vmalloc.c revision f1db7afd917e54711798c64d78f8f5fb090f950d
1/*
2 *  linux/mm/vmalloc.c
3 *
4 *  Copyright (C) 1993  Linus Torvalds
5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 *  Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/debugobjects.h>
22#include <linux/kallsyms.h>
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
27#include <linux/pfn.h>
28#include <linux/kmemleak.h>
29#include <linux/atomic.h>
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32#include <asm/shmparam.h>
33
34/*** Page table manipulation functions ***/
35
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38	pte_t *pte;
39
40	pte = pte_offset_kernel(pmd, addr);
41	do {
42		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44	} while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48{
49	pmd_t *pmd;
50	unsigned long next;
51
52	pmd = pmd_offset(pud, addr);
53	do {
54		next = pmd_addr_end(addr, end);
55		if (pmd_none_or_clear_bad(pmd))
56			continue;
57		vunmap_pte_range(pmd, addr, next);
58	} while (pmd++, addr = next, addr != end);
59}
60
61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62{
63	pud_t *pud;
64	unsigned long next;
65
66	pud = pud_offset(pgd, addr);
67	do {
68		next = pud_addr_end(addr, end);
69		if (pud_none_or_clear_bad(pud))
70			continue;
71		vunmap_pmd_range(pud, addr, next);
72	} while (pud++, addr = next, addr != end);
73}
74
75static void vunmap_page_range(unsigned long addr, unsigned long end)
76{
77	pgd_t *pgd;
78	unsigned long next;
79
80	BUG_ON(addr >= end);
81	pgd = pgd_offset_k(addr);
82	do {
83		next = pgd_addr_end(addr, end);
84		if (pgd_none_or_clear_bad(pgd))
85			continue;
86		vunmap_pud_range(pgd, addr, next);
87	} while (pgd++, addr = next, addr != end);
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92{
93	pte_t *pte;
94
95	/*
96	 * nr is a running index into the array which helps higher level
97	 * callers keep track of where we're up to.
98	 */
99
100	pte = pte_alloc_kernel(pmd, addr);
101	if (!pte)
102		return -ENOMEM;
103	do {
104		struct page *page = pages[*nr];
105
106		if (WARN_ON(!pte_none(*pte)))
107			return -EBUSY;
108		if (WARN_ON(!page))
109			return -ENOMEM;
110		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111		(*nr)++;
112	} while (pte++, addr += PAGE_SIZE, addr != end);
113	return 0;
114}
115
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118{
119	pmd_t *pmd;
120	unsigned long next;
121
122	pmd = pmd_alloc(&init_mm, pud, addr);
123	if (!pmd)
124		return -ENOMEM;
125	do {
126		next = pmd_addr_end(addr, end);
127		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128			return -ENOMEM;
129	} while (pmd++, addr = next, addr != end);
130	return 0;
131}
132
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135{
136	pud_t *pud;
137	unsigned long next;
138
139	pud = pud_alloc(&init_mm, pgd, addr);
140	if (!pud)
141		return -ENOMEM;
142	do {
143		next = pud_addr_end(addr, end);
144		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145			return -ENOMEM;
146	} while (pud++, addr = next, addr != end);
147	return 0;
148}
149
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157				   pgprot_t prot, struct page **pages)
158{
159	pgd_t *pgd;
160	unsigned long next;
161	unsigned long addr = start;
162	int err = 0;
163	int nr = 0;
164
165	BUG_ON(addr >= end);
166	pgd = pgd_offset_k(addr);
167	do {
168		next = pgd_addr_end(addr, end);
169		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170		if (err)
171			return err;
172	} while (pgd++, addr = next, addr != end);
173
174	return nr;
175}
176
177static int vmap_page_range(unsigned long start, unsigned long end,
178			   pgprot_t prot, struct page **pages)
179{
180	int ret;
181
182	ret = vmap_page_range_noflush(start, end, prot, pages);
183	flush_cache_vmap(start, end);
184	return ret;
185}
186
187int is_vmalloc_or_module_addr(const void *x)
188{
189	/*
190	 * ARM, x86-64 and sparc64 put modules in a special place,
191	 * and fall back on vmalloc() if that fails. Others
192	 * just put it in the vmalloc space.
193	 */
194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195	unsigned long addr = (unsigned long)x;
196	if (addr >= MODULES_VADDR && addr < MODULES_END)
197		return 1;
198#endif
199	return is_vmalloc_addr(x);
200}
201
202/*
203 * Walk a vmap address to the struct page it maps.
204 */
205struct page *vmalloc_to_page(const void *vmalloc_addr)
206{
207	unsigned long addr = (unsigned long) vmalloc_addr;
208	struct page *page = NULL;
209	pgd_t *pgd = pgd_offset_k(addr);
210
211	/*
212	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213	 * architectures that do not vmalloc module space
214	 */
215	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216
217	if (!pgd_none(*pgd)) {
218		pud_t *pud = pud_offset(pgd, addr);
219		if (!pud_none(*pud)) {
220			pmd_t *pmd = pmd_offset(pud, addr);
221			if (!pmd_none(*pmd)) {
222				pte_t *ptep, pte;
223
224				ptep = pte_offset_map(pmd, addr);
225				pte = *ptep;
226				if (pte_present(pte))
227					page = pte_page(pte);
228				pte_unmap(ptep);
229			}
230		}
231	}
232	return page;
233}
234EXPORT_SYMBOL(vmalloc_to_page);
235
236/*
237 * Map a vmalloc()-space virtual address to the physical page frame number.
238 */
239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240{
241	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242}
243EXPORT_SYMBOL(vmalloc_to_pfn);
244
245
246/*** Global kva allocator ***/
247
248#define VM_LAZY_FREE	0x01
249#define VM_LAZY_FREEING	0x02
250#define VM_VM_AREA	0x04
251
252struct vmap_area {
253	unsigned long va_start;
254	unsigned long va_end;
255	unsigned long flags;
256	struct rb_node rb_node;		/* address sorted rbtree */
257	struct list_head list;		/* address sorted list */
258	struct list_head purge_list;	/* "lazy purge" list */
259	struct vm_struct *vm;
260	struct rcu_head rcu_head;
261};
262
263static DEFINE_SPINLOCK(vmap_area_lock);
264static LIST_HEAD(vmap_area_list);
265static struct rb_root vmap_area_root = RB_ROOT;
266
267/* The vmap cache globals are protected by vmap_area_lock */
268static struct rb_node *free_vmap_cache;
269static unsigned long cached_hole_size;
270static unsigned long cached_vstart;
271static unsigned long cached_align;
272
273static unsigned long vmap_area_pcpu_hole;
274
275static struct vmap_area *__find_vmap_area(unsigned long addr)
276{
277	struct rb_node *n = vmap_area_root.rb_node;
278
279	while (n) {
280		struct vmap_area *va;
281
282		va = rb_entry(n, struct vmap_area, rb_node);
283		if (addr < va->va_start)
284			n = n->rb_left;
285		else if (addr > va->va_start)
286			n = n->rb_right;
287		else
288			return va;
289	}
290
291	return NULL;
292}
293
294static void __insert_vmap_area(struct vmap_area *va)
295{
296	struct rb_node **p = &vmap_area_root.rb_node;
297	struct rb_node *parent = NULL;
298	struct rb_node *tmp;
299
300	while (*p) {
301		struct vmap_area *tmp_va;
302
303		parent = *p;
304		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305		if (va->va_start < tmp_va->va_end)
306			p = &(*p)->rb_left;
307		else if (va->va_end > tmp_va->va_start)
308			p = &(*p)->rb_right;
309		else
310			BUG();
311	}
312
313	rb_link_node(&va->rb_node, parent, p);
314	rb_insert_color(&va->rb_node, &vmap_area_root);
315
316	/* address-sort this list so it is usable like the vmlist */
317	tmp = rb_prev(&va->rb_node);
318	if (tmp) {
319		struct vmap_area *prev;
320		prev = rb_entry(tmp, struct vmap_area, rb_node);
321		list_add_rcu(&va->list, &prev->list);
322	} else
323		list_add_rcu(&va->list, &vmap_area_list);
324}
325
326static void purge_vmap_area_lazy(void);
327
328/*
329 * Allocate a region of KVA of the specified size and alignment, within the
330 * vstart and vend.
