vmalloc.c revision a0d40c80256e31b23849f2ba781b74bf0218a1fa
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/debugobjects.h>
22#include <linux/kallsyms.h>
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
27#include <linux/pfn.h>
28#include <linux/kmemleak.h>
29#include <asm/atomic.h>
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32#include <asm/shmparam.h>
33
34bool vmap_lazy_unmap __read_mostly = true;
35
36/*** Page table manipulation functions ***/
37
38static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
39{
40	pte_t *pte;
41
42	pte = pte_offset_kernel(pmd, addr);
43	do {
44		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
45		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
46	} while (pte++, addr += PAGE_SIZE, addr != end);
47}
48
49static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
50{
51	pmd_t *pmd;
52	unsigned long next;
53
54	pmd = pmd_offset(pud, addr);
55	do {
56		next = pmd_addr_end(addr, end);
57		if (pmd_none_or_clear_bad(pmd))
58			continue;
59		vunmap_pte_range(pmd, addr, next);
60	} while (pmd++, addr = next, addr != end);
61}
62
63static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
64{
65	pud_t *pud;
66	unsigned long next;
67
68	pud = pud_offset(pgd, addr);
69	do {
70		next = pud_addr_end(addr, end);
71		if (pud_none_or_clear_bad(pud))
72			continue;
73		vunmap_pmd_range(pud, addr, next);
74	} while (pud++, addr = next, addr != end);
75}
76
77static void vunmap_page_range(unsigned long addr, unsigned long end)
78{
79	pgd_t *pgd;
80	unsigned long next;
81
82	BUG_ON(addr >= end);
83	pgd = pgd_offset_k(addr);
84	do {
85		next = pgd_addr_end(addr, end);
86		if (pgd_none_or_clear_bad(pgd))
87			continue;
88		vunmap_pud_range(pgd, addr, next);
89	} while (pgd++, addr = next, addr != end);
90}
91
92static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
93		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
94{
95	pte_t *pte;
96
97	/*
98	 * nr is a running index into the array which helps higher level
99	 * callers keep track of where we're up to.
100	 */
101
102	pte = pte_alloc_kernel(pmd, addr);
103	if (!pte)
104		return -ENOMEM;
105	do {
106		struct page *page = pages[*nr];
107
108		if (WARN_ON(!pte_none(*pte)))
109			return -EBUSY;
110		if (WARN_ON(!page))
111			return -ENOMEM;
112		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
113		(*nr)++;
114	} while (pte++, addr += PAGE_SIZE, addr != end);
115	return 0;
116}
117
118static int vmap_pmd_range(pud_t *pud, unsigned long addr,
119		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
120{
121	pmd_t *pmd;
122	unsigned long next;
123
124	pmd = pmd_alloc(&init_mm, pud, addr);
125	if (!pmd)
126		return -ENOMEM;
127	do {
128		next = pmd_addr_end(addr, end);
129		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
130			return -ENOMEM;
131	} while (pmd++, addr = next, addr != end);
132	return 0;
133}
134
135static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
136		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137{
138	pud_t *pud;
139	unsigned long next;
140
141	pud = pud_alloc(&init_mm, pgd, addr);
142	if (!pud)
143		return -ENOMEM;
144	do {
145		next = pud_addr_end(addr, end);
146		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
147			return -ENOMEM;
148	} while (pud++, addr = next, addr != end);
149	return 0;
150}
151
152/*
153 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154 * will have pfns corresponding to the "pages" array.
155 *
156 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157 */
158static int vmap_page_range_noflush(unsigned long start, unsigned long end,
159				   pgprot_t prot, struct page **pages)
160{
161	pgd_t *pgd;
162	unsigned long next;
163	unsigned long addr = start;
164	int err = 0;
165	int nr = 0;
166
167	BUG_ON(addr >= end);
168	pgd = pgd_offset_k(addr);
169	do {
170		next = pgd_addr_end(addr, end);
171		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
172		if (err)
173			return err;
174	} while (pgd++, addr = next, addr != end);
175
176	return nr;
177}
178
179static int vmap_page_range(unsigned long start, unsigned long end,
180			   pgprot_t prot, struct page **pages)
181{
182	int ret;
183
184	ret = vmap_page_range_noflush(start, end, prot, pages);
185	flush_cache_vmap(start, end);
186	return ret;
187}
188
189int is_vmalloc_or_module_addr(const void *x)
190{
191	/*
192	 * ARM, x86-64 and sparc64 put modules in a special place,
193	 * and fall back on vmalloc() if that fails. Others
194	 * just put it in the vmalloc space.
195	 */
196#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197	unsigned long addr = (unsigned long)x;
198	if (addr >= MODULES_VADDR && addr < MODULES_END)
199		return 1;
200#endif
201	return is_vmalloc_addr(x);
202}
203
204/*
205 * Walk a vmap address to the struct page it maps.
206 */
207struct page *vmalloc_to_page(const void *vmalloc_addr)
208{
209	unsigned long addr = (unsigned long) vmalloc_addr;
210	struct page *page = NULL;
211	pgd_t *pgd = pgd_offset_k(addr);
212
213	/*
214	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215	 * architectures that do not vmalloc module space
216	 */
217	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218
219	if (!pgd_none(*pgd)) {
220		pud_t *pud = pud_offset(pgd, addr);
221		if (!pud_none(*pud)) {
222			pmd_t *pmd = pmd_offset(pud, addr);
223			if (!pmd_none(*pmd)) {
224				pte_t *ptep, pte;
225
226				ptep = pte_offset_map(pmd, addr);
227				pte = *ptep;
228				if (pte_present(pte))
229					page = pte_page(pte);
230				pte_unmap(ptep);
231			}
232		}
233	}
234	return page;
235}
236EXPORT_SYMBOL(vmalloc_to_page);
237
238/*
239 * Map a vmalloc()-space virtual address to the physical page frame number.
240 */
241unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242{
243	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244}
245EXPORT_SYMBOL(vmalloc_to_pfn);
246
247
248/*** Global kva allocator ***/
249
250#define VM_LAZY_FREE	0x01
251#define VM_LAZY_FREEING	0x02
252#define VM_VM_AREA	0x04
253
254struct vmap_area {
255	unsigned long va_start;
256	unsigned long va_end;
257	unsigned long flags;
258	struct rb_node rb_node;		/* address sorted rbtree */
259	struct list_head list;		/* address sorted list */
260	struct list_head purge_list;	/* "lazy purge" list */
261	void *private;
262	struct rcu_head rcu_head;
263};
264
265static DEFINE_SPINLOCK(vmap_area_lock);
266static struct rb_root vmap_area_root = RB_ROOT;
267static LIST_HEAD(vmap_area_list);
268static unsigned long vmap_area_pcpu_hole;
269
270static struct vmap_area *__find_vmap_area(unsigned long addr)
271{
272	struct rb_node *n = vmap_area_root.rb_node;
273
274	while (n) {
275		struct vmap_area *va;
276
277		va = rb_entry(n, struct vmap_area, rb_node);
278		if (addr < va->va_start)
279			n = n->rb_left;
280		else if (addr > va->va_start)
281			n = n->rb_right;
282		else
283			return va;
284	}
285
286	return NULL;
287}
288
289static void __insert_vmap_area(struct vmap_area *va)
290{
291	struct rb_node **p = &vmap_area_root.rb_node;
292	struct rb_node *parent = NULL;
293	struct rb_node *tmp;
294
295	while (*p) {
296		struct vmap_area *tmp;
297
298		parent = *p;
299		tmp = rb_entry(parent, struct vmap_area, rb_node);
300		if (va->va_start < tmp->va_end)
301			p = &(*p)->rb_left;
302		else if (va->va_end > tmp->va_start)
303			p = &(*p)->rb_right;
304		else
305			BUG();
306	}
307
308	rb_link_node(&va->rb_node, parent, p);
309	rb_insert_color(&va->rb_node, &vmap_area_root);
310
311	/* address-sort this list so it is usable like the vmlist */
312	tmp = rb_prev(&va->rb_node);
313	if (tmp) {
314		struct vmap_area *prev;
315		prev = rb_entry(tmp, struct vmap_area, rb_node);
316		list_add_rcu(&va->list, &prev->list);
317	} else
318		list_add_rcu(&va->list, &vmap_area_list);
319}
320
321static void purge_vmap_area_lazy(void);
322
323/*
324 * Allocate a region of KVA of the specified size and alignment, within the
325 * vstart and vend.
