vmalloc.c revision 5f4352fbffd6c45123dbce9e195efd54df4e177e
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/highmem.h>
14#include <linux/slab.h>
15#include <linux/spinlock.h>
16#include <linux/interrupt.h>
17
18#include <linux/vmalloc.h>
19
20#include <asm/uaccess.h>
21#include <asm/tlbflush.h>
22
23
24DEFINE_RWLOCK(vmlist_lock);
25struct vm_struct *vmlist;
26
27static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28			    int node);
29
30static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
31{
32	pte_t *pte;
33
34	pte = pte_offset_kernel(pmd, addr);
35	do {
36		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38	} while (pte++, addr += PAGE_SIZE, addr != end);
39}
40
41static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42						unsigned long end)
43{
44	pmd_t *pmd;
45	unsigned long next;
46
47	pmd = pmd_offset(pud, addr);
48	do {
49		next = pmd_addr_end(addr, end);
50		if (pmd_none_or_clear_bad(pmd))
51			continue;
52		vunmap_pte_range(pmd, addr, next);
53	} while (pmd++, addr = next, addr != end);
54}
55
56static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57						unsigned long end)
58{
59	pud_t *pud;
60	unsigned long next;
61
62	pud = pud_offset(pgd, addr);
63	do {
64		next = pud_addr_end(addr, end);
65		if (pud_none_or_clear_bad(pud))
66			continue;
67		vunmap_pmd_range(pud, addr, next);
68	} while (pud++, addr = next, addr != end);
69}
70
71void unmap_kernel_range(unsigned long addr, unsigned long size)
72{
73	pgd_t *pgd;
74	unsigned long next;
75	unsigned long start = addr;
76	unsigned long end = addr + size;
77
78	BUG_ON(addr >= end);
79	pgd = pgd_offset_k(addr);
80	flush_cache_vunmap(addr, end);
81	do {
82		next = pgd_addr_end(addr, end);
83		if (pgd_none_or_clear_bad(pgd))
84			continue;
85		vunmap_pud_range(pgd, addr, next);
86	} while (pgd++, addr = next, addr != end);
87	flush_tlb_kernel_range(start, end);
88}
89
90static void unmap_vm_area(struct vm_struct *area)
91{
92	unmap_kernel_range((unsigned long)area->addr, area->size);
93}
94
95static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
96			unsigned long end, pgprot_t prot, struct page ***pages)
97{
98	pte_t *pte;
99
100	pte = pte_alloc_kernel(pmd, addr);
101	if (!pte)
102		return -ENOMEM;
103	do {
104		struct page *page = **pages;
105		WARN_ON(!pte_none(*pte));
106		if (!page)
107			return -ENOMEM;
108		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109		(*pages)++;
110	} while (pte++, addr += PAGE_SIZE, addr != end);
111	return 0;
112}
113
114static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
115			unsigned long end, pgprot_t prot, struct page ***pages)
116{
117	pmd_t *pmd;
118	unsigned long next;
119
120	pmd = pmd_alloc(&init_mm, pud, addr);
121	if (!pmd)
122		return -ENOMEM;
123	do {
124		next = pmd_addr_end(addr, end);
125		if (vmap_pte_range(pmd, addr, next, prot, pages))
126			return -ENOMEM;
127	} while (pmd++, addr = next, addr != end);
128	return 0;
129}
130
131static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132			unsigned long end, pgprot_t prot, struct page ***pages)
133{
134	pud_t *pud;
135	unsigned long next;
136
137	pud = pud_alloc(&init_mm, pgd, addr);
138	if (!pud)
139		return -ENOMEM;
140	do {
141		next = pud_addr_end(addr, end);
142		if (vmap_pmd_range(pud, addr, next, prot, pages))
143			return -ENOMEM;
144	} while (pud++, addr = next, addr != end);
145	return 0;
146}
147
148int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
149{
150	pgd_t *pgd;
151	unsigned long next;
152	unsigned long addr = (unsigned long) area->addr;
153	unsigned long end = addr + area->size - PAGE_SIZE;
154	int err;
155
156	BUG_ON(addr >= end);
157	pgd = pgd_offset_k(addr);
158	do {
159		next = pgd_addr_end(addr, end);
160		err = vmap_pud_range(pgd, addr, next, prot, pages);
161		if (err)
162			break;
163	} while (pgd++, addr = next, addr != end);
164	flush_cache_vmap((unsigned long) area->addr, end);
165	return err;
166}
167
168static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
169					    unsigned long start, unsigned long end,
170					    int node, gfp_t gfp_mask)
171{
172	struct vm_struct **p, *tmp, *area;
173	unsigned long align = 1;
174	unsigned long addr;
175
176	BUG_ON(in_interrupt());
177	if (flags & VM_IOREMAP) {
178		int bit = fls(size);
179
180		if (bit > IOREMAP_MAX_ORDER)
181			bit = IOREMAP_MAX_ORDER;
182		else if (bit < PAGE_SHIFT)
183			bit = PAGE_SHIFT;
184
185		align = 1ul << bit;
186	}
187	addr = ALIGN(start, align);
188	size = PAGE_ALIGN(size);
189	if (unlikely(!size))
190		return NULL;
191
192	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_LEVEL_MASK, node);
193	if (unlikely(!area))
194		return NULL;
195
196	/*
197	 * We always allocate a guard page.