331 */
332static struct vmap_area *alloc_vmap_area(unsigned long size,
333				unsigned long align,
334				unsigned long vstart, unsigned long vend,
335				int node, gfp_t gfp_mask)
336{
337	struct vmap_area *va;
338	struct rb_node *n;
339	unsigned long addr;
340	int purged = 0;
341	struct vmap_area *first;
342
343	BUG_ON(!size);
344	BUG_ON(size & ~PAGE_MASK);
345	BUG_ON(!is_power_of_2(align));
346
347	va = kmalloc_node(sizeof(struct vmap_area),
348			gfp_mask & GFP_RECLAIM_MASK, node);
349	if (unlikely(!va))
350		return ERR_PTR(-ENOMEM);
351
352retry:
353	spin_lock(&vmap_area_lock);
354	/*
355	 * Invalidate cache if we have more permissive parameters.
356	 * cached_hole_size notes the largest hole noticed _below_
357	 * the vmap_area cached in free_vmap_cache: if size fits
358	 * into that hole, we want to scan from vstart to reuse
359	 * the hole instead of allocating above free_vmap_cache.
360	 * Note that __free_vmap_area may update free_vmap_cache
361	 * without updating cached_hole_size or cached_align.
362	 */
363	if (!free_vmap_cache ||
364			size < cached_hole_size ||
365			vstart < cached_vstart ||
366			align < cached_align) {
367nocache:
368		cached_hole_size = 0;
369		free_vmap_cache = NULL;
370	}
371	/* record if we encounter less permissive parameters */
372	cached_vstart = vstart;
373	cached_align = align;
374
375	/* find starting point for our search */
376	if (free_vmap_cache) {
377		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
378		addr = ALIGN(first->va_end, align);
379		if (addr < vstart)
380			goto nocache;
381		if (addr + size - 1 < addr)
382			goto overflow;
383
384	} else {
385		addr = ALIGN(vstart, align);
386		if (addr + size - 1 < addr)
387			goto overflow;
388
389		n = vmap_area_root.rb_node;
390		first = NULL;
391
392		while (n) {
393			struct vmap_area *tmp;
394			tmp = rb_entry(n, struct vmap_area, rb_node);
395			if (tmp->va_end >= addr) {
396				first = tmp;
397				if (tmp->va_start <= addr)
398					break;
399				n = n->rb_left;
400			} else
401				n = n->rb_right;
402		}
403
404		if (!first)
405			goto found;
406	}
407
408	/* from the starting point, walk areas until a suitable hole is found */
409	while (addr + size > first->va_start && addr + size <= vend) {
410		if (addr + cached_hole_size < first->va_start)
411			cached_hole_size = first->va_start - addr;
412		addr = ALIGN(first->va_end, align);
413		if (addr + size - 1 < addr)
414			goto overflow;
415
416		n = rb_next(&first->rb_node);
417		if (n)
418			first = rb_entry(n, struct vmap_area, rb_node);
419		else
420			goto found;
421	}
422
423found:
424	if (addr + size > vend)
425		goto overflow;
426
427	va->va_start = addr;
428	va->va_end = addr + size;
429	va->flags = 0;
430	__insert_vmap_area(va);
431	free_vmap_cache = &va->rb_node;
432	spin_unlock(&vmap_area_lock);
433
434	BUG_ON(va->va_start & (align-1));
435	BUG_ON(va->va_start < vstart);
436	BUG_ON(va->va_end > vend);
437
438	return va;
439
440overflow:
441	spin_unlock(&vmap_area_lock);
442	if (!purged) {
443		purge_vmap_area_lazy();
444		purged = 1;
445		goto retry;
446	}
447	if (printk_ratelimit())
448		printk(KERN_WARNING
449			"vmap allocation for size %lu failed: "
450			"use vmalloc=<size> to increase size.\n", size);
451	kfree(va);
452	return ERR_PTR(-EBUSY);
453}
454
455static void __free_vmap_area(struct vmap_area *va)
456{
457	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
458
459	if (free_vmap_cache) {
460		if (va->va_end < cached_vstart) {
461			free_vmap_cache = NULL;
462		} else {
463			struct vmap_area *cache;
464			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
465			if (va->va_start <= cache->va_start) {
466				free_vmap_cache = rb_prev(&va->rb_node);
467				/*
468				 * We don't try to update cached_hole_size or
469				 * cached_align, but it won't go very wrong.
470				 */
471			}
472		}
473	}
474	rb_erase(&va->rb_node, &vmap_area_root);
475	RB_CLEAR_NODE(&va->rb_node);
476	list_del_rcu(&va->list);
477
478	/*
479	 * Track the highest possible candidate for pcpu area
480	 * allocation.  Areas outside of vmalloc area can be returned
481	 * here too, consider only end addresses which fall inside
482	 * vmalloc area proper.
483	 */
484	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
485		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
486
487	kfree_rcu(va, rcu_head);
488}
489
490/*
491 * Free a region of KVA allocated by alloc_vmap_area
492 */
493static void free_vmap_area(struct vmap_area *va)
494{
495	spin_lock(&vmap_area_lock);
496	__free_vmap_area(va);
497	spin_unlock(&vmap_area_lock);
498}
499
500/*
501 * Clear the pagetable entries of a given vmap_area
502 */
503static void unmap_vmap_area(struct vmap_area *va)
504{
505	vunmap_page_range(va->va_start, va->va_end);
506}
507
508static void vmap_debug_free_range(unsigned long start, unsigned long end)
509{
510	/*
511	 * Unmap page tables and force a TLB flush immediately if
512	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
513	 * bugs similarly to those in linear kernel virtual address
514	 * space after a page has been freed.
515	 *
516	 * All the lazy freeing logic is still retained, in order to
517	 * minimise intrusiveness of this debugging feature.
518	 *
519	 * This is going to be *slow* (linear kernel virtual address
520	 * debugging doesn't do a broadcast TLB flush so it is a lot
521	 * faster).
522	 */
523#ifdef CONFIG_DEBUG_PAGEALLOC
524	vunmap_page_range(start, end);
525	flush_tlb_kernel_range(start, end);
526#endif
527}
528
529/*
530 * lazy_max_pages is the maximum amount of virtual address space we gather up
531 * before attempting to purge with a TLB flush.
532 *
533 * There is a tradeoff here: a larger number will cover more kernel page tables
534 * and take slightly longer to purge, but it will linearly reduce the number of
535 * global TLB flushes that must be performed. It would seem natural to scale
536 * this number up linearly with the number of CPUs (because vmapping activity
537 * could also scale linearly with the number of CPUs), however it is likely
538 * that in practice, workloads might be constrained in other ways that mean
539 * vmap activity will not scale linearly with CPUs. Also, I want to be
540 * conservative and not introduce a big latency on huge systems, so go with
541 * a less aggressive log scale. It will still be an improvement over the old
542 * code, and it will be simple to change the scale factor if we find that it
543 * becomes a problem on bigger systems.
544 */
545static unsigned long lazy_max_pages(void)
546{
547	unsigned int log;
548
549	log = fls(num_online_cpus());
550
551	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
552}
553
554static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
555
556/* for per-CPU blocks */
557static void purge_fragmented_blocks_allcpus(void);
558
559/*
560 * called before a call to iounmap() if the caller wants vm_area_struct's
561 * immediately freed.
562 */
563void set_iounmap_nonlazy(void)
564{
565	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
566}
567
568/*
569 * Purges all lazily-freed vmap areas.
