vmalloc.c revision 734269521e320ad14ed39ae9b64d482b9028dcd2
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/debugobjects.h>
21#include <linux/kallsyms.h>
22#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
26#include <linux/bootmem.h>
27
28#include <asm/atomic.h>
29#include <asm/uaccess.h>
30#include <asm/tlbflush.h>
31
32
33/*** Page table manipulation functions ***/
34
35static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36{
37	pte_t *pte;
38
39	pte = pte_offset_kernel(pmd, addr);
40	do {
41		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43	} while (pte++, addr += PAGE_SIZE, addr != end);
44}
45
46static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
47{
48	pmd_t *pmd;
49	unsigned long next;
50
51	pmd = pmd_offset(pud, addr);
52	do {
53		next = pmd_addr_end(addr, end);
54		if (pmd_none_or_clear_bad(pmd))
55			continue;
56		vunmap_pte_range(pmd, addr, next);
57	} while (pmd++, addr = next, addr != end);
58}
59
60static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
61{
62	pud_t *pud;
63	unsigned long next;
64
65	pud = pud_offset(pgd, addr);
66	do {
67		next = pud_addr_end(addr, end);
68		if (pud_none_or_clear_bad(pud))
69			continue;
70		vunmap_pmd_range(pud, addr, next);
71	} while (pud++, addr = next, addr != end);
72}
73
74static void vunmap_page_range(unsigned long addr, unsigned long end)
75{
76	pgd_t *pgd;
77	unsigned long next;
78
79	BUG_ON(addr >= end);
80	pgd = pgd_offset_k(addr);
81	do {
82		next = pgd_addr_end(addr, end);
83		if (pgd_none_or_clear_bad(pgd))
84			continue;
85		vunmap_pud_range(pgd, addr, next);
86	} while (pgd++, addr = next, addr != end);
87}
88
89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
91{
92	pte_t *pte;
93
94	/*
95	 * nr is a running index into the array which helps higher level
96	 * callers keep track of where we're up to.
97	 */
98
99	pte = pte_alloc_kernel(pmd, addr);
100	if (!pte)
101		return -ENOMEM;
102	do {
103		struct page *page = pages[*nr];
104
105		if (WARN_ON(!pte_none(*pte)))
106			return -EBUSY;
107		if (WARN_ON(!page))
108			return -ENOMEM;
109		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110		(*nr)++;
111	} while (pte++, addr += PAGE_SIZE, addr != end);
112	return 0;
113}
114
115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
117{
118	pmd_t *pmd;
119	unsigned long next;
120
121	pmd = pmd_alloc(&init_mm, pud, addr);
122	if (!pmd)
123		return -ENOMEM;
124	do {
125		next = pmd_addr_end(addr, end);
126		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127			return -ENOMEM;
128	} while (pmd++, addr = next, addr != end);
129	return 0;
130}
131
132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
134{
135	pud_t *pud;
136	unsigned long next;
137
138	pud = pud_alloc(&init_mm, pgd, addr);
139	if (!pud)
140		return -ENOMEM;
141	do {
142		next = pud_addr_end(addr, end);
143		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144			return -ENOMEM;
145	} while (pud++, addr = next, addr != end);
146	return 0;
147}
148
149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
155static int vmap_page_range(unsigned long start, unsigned long end,
156				pgprot_t prot, struct page **pages)
157{
158	pgd_t *pgd;
159	unsigned long next;
160	unsigned long addr = start;
161	int err = 0;
162	int nr = 0;
163
164	BUG_ON(addr >= end);
165	pgd = pgd_offset_k(addr);
166	do {
167		next = pgd_addr_end(addr, end);
168		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
169		if (err)
170			break;
171	} while (pgd++, addr = next, addr != end);
172	flush_cache_vmap(start, end);
173
174	if (unlikely(err))
175		return err;
176	return nr;
177}
178
179static inline int is_vmalloc_or_module_addr(const void *x)
180{
181	/*
182	 * ARM, x86-64 and sparc64 put modules in a special place,
183	 * and fall back on vmalloc() if that fails. Others
184	 * just put it in the vmalloc space.
185	 */
186#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187	unsigned long addr = (unsigned long)x;
188	if (addr >= MODULES_VADDR && addr < MODULES_END)
189		return 1;
190#endif
191	return is_vmalloc_addr(x);
192}
193
194/*
195 * Walk a vmap address to the struct page it maps.
196 */
197struct page *vmalloc_to_page(const void *vmalloc_addr)
198{
199	unsigned long addr = (unsigned long) vmalloc_addr;
200	struct page *page = NULL;
201	pgd_t *pgd = pgd_offset_k(addr);
202
203	/*
204	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205	 * architectures that do not vmalloc module space
206	 */
207	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
208
209	if (!pgd_none(*pgd)) {
210		pud_t *pud = pud_offset(pgd, addr);
211		if (!pud_none(*pud)) {
212			pmd_t *pmd = pmd_offset(pud, addr);
213			if (!pmd_none(*pmd)) {
214				pte_t *ptep, pte;
215
216				ptep = pte_offset_map(pmd, addr);
217				pte = *ptep;
218				if (pte_present(pte))
219					page = pte_page(pte);
220				pte_unmap(ptep);
221			}
222		}
223	}
224	return page;
225}
226EXPORT_SYMBOL(vmalloc_to_page);
227
228/*
229 * Map a vmalloc()-space virtual address to the physical page frame number.
