vmalloc.c revision 822c18f2e38cbc775792ab65ace4f9198678dec9
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/mutex.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/debugobjects.h>
22#include <linux/kallsyms.h>
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
27#include <linux/bootmem.h>
28
29#include <asm/atomic.h>
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32
33
34/*** Page table manipulation functions ***/
35
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38	pte_t *pte;
39
40	pte = pte_offset_kernel(pmd, addr);
41	do {
42		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44	} while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48{
49	pmd_t *pmd;
50	unsigned long next;
51
52	pmd = pmd_offset(pud, addr);
53	do {
54		next = pmd_addr_end(addr, end);
55		if (pmd_none_or_clear_bad(pmd))
56			continue;
57		vunmap_pte_range(pmd, addr, next);
58	} while (pmd++, addr = next, addr != end);
59}
60
61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62{
63	pud_t *pud;
64	unsigned long next;
65
66	pud = pud_offset(pgd, addr);
67	do {
68		next = pud_addr_end(addr, end);
69		if (pud_none_or_clear_bad(pud))
70			continue;
71		vunmap_pmd_range(pud, addr, next);
72	} while (pud++, addr = next, addr != end);
73}
74
75static void vunmap_page_range(unsigned long addr, unsigned long end)
76{
77	pgd_t *pgd;
78	unsigned long next;
79
80	BUG_ON(addr >= end);
81	pgd = pgd_offset_k(addr);
82	do {
83		next = pgd_addr_end(addr, end);
84		if (pgd_none_or_clear_bad(pgd))
85			continue;
86		vunmap_pud_range(pgd, addr, next);
87	} while (pgd++, addr = next, addr != end);
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92{
93	pte_t *pte;
94
95	/*
96	 * nr is a running index into the array which helps higher level
97	 * callers keep track of where we're up to.
98	 */
99
100	pte = pte_alloc_kernel(pmd, addr);
101	if (!pte)
102		return -ENOMEM;
103	do {
104		struct page *page = pages[*nr];
105
106		if (WARN_ON(!pte_none(*pte)))
107			return -EBUSY;
108		if (WARN_ON(!page))
109			return -ENOMEM;
110		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111		(*nr)++;
112	} while (pte++, addr += PAGE_SIZE, addr != end);
113	return 0;
114}
115
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118{
119	pmd_t *pmd;
120	unsigned long next;
121
122	pmd = pmd_alloc(&init_mm, pud, addr);
123	if (!pmd)
124		return -ENOMEM;
125	do {
126		next = pmd_addr_end(addr, end);
127		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128			return -ENOMEM;
129	} while (pmd++, addr = next, addr != end);
130	return 0;
131}
132
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135{
136	pud_t *pud;
137	unsigned long next;
138
139	pud = pud_alloc(&init_mm, pgd, addr);
140	if (!pud)
141		return -ENOMEM;
142	do {
143		next = pud_addr_end(addr, end);
144		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145			return -ENOMEM;
146	} while (pud++, addr = next, addr != end);
147	return 0;
148}
149
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
156static int vmap_page_range(unsigned long start, unsigned long end,
157				pgprot_t prot, struct page **pages)
158{
159	pgd_t *pgd;
160	unsigned long next;
161	unsigned long addr = start;
162	int err = 0;
163	int nr = 0;
164
165	BUG_ON(addr >= end);
166	pgd = pgd_offset_k(addr);
167	do {
168		next = pgd_addr_end(addr, end);
169		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170		if (err)
171			break;
172	} while (pgd++, addr = next, addr != end);
173	flush_cache_vmap(start, end);
174
175	if (unlikely(err))
176		return err;
177	return nr;
178}
179
180static inline int is_vmalloc_or_module_addr(const void *x)
181{
182	/*
183	 * ARM, x86-64 and sparc64 put modules in a special place,
184	 * and fall back on vmalloc() if that fails. Others
185	 * just put it in the vmalloc space.
186	 */
187#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
188	unsigned long addr = (unsigned long)x;
189	if (addr >= MODULES_VADDR && addr < MODULES_END)
190		return 1;
191#endif
192	return is_vmalloc_addr(x);
193}
194
195/*
196 * Walk a vmap address to the struct page it maps.
197 */
198struct page *vmalloc_to_page(const void *vmalloc_addr)
199{
200	unsigned long addr = (unsigned long) vmalloc_addr;
201	struct page *page = NULL;
202	pgd_t *pgd = pgd_offset_k(addr);
203
204	/*
205	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
206	 * architectures that do not vmalloc module space
207	 */
208	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
209
210	if (!pgd_none(*pgd)) {
211		pud_t *pud = pud_offset(pgd, addr);
212		if (!pud_none(*pud)) {
213			pmd_t *pmd = pmd_offset(pud, addr);
214			if (!pmd_none(*pmd)) {
215				pte_t *ptep, pte;
216
217				ptep = pte_offset_map(pmd, addr);
218				pte = *ptep;
219				if (pte_present(pte))
220					page = pte_page(pte);
221				pte_unmap(ptep);
222			}
223		}
224	}
225	return page;
226}
227EXPORT_SYMBOL(vmalloc_to_page);
228
229/*
230 * Map a vmalloc()-space virtual address to the physical page frame number.