570 *
571 * If sync is 0 then don't purge if there is already a purge in progress.
572 * If force_flush is 1, then flush kernel TLBs between *start and *end even
573 * if we found no lazy vmap areas to unmap (callers can use this to optimise
574 * their own TLB flushing).
575 * Returns with *start = min(*start, lowest purged address)
576 *              *end = max(*end, highest purged address)
577 */
578static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
579					int sync, int force_flush)
580{
581	static DEFINE_SPINLOCK(purge_lock);
582	LIST_HEAD(valist);
583	struct vmap_area *va;
584	struct vmap_area *n_va;
585	int nr = 0;
586
587	/*
588	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
589	 * should not expect such behaviour. This just simplifies locking for
590	 * the case that isn't actually used at the moment anyway.
591	 */
592	if (!sync && !force_flush) {
593		if (!spin_trylock(&purge_lock))
594			return;
595	} else
596		spin_lock(&purge_lock);
597
598	if (sync)
599		purge_fragmented_blocks_allcpus();
600
601	rcu_read_lock();
602	list_for_each_entry_rcu(va, &vmap_area_list, list) {
603		if (va->flags & VM_LAZY_FREE) {
604			if (va->va_start < *start)
605				*start = va->va_start;
606			if (va->va_end > *end)
607				*end = va->va_end;
608			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
609			list_add_tail(&va->purge_list, &valist);
610			va->flags |= VM_LAZY_FREEING;
611			va->flags &= ~VM_LAZY_FREE;
612		}
613	}
614	rcu_read_unlock();
615
616	if (nr)
617		atomic_sub(nr, &vmap_lazy_nr);
618
619	if (nr || force_flush)
620		flush_tlb_kernel_range(*start, *end);
621
622	if (nr) {
623		spin_lock(&vmap_area_lock);
624		list_for_each_entry_safe(va, n_va, &valist, purge_list)
625			__free_vmap_area(va);
626		spin_unlock(&vmap_area_lock);
627	}
628	spin_unlock(&purge_lock);
629}
630
631/*
632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
633 * is already purging.
634 */
635static void try_purge_vmap_area_lazy(void)
636{
637	unsigned long start = ULONG_MAX, end = 0;
638
639	__purge_vmap_area_lazy(&start, &end, 0, 0);
640}
641
642/*
643 * Kick off a purge of the outstanding lazy areas.
644 */
645static void purge_vmap_area_lazy(void)
646{
647	unsigned long start = ULONG_MAX, end = 0;
648
649	__purge_vmap_area_lazy(&start, &end, 1, 0);
650}
651
652/*
653 * Free a vmap area, caller ensuring that the area has been unmapped
654 * and flush_cache_vunmap had been called for the correct range
655 * previously.
656 */
657static void free_vmap_area_noflush(struct vmap_area *va)
658{
659	va->flags |= VM_LAZY_FREE;
660	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
661	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
662		try_purge_vmap_area_lazy();
663}
664
665/*
666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
667 * called for the correct range previously.
668 */
669static void free_unmap_vmap_area_noflush(struct vmap_area *va)
670{
671	unmap_vmap_area(va);
672	free_vmap_area_noflush(va);
673}
674
675/*
676 * Free and unmap a vmap area
677 */
678static void free_unmap_vmap_area(struct vmap_area *va)
679{
680	flush_cache_vunmap(va->va_start, va->va_end);
681	free_unmap_vmap_area_noflush(va);
682}
683
684static struct vmap_area *find_vmap_area(unsigned long addr)
685{
686	struct vmap_area *va;
687
688	spin_lock(&vmap_area_lock);
689	va = __find_vmap_area(addr);
690	spin_unlock(&vmap_area_lock);
691
692	return va;
693}
694
695static void free_unmap_vmap_area_addr(unsigned long addr)
696{
697	struct vmap_area *va;
698
699	va = find_vmap_area(addr);
700	BUG_ON(!va);
701	free_unmap_vmap_area(va);
702}
703
704
705/*** Per cpu kva allocator ***/
706
707/*
708 * vmap space is limited especially on 32 bit architectures. Ensure there is
709 * room for at least 16 percpu vmap blocks per CPU.
710 */
711/*
712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
713 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
714 * instead (we just need a rough idea)
715 */
716#if BITS_PER_LONG == 32
717#define VMALLOC_SPACE		(128UL*1024*1024)
718#else
719#define VMALLOC_SPACE		(128UL*1024*1024*1024)
720#endif
721
722#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
723#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
724#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
725#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
726#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
727#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
728#define VMAP_BBMAP_BITS		\
729		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
730		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
731			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
732
733#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
734
735static bool vmap_initialized __read_mostly = false;
736
737struct vmap_block_queue {
738	spinlock_t lock;
739	struct list_head free;
740};
741
742struct vmap_block {
743	spinlock_t lock;
744	struct vmap_area *va;
745	struct vmap_block_queue *vbq;
746	unsigned long free, dirty;
747	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
748	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
749	struct list_head free_list;
750	struct rcu_head rcu_head;
751	struct list_head purge;
752};
753
754/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
755static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
756
757/*
758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
759 * in the free path. Could get rid of this if we change the API to return a
760 * "cookie" from alloc, to be passed to free. But no big deal yet.
761 */
762static DEFINE_SPINLOCK(vmap_block_tree_lock);
763static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
764
765/*
766 * We should probably have a fallback mechanism to allocate virtual memory
767 * out of partially filled vmap blocks. However vmap block sizing should be
768 * fairly reasonable according to the vmalloc size, so it shouldn't be a
769 * big problem.