230 */
231unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
232{
233	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234}
235EXPORT_SYMBOL(vmalloc_to_pfn);
236
237
238/*** Global kva allocator ***/
239
240#define VM_LAZY_FREE	0x01
241#define VM_LAZY_FREEING	0x02
242#define VM_VM_AREA	0x04
243
244struct vmap_area {
245	unsigned long va_start;
246	unsigned long va_end;
247	unsigned long flags;
248	struct rb_node rb_node;		/* address sorted rbtree */
249	struct list_head list;		/* address sorted list */
250	struct list_head purge_list;	/* "lazy purge" list */
251	void *private;
252	struct rcu_head rcu_head;
253};
254
255static DEFINE_SPINLOCK(vmap_area_lock);
256static struct rb_root vmap_area_root = RB_ROOT;
257static LIST_HEAD(vmap_area_list);
258
259static struct vmap_area *__find_vmap_area(unsigned long addr)
260{
261	struct rb_node *n = vmap_area_root.rb_node;
262
263	while (n) {
264		struct vmap_area *va;
265
266		va = rb_entry(n, struct vmap_area, rb_node);
267		if (addr < va->va_start)
268			n = n->rb_left;
269		else if (addr > va->va_start)
270			n = n->rb_right;
271		else
272			return va;
273	}
274
275	return NULL;
276}
277
278static void __insert_vmap_area(struct vmap_area *va)
279{
280	struct rb_node **p = &vmap_area_root.rb_node;
281	struct rb_node *parent = NULL;
282	struct rb_node *tmp;
283
284	while (*p) {
285		struct vmap_area *tmp;
286
287		parent = *p;
288		tmp = rb_entry(parent, struct vmap_area, rb_node);
289		if (va->va_start < tmp->va_end)
290			p = &(*p)->rb_left;
291		else if (va->va_end > tmp->va_start)
292			p = &(*p)->rb_right;
293		else
294			BUG();
295	}
296
297	rb_link_node(&va->rb_node, parent, p);
298	rb_insert_color(&va->rb_node, &vmap_area_root);
299
300	/* address-sort this list so it is usable like the vmlist */
301	tmp = rb_prev(&va->rb_node);
302	if (tmp) {
303		struct vmap_area *prev;
304		prev = rb_entry(tmp, struct vmap_area, rb_node);
305		list_add_rcu(&va->list, &prev->list);
306	} else
307		list_add_rcu(&va->list, &vmap_area_list);
308}
309
310static void purge_vmap_area_lazy(void);
311
312/*
313 * Allocate a region of KVA of the specified size and alignment, within the
314 * vstart and vend.
315 */
316static struct vmap_area *alloc_vmap_area(unsigned long size,
317				unsigned long align,
318				unsigned long vstart, unsigned long vend,
319				int node, gfp_t gfp_mask)
320{
321	struct vmap_area *va;
322	struct rb_node *n;
323	unsigned long addr;
324	int purged = 0;
325
326	BUG_ON(size & ~PAGE_MASK);
327
328	va = kmalloc_node(sizeof(struct vmap_area),
329			gfp_mask & GFP_RECLAIM_MASK, node);
330	if (unlikely(!va))
331		return ERR_PTR(-ENOMEM);
332
333retry:
334	addr = ALIGN(vstart, align);
335
336	spin_lock(&vmap_area_lock);
337	/* XXX: could have a last_hole cache */
338	n = vmap_area_root.rb_node;
339	if (n) {
340		struct vmap_area *first = NULL;
341
342		do {
343			struct vmap_area *tmp;
344			tmp = rb_entry(n, struct vmap_area, rb_node);
345			if (tmp->va_end >= addr) {
346				if (!first && tmp->va_start < addr + size)
347					first = tmp;
348				n = n->rb_left;
349			} else {
350				first = tmp;
351				n = n->rb_right;
352			}
353		} while (n);
354
355		if (!first)
356			goto found;
357
358		if (first->va_end < addr) {
359			n = rb_next(&first->rb_node);
360			if (n)
361				first = rb_entry(n, struct vmap_area, rb_node);
362			else
363				goto found;
364		}
365
366		while (addr + size > first->va_start && addr + size <= vend) {
367			addr = ALIGN(first->va_end + PAGE_SIZE, align);
368
369			n = rb_next(&first->rb_node);
370			if (n)
371				first = rb_entry(n, struct vmap_area, rb_node);
372			else
373				goto found;
374		}
375	}
376found:
377	if (addr + size > vend) {
378		spin_unlock(&vmap_area_lock);
379		if (!purged) {
380			purge_vmap_area_lazy();
381			purged = 1;
382			goto retry;
383		}
384		if (printk_ratelimit())
385			printk(KERN_WARNING
386				"vmap allocation for size %lu failed: "
387				"use vmalloc=<size> to increase size.\n", size);
388		return ERR_PTR(-EBUSY);
389	}
390
391	BUG_ON(addr & (align-1));
392
393	va->va_start = addr;
394	va->va_end = addr + size;
395	va->flags = 0;
396	__insert_vmap_area(va);
397	spin_unlock(&vmap_area_lock);
398
399	return va;
400}
401
402static void rcu_free_va(struct rcu_head *head)
403{
404	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
405
406	kfree(va);
407}
408
409static void __free_vmap_area(struct vmap_area *va)
410{
411	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
412	rb_erase(&va->rb_node, &vmap_area_root);
413	RB_CLEAR_NODE(&va->rb_node);
414	list_del_rcu(&va->list);
415
416	call_rcu(&va->rcu_head, rcu_free_va);
417}
418
419/*
420 * Free a region of KVA allocated by alloc_vmap_area
421 */
422static void free_vmap_area(struct vmap_area *va)
423{
424	spin_lock(&vmap_area_lock);
425	__free_vmap_area(va);
426	spin_unlock(&vmap_area_lock);
427}
428
429/*
430 * Clear the pagetable entries of a given vmap_area
431 */
432static void unmap_vmap_area(struct vmap_area *va)
433{
434	vunmap_page_range(va->va_start, va->va_end);
435}
436
437static void vmap_debug_free_range(unsigned long start, unsigned long end)
438{
439	/*
440	 * Unmap page tables and force a TLB flush immediately if
441	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
442	 * bugs similarly to those in linear kernel virtual address
443	 * space after a page has been freed.
444	 *
445	 * All the lazy freeing logic is still retained, in order to
446	 * minimise intrusiveness of this debugging feature.
447	 *
448	 * This is going to be *slow* (linear kernel virtual address
449	 * debugging doesn't do a broadcast TLB flush so it is a lot
450	 * faster).
451	 */
452#ifdef CONFIG_DEBUG_PAGEALLOC
453	vunmap_page_range(start, end);
454	flush_tlb_kernel_range(start, end);
455#endif
456}
457
458/*
459 * lazy_max_pages is the maximum amount of virtual address space we gather up
460 * before attempting to purge with a TLB flush.
461 *
462 * There is a tradeoff here: a larger number will cover more kernel page tables
463 * and take slightly longer to purge, but it will linearly reduce the number of
464 * global TLB flushes that must be performed. It would seem natural to scale
465 * this number up linearly with the number of CPUs (because vmapping activity
466 * could also scale linearly with the number of CPUs), however it is likely
467 * that in practice, workloads might be constrained in other ways that mean
468 * vmap activity will not scale linearly with CPUs. Also, I want to be
469 * conservative and not introduce a big latency on huge systems, so go with
470 * a less aggressive log scale. It will still be an improvement over the old
471 * code, and it will be simple to change the scale factor if we find that it
472 * becomes a problem on bigger systems.
