vmalloc.c revision 8757d5fa6b75e8ea906baf0309d49b980e7f9bc9
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/highmem.h>
14#include <linux/slab.h>
15#include <linux/spinlock.h>
16#include <linux/interrupt.h>
17
18#include <linux/vmalloc.h>
19
20#include <asm/uaccess.h>
21#include <asm/tlbflush.h>
22
23
24DEFINE_RWLOCK(vmlist_lock);
25struct vm_struct *vmlist;
26
27static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
28{
29	pte_t *pte;
30
31	pte = pte_offset_kernel(pmd, addr);
32	do {
33		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
34		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
35	} while (pte++, addr += PAGE_SIZE, addr != end);
36}
37
38static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
39						unsigned long end)
40{
41	pmd_t *pmd;
42	unsigned long next;
43
44	pmd = pmd_offset(pud, addr);
45	do {
46		next = pmd_addr_end(addr, end);
47		if (pmd_none_or_clear_bad(pmd))
48			continue;
49		vunmap_pte_range(pmd, addr, next);
50	} while (pmd++, addr = next, addr != end);
51}
52
53static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
54						unsigned long end)
55{
56	pud_t *pud;
57	unsigned long next;
58
59	pud = pud_offset(pgd, addr);
60	do {
61		next = pud_addr_end(addr, end);
62		if (pud_none_or_clear_bad(pud))
63			continue;
64		vunmap_pmd_range(pud, addr, next);
65	} while (pud++, addr = next, addr != end);
66}
67
68void unmap_vm_area(struct vm_struct *area)
69{
70	pgd_t *pgd;
71	unsigned long next;
72	unsigned long addr = (unsigned long) area->addr;
73	unsigned long end = addr + area->size;
74
75	BUG_ON(addr >= end);
76	pgd = pgd_offset_k(addr);
77	flush_cache_vunmap(addr, end);
78	do {
79		next = pgd_addr_end(addr, end);
80		if (pgd_none_or_clear_bad(pgd))
81			continue;
82		vunmap_pud_range(pgd, addr, next);
83	} while (pgd++, addr = next, addr != end);
84	flush_tlb_kernel_range((unsigned long) area->addr, end);
85}
86
87static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
88			unsigned long end, pgprot_t prot, struct page ***pages)
89{
90	pte_t *pte;
91
92	pte = pte_alloc_kernel(pmd, addr);
93	if (!pte)
94		return -ENOMEM;
95	do {
96		struct page *page = **pages;
97		WARN_ON(!pte_none(*pte));
98		if (!page)
99			return -ENOMEM;
100		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
101		(*pages)++;
102	} while (pte++, addr += PAGE_SIZE, addr != end);
103	return 0;
104}
105
106static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
107			unsigned long end, pgprot_t prot, struct page ***pages)
108{
109	pmd_t *pmd;
110	unsigned long next;
111
112	pmd = pmd_alloc(&init_mm, pud, addr);
113	if (!pmd)
114		return -ENOMEM;
115	do {
116		next = pmd_addr_end(addr, end);
117		if (vmap_pte_range(pmd, addr, next, prot, pages))
118			return -ENOMEM;
119	} while (pmd++, addr = next, addr != end);
120	return 0;
121}
122
123static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
124			unsigned long end, pgprot_t prot, struct page ***pages)
125{
126	pud_t *pud;
127	unsigned long next;
128
129	pud = pud_alloc(&init_mm, pgd, addr);
130	if (!pud)
131		return -ENOMEM;
132	do {
133		next = pud_addr_end(addr, end);
134		if (vmap_pmd_range(pud, addr, next, prot, pages))
135			return -ENOMEM;
136	} while (pud++, addr = next, addr != end);
137	return 0;
138}
139
140int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
141{
142	pgd_t *pgd;
143	unsigned long next;
144	unsigned long addr = (unsigned long) area->addr;
145	unsigned long end = addr + area->size - PAGE_SIZE;
146	int err;
147
148	BUG_ON(addr >= end);
149	pgd = pgd_offset_k(addr);
150	do {
151		next = pgd_addr_end(addr, end);
152		err = vmap_pud_range(pgd, addr, next, prot, pages);
153		if (err)
154			break;
155	} while (pgd++, addr = next, addr != end);
156	flush_cache_vmap((unsigned long) area->addr, end);
157	return err;
158}
159
160struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
161				unsigned long start, unsigned long end, int node)
162{
163	struct vm_struct **p, *tmp, *area;
164	unsigned long align = 1;
165	unsigned long addr;
166
167	if (flags & VM_IOREMAP) {
168		int bit = fls(size);
169
170		if (bit > IOREMAP_MAX_ORDER)
171			bit = IOREMAP_MAX_ORDER;
172		else if (bit < PAGE_SHIFT)
173			bit = PAGE_SHIFT;
174
175		align = 1ul << bit;
176	}
177	addr = ALIGN(start, align);
178	size = PAGE_ALIGN(size);
179
180	area = kmalloc_node(sizeof(*area), GFP_KERNEL, node);
181	if (unlikely(!area))
182		return NULL;
183
184	if (unlikely(!size)) {
185		kfree (area);
186		return NULL;
187	}
188
189	/*
190	 * We always allocate a guard page.