231 */
232unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
233{
234	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
235}
236EXPORT_SYMBOL(vmalloc_to_pfn);
237
238
239/*** Global kva allocator ***/
240
241#define VM_LAZY_FREE	0x01
242#define VM_LAZY_FREEING	0x02
243#define VM_VM_AREA	0x04
244
245struct vmap_area {
246	unsigned long va_start;
247	unsigned long va_end;
248	unsigned long flags;
249	struct rb_node rb_node;		/* address sorted rbtree */
250	struct list_head list;		/* address sorted list */
251	struct list_head purge_list;	/* "lazy purge" list */
252	void *private;
253	struct rcu_head rcu_head;
254};
255
256static DEFINE_SPINLOCK(vmap_area_lock);
257static struct rb_root vmap_area_root = RB_ROOT;
258static LIST_HEAD(vmap_area_list);
259
260static struct vmap_area *__find_vmap_area(unsigned long addr)
261{
262	struct rb_node *n = vmap_area_root.rb_node;
263
264	while (n) {
265		struct vmap_area *va;
266
267		va = rb_entry(n, struct vmap_area, rb_node);
268		if (addr < va->va_start)
269			n = n->rb_left;
270		else if (addr > va->va_start)
271			n = n->rb_right;
272		else
273			return va;
274	}
275
276	return NULL;
277}
278
279static void __insert_vmap_area(struct vmap_area *va)
280{
281	struct rb_node **p = &vmap_area_root.rb_node;
282	struct rb_node *parent = NULL;
283	struct rb_node *tmp;
284
285	while (*p) {
286		struct vmap_area *tmp;
287
288		parent = *p;
289		tmp = rb_entry(parent, struct vmap_area, rb_node);
290		if (va->va_start < tmp->va_end)
291			p = &(*p)->rb_left;
292		else if (va->va_end > tmp->va_start)
293			p = &(*p)->rb_right;
294		else
295			BUG();
296	}
297
298	rb_link_node(&va->rb_node, parent, p);
299	rb_insert_color(&va->rb_node, &vmap_area_root);
300
301	/* address-sort this list so it is usable like the vmlist */
302	tmp = rb_prev(&va->rb_node);
303	if (tmp) {
304		struct vmap_area *prev;
305		prev = rb_entry(tmp, struct vmap_area, rb_node);
306		list_add_rcu(&va->list, &prev->list);
307	} else
308		list_add_rcu(&va->list, &vmap_area_list);
309}
310
311static void purge_vmap_area_lazy(void);
312
313/*
314 * Allocate a region of KVA of the specified size and alignment, within the
315 * vstart and vend.
316 */
317static struct vmap_area *alloc_vmap_area(unsigned long size,
318				unsigned long align,
319				unsigned long vstart, unsigned long vend,
320				int node, gfp_t gfp_mask)
321{
322	struct vmap_area *va;
323	struct rb_node *n;
324	unsigned long addr;
325	int purged = 0;
326
327	BUG_ON(size & ~PAGE_MASK);
328
329	va = kmalloc_node(sizeof(struct vmap_area),
330			gfp_mask & GFP_RECLAIM_MASK, node);
331	if (unlikely(!va))
332		return ERR_PTR(-ENOMEM);
333
334retry:
335	addr = ALIGN(vstart, align);
336
337	spin_lock(&vmap_area_lock);
338	/* XXX: could have a last_hole cache */
339	n = vmap_area_root.rb_node;
340	if (n) {
341		struct vmap_area *first = NULL;
342
343		do {
344			struct vmap_area *tmp;
345			tmp = rb_entry(n, struct vmap_area, rb_node);
346			if (tmp->va_end >= addr) {
347				if (!first && tmp->va_start < addr + size)
348					first = tmp;
349				n = n->rb_left;
350			} else {
351				first = tmp;
352				n = n->rb_right;
353			}
354		} while (n);
355
356		if (!first)
357			goto found;
358
359		if (first->va_end < addr) {
360			n = rb_next(&first->rb_node);
361			if (n)
362				first = rb_entry(n, struct vmap_area, rb_node);
363			else
364				goto found;
365		}
366
367		while (addr + size > first->va_start && addr + size <= vend) {
368			addr = ALIGN(first->va_end + PAGE_SIZE, align);
369
370			n = rb_next(&first->rb_node);
371			if (n)
372				first = rb_entry(n, struct vmap_area, rb_node);
373			else
374				goto found;
375		}
376	}
377found:
378	if (addr + size > vend) {
379		spin_unlock(&vmap_area_lock);
380		if (!purged) {
381			purge_vmap_area_lazy();
382			purged = 1;
383			goto retry;
384		}
385		if (printk_ratelimit())
386			printk(KERN_WARNING
387				"vmap allocation for size %lu failed: "
388				"use vmalloc=<size> to increase size.\n", size);
389		return ERR_PTR(-EBUSY);
390	}
391
392	BUG_ON(addr & (align-1));
393
394	va->va_start = addr;
395	va->va_end = addr + size;
396	va->flags = 0;
397	__insert_vmap_area(va);
398	spin_unlock(&vmap_area_lock);
399
400	return va;
401}
402
403static void rcu_free_va(struct rcu_head *head)
404{
405	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
406
407	kfree(va);
408}
409
410static void __free_vmap_area(struct vmap_area *va)
411{
412	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
413	rb_erase(&va->rb_node, &vmap_area_root);
414	RB_CLEAR_NODE(&va->rb_node);
415	list_del_rcu(&va->list);
416
417	call_rcu(&va->rcu_head, rcu_free_va);
418}
419
420/*
421 * Free a region of KVA allocated by alloc_vmap_area
422 */
423static void free_vmap_area(struct vmap_area *va)
424{
425	spin_lock(&vmap_area_lock);
426	__free_vmap_area(va);
427	spin_unlock(&vmap_area_lock);
428}
429
430/*
431 * Clear the pagetable entries of a given vmap_area
432 */
433static void unmap_vmap_area(struct vmap_area *va)
434{
435	vunmap_page_range(va->va_start, va->va_end);
436}
437
438static void vmap_debug_free_range(unsigned long start, unsigned long end)
439{
440	/*
441	 * Unmap page tables and force a TLB flush immediately if
442	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
443	 * bugs similarly to those in linear kernel virtual address
444	 * space after a page has been freed.
445	 *
446	 * All the lazy freeing logic is still retained, in order to
447	 * minimise intrusiveness of this debugging feature.
448	 *
449	 * This is going to be *slow* (linear kernel virtual address
450	 * debugging doesn't do a broadcast TLB flush so it is a lot
451	 * faster).
452	 */
453#ifdef CONFIG_DEBUG_PAGEALLOC
454	vunmap_page_range(start, end);
455	flush_tlb_kernel_range(start, end);
456#endif
457}
458
459/*
460 * lazy_max_pages is the maximum amount of virtual address space we gather up
461 * before attempting to purge with a TLB flush.
462 *
463 * There is a tradeoff here: a larger number will cover more kernel page tables
464 * and take slightly longer to purge, but it will linearly reduce the number of
465 * global TLB flushes that must be performed. It would seem natural to scale
466 * this number up linearly with the number of CPUs (because vmapping activity
467 * could also scale linearly with the number of CPUs), however it is likely
468 * that in practice, workloads might be constrained in other ways that mean
469 * vmap activity will not scale linearly with CPUs. Also, I want to be
470 * conservative and not introduce a big latency on huge systems, so go with
471 * a less aggressive log scale. It will still be an improvement over the old
472 * code, and it will be simple to change the scale factor if we find that it
473 * becomes a problem on bigger systems.
474 */
475static unsigned long lazy_max_pages(void)
476{
477	unsigned int log;
478
479	log = fls(num_online_cpus());
480
481	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
482}
483
484static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
485
486/*
487 * Purges all lazily-freed vmap areas.