473 */
474static unsigned long lazy_max_pages(void)
475{
476	unsigned int log;
477
478	log = fls(num_online_cpus());
479
480	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
481}
482
483static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
484
485/*
486 * Purges all lazily-freed vmap areas.
487 *
488 * If sync is 0 then don't purge if there is already a purge in progress.
489 * If force_flush is 1, then flush kernel TLBs between *start and *end even
490 * if we found no lazy vmap areas to unmap (callers can use this to optimise
491 * their own TLB flushing).
492 * Returns with *start = min(*start, lowest purged address)
493 *              *end = max(*end, highest purged address)
494 */
495static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
496					int sync, int force_flush)
497{
498	static DEFINE_SPINLOCK(purge_lock);
499	LIST_HEAD(valist);
500	struct vmap_area *va;
501	int nr = 0;
502
503	/*
504	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
505	 * should not expect such behaviour. This just simplifies locking for
506	 * the case that isn't actually used at the moment anyway.
507	 */
508	if (!sync && !force_flush) {
509		if (!spin_trylock(&purge_lock))
510			return;
511	} else
512		spin_lock(&purge_lock);
513
514	rcu_read_lock();
515	list_for_each_entry_rcu(va, &vmap_area_list, list) {
516		if (va->flags & VM_LAZY_FREE) {
517			if (va->va_start < *start)
518				*start = va->va_start;
519			if (va->va_end > *end)
520				*end = va->va_end;
521			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
522			unmap_vmap_area(va);
523			list_add_tail(&va->purge_list, &valist);
524			va->flags |= VM_LAZY_FREEING;
525			va->flags &= ~VM_LAZY_FREE;
526		}
527	}
528	rcu_read_unlock();
529
530	if (nr) {
531		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
532		atomic_sub(nr, &vmap_lazy_nr);
533	}
534
535	if (nr || force_flush)
536		flush_tlb_kernel_range(*start, *end);
537
538	if (nr) {
539		spin_lock(&vmap_area_lock);
540		list_for_each_entry(va, &valist, purge_list)
541			__free_vmap_area(va);
542		spin_unlock(&vmap_area_lock);
543	}
544	spin_unlock(&purge_lock);
545}
546
547/*
548 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
549 * is already purging.
550 */
551static void try_purge_vmap_area_lazy(void)
552{
553	unsigned long start = ULONG_MAX, end = 0;
554
555	__purge_vmap_area_lazy(&start, &end, 0, 0);
556}
557
558/*
559 * Kick off a purge of the outstanding lazy areas.
560 */
561static void purge_vmap_area_lazy(void)
562{
563	unsigned long start = ULONG_MAX, end = 0;
564
565	__purge_vmap_area_lazy(&start, &end, 1, 0);
566}
567
568/*
569 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
570 * called for the correct range previously.
571 */
572static void free_unmap_vmap_area_noflush(struct vmap_area *va)
573{
574	va->flags |= VM_LAZY_FREE;
575	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
576	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
577		try_purge_vmap_area_lazy();
578}
579
580/*
581 * Free and unmap a vmap area
582 */
583static void free_unmap_vmap_area(struct vmap_area *va)
584{
585	flush_cache_vunmap(va->va_start, va->va_end);
586	free_unmap_vmap_area_noflush(va);
587}
588
589static struct vmap_area *find_vmap_area(unsigned long addr)
590{
591	struct vmap_area *va;
592
593	spin_lock(&vmap_area_lock);
594	va = __find_vmap_area(addr);
595	spin_unlock(&vmap_area_lock);
596
597	return va;
598}
599
600static void free_unmap_vmap_area_addr(unsigned long addr)
601{
602	struct vmap_area *va;
603
604	va = find_vmap_area(addr);
605	BUG_ON(!va);
606	free_unmap_vmap_area(va);
607}
608
609
610/*** Per cpu kva allocator ***/
611
612/*
613 * vmap space is limited especially on 32 bit architectures. Ensure there is
614 * room for at least 16 percpu vmap blocks per CPU.
615 */
616/*
617 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
618 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
619 * instead (we just need a rough idea)
620 */
621#if BITS_PER_LONG == 32
622#define VMALLOC_SPACE		(128UL*1024*1024)
623#else
624#define VMALLOC_SPACE		(128UL*1024*1024*1024)
625#endif
626
627#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
628#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
629#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
630#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
631#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
632#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
633#define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
634					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
635						VMALLOC_PAGES / NR_CPUS / 16))
636
637#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
638
639static bool vmap_initialized __read_mostly = false;
640
641struct vmap_block_queue {
642	spinlock_t lock;
643	struct list_head free;
644	struct list_head dirty;
645	unsigned int nr_dirty;
646};
647
648struct vmap_block {
649	spinlock_t lock;
650	struct vmap_area *va;
651	struct vmap_block_queue *vbq;
652	unsigned long free, dirty;
653	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
654	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
655	union {
656		struct {
657			struct list_head free_list;
658			struct list_head dirty_list;
659		};
660		struct rcu_head rcu_head;
661	};
662};
663
664/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
665static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
666
667/*
668 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
669 * in the free path. Could get rid of this if we change the API to return a
670 * "cookie" from alloc, to be passed to free. But no big deal yet.
671 */
672static DEFINE_SPINLOCK(vmap_block_tree_lock);
673static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
674
675/*
676 * We should probably have a fallback mechanism to allocate virtual memory
677 * out of partially filled vmap blocks. However vmap block sizing should be
678 * fairly reasonable according to the vmalloc size, so it shouldn't be a
679 * big problem.