326 */
327static struct vmap_area *alloc_vmap_area(unsigned long size,
328				unsigned long align,
329				unsigned long vstart, unsigned long vend,
330				int node, gfp_t gfp_mask)
331{
332	struct vmap_area *va;
333	struct rb_node *n;
334	unsigned long addr;
335	int purged = 0;
336
337	BUG_ON(!size);
338	BUG_ON(size & ~PAGE_MASK);
339
340	va = kmalloc_node(sizeof(struct vmap_area),
341			gfp_mask & GFP_RECLAIM_MASK, node);
342	if (unlikely(!va))
343		return ERR_PTR(-ENOMEM);
344
345retry:
346	addr = ALIGN(vstart, align);
347
348	spin_lock(&vmap_area_lock);
349	if (addr + size - 1 < addr)
350		goto overflow;
351
352	/* XXX: could have a last_hole cache */
353	n = vmap_area_root.rb_node;
354	if (n) {
355		struct vmap_area *first = NULL;
356
357		do {
358			struct vmap_area *tmp;
359			tmp = rb_entry(n, struct vmap_area, rb_node);
360			if (tmp->va_end >= addr) {
361				if (!first && tmp->va_start < addr + size)
362					first = tmp;
363				n = n->rb_left;
364			} else {
365				first = tmp;
366				n = n->rb_right;
367			}
368		} while (n);
369
370		if (!first)
371			goto found;
372
373		if (first->va_end < addr) {
374			n = rb_next(&first->rb_node);
375			if (n)
376				first = rb_entry(n, struct vmap_area, rb_node);
377			else
378				goto found;
379		}
380
381		while (addr + size > first->va_start && addr + size <= vend) {
382			addr = ALIGN(first->va_end + PAGE_SIZE, align);
383			if (addr + size - 1 < addr)
384				goto overflow;
385
386			n = rb_next(&first->rb_node);
387			if (n)
388				first = rb_entry(n, struct vmap_area, rb_node);
389			else
390				goto found;
391		}
392	}
393found:
394	if (addr + size > vend) {
395overflow:
396		spin_unlock(&vmap_area_lock);
397		if (!purged) {
398			purge_vmap_area_lazy();
399			purged = 1;
400			goto retry;
401		}
402		if (printk_ratelimit())
403			printk(KERN_WARNING
404				"vmap allocation for size %lu failed: "
405				"use vmalloc=<size> to increase size.\n", size);
406		kfree(va);
407		return ERR_PTR(-EBUSY);
408	}
409
410	BUG_ON(addr & (align-1));
411
412	va->va_start = addr;
413	va->va_end = addr + size;
414	va->flags = 0;
415	__insert_vmap_area(va);
416	spin_unlock(&vmap_area_lock);
417
418	return va;
419}
420
421static void rcu_free_va(struct rcu_head *head)
422{
423	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424
425	kfree(va);
426}
427
428static void __free_vmap_area(struct vmap_area *va)
429{
430	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
431	rb_erase(&va->rb_node, &vmap_area_root);
432	RB_CLEAR_NODE(&va->rb_node);
433	list_del_rcu(&va->list);
434
435	/*
436	 * Track the highest possible candidate for pcpu area
437	 * allocation.  Areas outside of vmalloc area can be returned
438	 * here too, consider only end addresses which fall inside
439	 * vmalloc area proper.
440	 */
441	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
442		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
443
444	call_rcu(&va->rcu_head, rcu_free_va);
445}
446
447/*
448 * Free a region of KVA allocated by alloc_vmap_area
449 */
450static void free_vmap_area(struct vmap_area *va)
451{
452	spin_lock(&vmap_area_lock);
453	__free_vmap_area(va);
454	spin_unlock(&vmap_area_lock);
455}
456
457/*
458 * Clear the pagetable entries of a given vmap_area
459 */
460static void unmap_vmap_area(struct vmap_area *va)
461{
462	vunmap_page_range(va->va_start, va->va_end);
463}
464
465static void vmap_debug_free_range(unsigned long start, unsigned long end)
466{
467	/*
468	 * Unmap page tables and force a TLB flush immediately if
469	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470	 * bugs similarly to those in linear kernel virtual address
471	 * space after a page has been freed.
472	 *
473	 * All the lazy freeing logic is still retained, in order to
474	 * minimise intrusiveness of this debugging feature.
475	 *
476	 * This is going to be *slow* (linear kernel virtual address
477	 * debugging doesn't do a broadcast TLB flush so it is a lot
478	 * faster).
479	 */
480#ifdef CONFIG_DEBUG_PAGEALLOC
481	vunmap_page_range(start, end);
482	flush_tlb_kernel_range(start, end);
483#endif
484}
485
486/*
487 * lazy_max_pages is the maximum amount of virtual address space we gather up
488 * before attempting to purge with a TLB flush.
489 *
490 * There is a tradeoff here: a larger number will cover more kernel page tables
491 * and take slightly longer to purge, but it will linearly reduce the number of
492 * global TLB flushes that must be performed. It would seem natural to scale
493 * this number up linearly with the number of CPUs (because vmapping activity
494 * could also scale linearly with the number of CPUs), however it is likely
495 * that in practice, workloads might be constrained in other ways that mean
496 * vmap activity will not scale linearly with CPUs. Also, I want to be
497 * conservative and not introduce a big latency on huge systems, so go with
498 * a less aggressive log scale. It will still be an improvement over the old
499 * code, and it will be simple to change the scale factor if we find that it
500 * becomes a problem on bigger systems.
501 */
502static unsigned long lazy_max_pages(void)
503{
504	unsigned int log;
505
506	if (!vmap_lazy_unmap)
507		return 0;
508
509	log = fls(num_online_cpus());
510
511	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
512}
513
514static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
515
516/* for per-CPU blocks */
517static void purge_fragmented_blocks_allcpus(void);
518
519/*
520 * Purges all lazily-freed vmap areas.
521 *
522 * If sync is 0 then don't purge if there is already a purge in progress.
523 * If force_flush is 1, then flush kernel TLBs between *start and *end even
524 * if we found no lazy vmap areas to unmap (callers can use this to optimise
525 * their own TLB flushing).
526 * Returns with *start = min(*start, lowest purged address)
527 *              *end = max(*end, highest purged address)
528 */
529static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
530					int sync, int force_flush)
531{
532	static DEFINE_SPINLOCK(purge_lock);
533	LIST_HEAD(valist);
534	struct vmap_area *va;
535	struct vmap_area *n_va;
536	int nr = 0;
537
538	/*
539	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
540	 * should not expect such behaviour. This just simplifies locking for
541	 * the case that isn't actually used at the moment anyway.
542	 */
543	if (!sync && !force_flush) {
544		if (!spin_trylock(&purge_lock))
545			return;
546	} else
547		spin_lock(&purge_lock);
548
549	if (sync)
550		purge_fragmented_blocks_allcpus();
551
552	rcu_read_lock();
553	list_for_each_entry_rcu(va, &vmap_area_list, list) {
554		if (va->flags & VM_LAZY_FREE) {
555			if (va->va_start < *start)
556				*start = va->va_start;
557			if (va->va_end > *end)
558				*end = va->va_end;
559			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
560			unmap_vmap_area(va);
561			list_add_tail(&va->purge_list, &valist);
562			va->flags |= VM_LAZY_FREEING;
563			va->flags &= ~VM_LAZY_FREE;
564		}
565	}
566	rcu_read_unlock();
567
568	if (nr)
569		atomic_sub(nr, &vmap_lazy_nr);
570
571	if (nr || force_flush)
572		flush_tlb_kernel_range(*start, *end);
573
574	if (nr) {
575		spin_lock(&vmap_area_lock);
576		list_for_each_entry_safe(va, n_va, &valist, purge_list)
577			__free_vmap_area(va);
578		spin_unlock(&vmap_area_lock);
579	}
580	spin_unlock(&purge_lock);
581}
582
583/*
584 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
585 * is already purging.
586 */
587static void try_purge_vmap_area_lazy(void)
588{
589	unsigned long start = ULONG_MAX, end = 0;
590
591	__purge_vmap_area_lazy(&start, &end, 0, 0);
592}
593
594/*
595 * Kick off a purge of the outstanding lazy areas.
596 */
597static void purge_vmap_area_lazy(void)
598{
599	unsigned long start = ULONG_MAX, end = 0;
600
601	__purge_vmap_area_lazy(&start, &end, 1, 0);
602}
603
604/*
605 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
606 * called for the correct range previously.
607 */
608static void free_unmap_vmap_area_noflush(struct vmap_area *va)
609{
610	va->flags |= VM_LAZY_FREE;
611	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
612	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
613		try_purge_vmap_area_lazy();
614}
615
616/*
617 * Free and unmap a vmap area
618 */
619static void free_unmap_vmap_area(struct vmap_area *va)
620{
621	flush_cache_vunmap(va->va_start, va->va_end);
622	free_unmap_vmap_area_noflush(va);
623}
624
625static struct vmap_area *find_vmap_area(unsigned long addr)
626{
627	struct vmap_area *va;
628
629	spin_lock(&vmap_area_lock);
630	va = __find_vmap_area(addr);
631	spin_unlock(&vmap_area_lock);
632
633	return va;
634}
635
636static void free_unmap_vmap_area_addr(unsigned long addr)
637{
638	struct vmap_area *va;
639
640	va = find_vmap_area(addr);
641	BUG_ON(!va);
642	free_unmap_vmap_area(va);
643}
644
645
646/*** Per cpu kva allocator ***/
647
648/*
649 * vmap space is limited especially on 32 bit architectures. Ensure there is
650 * room for at least 16 percpu vmap blocks per CPU.