488 *
489 * If sync is 0 then don't purge if there is already a purge in progress.
490 * If force_flush is 1, then flush kernel TLBs between *start and *end even
491 * if we found no lazy vmap areas to unmap (callers can use this to optimise
492 * their own TLB flushing).
493 * Returns with *start = min(*start, lowest purged address)
494 *              *end = max(*end, highest purged address)
495 */
496static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
497					int sync, int force_flush)
498{
499	static DEFINE_MUTEX(purge_lock);
500	LIST_HEAD(valist);
501	struct vmap_area *va;
502	int nr = 0;
503
504	/*
505	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
506	 * should not expect such behaviour. This just simplifies locking for
507	 * the case that isn't actually used at the moment anyway.
508	 */
509	if (!sync && !force_flush) {
510		if (!mutex_trylock(&purge_lock))
511			return;
512	} else
513		mutex_lock(&purge_lock);
514
515	rcu_read_lock();
516	list_for_each_entry_rcu(va, &vmap_area_list, list) {
517		if (va->flags & VM_LAZY_FREE) {
518			if (va->va_start < *start)
519				*start = va->va_start;
520			if (va->va_end > *end)
521				*end = va->va_end;
522			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
523			unmap_vmap_area(va);
524			list_add_tail(&va->purge_list, &valist);
525			va->flags |= VM_LAZY_FREEING;
526			va->flags &= ~VM_LAZY_FREE;
527		}
528	}
529	rcu_read_unlock();
530
531	if (nr) {
532		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
533		atomic_sub(nr, &vmap_lazy_nr);
534	}
535
536	if (nr || force_flush)
537		flush_tlb_kernel_range(*start, *end);
538
539	if (nr) {
540		spin_lock(&vmap_area_lock);
541		list_for_each_entry(va, &valist, purge_list)
542			__free_vmap_area(va);
543		spin_unlock(&vmap_area_lock);
544	}
545	mutex_unlock(&purge_lock);
546}
547
548/*
549 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
550 * is already purging.
551 */
552static void try_purge_vmap_area_lazy(void)
553{
554	unsigned long start = ULONG_MAX, end = 0;
555
556	__purge_vmap_area_lazy(&start, &end, 0, 0);
557}
558
559/*
560 * Kick off a purge of the outstanding lazy areas.
561 */
562static void purge_vmap_area_lazy(void)
563{
564	unsigned long start = ULONG_MAX, end = 0;
565
566	__purge_vmap_area_lazy(&start, &end, 1, 0);
567}
568
569/*
570 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
571 * called for the correct range previously.
572 */
573static void free_unmap_vmap_area_noflush(struct vmap_area *va)
574{
575	va->flags |= VM_LAZY_FREE;
576	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
577	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
578		try_purge_vmap_area_lazy();
579}
580
581/*
582 * Free and unmap a vmap area
583 */
584static void free_unmap_vmap_area(struct vmap_area *va)
585{
586	flush_cache_vunmap(va->va_start, va->va_end);
587	free_unmap_vmap_area_noflush(va);
588}
589
590static struct vmap_area *find_vmap_area(unsigned long addr)
591{
592	struct vmap_area *va;
593
594	spin_lock(&vmap_area_lock);
595	va = __find_vmap_area(addr);
596	spin_unlock(&vmap_area_lock);
597
598	return va;
599}
600
601static void free_unmap_vmap_area_addr(unsigned long addr)
602{
603	struct vmap_area *va;
604
605	va = find_vmap_area(addr);
606	BUG_ON(!va);
607	free_unmap_vmap_area(va);
608}
609
610
611/*** Per cpu kva allocator ***/
612
613/*
614 * vmap space is limited especially on 32 bit architectures. Ensure there is
615 * room for at least 16 percpu vmap blocks per CPU.
616 */
617/*
618 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
619 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
620 * instead (we just need a rough idea)
621 */
622#if BITS_PER_LONG == 32
623#define VMALLOC_SPACE		(128UL*1024*1024)
624#else
625#define VMALLOC_SPACE		(128UL*1024*1024*1024)
626#endif
627
628#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
629#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
630#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
631#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
632#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
633#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
634#define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
635					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
636						VMALLOC_PAGES / NR_CPUS / 16))
637
638#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
639
640static bool vmap_initialized __read_mostly = false;
641
642struct vmap_block_queue {
643	spinlock_t lock;
644	struct list_head free;
645	struct list_head dirty;
646	unsigned int nr_dirty;
647};
648
649struct vmap_block {
650	spinlock_t lock;
651	struct vmap_area *va;
652	struct vmap_block_queue *vbq;
653	unsigned long free, dirty;
654	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
655	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
656	union {
657		struct {
658			struct list_head free_list;
659			struct list_head dirty_list;
660		};
661		struct rcu_head rcu_head;
662	};
663};
664
665/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
666static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
667
668/*
669 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
670 * in the free path. Could get rid of this if we change the API to return a
671 * "cookie" from alloc, to be passed to free. But no big deal yet.
672 */
673static DEFINE_SPINLOCK(vmap_block_tree_lock);
674static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
675
676/*
677 * We should probably have a fallback mechanism to allocate virtual memory
678 * out of partially filled vmap blocks. However vmap block sizing should be
679 * fairly reasonable according to the vmalloc size, so it shouldn't be a
680 * big problem.