198	 */
199	size += PAGE_SIZE;
200
201	write_lock(&vmlist_lock);
202	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
203		if ((unsigned long)tmp->addr < addr) {
204			if((unsigned long)tmp->addr + tmp->size >= addr)
205				addr = ALIGN(tmp->size +
206					     (unsigned long)tmp->addr, align);
207			continue;
208		}
209		if ((size + addr) < addr)
210			goto out;
211		if (size + addr <= (unsigned long)tmp->addr)
212			goto found;
213		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
214		if (addr > end - size)
215			goto out;
216	}
217
218found:
219	area->next = *p;
220	*p = area;
221
222	area->flags = flags;
223	area->addr = (void *)addr;
224	area->size = size;
225	area->pages = NULL;
226	area->nr_pages = 0;
227	area->phys_addr = 0;
228	write_unlock(&vmlist_lock);
229
230	return area;
231
232out:
233	write_unlock(&vmlist_lock);
234	kfree(area);
235	if (printk_ratelimit())
236		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
237	return NULL;
238}
239
240struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
241				unsigned long start, unsigned long end)
242{
243	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
244}
245
246/**
247 *	get_vm_area  -  reserve a contingous kernel virtual area
248 *	@size:		size of the area
249 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
250 *
251 *	Search an area of @size in the kernel virtual mapping area,
252 *	and reserved it for out purposes.  Returns the area descriptor
253 *	on success or %NULL on failure.
254 */
255struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
256{
257	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
258}
259
260struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
261				   int node, gfp_t gfp_mask)
262{
263	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
264				  gfp_mask);
265}
266
267/* Caller must hold vmlist_lock */
268static struct vm_struct *__find_vm_area(void *addr)
269{
270	struct vm_struct *tmp;
271
272	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
273		 if (tmp->addr == addr)
274			break;
275	}
276
277	return tmp;
278}
279
280/* Caller must hold vmlist_lock */
281static struct vm_struct *__remove_vm_area(void *addr)
282{
283	struct vm_struct **p, *tmp;
284
285	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
286		 if (tmp->addr == addr)
287			 goto found;
288	}
289	return NULL;
290
291found:
292	unmap_vm_area(tmp);
293	*p = tmp->next;
294
295	/*
296	 * Remove the guard page.
297	 */
298	tmp->size -= PAGE_SIZE;
299	return tmp;
300}
301
302/**
303 *	remove_vm_area  -  find and remove a contingous kernel virtual area
304 *	@addr:		base address
305 *
306 *	Search for the kernel VM area starting at @addr, and remove it.
307 *	This function returns the found VM area, but using it is NOT safe
308 *	on SMP machines, except for its size or flags.
309 */
310struct vm_struct *remove_vm_area(void *addr)
311{
312	struct vm_struct *v;
313	write_lock(&vmlist_lock);
314	v = __remove_vm_area(addr);
315	write_unlock(&vmlist_lock);
316	return v;
317}
318
319static void __vunmap(void *addr, int deallocate_pages)
320{
321	struct vm_struct *area;
322
323	if (!addr)
324		return;
325
326	if ((PAGE_SIZE-1) & (unsigned long)addr) {
327		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
328		WARN_ON(1);
329		return;
330	}
331
332	area = remove_vm_area(addr);
333	if (unlikely(!area)) {
334		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
335				addr);
336		WARN_ON(1);
337		return;
338	}
339
340	debug_check_no_locks_freed(addr, area->size);
341
342	if (deallocate_pages) {
343		int i;
344
345		for (i = 0; i < area->nr_pages; i++) {
346			BUG_ON(!area->pages[i]);
347			__free_page(area->pages[i]);
348		}
349
350		if (area->flags & VM_VPAGES)
351			vfree(area->pages);
352		else
353			kfree(area->pages);
354	}
355
356	kfree(area);
357	return;
358}
359
360/**
361 *	vfree  -  release memory allocated by vmalloc()
362 *	@addr:		memory base address
363 *
364 *	Free the virtually contiguous memory area starting at @addr, as
365 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
366 *	NULL, no operation is performed.