680 */
681
682static unsigned long addr_to_vb_idx(unsigned long addr)
683{
684	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
685	addr /= VMAP_BLOCK_SIZE;
686	return addr;
687}
688
689static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
690{
691	struct vmap_block_queue *vbq;
692	struct vmap_block *vb;
693	struct vmap_area *va;
694	unsigned long vb_idx;
695	int node, err;
696
697	node = numa_node_id();
698
699	vb = kmalloc_node(sizeof(struct vmap_block),
700			gfp_mask & GFP_RECLAIM_MASK, node);
701	if (unlikely(!vb))
702		return ERR_PTR(-ENOMEM);
703
704	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
705					VMALLOC_START, VMALLOC_END,
706					node, gfp_mask);
707	if (unlikely(IS_ERR(va))) {
708		kfree(vb);
709		return ERR_PTR(PTR_ERR(va));
710	}
711
712	err = radix_tree_preload(gfp_mask);
713	if (unlikely(err)) {
714		kfree(vb);
715		free_vmap_area(va);
716		return ERR_PTR(err);
717	}
718
719	spin_lock_init(&vb->lock);
720	vb->va = va;
721	vb->free = VMAP_BBMAP_BITS;
722	vb->dirty = 0;
723	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
724	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
725	INIT_LIST_HEAD(&vb->free_list);
726	INIT_LIST_HEAD(&vb->dirty_list);
727
728	vb_idx = addr_to_vb_idx(va->va_start);
729	spin_lock(&vmap_block_tree_lock);
730	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
731	spin_unlock(&vmap_block_tree_lock);
732	BUG_ON(err);
733	radix_tree_preload_end();
734
735	vbq = &get_cpu_var(vmap_block_queue);
736	vb->vbq = vbq;
737	spin_lock(&vbq->lock);
738	list_add(&vb->free_list, &vbq->free);
739	spin_unlock(&vbq->lock);
740	put_cpu_var(vmap_cpu_blocks);
741
742	return vb;
743}
744
745static void rcu_free_vb(struct rcu_head *head)
746{
747	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
748
749	kfree(vb);
750}
751
752static void free_vmap_block(struct vmap_block *vb)
753{
754	struct vmap_block *tmp;
755	unsigned long vb_idx;
756
757	spin_lock(&vb->vbq->lock);
758	if (!list_empty(&vb->free_list))
759		list_del(&vb->free_list);
760	if (!list_empty(&vb->dirty_list))
761		list_del(&vb->dirty_list);
762	spin_unlock(&vb->vbq->lock);
763
764	vb_idx = addr_to_vb_idx(vb->va->va_start);
765	spin_lock(&vmap_block_tree_lock);
766	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
767	spin_unlock(&vmap_block_tree_lock);
768	BUG_ON(tmp != vb);
769
770	free_unmap_vmap_area_noflush(vb->va);
771	call_rcu(&vb->rcu_head, rcu_free_vb);
772}
773
774static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
775{
776	struct vmap_block_queue *vbq;
777	struct vmap_block *vb;
778	unsigned long addr = 0;
779	unsigned int order;
780
781	BUG_ON(size & ~PAGE_MASK);
782	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
783	order = get_order(size);
784
785again:
786	rcu_read_lock();
787	vbq = &get_cpu_var(vmap_block_queue);
788	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
789		int i;
790
791		spin_lock(&vb->lock);
792		i = bitmap_find_free_region(vb->alloc_map,
793						VMAP_BBMAP_BITS, order);
794
795		if (i >= 0) {
796			addr = vb->va->va_start + (i << PAGE_SHIFT);
797			BUG_ON(addr_to_vb_idx(addr) !=
798					addr_to_vb_idx(vb->va->va_start));
799			vb->free -= 1UL << order;
800			if (vb->free == 0) {
801				spin_lock(&vbq->lock);
802				list_del_init(&vb->free_list);
803				spin_unlock(&vbq->lock);
804			}
805			spin_unlock(&vb->lock);
806			break;
807		}
808		spin_unlock(&vb->lock);
809	}
810	put_cpu_var(vmap_cpu_blocks);
811	rcu_read_unlock();
812
813	if (!addr) {
814		vb = new_vmap_block(gfp_mask);
815		if (IS_ERR(vb))
816			return vb;
817		goto again;
818	}
819
820	return (void *)addr;
821}
822
823static void vb_free(const void *addr, unsigned long size)
824{
825	unsigned long offset;
826	unsigned long vb_idx;
827	unsigned int order;
828	struct vmap_block *vb;
829
830	BUG_ON(size & ~PAGE_MASK);
831	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
832
833	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
834
835	order = get_order(size);
836
837	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
838
839	vb_idx = addr_to_vb_idx((unsigned long)addr);
840	rcu_read_lock();
841	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
842	rcu_read_unlock();
843	BUG_ON(!vb);
844
845	spin_lock(&vb->lock);
846	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
847	if (!vb->dirty) {
848		spin_lock(&vb->vbq->lock);
849		list_add(&vb->dirty_list, &vb->vbq->dirty);
850		spin_unlock(&vb->vbq->lock);
851	}
852	vb->dirty += 1UL << order;
853	if (vb->dirty == VMAP_BBMAP_BITS) {
854		BUG_ON(vb->free || !list_empty(&vb->free_list));
855		spin_unlock(&vb->lock);
856		free_vmap_block(vb);
857	} else
858		spin_unlock(&vb->lock);
859}
860
861/**
862 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
863 *
864 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
865 * to amortize TLB flushing overheads. What this means is that any page you
866 * have now, may, in a former life, have been mapped into kernel virtual
867 * address by the vmap layer and so there might be some CPUs with TLB entries
868 * still referencing that page (additional to the regular 1:1 kernel mapping).
869 *
870 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
871 * be sure that none of the pages we have control over will have any aliases
872 * from the vmap layer.