770 */
771
772static unsigned long addr_to_vb_idx(unsigned long addr)
773{
774	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
775	addr /= VMAP_BLOCK_SIZE;
776	return addr;
777}
778
779static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
780{
781	struct vmap_block_queue *vbq;
782	struct vmap_block *vb;
783	struct vmap_area *va;
784	unsigned long vb_idx;
785	int node, err;
786
787	node = numa_node_id();
788
789	vb = kmalloc_node(sizeof(struct vmap_block),
790			gfp_mask & GFP_RECLAIM_MASK, node);
791	if (unlikely(!vb))
792		return ERR_PTR(-ENOMEM);
793
794	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
795					VMALLOC_START, VMALLOC_END,
796					node, gfp_mask);
797	if (IS_ERR(va)) {
798		kfree(vb);
799		return ERR_CAST(va);
800	}
801
802	err = radix_tree_preload(gfp_mask);
803	if (unlikely(err)) {
804		kfree(vb);
805		free_vmap_area(va);
806		return ERR_PTR(err);
807	}
808
809	spin_lock_init(&vb->lock);
810	vb->va = va;
811	vb->free = VMAP_BBMAP_BITS;
812	vb->dirty = 0;
813	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
814	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
815	INIT_LIST_HEAD(&vb->free_list);
816
817	vb_idx = addr_to_vb_idx(va->va_start);
818	spin_lock(&vmap_block_tree_lock);
819	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
820	spin_unlock(&vmap_block_tree_lock);
821	BUG_ON(err);
822	radix_tree_preload_end();
823
824	vbq = &get_cpu_var(vmap_block_queue);
825	vb->vbq = vbq;
826	spin_lock(&vbq->lock);
827	list_add_rcu(&vb->free_list, &vbq->free);
828	spin_unlock(&vbq->lock);
829	put_cpu_var(vmap_block_queue);
830
831	return vb;
832}
833
834static void free_vmap_block(struct vmap_block *vb)
835{
836	struct vmap_block *tmp;
837	unsigned long vb_idx;
838
839	vb_idx = addr_to_vb_idx(vb->va->va_start);
840	spin_lock(&vmap_block_tree_lock);
841	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
842	spin_unlock(&vmap_block_tree_lock);
843	BUG_ON(tmp != vb);
844
845	free_vmap_area_noflush(vb->va);
846	kfree_rcu(vb, rcu_head);
847}
848
849static void purge_fragmented_blocks(int cpu)
850{
851	LIST_HEAD(purge);
852	struct vmap_block *vb;
853	struct vmap_block *n_vb;
854	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
855
856	rcu_read_lock();
857	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
858
859		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
860			continue;
861
862		spin_lock(&vb->lock);
863		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
864			vb->free = 0; /* prevent further allocs after releasing lock */
865			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
866			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
867			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
868			spin_lock(&vbq->lock);
869			list_del_rcu(&vb->free_list);
870			spin_unlock(&vbq->lock);
871			spin_unlock(&vb->lock);
872			list_add_tail(&vb->purge, &purge);
873		} else
874			spin_unlock(&vb->lock);
875	}
876	rcu_read_unlock();
877
878	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
879		list_del(&vb->purge);
880		free_vmap_block(vb);
881	}
882}
883
884static void purge_fragmented_blocks_thiscpu(void)
885{
886	purge_fragmented_blocks(smp_processor_id());
887}
888
889static void purge_fragmented_blocks_allcpus(void)
890{
891	int cpu;
892
893	for_each_possible_cpu(cpu)
894		purge_fragmented_blocks(cpu);
895}
896
897static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
898{
899	struct vmap_block_queue *vbq;
900	struct vmap_block *vb;
901	unsigned long addr = 0;
902	unsigned int order;
903	int purge = 0;
904
905	BUG_ON(size & ~PAGE_MASK);
906	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
907	order = get_order(size);
908
909again:
910	rcu_read_lock();
911	vbq = &get_cpu_var(vmap_block_queue);
912	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
913		int i;
914
915		spin_lock(&vb->lock);
916		if (vb->free < 1UL << order)
917			goto next;
918
919		i = bitmap_find_free_region(vb->alloc_map,
920						VMAP_BBMAP_BITS, order);
921
922		if (i < 0) {
923			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
924				/* fragmented and no outstanding allocations */
925				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
926				purge = 1;
927			}
928			goto next;
929		}
930		addr = vb->va->va_start + (i << PAGE_SHIFT);
931		BUG_ON(addr_to_vb_idx(addr) !=
932				addr_to_vb_idx(vb->va->va_start));
933		vb->free -= 1UL << order;
934		if (vb->free == 0) {
935			spin_lock(&vbq->lock);
936			list_del_rcu(&vb->free_list);
937			spin_unlock(&vbq->lock);
938		}
939		spin_unlock(&vb->lock);
940		break;
941next:
942		spin_unlock(&vb->lock);
943	}
944
945	if (purge)
946		purge_fragmented_blocks_thiscpu();
947
948	put_cpu_var(vmap_block_queue);
949	rcu_read_unlock();
950
951	if (!addr) {
952		vb = new_vmap_block(gfp_mask);
953		if (IS_ERR(vb))
954			return vb;
955		goto again;
956	}
957
958	return (void *)addr;
959}
960
961static void vb_free(const void *addr, unsigned long size)
962{
963	unsigned long offset;
964	unsigned long vb_idx;
965	unsigned int order;
966	struct vmap_block *vb;
967
968	BUG_ON(size & ~PAGE_MASK);
969	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
970
971	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
972
973	order = get_order(size);
974
975	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
976
977	vb_idx = addr_to_vb_idx((unsigned long)addr);
978	rcu_read_lock();
979	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
980	rcu_read_unlock();
981	BUG_ON(!vb);
982
983	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
984
985	spin_lock(&vb->lock);
986	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
987
988	vb->dirty += 1UL << order;
989	if (vb->dirty == VMAP_BBMAP_BITS) {
990		BUG_ON(vb->free);
991		spin_unlock(&vb->lock);
992		free_vmap_block(vb);
993	} else
994		spin_unlock(&vb->lock);
995}
996
997/**
998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
999 *
1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001 * to amortize TLB flushing overheads. What this means is that any page you
1002 * have now, may, in a former life, have been mapped into kernel virtual
1003 * address by the vmap layer and so there might be some CPUs with TLB entries
1004 * still referencing that page (additional to the regular 1:1 kernel mapping).
1005 *
1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007 * be sure that none of the pages we have control over will have any aliases
1008 * from the vmap layer.
1009 */
1010void vm_unmap_aliases(void)
1011{
1012	unsigned long start = ULONG_MAX, end = 0;
1013	int cpu;
1014	int flush = 0;
1015
1016	if (unlikely(!vmap_initialized))
1017		return;
1018
1019	for_each_possible_cpu(cpu) {
1020		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1021		struct vmap_block *vb;
1022
1023		rcu_read_lock();
1024		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1025			int i;
1026
1027			spin_lock(&vb->lock);
1028			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1029			while (i < VMAP_BBMAP_BITS) {
1030				unsigned long s, e;
1031				int j;
1032				j = find_next_zero_bit(vb->dirty_map,
1033					VMAP_BBMAP_BITS, i);
1034
1035				s = vb->va->va_start + (i << PAGE_SHIFT);
1036				e = vb->va->va_start + (j << PAGE_SHIFT);
1037				flush = 1;
1038
1039				if (s < start)
1040					start = s;
1041				if (e > end)
1042					end = e;
1043
1044				i = j;
1045				i = find_next_bit(vb->dirty_map,
1046							VMAP_BBMAP_BITS, i);
1047			}
1048			spin_unlock(&vb->lock);
1049		}
1050		rcu_read_unlock();
1051	}
1052
1053	__purge_vmap_area_lazy(&start, &end, 1, flush);
1054}
1055EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1056
1057/**
1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1059 * @mem: the pointer returned by vm_map_ram
1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1061 */
1062void vm_unmap_ram(const void *mem, unsigned int count)
1063{
1064	unsigned long size = count << PAGE_SHIFT;
1065	unsigned long addr = (unsigned long)mem;
1066
1067	BUG_ON(!addr);
1068	BUG_ON(addr < VMALLOC_START);
1069	BUG_ON(addr > VMALLOC_END);
1070	BUG_ON(addr & (PAGE_SIZE-1));
1071
1072	debug_check_no_locks_freed(mem, size);
1073	vmap_debug_free_range(addr, addr+size);
1074
1075	if (likely(count <= VMAP_MAX_ALLOC))
1076		vb_free(mem, size);
1077	else
1078		free_unmap_vmap_area_addr(addr);
1079}
1080EXPORT_SYMBOL(vm_unmap_ram);
1081
1082/**
1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1084 * @pages: an array of pointers to the pages to be mapped
1085 * @count: number of pages
1086 * @node: prefer to allocate data structures on this node
1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1088 *
1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1090 */
1091void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1092{
1093	unsigned long size = count << PAGE_SHIFT;
1094	unsigned long addr;
1095	void *mem;
1096
1097	if (likely(count <= VMAP_MAX_ALLOC)) {
1098		mem = vb_alloc(size, GFP_KERNEL);
1099		if (IS_ERR(mem))
1100			return NULL;
1101		addr = (unsigned long)mem;
1102	} else {
1103		struct vmap_area *va;
1104		va = alloc_vmap_area(size, PAGE_SIZE,
1105				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1106		if (IS_ERR(va))
1107			return NULL;
1108
1109		addr = va->va_start;
1110		mem = (void *)addr;
1111	}
1112	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1113		vm_unmap_ram(mem, count);
1114		return NULL;
1115	}
1116	return mem;
1117}
1118EXPORT_SYMBOL(vm_map_ram);
1119
1120/**
1121 * vm_area_add_early - add vmap area early during boot
1122 * @vm: vm_struct to add
1123 *
1124 * This function is used to add fixed kernel vm area to vmlist before
1125 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1126 * should contain proper values and the other fields should be zero.