367 *
368 *	Must not be called in interrupt context.
369 */
370void vfree(void *addr)
371{
372	BUG_ON(in_interrupt());
373	__vunmap(addr, 1);
374}
375EXPORT_SYMBOL(vfree);
376
377/**
378 *	vunmap  -  release virtual mapping obtained by vmap()
379 *	@addr:		memory base address
380 *
381 *	Free the virtually contiguous memory area starting at @addr,
382 *	which was created from the page array passed to vmap().
383 *
384 *	Must not be called in interrupt context.
385 */
386void vunmap(void *addr)
387{
388	BUG_ON(in_interrupt());
389	__vunmap(addr, 0);
390}
391EXPORT_SYMBOL(vunmap);
392
393/**
394 *	vmap  -  map an array of pages into virtually contiguous space
395 *	@pages:		array of page pointers
396 *	@count:		number of pages to map
397 *	@flags:		vm_area->flags
398 *	@prot:		page protection for the mapping
399 *
400 *	Maps @count pages from @pages into contiguous kernel virtual
401 *	space.
402 */
403void *vmap(struct page **pages, unsigned int count,
404		unsigned long flags, pgprot_t prot)
405{
406	struct vm_struct *area;
407
408	if (count > num_physpages)
409		return NULL;
410
411	area = get_vm_area((count << PAGE_SHIFT), flags);
412	if (!area)
413		return NULL;
414	if (map_vm_area(area, prot, &pages)) {
415		vunmap(area->addr);
416		return NULL;
417	}
418
419	return area->addr;
420}
421EXPORT_SYMBOL(vmap);
422
423void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
424				pgprot_t prot, int node)
425{
426	struct page **pages;
427	unsigned int nr_pages, array_size, i;
428
429	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
430	array_size = (nr_pages * sizeof(struct page *));
431
432	area->nr_pages = nr_pages;
433	/* Please note that the recursion is strictly bounded. */
434	if (array_size > PAGE_SIZE) {
435		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
436					PAGE_KERNEL, node);
437		area->flags |= VM_VPAGES;
438	} else {
439		pages = kmalloc_node(array_size,
440				(gfp_mask & GFP_LEVEL_MASK) | __GFP_ZERO,
441				node);
442	}
443	area->pages = pages;
444	if (!area->pages) {
445		remove_vm_area(area->addr);
446		kfree(area);
447		return NULL;
448	}
449
450	for (i = 0; i < area->nr_pages; i++) {
451		if (node < 0)
452			area->pages[i] = alloc_page(gfp_mask);
453		else
454			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
455		if (unlikely(!area->pages[i])) {
456			/* Successfully allocated i pages, free them in __vunmap() */
457			area->nr_pages = i;
458			goto fail;
459		}
460	}
461
462	if (map_vm_area(area, prot, &pages))
463		goto fail;
464	return area->addr;
465
466fail:
467	vfree(area->addr);
468	return NULL;
469}
470
471void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
472{
473	return __vmalloc_area_node(area, gfp_mask, prot, -1);
474}
475
476/**
477 *	__vmalloc_node  -  allocate virtually contiguous memory
478 *	@size:		allocation size
479 *	@gfp_mask:	flags for the page level allocator
480 *	@prot:		protection mask for the allocated pages
481 *	@node:		node to use for allocation or -1
482 *
483 *	Allocate enough pages to cover @size from the page level
484 *	allocator with @gfp_mask flags.  Map them into contiguous
485 *	kernel virtual space, using a pagetable protection of @prot.
486 */
487static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
488			    int node)
489{
490	struct vm_struct *area;
491
492	size = PAGE_ALIGN(size);
493	if (!size || (size >> PAGE_SHIFT) > num_physpages)
494		return NULL;
495
496	area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
497	if (!area)
498		return NULL;
499
500	return __vmalloc_area_node(area, gfp_mask, prot, node);
501}
502
503void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
504{
505	return __vmalloc_node(size, gfp_mask, prot, -1);
506}
507EXPORT_SYMBOL(__vmalloc);
508
509/**
510 *	vmalloc  -  allocate virtually contiguous memory
511 *	@size:		allocation size
512 *	Allocate enough pages to cover @size from the page level
513 *	allocator and map them into contiguous kernel virtual space.