873 */
874void vm_unmap_aliases(void)
875{
876	unsigned long start = ULONG_MAX, end = 0;
877	int cpu;
878	int flush = 0;
879
880	if (unlikely(!vmap_initialized))
881		return;
882
883	for_each_possible_cpu(cpu) {
884		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
885		struct vmap_block *vb;
886
887		rcu_read_lock();
888		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
889			int i;
890
891			spin_lock(&vb->lock);
892			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
893			while (i < VMAP_BBMAP_BITS) {
894				unsigned long s, e;
895				int j;
896				j = find_next_zero_bit(vb->dirty_map,
897					VMAP_BBMAP_BITS, i);
898
899				s = vb->va->va_start + (i << PAGE_SHIFT);
900				e = vb->va->va_start + (j << PAGE_SHIFT);
901				vunmap_page_range(s, e);
902				flush = 1;
903
904				if (s < start)
905					start = s;
906				if (e > end)
907					end = e;
908
909				i = j;
910				i = find_next_bit(vb->dirty_map,
911							VMAP_BBMAP_BITS, i);
912			}
913			spin_unlock(&vb->lock);
914		}
915		rcu_read_unlock();
916	}
917
918	__purge_vmap_area_lazy(&start, &end, 1, flush);
919}
920EXPORT_SYMBOL_GPL(vm_unmap_aliases);
921
922/**
923 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
924 * @mem: the pointer returned by vm_map_ram
925 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
926 */
927void vm_unmap_ram(const void *mem, unsigned int count)
928{
929	unsigned long size = count << PAGE_SHIFT;
930	unsigned long addr = (unsigned long)mem;
931
932	BUG_ON(!addr);
933	BUG_ON(addr < VMALLOC_START);
934	BUG_ON(addr > VMALLOC_END);
935	BUG_ON(addr & (PAGE_SIZE-1));
936
937	debug_check_no_locks_freed(mem, size);
938	vmap_debug_free_range(addr, addr+size);
939
940	if (likely(count <= VMAP_MAX_ALLOC))
941		vb_free(mem, size);
942	else
943		free_unmap_vmap_area_addr(addr);
944}
945EXPORT_SYMBOL(vm_unmap_ram);
946
947/**
948 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
949 * @pages: an array of pointers to the pages to be mapped
950 * @count: number of pages
951 * @node: prefer to allocate data structures on this node
952 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
953 *
954 * Returns: a pointer to the address that has been mapped, or %NULL on failure
955 */
956void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
957{
958	unsigned long size = count << PAGE_SHIFT;
959	unsigned long addr;
960	void *mem;
961
962	if (likely(count <= VMAP_MAX_ALLOC)) {
963		mem = vb_alloc(size, GFP_KERNEL);
964		if (IS_ERR(mem))
965			return NULL;
966		addr = (unsigned long)mem;
967	} else {
968		struct vmap_area *va;
969		va = alloc_vmap_area(size, PAGE_SIZE,
970				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
971		if (IS_ERR(va))
972			return NULL;
973
974		addr = va->va_start;
975		mem = (void *)addr;
976	}
977	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
978		vm_unmap_ram(mem, count);
979		return NULL;
980	}
981	return mem;
982}
983EXPORT_SYMBOL(vm_map_ram);
984
985void __init vmalloc_init(void)
986{
987	struct vmap_area *va;
988	struct vm_struct *tmp;
989	int i;
990
991	for_each_possible_cpu(i) {
992		struct vmap_block_queue *vbq;
993
994		vbq = &per_cpu(vmap_block_queue, i);
995		spin_lock_init(&vbq->lock);
996		INIT_LIST_HEAD(&vbq->free);
997		INIT_LIST_HEAD(&vbq->dirty);
998		vbq->nr_dirty = 0;
999	}
1000
1001	/* Import existing vmlist entries. */
1002	for (tmp = vmlist; tmp; tmp = tmp->next) {
1003		va = alloc_bootmem(sizeof(struct vmap_area));
1004		va->flags = tmp->flags | VM_VM_AREA;
1005		va->va_start = (unsigned long)tmp->addr;
1006		va->va_end = va->va_start + tmp->size;
1007		__insert_vmap_area(va);
1008	}
1009	vmap_initialized = true;
1010}
1011
1012void unmap_kernel_range(unsigned long addr, unsigned long size)
1013{
1014	unsigned long end = addr + size;
1015
1016	flush_cache_vunmap(addr, end);
1017	vunmap_page_range(addr, end);
1018	flush_tlb_kernel_range(addr, end);
1019}
1020
1021int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1022{
1023	unsigned long addr = (unsigned long)area->addr;
1024	unsigned long end = addr + area->size - PAGE_SIZE;
1025	int err;
1026
1027	err = vmap_page_range(addr, end, prot, *pages);
1028	if (err > 0) {
1029		*pages += err;
1030		err = 0;
1031	}
1032
1033	return err;
1034}
1035EXPORT_SYMBOL_GPL(map_vm_area);
1036
1037/*** Old vmalloc interfaces ***/
1038DEFINE_RWLOCK(vmlist_lock);
1039struct vm_struct *vmlist;
1040
1041static struct vm_struct *__get_vm_area_node(unsigned long size,
1042		unsigned long flags, unsigned long start, unsigned long end,
1043		int node, gfp_t gfp_mask, void *caller)
1044{
1045	static struct vmap_area *va;
1046	struct vm_struct *area;
1047	struct vm_struct *tmp, **p;
1048	unsigned long align = 1;
1049
1050	BUG_ON(in_interrupt());
1051	if (flags & VM_IOREMAP) {
1052		int bit = fls(size);
1053
1054		if (bit > IOREMAP_MAX_ORDER)
1055			bit = IOREMAP_MAX_ORDER;
1056		else if (bit < PAGE_SHIFT)
1057			bit = PAGE_SHIFT;
1058
1059		align = 1ul << bit;
1060	}
1061
1062	size = PAGE_ALIGN(size);
1063	if (unlikely(!size))
1064		return NULL;
1065
1066	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1067	if (unlikely(!area))
1068		return NULL;
1069
1070	/*
1071	 * We always allocate a guard page.
1072	 */
1073	size += PAGE_SIZE;
1074
1075	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1076	if (IS_ERR(va)) {
1077		kfree(area);
1078		return NULL;
1079	}
1080
1081	area->flags = flags;
1082	area->addr = (void *)va->va_start;
1083	area->size = size;
1084	area->pages = NULL;
1085	area->nr_pages = 0;
1086	area->phys_addr = 0;
1087	area->caller = caller;
1088	va->private = area;
1089	va->flags |= VM_VM_AREA;
1090
1091	write_lock(&vmlist_lock);
1092	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1093		if (tmp->addr >= area->addr)
1094			break;
1095	}
1096	area->next = *p;
1097	*p = area;
1098	write_unlock(&vmlist_lock);
1099
1100	return area;
1101}
1102
1103struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1104				unsigned long start, unsigned long end)
1105{
1106	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1107						__builtin_return_address(0));
1108}
1109EXPORT_SYMBOL_GPL(__get_vm_area);
1110
1111/**
1112 *	get_vm_area  -  reserve a contiguous kernel virtual area
1113 *	@size:		size of the area
1114 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1115 *
1116 *	Search an area of @size in the kernel virtual mapping area,
1117 *	and reserved it for out purposes.  Returns the area descriptor
1118 *	on success or %NULL on failure.
1119 */
1120struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1121{
1122	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1123				-1, GFP_KERNEL, __builtin_return_address(0));
1124}
1125
1126struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1127				void *caller)
1128{
1129	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1130						-1, GFP_KERNEL, caller);
1131}
1132
1133struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1134				   int node, gfp_t gfp_mask)
1135{
1136	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1137				  gfp_mask, __builtin_return_address(0));
1138}
1139
1140static struct vm_struct *find_vm_area(const void *addr)
1141{
1142	struct vmap_area *va;
1143
1144	va = find_vmap_area((unsigned long)addr);
1145	if (va && va->flags & VM_VM_AREA)
1146		return va->private;
1147
1148	return NULL;
1149}
1150
1151/**
1152 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1153 *	@addr:		base address
1154 *
1155 *	Search for the kernel VM area starting at @addr, and remove it.