681 */
682
683static unsigned long addr_to_vb_idx(unsigned long addr)
684{
685	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
686	addr /= VMAP_BLOCK_SIZE;
687	return addr;
688}
689
690static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
691{
692	struct vmap_block_queue *vbq;
693	struct vmap_block *vb;
694	struct vmap_area *va;
695	unsigned long vb_idx;
696	int node, err;
697
698	node = numa_node_id();
699
700	vb = kmalloc_node(sizeof(struct vmap_block),
701			gfp_mask & GFP_RECLAIM_MASK, node);
702	if (unlikely(!vb))
703		return ERR_PTR(-ENOMEM);
704
705	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
706					VMALLOC_START, VMALLOC_END,
707					node, gfp_mask);
708	if (unlikely(IS_ERR(va))) {
709		kfree(vb);
710		return ERR_PTR(PTR_ERR(va));
711	}
712
713	err = radix_tree_preload(gfp_mask);
714	if (unlikely(err)) {
715		kfree(vb);
716		free_vmap_area(va);
717		return ERR_PTR(err);
718	}
719
720	spin_lock_init(&vb->lock);
721	vb->va = va;
722	vb->free = VMAP_BBMAP_BITS;
723	vb->dirty = 0;
724	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
725	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
726	INIT_LIST_HEAD(&vb->free_list);
727	INIT_LIST_HEAD(&vb->dirty_list);
728
729	vb_idx = addr_to_vb_idx(va->va_start);
730	spin_lock(&vmap_block_tree_lock);
731	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
732	spin_unlock(&vmap_block_tree_lock);
733	BUG_ON(err);
734	radix_tree_preload_end();
735
736	vbq = &get_cpu_var(vmap_block_queue);
737	vb->vbq = vbq;
738	spin_lock(&vbq->lock);
739	list_add(&vb->free_list, &vbq->free);
740	spin_unlock(&vbq->lock);
741	put_cpu_var(vmap_cpu_blocks);
742
743	return vb;
744}
745
746static void rcu_free_vb(struct rcu_head *head)
747{
748	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
749
750	kfree(vb);
751}
752
753static void free_vmap_block(struct vmap_block *vb)
754{
755	struct vmap_block *tmp;
756	unsigned long vb_idx;
757
758	spin_lock(&vb->vbq->lock);
759	if (!list_empty(&vb->free_list))
760		list_del(&vb->free_list);
761	if (!list_empty(&vb->dirty_list))
762		list_del(&vb->dirty_list);
763	spin_unlock(&vb->vbq->lock);
764
765	vb_idx = addr_to_vb_idx(vb->va->va_start);
766	spin_lock(&vmap_block_tree_lock);
767	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
768	spin_unlock(&vmap_block_tree_lock);
769	BUG_ON(tmp != vb);
770
771	free_unmap_vmap_area_noflush(vb->va);
772	call_rcu(&vb->rcu_head, rcu_free_vb);
773}
774
775static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
776{
777	struct vmap_block_queue *vbq;
778	struct vmap_block *vb;
779	unsigned long addr = 0;
780	unsigned int order;
781
782	BUG_ON(size & ~PAGE_MASK);
783	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
784	order = get_order(size);
785
786again:
787	rcu_read_lock();
788	vbq = &get_cpu_var(vmap_block_queue);
789	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
790		int i;
791
792		spin_lock(&vb->lock);
793		i = bitmap_find_free_region(vb->alloc_map,
794						VMAP_BBMAP_BITS, order);
795
796		if (i >= 0) {
797			addr = vb->va->va_start + (i << PAGE_SHIFT);
798			BUG_ON(addr_to_vb_idx(addr) !=
799					addr_to_vb_idx(vb->va->va_start));
800			vb->free -= 1UL << order;
801			if (vb->free == 0) {
802				spin_lock(&vbq->lock);
803				list_del_init(&vb->free_list);
804				spin_unlock(&vbq->lock);
805			}
806			spin_unlock(&vb->lock);
807			break;
808		}
809		spin_unlock(&vb->lock);
810	}
811	put_cpu_var(vmap_cpu_blocks);
812	rcu_read_unlock();
813
814	if (!addr) {
815		vb = new_vmap_block(gfp_mask);
816		if (IS_ERR(vb))
817			return vb;
818		goto again;
819	}
820
821	return (void *)addr;
822}
823
824static void vb_free(const void *addr, unsigned long size)
825{
826	unsigned long offset;
827	unsigned long vb_idx;
828	unsigned int order;
829	struct vmap_block *vb;
830
831	BUG_ON(size & ~PAGE_MASK);
832	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
833
834	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
835
836	order = get_order(size);
837
838	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
839
840	vb_idx = addr_to_vb_idx((unsigned long)addr);
841	rcu_read_lock();
842	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
843	rcu_read_unlock();
844	BUG_ON(!vb);
845
846	spin_lock(&vb->lock);
847	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
848	if (!vb->dirty) {
849		spin_lock(&vb->vbq->lock);
850		list_add(&vb->dirty_list, &vb->vbq->dirty);
851		spin_unlock(&vb->vbq->lock);
852	}
853	vb->dirty += 1UL << order;
854	if (vb->dirty == VMAP_BBMAP_BITS) {
855		BUG_ON(vb->free || !list_empty(&vb->free_list));
856		spin_unlock(&vb->lock);
857		free_vmap_block(vb);
858	} else
859		spin_unlock(&vb->lock);
860}
861
862/**
863 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
864 *
865 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
866 * to amortize TLB flushing overheads. What this means is that any page you
867 * have now, may, in a former life, have been mapped into kernel virtual
868 * address by the vmap layer and so there might be some CPUs with TLB entries
869 * still referencing that page (additional to the regular 1:1 kernel mapping).
870 *
871 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
872 * be sure that none of the pages we have control over will have any aliases
873 * from the vmap layer.