1127 *
1128 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1129 */
1130void __init vm_area_add_early(struct vm_struct *vm)
1131{
1132	struct vm_struct *tmp, **p;
1133
1134	BUG_ON(vmap_initialized);
1135	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1136		if (tmp->addr >= vm->addr) {
1137			BUG_ON(tmp->addr < vm->addr + vm->size);
1138			break;
1139		} else
1140			BUG_ON(tmp->addr + tmp->size > vm->addr);
1141	}
1142	vm->next = *p;
1143	*p = vm;
1144}
1145
1146/**
1147 * vm_area_register_early - register vmap area early during boot
1148 * @vm: vm_struct to register
1149 * @align: requested alignment
1150 *
1151 * This function is used to register kernel vm area before
1152 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1153 * proper values on entry and other fields should be zero.  On return,
1154 * vm->addr contains the allocated address.
1155 *
1156 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1157 */
1158void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1159{
1160	static size_t vm_init_off __initdata;
1161	unsigned long addr;
1162
1163	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1164	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1165
1166	vm->addr = (void *)addr;
1167
1168	vm_area_add_early(vm);
1169}
1170
1171void __init vmalloc_init(void)
1172{
1173	struct vmap_area *va;
1174	struct vm_struct *tmp;
1175	int i;
1176
1177	for_each_possible_cpu(i) {
1178		struct vmap_block_queue *vbq;
1179
1180		vbq = &per_cpu(vmap_block_queue, i);
1181		spin_lock_init(&vbq->lock);
1182		INIT_LIST_HEAD(&vbq->free);
1183	}
1184
1185	/* Import existing vmlist entries. */
1186	for (tmp = vmlist; tmp; tmp = tmp->next) {
1187		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1188		va->flags = tmp->flags | VM_VM_AREA;
1189		va->va_start = (unsigned long)tmp->addr;
1190		va->va_end = va->va_start + tmp->size;
1191		__insert_vmap_area(va);
1192	}
1193
1194	vmap_area_pcpu_hole = VMALLOC_END;
1195
1196	vmap_initialized = true;
1197}
1198
1199/**
1200 * map_kernel_range_noflush - map kernel VM area with the specified pages
1201 * @addr: start of the VM area to map
1202 * @size: size of the VM area to map
1203 * @prot: page protection flags to use
1204 * @pages: pages to map
1205 *
1206 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1207 * specify should have been allocated using get_vm_area() and its
1208 * friends.
1209 *
1210 * NOTE:
1211 * This function does NOT do any cache flushing.  The caller is
1212 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1213 * before calling this function.
1214 *
1215 * RETURNS:
1216 * The number of pages mapped on success, -errno on failure.
1217 */
1218int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1219			     pgprot_t prot, struct page **pages)
1220{
1221	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1222}
1223
1224/**
1225 * unmap_kernel_range_noflush - unmap kernel VM area
1226 * @addr: start of the VM area to unmap
1227 * @size: size of the VM area to unmap
1228 *
1229 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1230 * specify should have been allocated using get_vm_area() and its
1231 * friends.
1232 *
1233 * NOTE:
1234 * This function does NOT do any cache flushing.  The caller is
1235 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1236 * before calling this function and flush_tlb_kernel_range() after.
1237 */
1238void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1239{
1240	vunmap_page_range(addr, addr + size);
1241}
1242EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1243
1244/**
1245 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1246 * @addr: start of the VM area to unmap
1247 * @size: size of the VM area to unmap
1248 *
1249 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1250 * the unmapping and tlb after.
1251 */
1252void unmap_kernel_range(unsigned long addr, unsigned long size)
1253{
1254	unsigned long end = addr + size;
1255
1256	flush_cache_vunmap(addr, end);
1257	vunmap_page_range(addr, end);
1258	flush_tlb_kernel_range(addr, end);
1259}
1260
1261int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1262{
1263	unsigned long addr = (unsigned long)area->addr;
1264	unsigned long end = addr + area->size - PAGE_SIZE;
1265	int err;
1266
1267	err = vmap_page_range(addr, end, prot, *pages);
1268	if (err > 0) {
1269		*pages += err;
1270		err = 0;
1271	}
1272
1273	return err;
1274}
1275EXPORT_SYMBOL_GPL(map_vm_area);
1276
1277/*** Old vmalloc interfaces ***/
1278DEFINE_RWLOCK(vmlist_lock);
1279struct vm_struct *vmlist;
1280
1281static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1282			      unsigned long flags, void *caller)
1283{
1284	vm->flags = flags;
1285	vm->addr = (void *)va->va_start;
1286	vm->size = va->va_end - va->va_start;
1287	vm->caller = caller;
1288	va->vm = vm;
1289	va->flags |= VM_VM_AREA;
1290}
1291
1292static void insert_vmalloc_vmlist(struct vm_struct *vm)
1293{
1294	struct vm_struct *tmp, **p;
1295
1296	vm->flags &= ~VM_UNLIST;
1297	write_lock(&vmlist_lock);
1298	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1299		if (tmp->addr >= vm->addr)
1300			break;
1301	}
1302	vm->next = *p;
1303	*p = vm;
1304	write_unlock(&vmlist_lock);
1305}
1306
1307static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1308			      unsigned long flags, void *caller)
1309{
1310	setup_vmalloc_vm(vm, va, flags, caller);
1311	insert_vmalloc_vmlist(vm);
1312}
1313
1314static struct vm_struct *__get_vm_area_node(unsigned long size,
1315		unsigned long align, unsigned long flags, unsigned long start,
1316		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1317{
1318	struct vmap_area *va;
1319	struct vm_struct *area;
1320
1321	BUG_ON(in_interrupt());
1322	if (flags & VM_IOREMAP) {
1323		int bit = fls(size);
1324
1325		if (bit > IOREMAP_MAX_ORDER)
1326			bit = IOREMAP_MAX_ORDER;
1327		else if (bit < PAGE_SHIFT)
1328			bit = PAGE_SHIFT;
1329
1330		align = 1ul << bit;
1331	}
1332
1333	size = PAGE_ALIGN(size);
1334	if (unlikely(!size))
1335		return NULL;
1336
1337	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1338	if (unlikely(!area))
1339		return NULL;
1340
1341	/*
1342	 * We always allocate a guard page.
1343	 */
1344	size += PAGE_SIZE;
1345
1346	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1347	if (IS_ERR(va)) {
1348		kfree(area);
1349		return NULL;
1350	}
1351
1352	/*
1353	 * When this function is called from __vmalloc_node_range,
1354	 * we do not add vm_struct to vmlist here to avoid
1355	 * accessing uninitialized members of vm_struct such as
1356	 * pages and nr_pages fields. They will be set later.
1357	 * To distinguish it from others, we use a VM_UNLIST flag.
1358	 */
1359	if (flags & VM_UNLIST)
1360		setup_vmalloc_vm(area, va, flags, caller);
1361	else
1362		insert_vmalloc_vm(area, va, flags, caller);
1363
1364	return area;
1365}
1366
1367struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1368				unsigned long start, unsigned long end)
1369{
1370	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1371						__builtin_return_address(0));
1372}
1373EXPORT_SYMBOL_GPL(__get_vm_area);
1374
1375struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1376				       unsigned long start, unsigned long end,
1377				       void *caller)
1378{
1379	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1380				  caller);
1381}
1382
1383/**
1384 *	get_vm_area  -  reserve a contiguous kernel virtual area
1385 *	@size:		size of the area
1386 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1387 *
1388 *	Search an area of @size in the kernel virtual mapping area,
1389 *	and reserved it for out purposes.  Returns the area descriptor
1390 *	on success or %NULL on failure.
