
1650		count = -(unsigned long) addr;
1651
1652	read_lock(&vmlist_lock);
1653	for (tmp = vmlist; tmp; tmp = tmp->next) {
1654		vaddr = (char *) tmp->addr;
1655		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1656			continue;
1657		while (addr < vaddr) {
1658			if (count == 0)
1659				goto finished;
1660			buf++;
1661			addr++;
1662			count--;
1663		}
1664		n = vaddr + tmp->size - PAGE_SIZE - addr;
1665		do {
1666			if (count == 0)
1667				goto finished;
1668			*addr = *buf;
1669			buf++;
1670			addr++;
1671			count--;
1672		} while (--n > 0);
1673	}
1674finished:
1675	read_unlock(&vmlist_lock);
1676	return buf - buf_start;
1677}
1678
1679/**
1680 *	remap_vmalloc_range  -  map vmalloc pages to userspace
1681 *	@vma:		vma to cover (map full range of vma)
1682 *	@addr:		vmalloc memory
1683 *	@pgoff:		number of pages into addr before first page to map
1684 *
1685 *	Returns:	0 for success, -Exxx on failure
1686 *
1687 *	This function checks that addr is a valid vmalloc'ed area, and
1688 *	that it is big enough to cover the vma. Will return failure if
1689 *	that criteria isn't met.
1690 *
1691 *	Similar to remap_pfn_range() (see mm/memory.c)
1692 */
1693int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1694						unsigned long pgoff)
1695{
1696	struct vm_struct *area;
1697	unsigned long uaddr = vma->vm_start;
1698	unsigned long usize = vma->vm_end - vma->vm_start;
1699
1700	if ((PAGE_SIZE-1) & (unsigned long)addr)
1701		return -EINVAL;
1702
1703	area = find_vm_area(addr);
1704	if (!area)
1705		return -EINVAL;
1706
1707	if (!(area->flags & VM_USERMAP))
1708		return -EINVAL;
1709
1710	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1711		return -EINVAL;
1712
1713	addr += pgoff << PAGE_SHIFT;
1714	do {
1715		struct page *page = vmalloc_to_page(addr);
1716		int ret;
1717
1718		ret = vm_insert_page(vma, uaddr, page);
1719		if (ret)
1720			return ret;
1721
1722		uaddr += PAGE_SIZE;
1723		addr += PAGE_SIZE;
1724		usize -= PAGE_SIZE;
1725	} while (usize > 0);
1726
1727	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1728	vma->vm_flags |= VM_RESERVED;
1729
1730	return 0;
1731}
1732EXPORT_SYMBOL(remap_vmalloc_range);
1733
1734/*
1735 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1736 * have one.
1737 */
1738void  __attribute__((weak)) vmalloc_sync_all(void)
1739{
1740}
1741
1742
1743static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1744{
1745	/* apply_to_page_range() does all the hard work. */
1746	return 0;
1747}
1748
1749/**
1750 *	alloc_vm_area - allocate a range of kernel address space
1751 *	@size:		size of the area
1752 *
1753 *	Returns:	NULL on failure, vm_struct on success
1754 *
1755 *	This function reserves a range of kernel address space, and
1756 *	allocates pagetables to map that range.  No actual mappings
1757 *	are created.  If the kernel address space is not shared
1758 *	between processes, it syncs the pagetable across all
1759 *	processes.
1760 */
1761struct vm_struct *alloc_vm_area(size_t size)
1762{
1763	struct vm_struct *area;
1764
1765	area = get_vm_area_caller(size, VM_IOREMAP,
1766				__builtin_return_address(0));
1767	if (area == NULL)
1768		return NULL;
1769
1770	/*
1771	 * This ensures that page tables are constructed for this region
1772	 * of kernel virtual address space and mapped into init_mm.