874 */
875void vm_unmap_aliases(void)
876{
877	unsigned long start = ULONG_MAX, end = 0;
878	int cpu;
879	int flush = 0;
880
881	if (unlikely(!vmap_initialized))
882		return;
883
884	for_each_possible_cpu(cpu) {
885		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
886		struct vmap_block *vb;
887
888		rcu_read_lock();
889		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
890			int i;
891
892			spin_lock(&vb->lock);
893			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
894			while (i < VMAP_BBMAP_BITS) {
895				unsigned long s, e;
896				int j;
897				j = find_next_zero_bit(vb->dirty_map,
898					VMAP_BBMAP_BITS, i);
899
900				s = vb->va->va_start + (i << PAGE_SHIFT);
901				e = vb->va->va_start + (j << PAGE_SHIFT);
902				vunmap_page_range(s, e);
903				flush = 1;
904
905				if (s < start)
906					start = s;
907				if (e > end)
908					end = e;
909
910				i = j;
911				i = find_next_bit(vb->dirty_map,
912							VMAP_BBMAP_BITS, i);
913			}
914			spin_unlock(&vb->lock);
915		}
916		rcu_read_unlock();
917	}
918
919	__purge_vmap_area_lazy(&start, &end, 1, flush);
920}
921EXPORT_SYMBOL_GPL(vm_unmap_aliases);
922
923/**
924 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
925 * @mem: the pointer returned by vm_map_ram
926 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
927 */
928void vm_unmap_ram(const void *mem, unsigned int count)
929{
930	unsigned long size = count << PAGE_SHIFT;
931	unsigned long addr = (unsigned long)mem;
932
933	BUG_ON(!addr);
934	BUG_ON(addr < VMALLOC_START);
935	BUG_ON(addr > VMALLOC_END);
936	BUG_ON(addr & (PAGE_SIZE-1));
937
938	debug_check_no_locks_freed(mem, size);
939	vmap_debug_free_range(addr, addr+size);
940
941	if (likely(count <= VMAP_MAX_ALLOC))
942		vb_free(mem, size);
943	else
944		free_unmap_vmap_area_addr(addr);
945}
946EXPORT_SYMBOL(vm_unmap_ram);
947
948/**
949 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
950 * @pages: an array of pointers to the pages to be mapped
951 * @count: number of pages
952 * @node: prefer to allocate data structures on this node
953 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
954 *
955 * Returns: a pointer to the address that has been mapped, or %NULL on failure
956 */
957void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
958{
959	unsigned long size = count << PAGE_SHIFT;
960	unsigned long addr;
961	void *mem;
962
963	if (likely(count <= VMAP_MAX_ALLOC)) {
964		mem = vb_alloc(size, GFP_KERNEL);
965		if (IS_ERR(mem))
966			return NULL;
967		addr = (unsigned long)mem;
968	} else {
969		struct vmap_area *va;
970		va = alloc_vmap_area(size, PAGE_SIZE,
971				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
972		if (IS_ERR(va))
973			return NULL;
974
975		addr = va->va_start;
976		mem = (void *)addr;
977	}
978	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
979		vm_unmap_ram(mem, count);
980		return NULL;
981	}
982	return mem;
983}
984EXPORT_SYMBOL(vm_map_ram);
985
986void __init vmalloc_init(void)
987{
988	struct vmap_area *va;
989	struct vm_struct *tmp;
990	int i;
991
992	for_each_possible_cpu(i) {
993		struct vmap_block_queue *vbq;
994
995		vbq = &per_cpu(vmap_block_queue, i);
996		spin_lock_init(&vbq->lock);
997		INIT_LIST_HEAD(&vbq->free);
998		INIT_LIST_HEAD(&vbq->dirty);
999		vbq->nr_dirty = 0;
1000	}
1001
1002	/* Import existing vmlist entries. */
1003	for (tmp = vmlist; tmp; tmp = tmp->next) {
1004		va = alloc_bootmem(sizeof(struct vmap_area));
1005		va->flags = tmp->flags | VM_VM_AREA;
1006		va->va_start = (unsigned long)tmp->addr;
1007		va->va_end = va->va_start + tmp->size;
1008		__insert_vmap_area(va);
1009	}
1010	vmap_initialized = true;
1011}
1012
1013void unmap_kernel_range(unsigned long addr, unsigned long size)
1014{
1015	unsigned long end = addr + size;
1016	vunmap_page_range(addr, end);
1017	flush_tlb_kernel_range(addr, end);
1018}
1019
1020int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1021{
1022	unsigned long addr = (unsigned long)area->addr;
1023	unsigned long end = addr + area->size - PAGE_SIZE;
1024	int err;
1025
1026	err = vmap_page_range(addr, end, prot, *pages);
1027	if (err > 0) {
1028		*pages += err;
1029		err = 0;
1030	}
1031
1032	return err;
1033}
1034EXPORT_SYMBOL_GPL(map_vm_area);
1035
1036/*** Old vmalloc interfaces ***/
1037DEFINE_RWLOCK(vmlist_lock);
1038struct vm_struct *vmlist;
1039
1040static struct vm_struct *__get_vm_area_node(unsigned long size,
1041		unsigned long flags, unsigned long start, unsigned long end,
1042		int node, gfp_t gfp_mask, void *caller)
1043{
1044	static struct vmap_area *va;
1045	struct vm_struct *area;
1046	struct vm_struct *tmp, **p;
1047	unsigned long align = 1;
1048
1049	BUG_ON(in_interrupt());
1050	if (flags & VM_IOREMAP) {
1051		int bit = fls(size);
1052
1053		if (bit > IOREMAP_MAX_ORDER)
1054			bit = IOREMAP_MAX_ORDER;
1055		else if (bit < PAGE_SHIFT)
1056			bit = PAGE_SHIFT;
1057
1058		align = 1ul << bit;
1059	}
1060
1061	size = PAGE_ALIGN(size);
1062	if (unlikely(!size))
1063		return NULL;
1064
1065	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1066	if (unlikely(!area))
1067		return NULL;
1068
1069	/*
1070	 * We always allocate a guard page.
1071	 */
1072	size += PAGE_SIZE;
1073
1074	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1075	if (IS_ERR(va)) {
1076		kfree(area);
1077		return NULL;
1078	}
1079
1080	area->flags = flags;
1081	area->addr = (void *)va->va_start;
1082	area->size = size;
1083	area->pages = NULL;
1084	area->nr_pages = 0;
1085	area->phys_addr = 0;
1086	area->caller = caller;
1087	va->private = area;
1088	va->flags |= VM_VM_AREA;
1089
1090	write_lock(&vmlist_lock);
1091	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1092		if (tmp->addr >= area->addr)
1093			break;
1094	}
1095	area->next = *p;
1096	*p = area;
1097	write_unlock(&vmlist_lock);
1098
1099	return area;
1100}
1101
1102struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1103				unsigned long start, unsigned long end)
1104{
1105	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1106						__builtin_return_address(0));
1107}
1108EXPORT_SYMBOL_GPL(__get_vm_area);
1109
1110/**
1111 *	get_vm_area  -  reserve a contiguous kernel virtual area
1112 *	@size:		size of the area
1113 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1114 *
1115 *	Search an area of @size in the kernel virtual mapping area,
1116 *	and reserved it for out purposes.  Returns the area descriptor
1117 *	on success or %NULL on failure.
1118 */
1119struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1120{
1121	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1122				-1, GFP_KERNEL, __builtin_return_address(0));
1123}
1124
1125struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1126				void *caller)
1127{
1128	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1129						-1, GFP_KERNEL, caller);
1130}
1131
1132struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1133				   int node, gfp_t gfp_mask)
1134{
1135	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1136				  gfp_mask, __builtin_return_address(0));
1137}
1138
1139static struct vm_struct *find_vm_area(const void *addr)
1140{
1141	struct vmap_area *va;
1142
1143	va = find_vmap_area((unsigned long)addr);
1144	if (va && va->flags & VM_VM_AREA)
1145		return va->private;
1146
1147	return NULL;
1148}
1149
1150/**
1151 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1152 *	@addr:		base address
1153 *
1154 *	Search for the kernel VM area starting at @addr, and remove it.