1391 */
1392struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1393{
1394	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1395				-1, GFP_KERNEL, __builtin_return_address(0));
1396}
1397
1398struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1399				void *caller)
1400{
1401	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1402						-1, GFP_KERNEL, caller);
1403}
1404
1405static struct vm_struct *find_vm_area(const void *addr)
1406{
1407	struct vmap_area *va;
1408
1409	va = find_vmap_area((unsigned long)addr);
1410	if (va && va->flags & VM_VM_AREA)
1411		return va->vm;
1412
1413	return NULL;
1414}
1415
1416/**
1417 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1418 *	@addr:		base address
1419 *
1420 *	Search for the kernel VM area starting at @addr, and remove it.
1421 *	This function returns the found VM area, but using it is NOT safe
1422 *	on SMP machines, except for its size or flags.
1423 */
1424struct vm_struct *remove_vm_area(const void *addr)
1425{
1426	struct vmap_area *va;
1427
1428	va = find_vmap_area((unsigned long)addr);
1429	if (va && va->flags & VM_VM_AREA) {
1430		struct vm_struct *vm = va->vm;
1431
1432		if (!(vm->flags & VM_UNLIST)) {
1433			struct vm_struct *tmp, **p;
1434			/*
1435			 * remove from list and disallow access to
1436			 * this vm_struct before unmap. (address range
1437			 * confliction is maintained by vmap.)
1438			 */
1439			write_lock(&vmlist_lock);
1440			for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1441				;
1442			*p = tmp->next;
1443			write_unlock(&vmlist_lock);
1444		}
1445
1446		vmap_debug_free_range(va->va_start, va->va_end);
1447		free_unmap_vmap_area(va);
1448		vm->size -= PAGE_SIZE;
1449
1450		return vm;
1451	}
1452	return NULL;
1453}
1454
1455static void __vunmap(const void *addr, int deallocate_pages)
1456{
1457	struct vm_struct *area;
1458
1459	if (!addr)
1460		return;
1461
1462	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1463		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1464		return;
1465	}
1466
1467	area = remove_vm_area(addr);
1468	if (unlikely(!area)) {
1469		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1470				addr);
1471		return;
1472	}
1473
1474	debug_check_no_locks_freed(addr, area->size);
1475	debug_check_no_obj_freed(addr, area->size);
1476
1477	if (deallocate_pages) {
1478		int i;
1479
1480		for (i = 0; i < area->nr_pages; i++) {
1481			struct page *page = area->pages[i];
1482
1483			BUG_ON(!page);
1484			__free_page(page);
1485		}
1486
1487		if (area->flags & VM_VPAGES)
1488			vfree(area->pages);
1489		else
1490			kfree(area->pages);
1491	}
1492
1493	kfree(area);
1494	return;
1495}
1496
1497/**
1498 *	vfree  -  release memory allocated by vmalloc()
1499 *	@addr:		memory base address
1500 *
1501 *	Free the virtually continuous memory area starting at @addr, as
1502 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1503 *	NULL, no operation is performed.
1504 *
1505 *	Must not be called in interrupt context.
1506 */
1507void vfree(const void *addr)
1508{
1509	BUG_ON(in_interrupt());
1510
1511	kmemleak_free(addr);
1512
1513	__vunmap(addr, 1);
1514}
1515EXPORT_SYMBOL(vfree);
1516
1517/**
1518 *	vunmap  -  release virtual mapping obtained by vmap()
1519 *	@addr:		memory base address
1520 *
1521 *	Free the virtually contiguous memory area starting at @addr,
1522 *	which was created from the page array passed to vmap().
1523 *
1524 *	Must not be called in interrupt context.
1525 */
1526void vunmap(const void *addr)
1527{
1528	BUG_ON(in_interrupt());
1529	might_sleep();
1530	__vunmap(addr, 0);
1531}
1532EXPORT_SYMBOL(vunmap);
1533
1534/**
1535 *	vmap  -  map an array of pages into virtually contiguous space
1536 *	@pages:		array of page pointers
1537 *	@count:		number of pages to map
1538 *	@flags:		vm_area->flags
1539 *	@prot:		page protection for the mapping
1540 *
1541 *	Maps @count pages from @pages into contiguous kernel virtual
1542 *	space.
1543 */
1544void *vmap(struct page **pages, unsigned int count,
1545		unsigned long flags, pgprot_t prot)
1546{
1547	struct vm_struct *area;
1548
1549	might_sleep();
1550
1551	if (count > totalram_pages)
1552		return NULL;
1553
1554	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1555					__builtin_return_address(0));
1556	if (!area)
1557		return NULL;
1558
1559	if (map_vm_area(area, prot, &pages)) {
1560		vunmap(area->addr);
1561		return NULL;
1562	}
1563
1564	return area->addr;
1565}
1566EXPORT_SYMBOL(vmap);
1567
1568static void *__vmalloc_node(unsigned long size, unsigned long align,
1569			    gfp_t gfp_mask, pgprot_t prot,
1570			    int node, void *caller);
1571static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1572				 pgprot_t prot, int node, void *caller)
1573{
1574	const int order = 0;
1575	struct page **pages;
1576	unsigned int nr_pages, array_size, i;
1577	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1578
1579	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1580	array_size = (nr_pages * sizeof(struct page *));
1581
1582	area->nr_pages = nr_pages;
1583	/* Please note that the recursion is strictly bounded. */
1584	if (array_size > PAGE_SIZE) {
1585		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1586				PAGE_KERNEL, node, caller);
1587		area->flags |= VM_VPAGES;
1588	} else {
1589		pages = kmalloc_node(array_size, nested_gfp, node);
1590	}
1591	area->pages = pages;
1592	area->caller = caller;
1593	if (!area->pages) {
1594		remove_vm_area(area->addr);
1595		kfree(area);
1596		return NULL;
1597	}
1598
1599	for (i = 0; i < area->nr_pages; i++) {
1600		struct page *page;
1601		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1602
1603		if (node < 0)
1604			page = alloc_page(tmp_mask);
1605		else
1606			page = alloc_pages_node(node, tmp_mask, order);
1607
1608		if (unlikely(!page)) {
1609			/* Successfully allocated i pages, free them in __vunmap() */
1610			area->nr_pages = i;
1611			goto fail;
1612		}
1613		area->pages[i] = page;
1614	}
1615
1616	if (map_vm_area(area, prot, &pages))
1617		goto fail;
1618	return area->addr;
1619
1620fail:
1621	warn_alloc_failed(gfp_mask, order,
1622			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1623			  (area->nr_pages*PAGE_SIZE), area->size);
1624	vfree(area->addr);
1625	return NULL;
1626}
1627
1628/**
1629 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1630 *	@size:		allocation size
1631 *	@align:		desired alignment
1632 *	@start:		vm area range start
1633 *	@end:		vm area range end
1634 *	@gfp_mask:	flags for the page level allocator
1635 *	@prot:		protection mask for the allocated pages
1636 *	@node:		node to use for allocation or -1
1637 *	@caller:	caller's return address
1638 *
1639 *	Allocate enough pages to cover @size from the page level
1640 *	allocator with @gfp_mask flags.  Map them into contiguous
1641 *	kernel virtual space, using a pagetable protection of @prot.
1642 */
1643void *__vmalloc_node_range(unsigned long size, unsigned long align,
1644			unsigned long start, unsigned long end, gfp_t gfp_mask,
1645			pgprot_t prot, int node, void *caller)
1646{
1647	struct vm_struct *area;
1648	void *addr;
1649	unsigned long real_size = size;
1650
1651	size = PAGE_ALIGN(size);
1652	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1653		goto fail;
1654
1655	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1656				  start, end, node, gfp_mask, caller);
1657	if (!area)
1658		goto fail;
1659
1660	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1661	if (!addr)
1662		return NULL;
1663
1664	/*
1665	 * In this function, newly allocated vm_struct is not added
1666	 * to vmlist at __get_vm_area_node(). so, it is added here.
1667	 */
1668	insert_vmalloc_vmlist(area);
1669
1670	/*
1671	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1672	 * structures allocated in the __get_vm_area_node() function contain
1673	 * references to the virtual address of the vmalloc'ed block.