1156 *	This function returns the found VM area, but using it is NOT safe
1157 *	on SMP machines, except for its size or flags.
1158 */
1159struct vm_struct *remove_vm_area(const void *addr)
1160{
1161	struct vmap_area *va;
1162
1163	va = find_vmap_area((unsigned long)addr);
1164	if (va && va->flags & VM_VM_AREA) {
1165		struct vm_struct *vm = va->private;
1166		struct vm_struct *tmp, **p;
1167
1168		vmap_debug_free_range(va->va_start, va->va_end);
1169		free_unmap_vmap_area(va);
1170		vm->size -= PAGE_SIZE;
1171
1172		write_lock(&vmlist_lock);
1173		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1174			;
1175		*p = tmp->next;
1176		write_unlock(&vmlist_lock);
1177
1178		return vm;
1179	}
1180	return NULL;
1181}
1182
1183static void __vunmap(const void *addr, int deallocate_pages)
1184{
1185	struct vm_struct *area;
1186
1187	if (!addr)
1188		return;
1189
1190	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1191		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1192		return;
1193	}
1194
1195	area = remove_vm_area(addr);
1196	if (unlikely(!area)) {
1197		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1198				addr);
1199		return;
1200	}
1201
1202	debug_check_no_locks_freed(addr, area->size);
1203	debug_check_no_obj_freed(addr, area->size);
1204
1205	if (deallocate_pages) {
1206		int i;
1207
1208		for (i = 0; i < area->nr_pages; i++) {
1209			struct page *page = area->pages[i];
1210
1211			BUG_ON(!page);
1212			__free_page(page);
1213		}
1214
1215		if (area->flags & VM_VPAGES)
1216			vfree(area->pages);
1217		else
1218			kfree(area->pages);
1219	}
1220
1221	kfree(area);
1222	return;
1223}
1224
1225/**
1226 *	vfree  -  release memory allocated by vmalloc()
1227 *	@addr:		memory base address
1228 *
1229 *	Free the virtually continuous memory area starting at @addr, as
1230 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1231 *	NULL, no operation is performed.
1232 *
1233 *	Must not be called in interrupt context.
1234 */
1235void vfree(const void *addr)
1236{
1237	BUG_ON(in_interrupt());
1238	__vunmap(addr, 1);
1239}
1240EXPORT_SYMBOL(vfree);
1241
1242/**
1243 *	vunmap  -  release virtual mapping obtained by vmap()
1244 *	@addr:		memory base address
1245 *
1246 *	Free the virtually contiguous memory area starting at @addr,
1247 *	which was created from the page array passed to vmap().
1248 *
1249 *	Must not be called in interrupt context.
1250 */
1251void vunmap(const void *addr)
1252{
1253	BUG_ON(in_interrupt());
1254	__vunmap(addr, 0);
1255}
1256EXPORT_SYMBOL(vunmap);
1257
1258/**
1259 *	vmap  -  map an array of pages into virtually contiguous space
1260 *	@pages:		array of page pointers
1261 *	@count:		number of pages to map
1262 *	@flags:		vm_area->flags
1263 *	@prot:		page protection for the mapping
1264 *
1265 *	Maps @count pages from @pages into contiguous kernel virtual
1266 *	space.
1267 */
1268void *vmap(struct page **pages, unsigned int count,
1269		unsigned long flags, pgprot_t prot)
1270{
1271	struct vm_struct *area;
1272
1273	if (count > num_physpages)
1274		return NULL;
1275
1276	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1277					__builtin_return_address(0));
1278	if (!area)
1279		return NULL;
1280
1281	if (map_vm_area(area, prot, &pages)) {
1282		vunmap(area->addr);
1283		return NULL;
1284	}
1285
1286	return area->addr;
1287}
1288EXPORT_SYMBOL(vmap);
1289
1290static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1291			    int node, void *caller);
1292static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1293				 pgprot_t prot, int node, void *caller)
1294{
1295	struct page **pages;
1296	unsigned int nr_pages, array_size, i;
1297
1298	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1299	array_size = (nr_pages * sizeof(struct page *));
1300
1301	area->nr_pages = nr_pages;
1302	/* Please note that the recursion is strictly bounded. */
1303	if (array_size > PAGE_SIZE) {
1304		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1305				PAGE_KERNEL, node, caller);
1306		area->flags |= VM_VPAGES;
1307	} else {
1308		pages = kmalloc_node(array_size,
1309				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1310				node);
1311	}
1312	area->pages = pages;
1313	area->caller = caller;
1314	if (!area->pages) {
1315		remove_vm_area(area->addr);
1316		kfree(area);
1317		return NULL;
1318	}
1319
1320	for (i = 0; i < area->nr_pages; i++) {
1321		struct page *page;
1322
1323		if (node < 0)
1324			page = alloc_page(gfp_mask);
1325		else
1326			page = alloc_pages_node(node, gfp_mask, 0);
1327
1328		if (unlikely(!page)) {
1329			/* Successfully allocated i pages, free them in __vunmap() */
1330			area->nr_pages = i;
1331			goto fail;
1332		}
1333		area->pages[i] = page;
1334	}
1335
1336	if (map_vm_area(area, prot, &pages))
1337		goto fail;
1338	return area->addr;
1339
1340fail:
1341	vfree(area->addr);
1342	return NULL;
1343}
1344
1345void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1346{
1347	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1348					__builtin_return_address(0));
1349}
1350
1351/**
1352 *	__vmalloc_node  -  allocate virtually contiguous memory
1353 *	@size:		allocation size
1354 *	@gfp_mask:	flags for the page level allocator
1355 *	@prot:		protection mask for the allocated pages
1356 *	@node:		node to use for allocation or -1
1357 *	@caller:	caller's return address
1358 *
1359 *	Allocate enough pages to cover @size from the page level
1360 *	allocator with @gfp_mask flags.  Map them into contiguous
1361 *	kernel virtual space, using a pagetable protection of @prot.
1362 */
1363static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1364						int node, void *caller)
1365{
1366	struct vm_struct *area;
1367
1368	size = PAGE_ALIGN(size);
1369	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1370		return NULL;
1371
1372	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1373						node, gfp_mask, caller);
1374
1375	if (!area)
1376		return NULL;
1377
1378	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1379}
1380
1381void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1382{
1383	return __vmalloc_node(size, gfp_mask, prot, -1,
1384				__builtin_return_address(0));
1385}
1386EXPORT_SYMBOL(__vmalloc);
1387
1388/**
1389 *	vmalloc  -  allocate virtually contiguous memory
1390 *	@size:		allocation size
1391 *	Allocate enough pages to cover @size from the page level
1392 *	allocator and map them into contiguous kernel virtual space.