1155 *	This function returns the found VM area, but using it is NOT safe
1156 *	on SMP machines, except for its size or flags.
1157 */
1158struct vm_struct *remove_vm_area(const void *addr)
1159{
1160	struct vmap_area *va;
1161
1162	va = find_vmap_area((unsigned long)addr);
1163	if (va && va->flags & VM_VM_AREA) {
1164		struct vm_struct *vm = va->private;
1165		struct vm_struct *tmp, **p;
1166
1167		vmap_debug_free_range(va->va_start, va->va_end);
1168		free_unmap_vmap_area(va);
1169		vm->size -= PAGE_SIZE;
1170
1171		write_lock(&vmlist_lock);
1172		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1173			;
1174		*p = tmp->next;
1175		write_unlock(&vmlist_lock);
1176
1177		return vm;
1178	}
1179	return NULL;
1180}
1181
1182static void __vunmap(const void *addr, int deallocate_pages)
1183{
1184	struct vm_struct *area;
1185
1186	if (!addr)
1187		return;
1188
1189	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1190		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1191		return;
1192	}
1193
1194	area = remove_vm_area(addr);
1195	if (unlikely(!area)) {
1196		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1197				addr);
1198		return;
1199	}
1200
1201	debug_check_no_locks_freed(addr, area->size);
1202	debug_check_no_obj_freed(addr, area->size);
1203
1204	if (deallocate_pages) {
1205		int i;
1206
1207		for (i = 0; i < area->nr_pages; i++) {
1208			struct page *page = area->pages[i];
1209
1210			BUG_ON(!page);
1211			__free_page(page);
1212		}
1213
1214		if (area->flags & VM_VPAGES)
1215			vfree(area->pages);
1216		else
1217			kfree(area->pages);
1218	}
1219
1220	kfree(area);
1221	return;
1222}
1223
1224/**
1225 *	vfree  -  release memory allocated by vmalloc()
1226 *	@addr:		memory base address
1227 *
1228 *	Free the virtually continuous memory area starting at @addr, as
1229 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1230 *	NULL, no operation is performed.
1231 *
1232 *	Must not be called in interrupt context.
1233 */
1234void vfree(const void *addr)
1235{
1236	BUG_ON(in_interrupt());
1237	__vunmap(addr, 1);
1238}
1239EXPORT_SYMBOL(vfree);
1240
1241/**
1242 *	vunmap  -  release virtual mapping obtained by vmap()
1243 *	@addr:		memory base address
1244 *
1245 *	Free the virtually contiguous memory area starting at @addr,
1246 *	which was created from the page array passed to vmap().
1247 *
1248 *	Must not be called in interrupt context.
1249 */
1250void vunmap(const void *addr)
1251{
1252	BUG_ON(in_interrupt());
1253	__vunmap(addr, 0);
1254}
1255EXPORT_SYMBOL(vunmap);
1256
1257/**
1258 *	vmap  -  map an array of pages into virtually contiguous space
1259 *	@pages:		array of page pointers
1260 *	@count:		number of pages to map
1261 *	@flags:		vm_area->flags
1262 *	@prot:		page protection for the mapping
1263 *
1264 *	Maps @count pages from @pages into contiguous kernel virtual
1265 *	space.
1266 */
1267void *vmap(struct page **pages, unsigned int count,
1268		unsigned long flags, pgprot_t prot)
1269{
1270	struct vm_struct *area;
1271
1272	if (count > num_physpages)
1273		return NULL;
1274
1275	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1276					__builtin_return_address(0));
1277	if (!area)
1278		return NULL;
1279
1280	if (map_vm_area(area, prot, &pages)) {
1281		vunmap(area->addr);
1282		return NULL;
1283	}
1284
1285	return area->addr;
1286}
1287EXPORT_SYMBOL(vmap);
1288
1289static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1290			    int node, void *caller);
1291static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1292				 pgprot_t prot, int node, void *caller)
1293{
1294	struct page **pages;
1295	unsigned int nr_pages, array_size, i;
1296
1297	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1298	array_size = (nr_pages * sizeof(struct page *));
1299
1300	area->nr_pages = nr_pages;
1301	/* Please note that the recursion is strictly bounded. */
1302	if (array_size > PAGE_SIZE) {
1303		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1304				PAGE_KERNEL, node, caller);
1305		area->flags |= VM_VPAGES;
1306	} else {
1307		pages = kmalloc_node(array_size,
1308				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1309				node);
1310	}
1311	area->pages = pages;
1312	area->caller = caller;
1313	if (!area->pages) {
1314		remove_vm_area(area->addr);
1315		kfree(area);
1316		return NULL;
1317	}
1318
1319	for (i = 0; i < area->nr_pages; i++) {
1320		struct page *page;
1321
1322		if (node < 0)
1323			page = alloc_page(gfp_mask);
1324		else
1325			page = alloc_pages_node(node, gfp_mask, 0);
1326
1327		if (unlikely(!page)) {
1328			/* Successfully allocated i pages, free them in __vunmap() */
1329			area->nr_pages = i;
1330			goto fail;
1331		}
1332		area->pages[i] = page;
1333	}
1334
1335	if (map_vm_area(area, prot, &pages))
1336		goto fail;
1337	return area->addr;
1338
1339fail:
1340	vfree(area->addr);
1341	return NULL;
1342}
1343
1344void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1345{
1346	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1347					__builtin_return_address(0));
1348}
1349
1350/**
1351 *	__vmalloc_node  -  allocate virtually contiguous memory
1352 *	@size:		allocation size
1353 *	@gfp_mask:	flags for the page level allocator
1354 *	@prot:		protection mask for the allocated pages
1355 *	@node:		node to use for allocation or -1
1356 *	@caller:	caller's return address
1357 *
1358 *	Allocate enough pages to cover @size from the page level
1359 *	allocator with @gfp_mask flags.  Map them into contiguous
1360 *	kernel virtual space, using a pagetable protection of @prot.
1361 */
1362static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1363						int node, void *caller)
1364{
1365	struct vm_struct *area;
1366
1367	size = PAGE_ALIGN(size);
1368	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1369		return NULL;
1370
1371	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1372						node, gfp_mask, caller);
1373
1374	if (!area)
1375		return NULL;
1376
1377	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1378}
1379
1380void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1381{
1382	return __vmalloc_node(size, gfp_mask, prot, -1,
1383				__builtin_return_address(0));
1384}
1385EXPORT_SYMBOL(__vmalloc);
1386
1387/**
1388 *	vmalloc  -  allocate virtually contiguous memory
1389 *	@size:		allocation size
1390 *	Allocate enough pages to cover @size from the page level
1391 *	allocator and map them into contiguous kernel virtual space.