651 */
652/*
653 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
654 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
655 * instead (we just need a rough idea)
656 */
657#if BITS_PER_LONG == 32
658#define VMALLOC_SPACE		(128UL*1024*1024)
659#else
660#define VMALLOC_SPACE		(128UL*1024*1024*1024)
661#endif
662
663#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
664#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
665#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
666#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
667#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
668#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
669#define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
670					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
671						VMALLOC_PAGES / NR_CPUS / 16))
672
673#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
674
675static bool vmap_initialized __read_mostly = false;
676
677struct vmap_block_queue {
678	spinlock_t lock;
679	struct list_head free;
680};
681
682struct vmap_block {
683	spinlock_t lock;
684	struct vmap_area *va;
685	struct vmap_block_queue *vbq;
686	unsigned long free, dirty;
687	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
688	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
689	struct list_head free_list;
690	struct rcu_head rcu_head;
691	struct list_head purge;
692};
693
694/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
695static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
696
697/*
698 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
699 * in the free path. Could get rid of this if we change the API to return a
700 * "cookie" from alloc, to be passed to free. But no big deal yet.
701 */
702static DEFINE_SPINLOCK(vmap_block_tree_lock);
703static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
704
705/*
706 * We should probably have a fallback mechanism to allocate virtual memory
707 * out of partially filled vmap blocks. However vmap block sizing should be
708 * fairly reasonable according to the vmalloc size, so it shouldn't be a
709 * big problem.
710 */
711
712static unsigned long addr_to_vb_idx(unsigned long addr)
713{
714	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
715	addr /= VMAP_BLOCK_SIZE;
716	return addr;
717}
718
719static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
720{
721	struct vmap_block_queue *vbq;
722	struct vmap_block *vb;
723	struct vmap_area *va;
724	unsigned long vb_idx;
725	int node, err;
726
727	node = numa_node_id();
728
729	vb = kmalloc_node(sizeof(struct vmap_block),
730			gfp_mask & GFP_RECLAIM_MASK, node);
731	if (unlikely(!vb))
732		return ERR_PTR(-ENOMEM);
733
734	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
735					VMALLOC_START, VMALLOC_END,
736					node, gfp_mask);
737	if (unlikely(IS_ERR(va))) {
738		kfree(vb);
739		return ERR_PTR(PTR_ERR(va));
740	}
741
742	err = radix_tree_preload(gfp_mask);
743	if (unlikely(err)) {
744		kfree(vb);
745		free_vmap_area(va);
746		return ERR_PTR(err);
747	}
748
749	spin_lock_init(&vb->lock);
750	vb->va = va;
751	vb->free = VMAP_BBMAP_BITS;
752	vb->dirty = 0;
753	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
754	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
755	INIT_LIST_HEAD(&vb->free_list);
756
757	vb_idx = addr_to_vb_idx(va->va_start);
758	spin_lock(&vmap_block_tree_lock);
759	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
760	spin_unlock(&vmap_block_tree_lock);
761	BUG_ON(err);
762	radix_tree_preload_end();
763
764	vbq = &get_cpu_var(vmap_block_queue);
765	vb->vbq = vbq;
766	spin_lock(&vbq->lock);
767	list_add_rcu(&vb->free_list, &vbq->free);
768	spin_unlock(&vbq->lock);
769	put_cpu_var(vmap_block_queue);
770
771	return vb;
772}
773
774static void rcu_free_vb(struct rcu_head *head)
775{
776	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
777
778	kfree(vb);
779}
780
781static void free_vmap_block(struct vmap_block *vb)
782{
783	struct vmap_block *tmp;
784	unsigned long vb_idx;
785
786	vb_idx = addr_to_vb_idx(vb->va->va_start);
787	spin_lock(&vmap_block_tree_lock);
788	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
789	spin_unlock(&vmap_block_tree_lock);
790	BUG_ON(tmp != vb);
791
792	free_unmap_vmap_area_noflush(vb->va);
793	call_rcu(&vb->rcu_head, rcu_free_vb);
794}
795
796static void purge_fragmented_blocks(int cpu)
797{
798	LIST_HEAD(purge);
799	struct vmap_block *vb;
800	struct vmap_block *n_vb;
801	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
802
803	rcu_read_lock();
804	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
805
806		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
807			continue;
808
809		spin_lock(&vb->lock);
810		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
811			vb->free = 0; /* prevent further allocs after releasing lock */
812			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
813			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
814			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
815			spin_lock(&vbq->lock);
816			list_del_rcu(&vb->free_list);
817			spin_unlock(&vbq->lock);
818			spin_unlock(&vb->lock);
819			list_add_tail(&vb->purge, &purge);
820		} else
821			spin_unlock(&vb->lock);
822	}
823	rcu_read_unlock();
824
825	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
826		list_del(&vb->purge);
827		free_vmap_block(vb);
828	}
829}
830
831static void purge_fragmented_blocks_thiscpu(void)
832{
833	purge_fragmented_blocks(smp_processor_id());
834}
835
836static void purge_fragmented_blocks_allcpus(void)
837{
838	int cpu;
839
840	for_each_possible_cpu(cpu)
841		purge_fragmented_blocks(cpu);
842}
843
844static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
845{
846	struct vmap_block_queue *vbq;
847	struct vmap_block *vb;
848	unsigned long addr = 0;
849	unsigned int order;
850	int purge = 0;
851
852	BUG_ON(size & ~PAGE_MASK);
853	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
854	order = get_order(size);
855
856again:
857	rcu_read_lock();
858	vbq = &get_cpu_var(vmap_block_queue);
859	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
860		int i;
861
862		spin_lock(&vb->lock);
863		if (vb->free < 1UL << order)
864			goto next;
865
866		i = bitmap_find_free_region(vb->alloc_map,
867						VMAP_BBMAP_BITS, order);
868
869		if (i < 0) {
870			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
871				/* fragmented and no outstanding allocations */
872				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
873				purge = 1;
874			}
875			goto next;
876		}
877		addr = vb->va->va_start + (i << PAGE_SHIFT);
878		BUG_ON(addr_to_vb_idx(addr) !=
879				addr_to_vb_idx(vb->va->va_start));
880		vb->free -= 1UL << order;
881		if (vb->free == 0) {
882			spin_lock(&vbq->lock);
883			list_del_rcu(&vb->free_list);
884			spin_unlock(&vbq->lock);
885		}
886		spin_unlock(&vb->lock);
887		break;
888next:
889		spin_unlock(&vb->lock);
890	}
891
892	if (purge)
893		purge_fragmented_blocks_thiscpu();
894
895	put_cpu_var(vmap_block_queue);
896	rcu_read_unlock();
897
898	if (!addr) {
899		vb = new_vmap_block(gfp_mask);
900		if (IS_ERR(vb))
901			return vb;
902		goto again;
903	}
904
905	return (void *)addr;
906}
907
908static void vb_free(const void *addr, unsigned long size)
909{
910	unsigned long offset;
911	unsigned long vb_idx;
912	unsigned int order;
913	struct vmap_block *vb;
914
915	BUG_ON(size & ~PAGE_MASK);
916	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
917
918	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
919
920	order = get_order(size);
921
922	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
923
924	vb_idx = addr_to_vb_idx((unsigned long)addr);
925	rcu_read_lock();
926	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
927	rcu_read_unlock();
928	BUG_ON(!vb);
929
930	spin_lock(&vb->lock);
931	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
932
933	vb->dirty += 1UL << order;
934	if (vb->dirty == VMAP_BBMAP_BITS) {
935		BUG_ON(vb->free);
936		spin_unlock(&vb->lock);
937		free_vmap_block(vb);
938	} else
939		spin_unlock(&vb->lock);
940}
941
942/**
943 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
944 *
945 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
946 * to amortize TLB flushing overheads. What this means is that any page you
947 * have now, may, in a former life, have been mapped into kernel virtual
948 * address by the vmap layer and so there might be some CPUs with TLB entries
949 * still referencing that page (additional to the regular 1:1 kernel mapping).
950 *
951 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
952 * be sure that none of the pages we have control over will have any aliases
953 * from the vmap layer.