191	 */
192	size += PAGE_SIZE;
193
194	write_lock(&vmlist_lock);
195	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
196		if ((unsigned long)tmp->addr < addr) {
197			if((unsigned long)tmp->addr + tmp->size >= addr)
198				addr = ALIGN(tmp->size +
199					     (unsigned long)tmp->addr, align);
200			continue;
201		}
202		if ((size + addr) < addr)
203			goto out;
204		if (size + addr <= (unsigned long)tmp->addr)
205			goto found;
206		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
207		if (addr > end - size)
208			goto out;
209	}
210
211found:
212	area->next = *p;
213	*p = area;
214
215	area->flags = flags;
216	area->addr = (void *)addr;
217	area->size = size;
218	area->pages = NULL;
219	area->nr_pages = 0;
220	area->phys_addr = 0;
221	write_unlock(&vmlist_lock);
222
223	return area;
224
225out:
226	write_unlock(&vmlist_lock);
227	kfree(area);
228	if (printk_ratelimit())
229		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
230	return NULL;
231}
232
233struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
234				unsigned long start, unsigned long end)
235{
236	return __get_vm_area_node(size, flags, start, end, -1);
237}
238
239/**
240 *	get_vm_area  -  reserve a contingous kernel virtual area
241 *
242 *	@size:		size of the area
243 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
244 *
245 *	Search an area of @size in the kernel virtual mapping area,
246 *	and reserved it for out purposes.  Returns the area descriptor
247 *	on success or %NULL on failure.
248 */
249struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
250{
251	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
252}
253
254struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node)
255{
256	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node);
257}
258
259/* Caller must hold vmlist_lock */
260static struct vm_struct *__find_vm_area(void *addr)
261{
262	struct vm_struct *tmp;
263
264	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
265		 if (tmp->addr == addr)
266			break;
267	}
268
269	return tmp;
270}
271
272/* Caller must hold vmlist_lock */
273struct vm_struct *__remove_vm_area(void *addr)
274{
275	struct vm_struct **p, *tmp;
276
277	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
278		 if (tmp->addr == addr)
279			 goto found;
280	}
281	return NULL;
282
283found:
284	unmap_vm_area(tmp);
285	*p = tmp->next;
286
287	/*
288	 * Remove the guard page.
289	 */
290	tmp->size -= PAGE_SIZE;
291	return tmp;
292}
293
294/**
295 *	remove_vm_area  -  find and remove a contingous kernel virtual area
296 *
297 *	@addr:		base address
298 *
299 *	Search for the kernel VM area starting at @addr, and remove it.
300 *	This function returns the found VM area, but using it is NOT safe
301 *	on SMP machines, except for its size or flags.