514 *
515 *	For tight control over page level allocator and protection flags
516 *	use __vmalloc() instead.
517 */
518void *vmalloc(unsigned long size)
519{
520	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
521}
522EXPORT_SYMBOL(vmalloc);
523
524/**
525 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
526 * @size: allocation size
527 *
528 * The resulting memory area is zeroed so it can be mapped to userspace
529 * without leaking data.
530 */
531void *vmalloc_user(unsigned long size)
532{
533	struct vm_struct *area;
534	void *ret;
535
536	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
537	if (ret) {
538		write_lock(&vmlist_lock);
539		area = __find_vm_area(ret);
540		area->flags |= VM_USERMAP;
541		write_unlock(&vmlist_lock);
542	}
543	return ret;
544}
545EXPORT_SYMBOL(vmalloc_user);
546
547/**
548 *	vmalloc_node  -  allocate memory on a specific node
549 *	@size:		allocation size
550 *	@node:		numa node
551 *
552 *	Allocate enough pages to cover @size from the page level
553 *	allocator and map them into contiguous kernel virtual space.
554 *
555 *	For tight control over page level allocator and protection flags
556 *	use __vmalloc() instead.
557 */
558void *vmalloc_node(unsigned long size, int node)
559{
560	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
561}
562EXPORT_SYMBOL(vmalloc_node);
563
564#ifndef PAGE_KERNEL_EXEC
565# define PAGE_KERNEL_EXEC PAGE_KERNEL
566#endif
567
568/**
569 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
570 *	@size:		allocation size
571 *
572 *	Kernel-internal function to allocate enough pages to cover @size
573 *	the page level allocator and map them into contiguous and
574 *	executable kernel virtual space.
575 *
576 *	For tight control over page level allocator and protection flags
577 *	use __vmalloc() instead.
578 */
579
580void *vmalloc_exec(unsigned long size)
581{
582	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
583}
584
585#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
586#define GFP_VMALLOC32 GFP_DMA32
587#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
588#define GFP_VMALLOC32 GFP_DMA
589#else
590#define GFP_VMALLOC32 GFP_KERNEL
591#endif
592
593/**
594 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
595 *	@size:		allocation size
596 *
597 *	Allocate enough 32bit PA addressable pages to cover @size from the
598 *	page level allocator and map them into contiguous kernel virtual space.
599 */
600void *vmalloc_32(unsigned long size)
601{
602	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
603}
604EXPORT_SYMBOL(vmalloc_32);
605
606/**
607 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
608 *	@size:		allocation size
609 *
610 * The resulting memory area is 32bit addressable and zeroed so it can be
611 * mapped to userspace without leaking data.
612 */
613void *vmalloc_32_user(unsigned long size)
614{
615	struct vm_struct *area;
616	void *ret;
617
618	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
619	if (ret) {
620		write_lock(&vmlist_lock);
621		area = __find_vm_area(ret);
622		area->flags |= VM_USERMAP;
623		write_unlock(&vmlist_lock);
624	}
625	return ret;
626}
627EXPORT_SYMBOL(vmalloc_32_user);
628
629long vread(char *buf, char *addr, unsigned long count)
630{
631	struct vm_struct *tmp;
632	char *vaddr, *buf_start = buf;
633	unsigned long n;
634
635	/* Don't allow overflow */
636	if ((unsigned long) addr + count < count)
637		count = -(unsigned long) addr;
638
639	read_lock(&vmlist_lock);
640	for (tmp = vmlist; tmp; tmp = tmp->next) {
641		vaddr = (char *) tmp->addr;
642		if (addr >= vaddr + tmp->size - PAGE_SIZE)
643			continue;
644		while (addr < vaddr) {
645			if (count == 0)
646				goto finished;
647			*buf = '\0';
648			buf++;
649			addr++;
650			count--;
651		}
652		n = vaddr + tmp->size - PAGE_SIZE - addr;
653		do {
654			if (count == 0)
655				goto finished;
656			*buf = *addr;
657			buf++;
658			addr++;
659			count--;
660		} while (--n > 0);
661	}
662finished:
663	read_unlock(&vmlist_lock);
664	return buf - buf_start;
665}
666