1674	 */
1675	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1676
1677	return addr;
1678
1679fail:
1680	warn_alloc_failed(gfp_mask, 0,
1681			  "vmalloc: allocation failure: %lu bytes\n",
1682			  real_size);
1683	return NULL;
1684}
1685
1686/**
1687 *	__vmalloc_node  -  allocate virtually contiguous memory
1688 *	@size:		allocation size
1689 *	@align:		desired alignment
1690 *	@gfp_mask:	flags for the page level allocator
1691 *	@prot:		protection mask for the allocated pages
1692 *	@node:		node to use for allocation or -1
1693 *	@caller:	caller's return address
1694 *
1695 *	Allocate enough pages to cover @size from the page level
1696 *	allocator with @gfp_mask flags.  Map them into contiguous
1697 *	kernel virtual space, using a pagetable protection of @prot.
1698 */
1699static void *__vmalloc_node(unsigned long size, unsigned long align,
1700			    gfp_t gfp_mask, pgprot_t prot,
1701			    int node, void *caller)
1702{
1703	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1704				gfp_mask, prot, node, caller);
1705}
1706
1707void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1708{
1709	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1710				__builtin_return_address(0));
1711}
1712EXPORT_SYMBOL(__vmalloc);
1713
1714static inline void *__vmalloc_node_flags(unsigned long size,
1715					int node, gfp_t flags)
1716{
1717	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1718					node, __builtin_return_address(0));
1719}
1720
1721/**
1722 *	vmalloc  -  allocate virtually contiguous memory
1723 *	@size:		allocation size
1724 *	Allocate enough pages to cover @size from the page level
1725 *	allocator and map them into contiguous kernel virtual space.
1726 *
1727 *	For tight control over page level allocator and protection flags
1728 *	use __vmalloc() instead.
1729 */
1730void *vmalloc(unsigned long size)
1731{
1732	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1733}
1734EXPORT_SYMBOL(vmalloc);
1735
1736/**
1737 *	vzalloc - allocate virtually contiguous memory with zero fill
1738 *	@size:	allocation size
1739 *	Allocate enough pages to cover @size from the page level
1740 *	allocator and map them into contiguous kernel virtual space.
1741 *	The memory allocated is set to zero.
1742 *
1743 *	For tight control over page level allocator and protection flags
1744 *	use __vmalloc() instead.
1745 */
1746void *vzalloc(unsigned long size)
1747{
1748	return __vmalloc_node_flags(size, -1,
1749				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1750}
1751EXPORT_SYMBOL(vzalloc);
1752
1753/**
1754 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1755 * @size: allocation size
1756 *
1757 * The resulting memory area is zeroed so it can be mapped to userspace
1758 * without leaking data.
1759 */
1760void *vmalloc_user(unsigned long size)
1761{
1762	struct vm_struct *area;
1763	void *ret;
1764
1765	ret = __vmalloc_node(size, SHMLBA,
1766			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1767			     PAGE_KERNEL, -1, __builtin_return_address(0));
1768	if (ret) {
1769		area = find_vm_area(ret);
1770		area->flags |= VM_USERMAP;
1771	}
1772	return ret;
1773}
1774EXPORT_SYMBOL(vmalloc_user);
1775
1776/**
1777 *	vmalloc_node  -  allocate memory on a specific node
1778 *	@size:		allocation size
1779 *	@node:		numa node
1780 *
1781 *	Allocate enough pages to cover @size from the page level
1782 *	allocator and map them into contiguous kernel virtual space.
1783 *
1784 *	For tight control over page level allocator and protection flags
1785 *	use __vmalloc() instead.
1786 */
1787void *vmalloc_node(unsigned long size, int node)
1788{
1789	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1790					node, __builtin_return_address(0));
1791}
1792EXPORT_SYMBOL(vmalloc_node);
1793
1794/**
1795 * vzalloc_node - allocate memory on a specific node with zero fill
1796 * @size:	allocation size
1797 * @node:	numa node
1798 *
1799 * Allocate enough pages to cover @size from the page level
1800 * allocator and map them into contiguous kernel virtual space.
1801 * The memory allocated is set to zero.
1802 *
1803 * For tight control over page level allocator and protection flags
1804 * use __vmalloc_node() instead.
1805 */
1806void *vzalloc_node(unsigned long size, int node)
1807{
1808	return __vmalloc_node_flags(size, node,
1809			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1810}
1811EXPORT_SYMBOL(vzalloc_node);
1812
1813#ifndef PAGE_KERNEL_EXEC
1814# define PAGE_KERNEL_EXEC PAGE_KERNEL
1815#endif
1816
1817/**
1818 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1819 *	@size:		allocation size
1820 *
1821 *	Kernel-internal function to allocate enough pages to cover @size
1822 *	the page level allocator and map them into contiguous and
1823 *	executable kernel virtual space.
1824 *
1825 *	For tight control over page level allocator and protection flags
1826 *	use __vmalloc() instead.
1827 */
1828
1829void *vmalloc_exec(unsigned long size)
1830{
1831	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1832			      -1, __builtin_return_address(0));
1833}
1834
1835#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1836#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1837#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1838#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1839#else
1840#define GFP_VMALLOC32 GFP_KERNEL
1841#endif
1842
1843/**
1844 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1845 *	@size:		allocation size
1846 *
1847 *	Allocate enough 32bit PA addressable pages to cover @size from the
1848 *	page level allocator and map them into contiguous kernel virtual space.
1849 */
1850void *vmalloc_32(unsigned long size)
1851{
1852	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1853			      -1, __builtin_return_address(0));
1854}
1855EXPORT_SYMBOL(vmalloc_32);
1856
1857/**
1858 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1859 *	@size:		allocation size
1860 *
1861 * The resulting memory area is 32bit addressable and zeroed so it can be
1862 * mapped to userspace without leaking data.
1863 */
1864void *vmalloc_32_user(unsigned long size)
1865{
1866	struct vm_struct *area;
1867	void *ret;
1868
1869	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1870			     -1, __builtin_return_address(0));
1871	if (ret) {
1872		area = find_vm_area(ret);
1873		area->flags |= VM_USERMAP;
1874	}
1875	return ret;
1876}
1877EXPORT_SYMBOL(vmalloc_32_user);
1878
1879/*
1880 * small helper routine , copy contents to buf from addr.
1881 * If the page is not present, fill zero.
1882 */
1883
1884static int aligned_vread(char *buf, char *addr, unsigned long count)
1885{
1886	struct page *p;
1887	int copied = 0;
1888
1889	while (count) {
1890		unsigned long offset, length;
1891
1892		offset = (unsigned long)addr & ~PAGE_MASK;
1893		length = PAGE_SIZE - offset;
1894		if (length > count)
1895			length = count;
1896		p = vmalloc_to_page(addr);
1897		/*
1898		 * To do safe access to this _mapped_ area, we need
1899		 * lock. But adding lock here means that we need to add
1900		 * overhead of vmalloc()/vfree() calles for this _debug_
1901		 * interface, rarely used. Instead of that, we'll use
1902		 * kmap() and get small overhead in this access function.
1903		 */
1904		if (p) {
1905			/*
1906			 * we can expect USER0 is not used (see vread/vwrite's
1907			 * function description)
1908			 */
1909			void *map = kmap_atomic(p, KM_USER0);
1910			memcpy(buf, map + offset, length);
1911			kunmap_atomic(map, KM_USER0);
1912		} else
1913			memset(buf, 0, length);
1914
1915		addr += length;
1916		buf += length;
1917		copied += length;
1918		count -= length;
1919	}
1920	return copied;
1921}
1922
1923static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1924{
1925	struct page *p;
1926	int copied = 0;
1927
1928	while (count) {
1929		unsigned long offset, length;
1930
1931		offset = (unsigned long)addr & ~PAGE_MASK;
1932		length = PAGE_SIZE - offset;
1933		if (length > count)
1934			length = count;
1935		p = vmalloc_to_page(addr);
1936		/*
1937		 * To do safe access to this _mapped_ area, we need
1938		 * lock. But adding lock here means that we need to add
1939		 * overhead of vmalloc()/vfree() calles for this _debug_
1940		 * interface, rarely used. Instead of that, we'll use
1941		 * kmap() and get small overhead in this access function.