1393 *
1394 *	For tight control over page level allocator and protection flags
1395 *	use __vmalloc() instead.
1396 */
1397void *vmalloc(unsigned long size)
1398{
1399	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1400					-1, __builtin_return_address(0));
1401}
1402EXPORT_SYMBOL(vmalloc);
1403
1404/**
1405 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1406 * @size: allocation size
1407 *
1408 * The resulting memory area is zeroed so it can be mapped to userspace
1409 * without leaking data.
1410 */
1411void *vmalloc_user(unsigned long size)
1412{
1413	struct vm_struct *area;
1414	void *ret;
1415
1416	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1417			     PAGE_KERNEL, -1, __builtin_return_address(0));
1418	if (ret) {
1419		area = find_vm_area(ret);
1420		area->flags |= VM_USERMAP;
1421	}
1422	return ret;
1423}
1424EXPORT_SYMBOL(vmalloc_user);
1425
1426/**
1427 *	vmalloc_node  -  allocate memory on a specific node
1428 *	@size:		allocation size
1429 *	@node:		numa node
1430 *
1431 *	Allocate enough pages to cover @size from the page level
1432 *	allocator and map them into contiguous kernel virtual space.
1433 *
1434 *	For tight control over page level allocator and protection flags
1435 *	use __vmalloc() instead.
1436 */
1437void *vmalloc_node(unsigned long size, int node)
1438{
1439	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1440					node, __builtin_return_address(0));
1441}
1442EXPORT_SYMBOL(vmalloc_node);
1443
1444#ifndef PAGE_KERNEL_EXEC
1445# define PAGE_KERNEL_EXEC PAGE_KERNEL
1446#endif
1447
1448/**
1449 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1450 *	@size:		allocation size
1451 *
1452 *	Kernel-internal function to allocate enough pages to cover @size
1453 *	the page level allocator and map them into contiguous and
1454 *	executable kernel virtual space.
1455 *
1456 *	For tight control over page level allocator and protection flags
1457 *	use __vmalloc() instead.
1458 */
1459
1460void *vmalloc_exec(unsigned long size)
1461{
1462	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1463			      -1, __builtin_return_address(0));
1464}
1465
1466#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1467#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1468#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1469#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1470#else
1471#define GFP_VMALLOC32 GFP_KERNEL
1472#endif
1473
1474/**
1475 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1476 *	@size:		allocation size
1477 *
1478 *	Allocate enough 32bit PA addressable pages to cover @size from the
1479 *	page level allocator and map them into contiguous kernel virtual space.
1480 */
1481void *vmalloc_32(unsigned long size)
1482{
1483	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1484			      -1, __builtin_return_address(0));
1485}
1486EXPORT_SYMBOL(vmalloc_32);
1487
1488/**
1489 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1490 *	@size:		allocation size
1491 *
1492 * The resulting memory area is 32bit addressable and zeroed so it can be
1493 * mapped to userspace without leaking data.
1494 */
1495void *vmalloc_32_user(unsigned long size)
1496{
1497	struct vm_struct *area;
1498	void *ret;
1499
1500	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1501			     -1, __builtin_return_address(0));
1502	if (ret) {
1503		area = find_vm_area(ret);
1504		area->flags |= VM_USERMAP;
1505	}
1506	return ret;
1507}
1508EXPORT_SYMBOL(vmalloc_32_user);
1509
1510long vread(char *buf, char *addr, unsigned long count)
1511{
1512	struct vm_struct *tmp;
1513	char *vaddr, *buf_start = buf;
1514	unsigned long n;
1515
1516	/* Don't allow overflow */
1517	if ((unsigned long) addr + count < count)
1518		count = -(unsigned long) addr;
1519
1520	read_lock(&vmlist_lock);
1521	for (tmp = vmlist; tmp; tmp = tmp->next) {
1522		vaddr = (char *) tmp->addr;
1523		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1524			continue;
1525		while (addr < vaddr) {
1526			if (count == 0)
1527				goto finished;
1528			*buf = '\0';
1529			buf++;
1530			addr++;
1531			count--;
1532		}
1533		n = vaddr + tmp->size - PAGE_SIZE - addr;
1534		do {
1535			if (count == 0)
1536				goto finished;
1537			*buf = *addr;
1538			buf++;
1539			addr++;
1540			count--;
1541		} while (--n > 0);
1542	}
1543finished:
1544	read_unlock(&vmlist_lock);
1545	return buf - buf_start;
1546}
1547
1548long vwrite(char *buf, char *addr, unsigned long count)
1549{
1550	struct vm_struct *tmp;
1551	char *vaddr, *buf_start = buf;
1552	unsigned long n;
1553
1554	/* Don't allow overflow */
1555	if ((unsigned long) addr + count < count)
1556		count = -(unsigned long) addr;
1557
1558	read_lock(&vmlist_lock);
1559	for (tmp = vmlist; tmp; tmp = tmp->next) {
1560		vaddr = (char *) tmp->addr;
1561		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1562			continue;
1563		while (addr < vaddr) {
1564			if (count == 0)
1565				goto finished;
1566			buf++;
1567			addr++;
1568			count--;
1569		}
1570		n = vaddr + tmp->size - PAGE_SIZE - addr;
1571		do {
1572			if (count == 0)
1573				goto finished;
1574			*addr = *buf;
1575			buf++;
1576			addr++;
1577			count--;
1578		} while (--n > 0);
1579	}
1580finished:
1581	read_unlock(&vmlist_lock);
1582	return buf - buf_start;
1583}
1584
1585/**
1586 *	remap_vmalloc_range  -  map vmalloc pages to userspace
1587 *	@vma:		vma to cover (map full range of vma)
1588 *	@addr:		vmalloc memory
1589 *	@pgoff:		number of pages into addr before first page to map
1590 *
1591 *	Returns:	0 for success, -Exxx on failure
1592 *
1593 *	This function checks that addr is a valid vmalloc'ed area, and
1594 *	that it is big enough to cover the vma. Will return failure if
1595 *	that criteria isn't met.