954 */
955void vm_unmap_aliases(void)
956{
957	unsigned long start = ULONG_MAX, end = 0;
958	int cpu;
959	int flush = 0;
960
961	if (unlikely(!vmap_initialized))
962		return;
963
964	for_each_possible_cpu(cpu) {
965		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
966		struct vmap_block *vb;
967
968		rcu_read_lock();
969		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
970			int i;
971
972			spin_lock(&vb->lock);
973			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
974			while (i < VMAP_BBMAP_BITS) {
975				unsigned long s, e;
976				int j;
977				j = find_next_zero_bit(vb->dirty_map,
978					VMAP_BBMAP_BITS, i);
979
980				s = vb->va->va_start + (i << PAGE_SHIFT);
981				e = vb->va->va_start + (j << PAGE_SHIFT);
982				vunmap_page_range(s, e);
983				flush = 1;
984
985				if (s < start)
986					start = s;
987				if (e > end)
988					end = e;
989
990				i = j;
991				i = find_next_bit(vb->dirty_map,
992							VMAP_BBMAP_BITS, i);
993			}
994			spin_unlock(&vb->lock);
995		}
996		rcu_read_unlock();
997	}
998
999	__purge_vmap_area_lazy(&start, &end, 1, flush);
1000}
1001EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1002
1003/**
1004 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1005 * @mem: the pointer returned by vm_map_ram
1006 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1007 */
1008void vm_unmap_ram(const void *mem, unsigned int count)
1009{
1010	unsigned long size = count << PAGE_SHIFT;
1011	unsigned long addr = (unsigned long)mem;
1012
1013	BUG_ON(!addr);
1014	BUG_ON(addr < VMALLOC_START);
1015	BUG_ON(addr > VMALLOC_END);
1016	BUG_ON(addr & (PAGE_SIZE-1));
1017
1018	debug_check_no_locks_freed(mem, size);
1019	vmap_debug_free_range(addr, addr+size);
1020
1021	if (likely(count <= VMAP_MAX_ALLOC))
1022		vb_free(mem, size);
1023	else
1024		free_unmap_vmap_area_addr(addr);
1025}
1026EXPORT_SYMBOL(vm_unmap_ram);
1027
1028/**
1029 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1030 * @pages: an array of pointers to the pages to be mapped
1031 * @count: number of pages
1032 * @node: prefer to allocate data structures on this node
1033 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1034 *
1035 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1036 */
1037void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1038{
1039	unsigned long size = count << PAGE_SHIFT;
1040	unsigned long addr;
1041	void *mem;
1042
1043	if (likely(count <= VMAP_MAX_ALLOC)) {
1044		mem = vb_alloc(size, GFP_KERNEL);
1045		if (IS_ERR(mem))
1046			return NULL;
1047		addr = (unsigned long)mem;
1048	} else {
1049		struct vmap_area *va;
1050		va = alloc_vmap_area(size, PAGE_SIZE,
1051				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1052		if (IS_ERR(va))
1053			return NULL;
1054
1055		addr = va->va_start;
1056		mem = (void *)addr;
1057	}
1058	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1059		vm_unmap_ram(mem, count);
1060		return NULL;
1061	}
1062	return mem;
1063}
1064EXPORT_SYMBOL(vm_map_ram);
1065
1066/**
1067 * vm_area_register_early - register vmap area early during boot
1068 * @vm: vm_struct to register
1069 * @align: requested alignment
1070 *
1071 * This function is used to register kernel vm area before
1072 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1073 * proper values on entry and other fields should be zero.  On return,
1074 * vm->addr contains the allocated address.
1075 *
1076 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1077 */
1078void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1079{
1080	static size_t vm_init_off __initdata;
1081	unsigned long addr;
1082
1083	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1084	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1085
1086	vm->addr = (void *)addr;
1087
1088	vm->next = vmlist;
1089	vmlist = vm;
1090}
1091
1092void __init vmalloc_init(void)
1093{
1094	struct vmap_area *va;
1095	struct vm_struct *tmp;
1096	int i;
1097
1098	for_each_possible_cpu(i) {
1099		struct vmap_block_queue *vbq;
1100
1101		vbq = &per_cpu(vmap_block_queue, i);
1102		spin_lock_init(&vbq->lock);
1103		INIT_LIST_HEAD(&vbq->free);
1104	}
1105
1106	/* Import existing vmlist entries. */
1107	for (tmp = vmlist; tmp; tmp = tmp->next) {
1108		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1109		va->flags = tmp->flags | VM_VM_AREA;
1110		va->va_start = (unsigned long)tmp->addr;
1111		va->va_end = va->va_start + tmp->size;
1112		__insert_vmap_area(va);
1113	}
1114
1115	vmap_area_pcpu_hole = VMALLOC_END;
1116
1117	vmap_initialized = true;
1118}
1119
1120/**
1121 * map_kernel_range_noflush - map kernel VM area with the specified pages
1122 * @addr: start of the VM area to map
1123 * @size: size of the VM area to map
1124 * @prot: page protection flags to use
1125 * @pages: pages to map
1126 *
1127 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1128 * specify should have been allocated using get_vm_area() and its
1129 * friends.
1130 *
1131 * NOTE:
1132 * This function does NOT do any cache flushing.  The caller is
1133 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1134 * before calling this function.
1135 *
1136 * RETURNS:
1137 * The number of pages mapped on success, -errno on failure.
1138 */
1139int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1140			     pgprot_t prot, struct page **pages)
1141{
1142	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1143}
1144
1145/**
1146 * unmap_kernel_range_noflush - unmap kernel VM area
1147 * @addr: start of the VM area to unmap
1148 * @size: size of the VM area to unmap
1149 *
1150 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1151 * specify should have been allocated using get_vm_area() and its
1152 * friends.
1153 *
1154 * NOTE:
1155 * This function does NOT do any cache flushing.  The caller is
1156 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1157 * before calling this function and flush_tlb_kernel_range() after.
1158 */
1159void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1160{
1161	vunmap_page_range(addr, addr + size);
1162}
1163
1164/**
1165 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1166 * @addr: start of the VM area to unmap
1167 * @size: size of the VM area to unmap
1168 *
1169 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1170 * the unmapping and tlb after.
1171 */
1172void unmap_kernel_range(unsigned long addr, unsigned long size)
1173{
1174	unsigned long end = addr + size;
1175
1176	flush_cache_vunmap(addr, end);
1177	vunmap_page_range(addr, end);
1178	flush_tlb_kernel_range(addr, end);
1179}
1180
1181int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1182{
1183	unsigned long addr = (unsigned long)area->addr;
1184	unsigned long end = addr + area->size - PAGE_SIZE;
1185	int err;
1186
1187	err = vmap_page_range(addr, end, prot, *pages);
1188	if (err > 0) {
1189		*pages += err;
1190		err = 0;
1191	}
1192
1193	return err;
1194}
1195EXPORT_SYMBOL_GPL(map_vm_area);
1196
1197/*** Old vmalloc interfaces ***/
1198DEFINE_RWLOCK(vmlist_lock);
1199struct vm_struct *vmlist;
1200
1201static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1202			      unsigned long flags, void *caller)
1203{
1204	struct vm_struct *tmp, **p;
1205
1206	vm->flags = flags;
1207	vm->addr = (void *)va->va_start;
1208	vm->size = va->va_end - va->va_start;
1209	vm->caller = caller;
1210	va->private = vm;
1211	va->flags |= VM_VM_AREA;
1212
1213	write_lock(&vmlist_lock);
1214	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1215		if (tmp->addr >= vm->addr)
1216			break;
1217	}
1218	vm->next = *p;
1219	*p = vm;
1220	write_unlock(&vmlist_lock);
1221}
1222
1223static struct vm_struct *__get_vm_area_node(unsigned long size,
1224		unsigned long align, unsigned long flags, unsigned long start,
1225		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1226{
1227	static struct vmap_area *va;
1228	struct vm_struct *area;
1229
1230	BUG_ON(in_interrupt());
1231	if (flags & VM_IOREMAP) {
1232		int bit = fls(size);
1233
1234		if (bit > IOREMAP_MAX_ORDER)
1235			bit = IOREMAP_MAX_ORDER;
1236		else if (bit < PAGE_SHIFT)
1237			bit = PAGE_SHIFT;
1238
1239		align = 1ul << bit;
1240	}
1241
1242	size = PAGE_ALIGN(size);
1243	if (unlikely(!size))
1244		return NULL;
1245
1246	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1247	if (unlikely(!area))
1248		return NULL;
1249
1250	/*
1251	 * We always allocate a guard page.
1252	 */
1253	size += PAGE_SIZE;
1254
1255	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1256	if (IS_ERR(va)) {
1257		kfree(area);
1258		return NULL;
1259	}
1260
1261	insert_vmalloc_vm(area, va, flags, caller);
1262	return area;
1263}
1264
1265struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1266				unsigned long start, unsigned long end)
1267{
1268	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1269						__builtin_return_address(0));
1270}
1271EXPORT_SYMBOL_GPL(__get_vm_area);
1272
1273struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1274				       unsigned long start, unsigned long end,
1275				       void *caller)
1276{
1277	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1278				  caller);
1279}
1280
1281/**
1282 *	get_vm_area  -  reserve a contiguous kernel virtual area
1283 *	@size:		size of the area
1284 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1285 *
1286 *	Search an area of @size in the kernel virtual mapping area,
1287 *	and reserved it for out purposes.  Returns the area descriptor
1288 *	on success or %NULL on failure.