302 */
303struct vm_struct *remove_vm_area(void *addr)
304{
305	struct vm_struct *v;
306	write_lock(&vmlist_lock);
307	v = __remove_vm_area(addr);
308	write_unlock(&vmlist_lock);
309	return v;
310}
311
312void __vunmap(void *addr, int deallocate_pages)
313{
314	struct vm_struct *area;
315
316	if (!addr)
317		return;
318
319	if ((PAGE_SIZE-1) & (unsigned long)addr) {
320		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
321		WARN_ON(1);
322		return;
323	}
324
325	area = remove_vm_area(addr);
326	if (unlikely(!area)) {
327		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
328				addr);
329		WARN_ON(1);
330		return;
331	}
332
333	debug_check_no_locks_freed(addr, area->size);
334
335	if (deallocate_pages) {
336		int i;
337
338		for (i = 0; i < area->nr_pages; i++) {
339			BUG_ON(!area->pages[i]);
340			__free_page(area->pages[i]);
341		}
342
343		if (area->flags & VM_VPAGES)
344			vfree(area->pages);
345		else
346			kfree(area->pages);
347	}
348
349	kfree(area);
350	return;
351}
352
353/**
354 *	vfree  -  release memory allocated by vmalloc()
355 *
356 *	@addr:		memory base address
357 *
358 *	Free the virtually contiguous memory area starting at @addr, as
359 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
360 *	NULL, no operation is performed.
361 *
362 *	Must not be called in interrupt context.
363 */
364void vfree(void *addr)
365{
366	BUG_ON(in_interrupt());
367	__vunmap(addr, 1);
368}
369EXPORT_SYMBOL(vfree);
370
371/**
372 *	vunmap  -  release virtual mapping obtained by vmap()
373 *
374 *	@addr:		memory base address
375 *
376 *	Free the virtually contiguous memory area starting at @addr,
377 *	which was created from the page array passed to vmap().
378 *
379 *	Must not be called in interrupt context.
380 */
381void vunmap(void *addr)
382{
383	BUG_ON(in_interrupt());
384	__vunmap(addr, 0);
385}
386EXPORT_SYMBOL(vunmap);
387
388/**
389 *	vmap  -  map an array of pages into virtually contiguous space
390 *
391 *	@pages:		array of page pointers
392 *	@count:		number of pages to map
393 *	@flags:		vm_area->flags
394 *	@prot:		page protection for the mapping
395 *
396 *	Maps @count pages from @pages into contiguous kernel virtual
397 *	space.
398 */
399void *vmap(struct page **pages, unsigned int count,
400		unsigned long flags, pgprot_t prot)
401{
402	struct vm_struct *area;
403
404	if (count > num_physpages)
405		return NULL;
406
407	area = get_vm_area((count << PAGE_SHIFT), flags);
408	if (!area)
409		return NULL;
410	if (map_vm_area(area, prot, &pages)) {
411		vunmap(area->addr);
412		return NULL;
413	}
414
415	return area->addr;
416}
417EXPORT_SYMBOL(vmap);
418
419void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
420				pgprot_t prot, int node)
421{
422	struct page **pages;
423	unsigned int nr_pages, array_size, i;
424
425	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
426	array_size = (nr_pages * sizeof(struct page *));
427
428	area->nr_pages = nr_pages;
429	/* Please note that the recursion is strictly bounded. */
430	if (array_size > PAGE_SIZE) {
431		pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node);
432		area->flags |= VM_VPAGES;
433	} else
434		pages = kmalloc_node(array_size, (gfp_mask & ~__GFP_HIGHMEM), node);
435	area->pages = pages;
436	if (!area->pages) {
437		remove_vm_area(area->addr);
438		kfree(area);
439		return NULL;
440	}
441	memset(area->pages, 0, array_size);
442
443	for (i = 0; i < area->nr_pages; i++) {
444		if (node < 0)
445			area->pages[i] = alloc_page(gfp_mask);
446		else
447			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
448		if (unlikely(!area->pages[i])) {
449			/* Successfully allocated i pages, free them in __vunmap() */
450			area->nr_pages = i;
451			goto fail;
452		}
453	}
454
455	if (map_vm_area(area, prot, &pages))
456		goto fail;
457	return area->addr;
458
459fail:
460	vfree(area->addr);
461	return NULL;
462}
463
464void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
465{
466	return __vmalloc_area_node(area, gfp_mask, prot, -1);
467}
468
469/**
470 *	__vmalloc_node  -  allocate virtually contiguous memory
471 *
472 *	@size:		allocation size
473 *	@gfp_mask:	flags for the page level allocator
474 *	@prot:		protection mask for the allocated pages
475 *	@node:		node to use for allocation or -1
476 *
477 *	Allocate enough pages to cover @size from the page level
478 *	allocator with @gfp_mask flags.  Map them into contiguous
479 *	kernel virtual space, using a pagetable protection of @prot.