1773	 */
1774	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1775				area->size, f, NULL)) {
1776		free_vm_area(area);
1777		return NULL;
1778	}
1779
1780	/* Make sure the pagetables are constructed in process kernel
1781	   mappings */
1782	vmalloc_sync_all();
1783
1784	return area;
1785}
1786EXPORT_SYMBOL_GPL(alloc_vm_area);
1787
1788void free_vm_area(struct vm_struct *area)
1789{
1790	struct vm_struct *ret;
1791	ret = remove_vm_area(area->addr);
1792	BUG_ON(ret != area);
1793	kfree(area);
1794}
1795EXPORT_SYMBOL_GPL(free_vm_area);
1796
1797
1798#ifdef CONFIG_PROC_FS
1799static void *s_start(struct seq_file *m, loff_t *pos)
1800{
1801	loff_t n = *pos;
1802	struct vm_struct *v;
1803
1804	read_lock(&vmlist_lock);
1805	v = vmlist;
1806	while (n > 0 && v) {
1807		n--;
1808		v = v->next;
1809	}
1810	if (!n)
1811		return v;
1812
1813	return NULL;
1814
1815}
1816
1817static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1818{
1819	struct vm_struct *v = p;
1820
1821	++*pos;
1822	return v->next;
1823}
1824
1825static void s_stop(struct seq_file *m, void *p)
1826{
1827	read_unlock(&vmlist_lock);
1828}
1829
1830static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1831{
1832	if (NUMA_BUILD) {
1833		unsigned int nr, *counters = m->private;
1834
1835		if (!counters)
1836			return;
1837
1838		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1839
1840		for (nr = 0; nr < v->nr_pages; nr++)
1841			counters[page_to_nid(v->pages[nr])]++;
1842
1843		for_each_node_state(nr, N_HIGH_MEMORY)
1844			if (counters[nr])
1845				seq_printf(m, " N%u=%u", nr, counters[nr]);
1846	}
1847}
1848
1849static int s_show(struct seq_file *m, void *p)
1850{
1851	struct vm_struct *v = p;
1852
1853	seq_printf(m, "0x%p-0x%p %7ld",
1854		v->addr, v->addr + v->size, v->size);
1855
1856	if (v->caller) {
1857		char buff[KSYM_SYMBOL_LEN];
1858
1859		seq_putc(m, ' ');
1860		sprint_symbol(buff, (unsigned long)v->caller);
1861		seq_puts(m, buff);
1862	}
1863
1864	if (v->nr_pages)
1865		seq_printf(m, " pages=%d", v->nr_pages);
1866
1867	if (v->phys_addr)
1868		seq_printf(m, " phys=%lx", v->phys_addr);
1869
1870	if (v->flags & VM_IOREMAP)
1871		seq_printf(m, " ioremap");
1872
1873	if (v->flags & VM_ALLOC)
1874		seq_printf(m, " vmalloc");
1875
1876	if (v->flags & VM_MAP)
1877		seq_printf(m, " vmap");
1878
1879	if (v->flags & VM_USERMAP)
1880		seq_printf(m, " user");
1881
1882	if (v->flags & VM_VPAGES)
1883		seq_printf(m, " vpages");
1884
1885	show_numa_info(m, v);
1886	seq_putc(m, '\n');
1887	return 0;
1888}
1889
1890static const struct seq_operations vmalloc_op = {
1891	.start = s_start,
1892	.next = s_next,
1893	.stop = s_stop,
1894	.show = s_show,
1895};
1896
1897static int vmalloc_open(struct inode *inode, struct file *file)
1898{
1899	unsigned int *ptr = NULL;
1900	int ret;
1901
1902	if (NUMA_BUILD)
1903		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1904	ret = seq_open(file, &vmalloc_op);
1905	if (!ret) {
1906		struct seq_file *m = file->private_data;
1907		m->private = ptr;
1908	} else
1909		kfree(ptr);
1910	return ret;
1911}
1912
1913static const struct file_operations proc_vmalloc_operations = {
1914	.open		= vmalloc_open,
1915	.read		= seq_read,
1916	.llseek		= seq_lseek,
1917	.release	= seq_release_private,
1918};
1919
1920static int __init proc_vmalloc_init(void)
1921{
1922	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1923	return 0;
1924}
1925module_init(proc_vmalloc_init);
1926#endif
1927
1928