1596 *
1597 *	Similar to remap_pfn_range() (see mm/memory.c)
1598 */
1599int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1600						unsigned long pgoff)
1601{
1602	struct vm_struct *area;
1603	unsigned long uaddr = vma->vm_start;
1604	unsigned long usize = vma->vm_end - vma->vm_start;
1605
1606	if ((PAGE_SIZE-1) & (unsigned long)addr)
1607		return -EINVAL;
1608
1609	area = find_vm_area(addr);
1610	if (!area)
1611		return -EINVAL;
1612
1613	if (!(area->flags & VM_USERMAP))
1614		return -EINVAL;
1615
1616	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1617		return -EINVAL;
1618
1619	addr += pgoff << PAGE_SHIFT;
1620	do {
1621		struct page *page = vmalloc_to_page(addr);
1622		int ret;
1623
1624		ret = vm_insert_page(vma, uaddr, page);
1625		if (ret)
1626			return ret;
1627
1628		uaddr += PAGE_SIZE;
1629		addr += PAGE_SIZE;
1630		usize -= PAGE_SIZE;
1631	} while (usize > 0);
1632
1633	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1634	vma->vm_flags |= VM_RESERVED;
1635
1636	return 0;
1637}
1638EXPORT_SYMBOL(remap_vmalloc_range);
1639
1640/*
1641 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1642 * have one.
1643 */
1644void  __attribute__((weak)) vmalloc_sync_all(void)
1645{
1646}
1647
1648
1649static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1650{
1651	/* apply_to_page_range() does all the hard work. */
1652	return 0;
1653}
1654
1655/**
1656 *	alloc_vm_area - allocate a range of kernel address space
1657 *	@size:		size of the area
1658 *
1659 *	Returns:	NULL on failure, vm_struct on success
1660 *
1661 *	This function reserves a range of kernel address space, and
1662 *	allocates pagetables to map that range.  No actual mappings
1663 *	are created.  If the kernel address space is not shared
1664 *	between processes, it syncs the pagetable across all
1665 *	processes.
1666 */
1667struct vm_struct *alloc_vm_area(size_t size)
1668{
1669	struct vm_struct *area;
1670
1671	area = get_vm_area_caller(size, VM_IOREMAP,
1672				__builtin_return_address(0));
1673	if (area == NULL)
1674		return NULL;
1675
1676	/*
1677	 * This ensures that page tables are constructed for this region
1678	 * of kernel virtual address space and mapped into init_mm.
1679	 */
1680	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1681				area->size, f, NULL)) {
1682		free_vm_area(area);
1683		return NULL;
1684	}
1685
1686	/* Make sure the pagetables are constructed in process kernel
1687	   mappings */
1688	vmalloc_sync_all();
1689
1690	return area;
1691}
1692EXPORT_SYMBOL_GPL(alloc_vm_area);
1693
1694void free_vm_area(struct vm_struct *area)
1695{
1696	struct vm_struct *ret;
1697	ret = remove_vm_area(area->addr);
1698	BUG_ON(ret != area);
1699	kfree(area);
1700}
1701EXPORT_SYMBOL_GPL(free_vm_area);
1702
1703
1704#ifdef CONFIG_PROC_FS
1705static void *s_start(struct seq_file *m, loff_t *pos)
1706{
1707	loff_t n = *pos;
1708	struct vm_struct *v;
1709
1710	read_lock(&vmlist_lock);
1711	v = vmlist;
1712	while (n > 0 && v) {
1713		n--;
1714		v = v->next;
1715	}
1716	if (!n)
1717		return v;
1718
1719	return NULL;
1720
1721}
1722
1723static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1724{
1725	struct vm_struct *v = p;
1726
1727	++*pos;
1728	return v->next;
1729}
1730
1731static void s_stop(struct seq_file *m, void *p)
1732{
1733	read_unlock(&vmlist_lock);
1734}
1735
1736static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1737{
1738	if (NUMA_BUILD) {
1739		unsigned int nr, *counters = m->private;
1740
1741		if (!counters)
1742			return;
1743
1744		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1745
1746		for (nr = 0; nr < v->nr_pages; nr++)
1747			counters[page_to_nid(v->pages[nr])]++;
1748
1749		for_each_node_state(nr, N_HIGH_MEMORY)
1750			if (counters[nr])
1751				seq_printf(m, " N%u=%u", nr, counters[nr]);
1752	}
1753}
1754
1755static int s_show(struct seq_file *m, void *p)
1756{
1757	struct vm_struct *v = p;
1758
1759	seq_printf(m, "0x%p-0x%p %7ld",
1760		v->addr, v->addr + v->size, v->size);
1761
1762	if (v->caller) {
1763		char buff[KSYM_SYMBOL_LEN];
1764
1765		seq_putc(m, ' ');
1766		sprint_symbol(buff, (unsigned long)v->caller);
1767		seq_puts(m, buff);
1768	}
1769
1770	if (v->nr_pages)
1771		seq_printf(m, " pages=%d", v->nr_pages);
1772
1773	if (v->phys_addr)
1774		seq_printf(m, " phys=%lx", v->phys_addr);
1775
1776	if (v->flags & VM_IOREMAP)
1777		seq_printf(m, " ioremap");
1778
1779	if (v->flags & VM_ALLOC)
1780		seq_printf(m, " vmalloc");
1781
1782	if (v->flags & VM_MAP)
1783		seq_printf(m, " vmap");
1784
1785	if (v->flags & VM_USERMAP)
1786		seq_printf(m, " user");
1787
1788	if (v->flags & VM_VPAGES)
1789		seq_printf(m, " vpages");
1790
1791	show_numa_info(m, v);
1792	seq_putc(m, '\n');
1793	return 0;
1794}
1795
1796static const struct seq_operations vmalloc_op = {
1797	.start = s_start,
1798	.next = s_next,
1799	.stop = s_stop,
1800	.show = s_show,
1801};
1802
1803static int vmalloc_open(struct inode *inode, struct file *file)
1804{
1805	unsigned int *ptr = NULL;
1806	int ret;
1807
1808	if (NUMA_BUILD)
1809		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1810	ret = seq_open(file, &vmalloc_op);
1811	if (!ret) {
1812		struct seq_file *m = file->private_data;
1813		m->private = ptr;
1814	} else
1815		kfree(ptr);
1816	return ret;
1817}
1818
1819static const struct file_operations proc_vmalloc_operations = {
1820	.open		= vmalloc_open,
1821	.read		= seq_read,
1822	.llseek		= seq_lseek,
1823	.release	= seq_release_private,
1824};
1825
1826static int __init proc_vmalloc_init(void)
1827{
1828	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1829	return 0;
1830}
1831module_init(proc_vmalloc_init);
1832#endif
1833
1834