1392 *
1393 *	For tight control over page level allocator and protection flags
1394 *	use __vmalloc() instead.
1395 */
1396void *vmalloc(unsigned long size)
1397{
1398	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1399					-1, __builtin_return_address(0));
1400}
1401EXPORT_SYMBOL(vmalloc);
1402
1403/**
1404 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1405 * @size: allocation size
1406 *
1407 * The resulting memory area is zeroed so it can be mapped to userspace
1408 * without leaking data.
1409 */
1410void *vmalloc_user(unsigned long size)
1411{
1412	struct vm_struct *area;
1413	void *ret;
1414
1415	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1416			     PAGE_KERNEL, -1, __builtin_return_address(0));
1417	if (ret) {
1418		area = find_vm_area(ret);
1419		area->flags |= VM_USERMAP;
1420	}
1421	return ret;
1422}
1423EXPORT_SYMBOL(vmalloc_user);
1424
1425/**
1426 *	vmalloc_node  -  allocate memory on a specific node
1427 *	@size:		allocation size
1428 *	@node:		numa node
1429 *
1430 *	Allocate enough pages to cover @size from the page level
1431 *	allocator and map them into contiguous kernel virtual space.
1432 *
1433 *	For tight control over page level allocator and protection flags
1434 *	use __vmalloc() instead.
1435 */
1436void *vmalloc_node(unsigned long size, int node)
1437{
1438	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1439					node, __builtin_return_address(0));
1440}
1441EXPORT_SYMBOL(vmalloc_node);
1442
1443#ifndef PAGE_KERNEL_EXEC
1444# define PAGE_KERNEL_EXEC PAGE_KERNEL
1445#endif
1446
1447/**
1448 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1449 *	@size:		allocation size
1450 *
1451 *	Kernel-internal function to allocate enough pages to cover @size
1452 *	the page level allocator and map them into contiguous and
1453 *	executable kernel virtual space.
1454 *
1455 *	For tight control over page level allocator and protection flags
1456 *	use __vmalloc() instead.
1457 */
1458
1459void *vmalloc_exec(unsigned long size)
1460{
1461	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1462			      -1, __builtin_return_address(0));
1463}
1464
1465#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1466#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1467#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1468#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1469#else
1470#define GFP_VMALLOC32 GFP_KERNEL
1471#endif
1472
1473/**
1474 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1475 *	@size:		allocation size
1476 *
1477 *	Allocate enough 32bit PA addressable pages to cover @size from the
1478 *	page level allocator and map them into contiguous kernel virtual space.
1479 */
1480void *vmalloc_32(unsigned long size)
1481{
1482	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1483			      -1, __builtin_return_address(0));
1484}
1485EXPORT_SYMBOL(vmalloc_32);
1486
1487/**
1488 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1489 *	@size:		allocation size
1490 *
1491 * The resulting memory area is 32bit addressable and zeroed so it can be
1492 * mapped to userspace without leaking data.
1493 */
1494void *vmalloc_32_user(unsigned long size)
1495{
1496	struct vm_struct *area;
1497	void *ret;
1498
1499	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1500			     -1, __builtin_return_address(0));
1501	if (ret) {
1502		area = find_vm_area(ret);
1503		area->flags |= VM_USERMAP;
1504	}
1505	return ret;
1506}
1507EXPORT_SYMBOL(vmalloc_32_user);
1508
1509long vread(char *buf, char *addr, unsigned long count)
1510{
1511	struct vm_struct *tmp;
1512	char *vaddr, *buf_start = buf;
1513	unsigned long n;
1514
1515	/* Don't allow overflow */
1516	if ((unsigned long) addr + count < count)
1517		count = -(unsigned long) addr;
1518
1519	read_lock(&vmlist_lock);
1520	for (tmp = vmlist; tmp; tmp = tmp->next) {
1521		vaddr = (char *) tmp->addr;
1522		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1523			continue;
1524		while (addr < vaddr) {
1525			if (count == 0)
1526				goto finished;
1527			*buf = '\0';
1528			buf++;
1529			addr++;
1530			count--;
1531		}
1532		n = vaddr + tmp->size - PAGE_SIZE - addr;
1533		do {
1534			if (count == 0)
1535				goto finished;
1536			*buf = *addr;
1537			buf++;
1538			addr++;
1539			count--;
1540		} while (--n > 0);
1541	}
1542finished:
1543	read_unlock(&vmlist_lock);
1544	return buf - buf_start;
1545}
1546
1547long vwrite(char *buf, char *addr, unsigned long count)
1548{
1549	struct vm_struct *tmp;
1550	char *vaddr, *buf_start = buf;
1551	unsigned long n;
1552
1553	/* Don't allow overflow */
1554	if ((unsigned long) addr + count < count)
1555		count = -(unsigned long) addr;
1556
1557	read_lock(&vmlist_lock);
1558	for (tmp = vmlist; tmp; tmp = tmp->next) {
1559		vaddr = (char *) tmp->addr;
1560		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1561			continue;
1562		while (addr < vaddr) {
1563			if (count == 0)
1564				goto finished;
1565			buf++;
1566			addr++;
1567			count--;
1568		}
1569		n = vaddr + tmp->size - PAGE_SIZE - addr;
1570		do {
1571			if (count == 0)
1572				goto finished;
1573			*addr = *buf;
1574			buf++;
1575			addr++;
1576			count--;
1577		} while (--n > 0);
1578	}
1579finished:
1580	read_unlock(&vmlist_lock);
1581	return buf - buf_start;
1582}
1583
1584/**
1585 *	remap_vmalloc_range  -  map vmalloc pages to userspace
1586 *	@vma:		vma to cover (map full range of vma)
1587 *	@addr:		vmalloc memory
1588 *	@pgoff:		number of pages into addr before first page to map
1589 *
1590 *	Returns:	0 for success, -Exxx on failure
1591 *
1592 *	This function checks that addr is a valid vmalloc'ed area, and
1593 *	that it is big enough to cover the vma. Will return failure if
1594 *	that criteria isn't met.