1289 */
1290struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1291{
1292	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1293				-1, GFP_KERNEL, __builtin_return_address(0));
1294}
1295
1296struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1297				void *caller)
1298{
1299	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1300						-1, GFP_KERNEL, caller);
1301}
1302
1303struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1304				   int node, gfp_t gfp_mask)
1305{
1306	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1307				  node, gfp_mask, __builtin_return_address(0));
1308}
1309
1310static struct vm_struct *find_vm_area(const void *addr)
1311{
1312	struct vmap_area *va;
1313
1314	va = find_vmap_area((unsigned long)addr);
1315	if (va && va->flags & VM_VM_AREA)
1316		return va->private;
1317
1318	return NULL;
1319}
1320
1321/**
1322 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1323 *	@addr:		base address
1324 *
1325 *	Search for the kernel VM area starting at @addr, and remove it.
1326 *	This function returns the found VM area, but using it is NOT safe
1327 *	on SMP machines, except for its size or flags.
1328 */
1329struct vm_struct *remove_vm_area(const void *addr)
1330{
1331	struct vmap_area *va;
1332
1333	va = find_vmap_area((unsigned long)addr);
1334	if (va && va->flags & VM_VM_AREA) {
1335		struct vm_struct *vm = va->private;
1336		struct vm_struct *tmp, **p;
1337		/*
1338		 * remove from list and disallow access to this vm_struct
1339		 * before unmap. (address range confliction is maintained by
1340		 * vmap.)
1341		 */
1342		write_lock(&vmlist_lock);
1343		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1344			;
1345		*p = tmp->next;
1346		write_unlock(&vmlist_lock);
1347
1348		vmap_debug_free_range(va->va_start, va->va_end);
1349		free_unmap_vmap_area(va);
1350		vm->size -= PAGE_SIZE;
1351
1352		return vm;
1353	}
1354	return NULL;
1355}
1356
1357static void __vunmap(const void *addr, int deallocate_pages)
1358{
1359	struct vm_struct *area;
1360
1361	if (!addr)
1362		return;
1363
1364	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1365		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1366		return;
1367	}
1368
1369	area = remove_vm_area(addr);
1370	if (unlikely(!area)) {
1371		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1372				addr);
1373		return;
1374	}
1375
1376	debug_check_no_locks_freed(addr, area->size);
1377	debug_check_no_obj_freed(addr, area->size);
1378
1379	if (deallocate_pages) {
1380		int i;
1381
1382		for (i = 0; i < area->nr_pages; i++) {
1383			struct page *page = area->pages[i];
1384
1385			BUG_ON(!page);
1386			__free_page(page);
1387		}
1388
1389		if (area->flags & VM_VPAGES)
1390			vfree(area->pages);
1391		else
1392			kfree(area->pages);
1393	}
1394
1395	kfree(area);
1396	return;
1397}
1398
1399/**
1400 *	vfree  -  release memory allocated by vmalloc()
1401 *	@addr:		memory base address
1402 *
1403 *	Free the virtually continuous memory area starting at @addr, as
1404 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1405 *	NULL, no operation is performed.
1406 *
1407 *	Must not be called in interrupt context.
1408 */
1409void vfree(const void *addr)
1410{
1411	BUG_ON(in_interrupt());
1412
1413	kmemleak_free(addr);
1414
1415	__vunmap(addr, 1);
1416}
1417EXPORT_SYMBOL(vfree);
1418
1419/**
1420 *	vunmap  -  release virtual mapping obtained by vmap()
1421 *	@addr:		memory base address
1422 *
1423 *	Free the virtually contiguous memory area starting at @addr,
1424 *	which was created from the page array passed to vmap().
1425 *
1426 *	Must not be called in interrupt context.
1427 */
1428void vunmap(const void *addr)
1429{
1430	BUG_ON(in_interrupt());
1431	might_sleep();
1432	__vunmap(addr, 0);
1433}
1434EXPORT_SYMBOL(vunmap);
1435
1436/**
1437 *	vmap  -  map an array of pages into virtually contiguous space
1438 *	@pages:		array of page pointers
1439 *	@count:		number of pages to map
1440 *	@flags:		vm_area->flags
1441 *	@prot:		page protection for the mapping
1442 *
1443 *	Maps @count pages from @pages into contiguous kernel virtual
1444 *	space.
1445 */
1446void *vmap(struct page **pages, unsigned int count,
1447		unsigned long flags, pgprot_t prot)
1448{
1449	struct vm_struct *area;
1450
1451	might_sleep();
1452
1453	if (count > totalram_pages)
1454		return NULL;
1455
1456	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1457					__builtin_return_address(0));
1458	if (!area)
1459		return NULL;
1460
1461	if (map_vm_area(area, prot, &pages)) {
1462		vunmap(area->addr);
1463		return NULL;
1464	}
1465
1466	return area->addr;
1467}
1468EXPORT_SYMBOL(vmap);
1469
1470static void *__vmalloc_node(unsigned long size, unsigned long align,
1471			    gfp_t gfp_mask, pgprot_t prot,
1472			    int node, void *caller);
1473static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1474				 pgprot_t prot, int node, void *caller)
1475{
1476	struct page **pages;
1477	unsigned int nr_pages, array_size, i;
1478	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1479
1480	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1481	array_size = (nr_pages * sizeof(struct page *));
1482
1483	area->nr_pages = nr_pages;
1484	/* Please note that the recursion is strictly bounded. */
1485	if (array_size > PAGE_SIZE) {
1486		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1487				PAGE_KERNEL, node, caller);
1488		area->flags |= VM_VPAGES;
1489	} else {
1490		pages = kmalloc_node(array_size, nested_gfp, node);
1491	}
1492	area->pages = pages;
1493	area->caller = caller;
1494	if (!area->pages) {
1495		remove_vm_area(area->addr);
1496		kfree(area);
1497		return NULL;
1498	}
1499
1500	for (i = 0; i < area->nr_pages; i++) {
1501		struct page *page;
1502
1503		if (node < 0)
1504			page = alloc_page(gfp_mask);
1505		else
1506			page = alloc_pages_node(node, gfp_mask, 0);
1507
1508		if (unlikely(!page)) {
1509			/* Successfully allocated i pages, free them in __vunmap() */
1510			area->nr_pages = i;
1511			goto fail;
1512		}
1513		area->pages[i] = page;
1514	}
1515
1516	if (map_vm_area(area, prot, &pages))
1517		goto fail;
1518	return area->addr;
1519
1520fail:
1521	vfree(area->addr);
1522	return NULL;
1523}
1524
1525void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1526{
1527	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1528					 __builtin_return_address(0));
1529
1530	/*
1531	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1532	 * structures allocated in the __get_vm_area_node() function contain
1533	 * references to the virtual address of the vmalloc'ed block.
1534	 */
1535	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1536
1537	return addr;
1538}
1539
1540/**
1541 *	__vmalloc_node  -  allocate virtually contiguous memory
1542 *	@size:		allocation size
1543 *	@align:		desired alignment
1544 *	@gfp_mask:	flags for the page level allocator
1545 *	@prot:		protection mask for the allocated pages
1546 *	@node:		node to use for allocation or -1
1547 *	@caller:	caller's return address
1548 *
1549 *	Allocate enough pages to cover @size from the page level
1550 *	allocator with @gfp_mask flags.  Map them into contiguous
1551 *	kernel virtual space, using a pagetable protection of @prot.
1552 */
1553static void *__vmalloc_node(unsigned long size, unsigned long align,
1554			    gfp_t gfp_mask, pgprot_t prot,
1555			    int node, void *caller)
1556{
1557	struct vm_struct *area;
1558	void *addr;
1559	unsigned long real_size = size;
1560
1561	size = PAGE_ALIGN(size);
1562	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1563		return NULL;
1564
1565	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1566				  VMALLOC_END, node, gfp_mask, caller);
1567
1568	if (!area)
1569		return NULL;
1570
1571	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1572
1573	/*
1574	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1575	 * structures allocated in the __get_vm_area_node() function contain
1576	 * references to the virtual address of the vmalloc'ed block.
1577	 */
1578	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1579
1580	return addr;
1581}
1582
1583void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1584{
1585	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1586				__builtin_return_address(0));
1587}
1588EXPORT_SYMBOL(__vmalloc);
1589
1590/**
1591 *	vmalloc  -  allocate virtually contiguous memory
1592 *	@size:		allocation size
1593 *	Allocate enough pages to cover @size from the page level
1594 *	allocator and map them into contiguous kernel virtual space.