480 */
481void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
482			int node)
483{
484	struct vm_struct *area;
485
486	size = PAGE_ALIGN(size);
487	if (!size || (size >> PAGE_SHIFT) > num_physpages)
488		return NULL;
489
490	area = get_vm_area_node(size, VM_ALLOC, node);
491	if (!area)
492		return NULL;
493
494	return __vmalloc_area_node(area, gfp_mask, prot, node);
495}
496EXPORT_SYMBOL(__vmalloc_node);
497
498void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
499{
500	return __vmalloc_node(size, gfp_mask, prot, -1);
501}
502EXPORT_SYMBOL(__vmalloc);
503
504/**
505 *	vmalloc  -  allocate virtually contiguous memory
506 *
507 *	@size:		allocation size
508 *
509 *	Allocate enough pages to cover @size from the page level
510 *	allocator and map them into contiguous kernel virtual space.
511 *
512 *	For tight cotrol over page level allocator and protection flags
513 *	use __vmalloc() instead.
514 */
515void *vmalloc(unsigned long size)
516{
517	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
518}
519EXPORT_SYMBOL(vmalloc);
520
521/**
522 *	vmalloc_user  -  allocate virtually contiguous memory which has
523 *			   been zeroed so it can be mapped to userspace without
524 *			   leaking data.
525 *
526 *	@size:		allocation size
527 */
528void *vmalloc_user(unsigned long size)
529{
530	struct vm_struct *area;
531	void *ret;
532
533	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
534	write_lock(&vmlist_lock);
535	area = __find_vm_area(ret);
536	area->flags |= VM_USERMAP;
537	write_unlock(&vmlist_lock);
538
539	return ret;
540}
541EXPORT_SYMBOL(vmalloc_user);
542
543/**
544 *	vmalloc_node  -  allocate memory on a specific node
545 *
546 *	@size:		allocation size
547 *	@node:		numa node
548 *
549 *	Allocate enough pages to cover @size from the page level
550 *	allocator and map them into contiguous kernel virtual space.
551 *
552 *	For tight cotrol over page level allocator and protection flags
553 *	use __vmalloc() instead.
554 */
555void *vmalloc_node(unsigned long size, int node)
556{
557	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
558}
559EXPORT_SYMBOL(vmalloc_node);
560
561#ifndef PAGE_KERNEL_EXEC
562# define PAGE_KERNEL_EXEC PAGE_KERNEL
563#endif
564
565/**
566 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
567 *
568 *	@size:		allocation size
569 *
570 *	Kernel-internal function to allocate enough pages to cover @size
571 *	the page level allocator and map them into contiguous and
572 *	executable kernel virtual space.
573 *
574 *	For tight cotrol over page level allocator and protection flags
575 *	use __vmalloc() instead.
576 */
577
578void *vmalloc_exec(unsigned long size)
579{
580	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
581}
582
583/**
584 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
585 *
586 *	@size:		allocation size
587 *
588 *	Allocate enough 32bit PA addressable pages to cover @size from the
589 *	page level allocator and map them into contiguous kernel virtual space.
590 */
591void *vmalloc_32(unsigned long size)
592{
593	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
594}
595EXPORT_SYMBOL(vmalloc_32);
596
597/**
598 *	vmalloc_32_user  -  allocate virtually contiguous memory (32bit
599 *			      addressable) which is zeroed so it can be
600 *			      mapped to userspace without leaking data.