1595 *
1596 *	Similar to remap_pfn_range() (see mm/memory.c)
1597 */
1598int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1599						unsigned long pgoff)
1600{
1601	struct vm_struct *area;
1602	unsigned long uaddr = vma->vm_start;
1603	unsigned long usize = vma->vm_end - vma->vm_start;
1604
1605	if ((PAGE_SIZE-1) & (unsigned long)addr)
1606		return -EINVAL;
1607
1608	area = find_vm_area(addr);
1609	if (!area)
1610		return -EINVAL;
1611
1612	if (!(area->flags & VM_USERMAP))
1613		return -EINVAL;
1614
1615	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1616		return -EINVAL;
1617
1618	addr += pgoff << PAGE_SHIFT;
1619	do {
1620		struct page *page = vmalloc_to_page(addr);
1621		int ret;
1622
1623		ret = vm_insert_page(vma, uaddr, page);
1624		if (ret)
1625			return ret;
1626
1627		uaddr += PAGE_SIZE;
1628		addr += PAGE_SIZE;
1629		usize -= PAGE_SIZE;
1630	} while (usize > 0);
1631
1632	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1633	vma->vm_flags |= VM_RESERVED;
1634
1635	return 0;
1636}
1637EXPORT_SYMBOL(remap_vmalloc_range);
1638
1639/*
1640 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1641 * have one.
1642 */
1643void  __attribute__((weak)) vmalloc_sync_all(void)
1644{
1645}
1646
1647
1648static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1649{
1650	/* apply_to_page_range() does all the hard work. */
1651	return 0;
1652}
1653
1654/**
1655 *	alloc_vm_area - allocate a range of kernel address space
1656 *	@size:		size of the area
1657 *
1658 *	Returns:	NULL on failure, vm_struct on success
1659 *
1660 *	This function reserves a range of kernel address space, and
1661 *	allocates pagetables to map that range.  No actual mappings
1662 *	are created.  If the kernel address space is not shared
1663 *	between processes, it syncs the pagetable across all
1664 *	processes.
1665 */
1666struct vm_struct *alloc_vm_area(size_t size)
1667{
1668	struct vm_struct *area;
1669
1670	area = get_vm_area_caller(size, VM_IOREMAP,
1671				__builtin_return_address(0));
1672	if (area == NULL)
1673		return NULL;
1674
1675	/*
1676	 * This ensures that page tables are constructed for this region
1677	 * of kernel virtual address space and mapped into init_mm.
1678	 */
1679	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1680				area->size, f, NULL)) {
1681		free_vm_area(area);
1682		return NULL;
1683	}
1684
1685	/* Make sure the pagetables are constructed in process kernel
1686	   mappings */
1687	vmalloc_sync_all();
1688
1689	return area;
1690}
1691EXPORT_SYMBOL_GPL(alloc_vm_area);
1692
1693void free_vm_area(struct vm_struct *area)
1694{
1695	struct vm_struct *ret;
1696	ret = remove_vm_area(area->addr);
1697	BUG_ON(ret != area);
1698	kfree(area);
1699}
1700EXPORT_SYMBOL_GPL(free_vm_area);
1701
1702
1703#ifdef CONFIG_PROC_FS
1704static void *s_start(struct seq_file *m, loff_t *pos)
1705{
1706	loff_t n = *pos;
1707	struct vm_struct *v;
1708
1709	read_lock(&vmlist_lock);
1710	v = vmlist;
1711	while (n > 0 && v) {
1712		n--;
1713		v = v->next;
1714	}
1715	if (!n)
1716		return v;
1717
1718	return NULL;
1719
1720}
1721
1722static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1723{
1724	struct vm_struct *v = p;
1725
1726	++*pos;
1727	return v->next;
1728}
1729
1730static void s_stop(struct seq_file *m, void *p)
1731{
1732	read_unlock(&vmlist_lock);
1733}
1734
1735static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1736{
1737	if (NUMA_BUILD) {
1738		unsigned int nr, *counters = m->private;
1739
1740		if (!counters)
1741			return;
1742
1743		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1744
1745		for (nr = 0; nr < v->nr_pages; nr++)
1746			counters[page_to_nid(v->pages[nr])]++;
1747
1748		for_each_node_state(nr, N_HIGH_MEMORY)
1749			if (counters[nr])
1750				seq_printf(m, " N%u=%u", nr, counters[nr]);
1751	}
1752}
1753
1754static int s_show(struct seq_file *m, void *p)
1755{
1756	struct vm_struct *v = p;
1757
1758	seq_printf(m, "0x%p-0x%p %7ld",
1759		v->addr, v->addr + v->size, v->size);
1760
1761	if (v->caller) {
1762		char buff[KSYM_SYMBOL_LEN];
1763
1764		seq_putc(m, ' ');
1765		sprint_symbol(buff, (unsigned long)v->caller);
1766		seq_puts(m, buff);
1767	}
1768
1769	if (v->nr_pages)
1770		seq_printf(m, " pages=%d", v->nr_pages);
1771
1772	if (v->phys_addr)
1773		seq_printf(m, " phys=%lx", v->phys_addr);
1774
1775	if (v->flags & VM_IOREMAP)
1776		seq_printf(m, " ioremap");
1777
1778	if (v->flags & VM_ALLOC)
1779		seq_printf(m, " vmalloc");
1780
1781	if (v->flags & VM_MAP)
1782		seq_printf(m, " vmap");
1783
1784	if (v->flags & VM_USERMAP)
1785		seq_printf(m, " user");
1786
1787	if (v->flags & VM_VPAGES)
1788		seq_printf(m, " vpages");
1789
1790	show_numa_info(m, v);
1791	seq_putc(m, '\n');
1792	return 0;
1793}
1794
1795static const struct seq_operations vmalloc_op = {
1796	.start = s_start,
1797	.next = s_next,
1798	.stop = s_stop,
1799	.show = s_show,
1800};
1801
1802static int vmalloc_open(struct inode *inode, struct file *file)
1803{
1804	unsigned int *ptr = NULL;
1805	int ret;
1806
1807	if (NUMA_BUILD)
1808		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1809	ret = seq_open(file, &vmalloc_op);
1810	if (!ret) {
1811		struct seq_file *m = file->private_data;
1812		m->private = ptr;
1813	} else
1814		kfree(ptr);
1815	return ret;
1816}
1817
1818static const struct file_operations proc_vmalloc_operations = {
1819	.open		= vmalloc_open,
1820	.read		= seq_read,
1821	.llseek		= seq_lseek,
1822	.release	= seq_release_private,
1823};
1824
1825static int __init proc_vmalloc_init(void)
1826{
1827	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1828	return 0;
1829}
1830module_init(proc_vmalloc_init);
1831#endif
1832
1833