1595 *
1596 *	For tight control over page level allocator and protection flags
1597 *	use __vmalloc() instead.
1598 */
1599void *vmalloc(unsigned long size)
1600{
1601	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1602					-1, __builtin_return_address(0));
1603}
1604EXPORT_SYMBOL(vmalloc);
1605
1606/**
1607 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1608 * @size: allocation size
1609 *
1610 * The resulting memory area is zeroed so it can be mapped to userspace
1611 * without leaking data.
1612 */
1613void *vmalloc_user(unsigned long size)
1614{
1615	struct vm_struct *area;
1616	void *ret;
1617
1618	ret = __vmalloc_node(size, SHMLBA,
1619			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1620			     PAGE_KERNEL, -1, __builtin_return_address(0));
1621	if (ret) {
1622		area = find_vm_area(ret);
1623		area->flags |= VM_USERMAP;
1624	}
1625	return ret;
1626}
1627EXPORT_SYMBOL(vmalloc_user);
1628
1629/**
1630 *	vmalloc_node  -  allocate memory on a specific node
1631 *	@size:		allocation size
1632 *	@node:		numa node
1633 *
1634 *	Allocate enough pages to cover @size from the page level
1635 *	allocator and map them into contiguous kernel virtual space.
1636 *
1637 *	For tight control over page level allocator and protection flags
1638 *	use __vmalloc() instead.
1639 */
1640void *vmalloc_node(unsigned long size, int node)
1641{
1642	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1643					node, __builtin_return_address(0));
1644}
1645EXPORT_SYMBOL(vmalloc_node);
1646
1647#ifndef PAGE_KERNEL_EXEC
1648# define PAGE_KERNEL_EXEC PAGE_KERNEL
1649#endif
1650
1651/**
1652 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1653 *	@size:		allocation size
1654 *
1655 *	Kernel-internal function to allocate enough pages to cover @size
1656 *	the page level allocator and map them into contiguous and
1657 *	executable kernel virtual space.
1658 *
1659 *	For tight control over page level allocator and protection flags
1660 *	use __vmalloc() instead.
1661 */
1662
1663void *vmalloc_exec(unsigned long size)
1664{
1665	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1666			      -1, __builtin_return_address(0));
1667}
1668
1669#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1670#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1671#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1672#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1673#else
1674#define GFP_VMALLOC32 GFP_KERNEL
1675#endif
1676
1677/**
1678 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1679 *	@size:		allocation size
1680 *
1681 *	Allocate enough 32bit PA addressable pages to cover @size from the
1682 *	page level allocator and map them into contiguous kernel virtual space.
1683 */
1684void *vmalloc_32(unsigned long size)
1685{
1686	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1687			      -1, __builtin_return_address(0));
1688}
1689EXPORT_SYMBOL(vmalloc_32);
1690
1691/**
1692 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1693 *	@size:		allocation size
1694 *
1695 * The resulting memory area is 32bit addressable and zeroed so it can be
1696 * mapped to userspace without leaking data.
1697 */
1698void *vmalloc_32_user(unsigned long size)
1699{
1700	struct vm_struct *area;
1701	void *ret;
1702
1703	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1704			     -1, __builtin_return_address(0));
1705	if (ret) {
1706		area = find_vm_area(ret);
1707		area->flags |= VM_USERMAP;
1708	}
1709	return ret;
1710}
1711EXPORT_SYMBOL(vmalloc_32_user);
1712
1713/*
1714 * small helper routine , copy contents to buf from addr.
1715 * If the page is not present, fill zero.
1716 */
1717
1718static int aligned_vread(char *buf, char *addr, unsigned long count)
1719{
1720	struct page *p;
1721	int copied = 0;
1722
1723	while (count) {
1724		unsigned long offset, length;
1725
1726		offset = (unsigned long)addr & ~PAGE_MASK;
1727		length = PAGE_SIZE - offset;
1728		if (length > count)
1729			length = count;
1730		p = vmalloc_to_page(addr);
1731		/*
1732		 * To do safe access to this _mapped_ area, we need
1733		 * lock. But adding lock here means that we need to add
1734		 * overhead of vmalloc()/vfree() calles for this _debug_
1735		 * interface, rarely used. Instead of that, we'll use
1736		 * kmap() and get small overhead in this access function.
1737		 */
1738		if (p) {
1739			/*
1740			 * we can expect USER0 is not used (see vread/vwrite's
1741			 * function description)
1742			 */
1743			void *map = kmap_atomic(p, KM_USER0);
1744			memcpy(buf, map + offset, length);
1745			kunmap_atomic(map, KM_USER0);
1746		} else
1747			memset(buf, 0, length);
1748
1749		addr += length;
1750		buf += length;
1751		copied += length;
1752		count -= length;
1753	}
1754	return copied;
1755}
1756
1757static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1758{
1759	struct page *p;
1760	int copied = 0;
1761
1762	while (count) {
1763		unsigned long offset, length;
1764
1765		offset = (unsigned long)addr & ~PAGE_MASK;
1766		length = PAGE_SIZE - offset;
1767		if (length > count)
1768			length = count;
1769		p = vmalloc_to_page(addr);
1770		/*
1771		 * To do safe access to this _mapped_ area, we need
1772		 * lock. But adding lock here means that we need to add
1773		 * overhead of vmalloc()/vfree() calles for this _debug_
1774		 * interface, rarely used. Instead of that, we'll use
1775		 * kmap() and get small overhead in this access function.
1776		 */
1777		if (p) {
1778			/*
1779			 * we can expect USER0 is not used (see vread/vwrite's
1780			 * function description)
1781			 */
1782			void *map = kmap_atomic(p, KM_USER0);
1783			memcpy(map + offset, buf, length);
1784			kunmap_atomic(map, KM_USER0);
1785		}
1786		addr += length;
1787		buf += length;
1788		copied += length;
1789		count -= length;
1790	}
1791	return copied;
1792}
1793
1794/**
1795 *	vread() -  read vmalloc area in a safe way.
1796 *	@buf:		buffer for reading data
1797 *	@addr:		vm address.
1798 *	@count:		number of bytes to be read.
1799 *
1800 *	Returns # of bytes which addr and buf should be increased.
1801 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1802 *	includes any intersect with alive vmalloc area.
1803 *
1804 *	This function checks that addr is a valid vmalloc'ed area, and
1805 *	copy data from that area to a given buffer. If the given memory range
1806 *	of [addr...addr+count) includes some valid address, data is copied to
1807 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1808 *	IOREMAP area is treated as memory hole and no copy is done.
1809 *
1810 *	If [addr...addr+count) doesn't includes any intersects with alive
1811 *	vm_struct area, returns 0.
1812 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1813 *	the caller should guarantee KM_USER0 is not used.
1814 *
1815 *	Note: In usual ops, vread() is never necessary because the caller
1816 *	should know vmalloc() area is valid and can use memcpy().
1817 *	This is for routines which have to access vmalloc area without
1818 *	any informaion, as /dev/kmem.
1819 *
1820 */
1821
1822long vread(char *buf, char *addr, unsigned long count)
1823{
1824	struct vm_struct *tmp;
1825	char *vaddr, *buf_start = buf;
1826	unsigned long buflen = count;
1827	unsigned long n;
1828
1829	/* Don't allow overflow */
1830	if ((unsigned long) addr + count < count)
1831		count = -(unsigned long) addr;
1832
1833	read_lock(&vmlist_lock);
1834	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1835		vaddr = (char *) tmp->addr;
1836		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1837			continue;
1838		while (addr < vaddr) {
1839			if (count == 0)
1840				goto finished;
1841			*buf = '\0';
1842			buf++;
1843			addr++;
1844			count--;
1845		}
1846		n = vaddr + tmp->size - PAGE_SIZE - addr;
1847		if (n > count)
1848			n = count;
1849		if (!(tmp->flags & VM_IOREMAP))
1850			aligned_vread(buf, addr, n);
1851		else /* IOREMAP area is treated as memory hole */
1852			memset(buf, 0, n);
1853		buf += n;
1854		addr += n;
1855		count -= n;
1856	}
1857finished:
1858	read_unlock(&vmlist_lock);
1859
1860	if (buf == buf_start)
1861		return 0;
1862	/* zero-fill memory holes */
1863	if (buf != buf_start + buflen)
1864		memset(buf, 0, buflen - (buf - buf_start));
1865
1866	return buflen;
1867}
1868
1869/**
1870 *	vwrite() -  write vmalloc area in a safe way.
1871 *	@buf:		buffer for source data
1872 *	@addr:		vm address.
1873 *	@count:		number of bytes to be read.
1874 *
1875 *	Returns # of bytes which addr and buf should be incresed.
1876 *	(same number to @count).
1877 *	If [addr...addr+count) doesn't includes any intersect with valid
1878 *	vmalloc area, returns 0.