601 *
602 *	@size:		allocation size
603 */
604void *vmalloc_32_user(unsigned long size)
605{
606	struct vm_struct *area;
607	void *ret;
608
609	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
610	write_lock(&vmlist_lock);
611	area = __find_vm_area(ret);
612	area->flags |= VM_USERMAP;
613	write_unlock(&vmlist_lock);
614
615	return ret;
616}
617EXPORT_SYMBOL(vmalloc_32_user);
618
619long vread(char *buf, char *addr, unsigned long count)
620{
621	struct vm_struct *tmp;
622	char *vaddr, *buf_start = buf;
623	unsigned long n;
624
625	/* Don't allow overflow */
626	if ((unsigned long) addr + count < count)
627		count = -(unsigned long) addr;
628
629	read_lock(&vmlist_lock);
630	for (tmp = vmlist; tmp; tmp = tmp->next) {
631		vaddr = (char *) tmp->addr;
632		if (addr >= vaddr + tmp->size - PAGE_SIZE)
633			continue;
634		while (addr < vaddr) {
635			if (count == 0)
636				goto finished;
637			*buf = '\0';
638			buf++;
639			addr++;
640			count--;
641		}
642		n = vaddr + tmp->size - PAGE_SIZE - addr;
643		do {
644			if (count == 0)
645				goto finished;
646			*buf = *addr;
647			buf++;
648			addr++;
649			count--;
650		} while (--n > 0);
651	}
652finished:
653	read_unlock(&vmlist_lock);
654	return buf - buf_start;
655}
656
657long vwrite(char *buf, char *addr, unsigned long count)
658{
659	struct vm_struct *tmp;
660	char *vaddr, *buf_start = buf;
661	unsigned long n;
662
663	/* Don't allow overflow */
664	if ((unsigned long) addr + count < count)
665		count = -(unsigned long) addr;
666
667	read_lock(&vmlist_lock);
668	for (tmp = vmlist; tmp; tmp = tmp->next) {
669		vaddr = (char *) tmp->addr;
670		if (addr >= vaddr + tmp->size - PAGE_SIZE)
671			continue;
672		while (addr < vaddr) {
673			if (count == 0)
674				goto finished;
675			buf++;
676			addr++;
677			count--;
678		}
679		n = vaddr + tmp->size - PAGE_SIZE - addr;
680		do {
681			if (count == 0)
682				goto finished;
683			*addr = *buf;
684			buf++;
685			addr++;
686			count--;
687		} while (--n > 0);
688	}
689finished:
690	read_unlock(&vmlist_lock);
691	return buf - buf_start;
692}
693
694/**
695 *	remap_vmalloc_range  -  map vmalloc pages to userspace
696 *
697 *	@vma:		vma to cover (map full range of vma)
698 *	@addr:		vmalloc memory
699 *	@pgoff:		number of pages into addr before first page to map
700 *	@returns:	0 for success, -Exxx on failure
701 *
702 *	This function checks that addr is a valid vmalloc'ed area, and
703 *	that it is big enough to cover the vma. Will return failure if
704 *	that criteria isn't met.
705 *
706 *	Similar to remap_pfn_range (see mm/memory.c)
707 */
708int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
709						unsigned long pgoff)
710{
711	struct vm_struct *area;
712	unsigned long uaddr = vma->vm_start;
713	unsigned long usize = vma->vm_end - vma->vm_start;
714	int ret;
715
716	if ((PAGE_SIZE-1) & (unsigned long)addr)
717		return -EINVAL;
718
719	read_lock(&vmlist_lock);
720	area = __find_vm_area(addr);
721	if (!area)
722		goto out_einval_locked;
723
724	if (!(area->flags & VM_USERMAP))
725		goto out_einval_locked;
726
727	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
728		goto out_einval_locked;
729	read_unlock(&vmlist_lock);
730
731	addr += pgoff << PAGE_SHIFT;
732	do {
733		struct page *page = vmalloc_to_page(addr);
734		ret = vm_insert_page(vma, uaddr, page);
735		if (ret)
736			return ret;
737
738		uaddr += PAGE_SIZE;
739		addr += PAGE_SIZE;
740		usize -= PAGE_SIZE;
741	} while (usize > 0);
742
743	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
744	vma->vm_flags |= VM_RESERVED;
745
746	return ret;
747
748out_einval_locked:
749	read_unlock(&vmlist_lock);
750	return -EINVAL;
751}
752EXPORT_SYMBOL(remap_vmalloc_range);
753
754