667long vwrite(char *buf, char *addr, unsigned long count)
668{
669	struct vm_struct *tmp;
670	char *vaddr, *buf_start = buf;
671	unsigned long n;
672
673	/* Don't allow overflow */
674	if ((unsigned long) addr + count < count)
675		count = -(unsigned long) addr;
676
677	read_lock(&vmlist_lock);
678	for (tmp = vmlist; tmp; tmp = tmp->next) {
679		vaddr = (char *) tmp->addr;
680		if (addr >= vaddr + tmp->size - PAGE_SIZE)
681			continue;
682		while (addr < vaddr) {
683			if (count == 0)
684				goto finished;
685			buf++;
686			addr++;
687			count--;
688		}
689		n = vaddr + tmp->size - PAGE_SIZE - addr;
690		do {
691			if (count == 0)
692				goto finished;
693			*addr = *buf;
694			buf++;
695			addr++;
696			count--;
697		} while (--n > 0);
698	}
699finished:
700	read_unlock(&vmlist_lock);
701	return buf - buf_start;
702}
703
704/**
705 *	remap_vmalloc_range  -  map vmalloc pages to userspace
706 *	@vma:		vma to cover (map full range of vma)
707 *	@addr:		vmalloc memory
708 *	@pgoff:		number of pages into addr before first page to map
709 *	@returns:	0 for success, -Exxx on failure
710 *
711 *	This function checks that addr is a valid vmalloc'ed area, and
712 *	that it is big enough to cover the vma. Will return failure if
713 *	that criteria isn't met.
714 *
715 *	Similar to remap_pfn_range() (see mm/memory.c)
716 */
717int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
718						unsigned long pgoff)
719{
720	struct vm_struct *area;
721	unsigned long uaddr = vma->vm_start;
722	unsigned long usize = vma->vm_end - vma->vm_start;
723	int ret;
724
725	if ((PAGE_SIZE-1) & (unsigned long)addr)
726		return -EINVAL;
727
728	read_lock(&vmlist_lock);
729	area = __find_vm_area(addr);
730	if (!area)
731		goto out_einval_locked;
732
733	if (!(area->flags & VM_USERMAP))
734		goto out_einval_locked;
735
736	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
737		goto out_einval_locked;
738	read_unlock(&vmlist_lock);
739
740	addr += pgoff << PAGE_SHIFT;
741	do {
742		struct page *page = vmalloc_to_page(addr);
743		ret = vm_insert_page(vma, uaddr, page);
744		if (ret)
745			return ret;
746
747		uaddr += PAGE_SIZE;
748		addr += PAGE_SIZE;
749		usize -= PAGE_SIZE;
750	} while (usize > 0);
751
752	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
753	vma->vm_flags |= VM_RESERVED;
754
755	return ret;
756
757out_einval_locked:
758	read_unlock(&vmlist_lock);
759	return -EINVAL;
760}
761EXPORT_SYMBOL(remap_vmalloc_range);
762
763/*
764 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
765 * have one.
766 */
767void  __attribute__((weak)) vmalloc_sync_all(void)
768{
769}
770
771
772static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data)
773{
774	/* apply_to_page_range() does all the hard work. */
775	return 0;
776}
777
778/**
779 *	alloc_vm_area - allocate a range of kernel address space
780 *	@size:		size of the area
781 *	@returns:	NULL on failure, vm_struct on success
782 *
783 *	This function reserves a range of kernel address space, and
784 *	allocates pagetables to map that range.  No actual mappings
785 *	are created.  If the kernel address space is not shared
786 *	between processes, it syncs the pagetable across all
787 *	processes.
788 */
789struct vm_struct *alloc_vm_area(size_t size)
790{
791	struct vm_struct *area;
792
793	area = get_vm_area(size, VM_IOREMAP);
794	if (area == NULL)
795		return NULL;
796
797	/*
798	 * This ensures that page tables are constructed for this region
799	 * of kernel virtual address space and mapped into init_mm.
800	 */
801	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
802				area->size, f, NULL)) {
803		free_vm_area(area);
804		return NULL;
805	}
806
807	/* Make sure the pagetables are constructed in process kernel
808	   mappings */
809	vmalloc_sync_all();
810
811	return area;
812}
813EXPORT_SYMBOL_GPL(alloc_vm_area);
814
815void free_vm_area(struct vm_struct *area)
816{
817	struct vm_struct *ret;
818	ret = remove_vm_area(area->addr);
819	BUG_ON(ret != area);
820	kfree(area);
821}
822EXPORT_SYMBOL_GPL(free_vm_area);
823