1879 *
1880 *	This function checks that addr is a valid vmalloc'ed area, and
1881 *	copy data from a buffer to the given addr. If specified range of
1882 *	[addr...addr+count) includes some valid address, data is copied from
1883 *	proper area of @buf. If there are memory holes, no copy to hole.
1884 *	IOREMAP area is treated as memory hole and no copy is done.
1885 *
1886 *	If [addr...addr+count) doesn't includes any intersects with alive
1887 *	vm_struct area, returns 0.
1888 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1889 *	the caller should guarantee KM_USER0 is not used.
1890 *
1891 *	Note: In usual ops, vwrite() is never necessary because the caller
1892 *	should know vmalloc() area is valid and can use memcpy().
1893 *	This is for routines which have to access vmalloc area without
1894 *	any informaion, as /dev/kmem.
1895 *
1896 *	The caller should guarantee KM_USER1 is not used.
1897 */
1898
1899long vwrite(char *buf, char *addr, unsigned long count)
1900{
1901	struct vm_struct *tmp;
1902	char *vaddr;
1903	unsigned long n, buflen;
1904	int copied = 0;
1905
1906	/* Don't allow overflow */
1907	if ((unsigned long) addr + count < count)
1908		count = -(unsigned long) addr;
1909	buflen = count;
1910
1911	read_lock(&vmlist_lock);
1912	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1913		vaddr = (char *) tmp->addr;
1914		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1915			continue;
1916		while (addr < vaddr) {
1917			if (count == 0)
1918				goto finished;
1919			buf++;
1920			addr++;
1921			count--;
1922		}
1923		n = vaddr + tmp->size - PAGE_SIZE - addr;
1924		if (n > count)
1925			n = count;
1926		if (!(tmp->flags & VM_IOREMAP)) {
1927			aligned_vwrite(buf, addr, n);
1928			copied++;
1929		}
1930		buf += n;
1931		addr += n;
1932		count -= n;
1933	}
1934finished:
1935	read_unlock(&vmlist_lock);
1936	if (!copied)
1937		return 0;
1938	return buflen;
1939}
1940
1941/**
1942 *	remap_vmalloc_range  -  map vmalloc pages to userspace
1943 *	@vma:		vma to cover (map full range of vma)
1944 *	@addr:		vmalloc memory
1945 *	@pgoff:		number of pages into addr before first page to map
1946 *
1947 *	Returns:	0 for success, -Exxx on failure
1948 *
1949 *	This function checks that addr is a valid vmalloc'ed area, and
1950 *	that it is big enough to cover the vma. Will return failure if
1951 *	that criteria isn't met.
1952 *
1953 *	Similar to remap_pfn_range() (see mm/memory.c)
1954 */
1955int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1956						unsigned long pgoff)
1957{
1958	struct vm_struct *area;
1959	unsigned long uaddr = vma->vm_start;
1960	unsigned long usize = vma->vm_end - vma->vm_start;
1961
1962	if ((PAGE_SIZE-1) & (unsigned long)addr)
1963		return -EINVAL;
1964
1965	area = find_vm_area(addr);
1966	if (!area)
1967		return -EINVAL;
1968
1969	if (!(area->flags & VM_USERMAP))
1970		return -EINVAL;
1971
1972	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1973		return -EINVAL;
1974
1975	addr += pgoff << PAGE_SHIFT;
1976	do {
1977		struct page *page = vmalloc_to_page(addr);
1978		int ret;
1979
1980		ret = vm_insert_page(vma, uaddr, page);
1981		if (ret)
1982			return ret;
1983
1984		uaddr += PAGE_SIZE;
1985		addr += PAGE_SIZE;
1986		usize -= PAGE_SIZE;
1987	} while (usize > 0);
1988
1989	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1990	vma->vm_flags |= VM_RESERVED;
1991
1992	return 0;
1993}
1994EXPORT_SYMBOL(remap_vmalloc_range);
1995
1996/*
1997 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1998 * have one.
1999 */
2000void  __attribute__((weak)) vmalloc_sync_all(void)
2001{
2002}
2003
2004
2005static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2006{
2007	/* apply_to_page_range() does all the hard work. */
2008	return 0;
2009}
2010
2011/**
2012 *	alloc_vm_area - allocate a range of kernel address space
2013 *	@size:		size of the area
2014 *
2015 *	Returns:	NULL on failure, vm_struct on success
2016 *
2017 *	This function reserves a range of kernel address space, and
2018 *	allocates pagetables to map that range.  No actual mappings
2019 *	are created.  If the kernel address space is not shared
2020 *	between processes, it syncs the pagetable across all
2021 *	processes.
2022 */
2023struct vm_struct *alloc_vm_area(size_t size)
2024{
2025	struct vm_struct *area;
2026
2027	area = get_vm_area_caller(size, VM_IOREMAP,
2028				__builtin_return_address(0));
2029	if (area == NULL)
2030		return NULL;
2031
2032	/*
2033	 * This ensures that page tables are constructed for this region
2034	 * of kernel virtual address space and mapped into init_mm.
2035	 */
2036	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2037				area->size, f, NULL)) {
2038		free_vm_area(area);
2039		return NULL;
2040	}
2041
2042	/* Make sure the pagetables are constructed in process kernel
2043	   mappings */
2044	vmalloc_sync_all();
2045
2046	return area;
2047}
2048EXPORT_SYMBOL_GPL(alloc_vm_area);
2049
2050void free_vm_area(struct vm_struct *area)
2051{
2052	struct vm_struct *ret;
2053	ret = remove_vm_area(area->addr);
2054	BUG_ON(ret != area);
2055	kfree(area);
2056}
2057EXPORT_SYMBOL_GPL(free_vm_area);
2058
2059static struct vmap_area *node_to_va(struct rb_node *n)
2060{
2061	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2062}
2063
2064/**
2065 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2066 * @end: target address
2067 * @pnext: out arg for the next vmap_area
2068 * @pprev: out arg for the previous vmap_area
2069 *
2070 * Returns: %true if either or both of next and prev are found,
2071 *	    %false if no vmap_area exists
2072 *
2073 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2074 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2075 */
2076static bool pvm_find_next_prev(unsigned long end,
2077			       struct vmap_area **pnext,
2078			       struct vmap_area **pprev)
2079{
2080	struct rb_node *n = vmap_area_root.rb_node;
2081	struct vmap_area *va = NULL;
2082
2083	while (n) {
2084		va = rb_entry(n, struct vmap_area, rb_node);
2085		if (end < va->va_end)
2086			n = n->rb_left;
2087		else if (end > va->va_end)
2088			n = n->rb_right;
2089		else
2090			break;
2091	}
2092
2093	if (!va)
2094		return false;
2095
2096	if (va->va_end > end) {
2097		*pnext = va;
2098		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2099	} else {
2100		*pprev = va;
2101		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2102	}
2103	return true;
2104}
2105
2106/**
2107 * pvm_determine_end - find the highest aligned address between two vmap_areas
2108 * @pnext: in/out arg for the next vmap_area
2109 * @pprev: in/out arg for the previous vmap_area
2110 * @align: alignment
2111 *
2112 * Returns: determined end address
2113 *
2114 * Find the highest aligned address between *@pnext and *@pprev below
2115 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2116 * down address is between the end addresses of the two vmap_areas.
2117 *
2118 * Please note that the address returned by this function may fall
2119 * inside *@pnext vmap_area.  The caller is responsible for checking
2120 * that.
2121 */
2122static unsigned long pvm_determine_end(struct vmap_area **pnext,
2123				       struct vmap_area **pprev,
2124				       unsigned long align)
2125{
2126	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2127	unsigned long addr;
2128
2129	if (*pnext)
2130		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2131	else
2132		addr = vmalloc_end;
2133
2134	while (*pprev && (*pprev)->va_end > addr) {
2135		*pnext = *pprev;
2136		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2137	}
2138
2139	return addr;
2140}
2141
2142/**
2143 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2144 * @offsets: array containing offset of each area
2145 * @sizes: array containing size of each area
2146 * @nr_vms: the number of areas to allocate
2147 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2148 * @gfp_mask: allocation mask
2149 *
2150 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2151 *	    vm_structs on success, %NULL on failure
2152 *
2153 * Percpu allocator wants to use congruent vm areas so that it can
2154 * maintain the offsets among percpu areas.  This function allocates
2155 * congruent vmalloc areas for it.  These areas tend to be scattered
2156 * pretty far, distance between two areas easily going up to
2157 * gigabytes.  To avoid interacting with regular vmallocs, these areas
2158 * are allocated from top.
2159 *
2160 * Despite its complicated look, this allocator is rather simple.  It
2161 * does everything top-down and scans areas from the end looking for
2162 * matching slot.  While scanning, if any of the areas overlaps with
2163 * existing vmap_area, the base address is pulled down to fit the
2164 * area.  Scanning is repeated till all the areas fit and then all
2165 * necessary data structres are inserted and the result is returned.
2166 */
2167struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2168				     const size_t *sizes, int nr_vms,
2169				     size_t align, gfp_t gfp_mask)
2170{
2171	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2172	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2173	struct vmap_area **vas, *prev, *next;
2174	struct vm_struct **vms;
2175	int area, area2, last_area, term_area;
2176	unsigned long base, start, end, last_end;
2177	bool purged = false;
2178
2179	gfp_mask &= GFP_RECLAIM_MASK;
2180
2181	/* verify parameters and allocate data structures */
2182	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2183	for (last_area = 0, area = 0; area < nr_vms; area++) {
2184		start = offsets[area];
2185		end = start + sizes[area];
2186
2187		/* is everything aligned properly? */
2188		BUG_ON(!IS_ALIGNED(offsets[area], align));
2189		BUG_ON(!IS_ALIGNED(sizes[area], align));
2190
2191		/* detect the area with the highest address */
2192		if (start > offsets[last_area])
2193			last_area = area;
2194
2195		for (area2 = 0; area2 < nr_vms; area2++) {
2196			unsigned long start2 = offsets[area2];
2197			unsigned long end2 = start2 + sizes[area2];
2198
2199			if (area2 == area)
2200				continue;
2201
2202			BUG_ON(start2 >= start && start2 < end);
2203			BUG_ON(end2 <= end && end2 > start);
2204		}
2205	}
2206	last_end = offsets[last_area] + sizes[last_area];
2207
2208	if (vmalloc_end - vmalloc_start < last_end) {
2209		WARN_ON(true);
2210		return NULL;
2211	}
2212
2213	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2214	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2215	if (!vas || !vms)
2216		goto err_free;
2217
2218	for (area = 0; area < nr_vms; area++) {
2219		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2220		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2221		if (!vas[area] || !vms[area])
2222			goto err_free;
2223	}
2224retry:
2225	spin_lock(&vmap_area_lock);
2226
2227	/* start scanning - we scan from the top, begin with the last area */
2228	area = term_area = last_area;
2229	start = offsets[area];
2230	end = start + sizes[area];
2231
2232	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2233		base = vmalloc_end - last_end;
2234		goto found;
2235	}
2236	base = pvm_determine_end(&next, &prev, align) - end;
2237
2238	while (true) {
2239		BUG_ON(next && next->va_end <= base + end);
2240		BUG_ON(prev && prev->va_end > base + end);
2241
2242		/*
2243		 * base might have underflowed, add last_end before
2244		 * comparing.
2245		 */
2246		if (base + last_end < vmalloc_start + last_end) {
2247			spin_unlock(&vmap_area_lock);
2248			if (!purged) {
2249				purge_vmap_area_lazy();
2250				purged = true;
2251				goto retry;
2252			}
2253			goto err_free;
2254		}
2255
2256		/*
2257		 * If next overlaps, move base downwards so that it's
2258		 * right below next and then recheck.
2259		 */
2260		if (next && next->va_start < base + end) {
2261			base = pvm_determine_end(&next, &prev, align) - end;
2262			term_area = area;
2263			continue;
2264		}
2265
2266		/*
2267		 * If prev overlaps, shift down next and prev and move
2268		 * base so that it's right below new next and then
2269		 * recheck.
2270		 */
2271		if (prev && prev->va_end > base + start)  {
2272			next = prev;
2273			prev = node_to_va(rb_prev(&next->rb_node));
2274			base = pvm_determine_end(&next, &prev, align) - end;
2275			term_area = area;
2276			continue;
2277		}
2278
2279		/*
2280		 * This area fits, move on to the previous one.  If
2281		 * the previous one is the terminal one, we're done.
2282		 */
2283		area = (area + nr_vms - 1) % nr_vms;
2284		if (area == term_area)
2285			break;
2286		start = offsets[area];
2287		end = start + sizes[area];
2288		pvm_find_next_prev(base + end, &next, &prev);
2289	}
2290found:
2291	/* we've found a fitting base, insert all va's */
2292	for (area = 0; area < nr_vms; area++) {
2293		struct vmap_area *va = vas[area];
2294
2295		va->va_start = base + offsets[area];
2296		va->va_end = va->va_start + sizes[area];
2297		__insert_vmap_area(va);
2298	}
2299
2300	vmap_area_pcpu_hole = base + offsets[last_area];
2301
2302	spin_unlock(&vmap_area_lock);
2303
2304	/* insert all vm's */
2305	for (area = 0; area < nr_vms; area++)
2306		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2307				  pcpu_get_vm_areas);
2308
2309	kfree(vas);
2310	return vms;
2311
2312err_free:
2313	for (area = 0; area < nr_vms; area++) {
2314		if (vas)
2315			kfree(vas[area]);
2316		if (vms)
2317			kfree(vms[area]);
2318	}
2319	kfree(vas);
2320	kfree(vms);
2321	return NULL;
2322}
2323
2324/**
2325 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2326 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2327 * @nr_vms: the number of allocated areas
2328 *
2329 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2330 */
2331void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2332{
2333	int i;
2334
2335	for (i = 0; i < nr_vms; i++)
2336		free_vm_area(vms[i]);
2337	kfree(vms);
2338}
2339
2340#ifdef CONFIG_PROC_FS
2341static void *s_start(struct seq_file *m, loff_t *pos)
2342{
2343	loff_t n = *pos;
2344	struct vm_struct *v;
2345
2346	read_lock(&vmlist_lock);
2347	v = vmlist;
2348	while (n > 0 && v) {
2349		n--;
2350		v = v->next;
2351	}
2352	if (!n)
2353		return v;
2354
2355	return NULL;
2356
2357}
2358
2359static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2360{
2361	struct vm_struct *v = p;
2362
2363	++*pos;
2364	return v->next;
2365}
2366
2367static void s_stop(struct seq_file *m, void *p)
2368{
2369	read_unlock(&vmlist_lock);
2370}
2371
2372static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2373{
2374	if (NUMA_BUILD) {
2375		unsigned int nr, *counters = m->private;
2376
2377		if (!counters)
2378			return;
2379
2380		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2381
2382		for (nr = 0; nr < v->nr_pages; nr++)
2383			counters[page_to_nid(v->pages[nr])]++;
2384
2385		for_each_node_state(nr, N_HIGH_MEMORY)
2386			if (counters[nr])
2387				seq_printf(m, " N%u=%u", nr, counters[nr]);
2388	}
2389}
2390
2391static int s_show(struct seq_file *m, void *p)
2392{
2393	struct vm_struct *v = p;
2394
2395	seq_printf(m, "0x%p-0x%p %7ld",
2396		v->addr, v->addr + v->size, v->size);
2397
2398	if (v->caller) {
2399		char buff[KSYM_SYMBOL_LEN];
2400
2401		seq_putc(m, ' ');
2402		sprint_symbol(buff, (unsigned long)v->caller);
2403		seq_puts(m, buff);
2404	}
2405
2406	if (v->nr_pages)
2407		seq_printf(m, " pages=%d", v->nr_pages);
2408
2409	if (v->phys_addr)
2410		seq_printf(m, " phys=%lx", v->phys_addr);
2411
2412	if (v->flags & VM_IOREMAP)
2413		seq_printf(m, " ioremap");
2414
2415	if (v->flags & VM_ALLOC)
2416		seq_printf(m, " vmalloc");
2417
2418	if (v->flags & VM_MAP)
2419		seq_printf(m, " vmap");
2420
2421	if (v->flags & VM_USERMAP)
2422		seq_printf(m, " user");
2423
2424	if (v->flags & VM_VPAGES)
2425		seq_printf(m, " vpages");
2426
2427	show_numa_info(m, v);
2428	seq_putc(m, '\n');
2429	return 0;
2430}
2431
2432static const struct seq_operations vmalloc_op = {
2433	.start = s_start,
2434	.next = s_next,
2435	.stop = s_stop,
2436	.show = s_show,
2437};
2438
2439static int vmalloc_open(struct inode *inode, struct file *file)
2440{
2441	unsigned int *ptr = NULL;
2442	int ret;
2443
2444	if (NUMA_BUILD)
2445		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2446	ret = seq_open(file, &vmalloc_op);
2447	if (!ret) {
2448		struct seq_file *m = file->private_data;
2449		m->private = ptr;
2450	} else
2451		kfree(ptr);
2452	return ret;
2453}
2454
2455static const struct file_operations proc_vmalloc_operations = {
2456	.open		= vmalloc_open,
2457	.read		= seq_read,
2458	.llseek		= seq_lseek,
2459	.release	= seq_release_private,
2460};
2461
2462static int __init proc_vmalloc_init(void)
2463{
2464	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2465	return 0;
2466}
2467module_init(proc_vmalloc_init);
2468#endif
2469
2470