1942		 */
1943		if (p) {
1944			/*
1945			 * we can expect USER0 is not used (see vread/vwrite's
1946			 * function description)
1947			 */
1948			void *map = kmap_atomic(p, KM_USER0);
1949			memcpy(map + offset, buf, length);
1950			kunmap_atomic(map, KM_USER0);
1951		}
1952		addr += length;
1953		buf += length;
1954		copied += length;
1955		count -= length;
1956	}
1957	return copied;
1958}
1959
1960/**
1961 *	vread() -  read vmalloc area in a safe way.
1962 *	@buf:		buffer for reading data
1963 *	@addr:		vm address.
1964 *	@count:		number of bytes to be read.
1965 *
1966 *	Returns # of bytes which addr and buf should be increased.
1967 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1968 *	includes any intersect with alive vmalloc area.
1969 *
1970 *	This function checks that addr is a valid vmalloc'ed area, and
1971 *	copy data from that area to a given buffer. If the given memory range
1972 *	of [addr...addr+count) includes some valid address, data is copied to
1973 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1974 *	IOREMAP area is treated as memory hole and no copy is done.
1975 *
1976 *	If [addr...addr+count) doesn't includes any intersects with alive
1977 *	vm_struct area, returns 0.
1978 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1979 *	the caller should guarantee KM_USER0 is not used.
1980 *
1981 *	Note: In usual ops, vread() is never necessary because the caller
1982 *	should know vmalloc() area is valid and can use memcpy().
1983 *	This is for routines which have to access vmalloc area without
1984 *	any informaion, as /dev/kmem.
1985 *
1986 */
1987
1988long vread(char *buf, char *addr, unsigned long count)
1989{
1990	struct vm_struct *tmp;
1991	char *vaddr, *buf_start = buf;
1992	unsigned long buflen = count;
1993	unsigned long n;
1994
1995	/* Don't allow overflow */
1996	if ((unsigned long) addr + count < count)
1997		count = -(unsigned long) addr;
1998
1999	read_lock(&vmlist_lock);
2000	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2001		vaddr = (char *) tmp->addr;
2002		if (addr >= vaddr + tmp->size - PAGE_SIZE)
2003			continue;
2004		while (addr < vaddr) {
2005			if (count == 0)
2006				goto finished;
2007			*buf = '\0';
2008			buf++;
2009			addr++;
2010			count--;
2011		}
2012		n = vaddr + tmp->size - PAGE_SIZE - addr;
2013		if (n > count)
2014			n = count;
2015		if (!(tmp->flags & VM_IOREMAP))
2016			aligned_vread(buf, addr, n);
2017		else /* IOREMAP area is treated as memory hole */
2018			memset(buf, 0, n);
2019		buf += n;
2020		addr += n;
2021		count -= n;
2022	}
2023finished:
2024	read_unlock(&vmlist_lock);
2025
2026	if (buf == buf_start)
2027		return 0;
2028	/* zero-fill memory holes */
2029	if (buf != buf_start + buflen)
2030		memset(buf, 0, buflen - (buf - buf_start));
2031
2032	return buflen;
2033}
2034
2035/**
2036 *	vwrite() -  write vmalloc area in a safe way.
2037 *	@buf:		buffer for source data
2038 *	@addr:		vm address.
2039 *	@count:		number of bytes to be read.
2040 *
2041 *	Returns # of bytes which addr and buf should be incresed.
2042 *	(same number to @count).
2043 *	If [addr...addr+count) doesn't includes any intersect with valid
2044 *	vmalloc area, returns 0.
2045 *
2046 *	This function checks that addr is a valid vmalloc'ed area, and
2047 *	copy data from a buffer to the given addr. If specified range of
2048 *	[addr...addr+count) includes some valid address, data is copied from
2049 *	proper area of @buf. If there are memory holes, no copy to hole.
2050 *	IOREMAP area is treated as memory hole and no copy is done.
2051 *
2052 *	If [addr...addr+count) doesn't includes any intersects with alive
2053 *	vm_struct area, returns 0.
2054 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
2055 *	the caller should guarantee KM_USER0 is not used.
2056 *
2057 *	Note: In usual ops, vwrite() is never necessary because the caller
2058 *	should know vmalloc() area is valid and can use memcpy().
2059 *	This is for routines which have to access vmalloc area without
2060 *	any informaion, as /dev/kmem.
2061 */
2062
2063long vwrite(char *buf, char *addr, unsigned long count)
2064{
2065	struct vm_struct *tmp;
2066	char *vaddr;
2067	unsigned long n, buflen;
2068	int copied = 0;
2069
2070	/* Don't allow overflow */
2071	if ((unsigned long) addr + count < count)
2072		count = -(unsigned long) addr;
2073	buflen = count;
2074
2075	read_lock(&vmlist_lock);
2076	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2077		vaddr = (char *) tmp->addr;
2078		if (addr >= vaddr + tmp->size - PAGE_SIZE)
2079			continue;
2080		while (addr < vaddr) {
2081			if (count == 0)
2082				goto finished;
2083			buf++;
2084			addr++;
2085			count--;
2086		}
2087		n = vaddr + tmp->size - PAGE_SIZE - addr;
2088		if (n > count)
2089			n = count;
2090		if (!(tmp->flags & VM_IOREMAP)) {
2091			aligned_vwrite(buf, addr, n);
2092			copied++;
2093		}
2094		buf += n;
2095		addr += n;
2096		count -= n;
2097	}
2098finished:
2099	read_unlock(&vmlist_lock);
2100	if (!copied)
2101		return 0;
2102	return buflen;
2103}
2104
2105/**
2106 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2107 *	@vma:		vma to cover (map full range of vma)
2108 *	@addr:		vmalloc memory
2109 *	@pgoff:		number of pages into addr before first page to map
2110 *
2111 *	Returns:	0 for success, -Exxx on failure
2112 *
2113 *	This function checks that addr is a valid vmalloc'ed area, and
2114 *	that it is big enough to cover the vma. Will return failure if
2115 *	that criteria isn't met.
2116 *
2117 *	Similar to remap_pfn_range() (see mm/memory.c)
2118 */
2119int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2120						unsigned long pgoff)
2121{
2122	struct vm_struct *area;
2123	unsigned long uaddr = vma->vm_start;
2124	unsigned long usize = vma->vm_end - vma->vm_start;
2125
2126	if ((PAGE_SIZE-1) & (unsigned long)addr)
2127		return -EINVAL;
2128
2129	area = find_vm_area(addr);
2130	if (!area)
2131		return -EINVAL;
2132
2133	if (!(area->flags & VM_USERMAP))
2134		return -EINVAL;
2135
2136	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2137		return -EINVAL;
2138
2139	addr += pgoff << PAGE_SHIFT;
2140	do {
2141		struct page *page = vmalloc_to_page(addr);
2142		int ret;
2143
2144		ret = vm_insert_page(vma, uaddr, page);
2145		if (ret)
2146			return ret;
2147
2148		uaddr += PAGE_SIZE;
2149		addr += PAGE_SIZE;
2150		usize -= PAGE_SIZE;
2151	} while (usize > 0);
2152
2153	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
2154	vma->vm_flags |= VM_RESERVED;
2155
2156	return 0;
2157}
2158EXPORT_SYMBOL(remap_vmalloc_range);
2159
2160/*
2161 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2162 * have one.
2163 */
2164void  __attribute__((weak)) vmalloc_sync_all(void)
2165{
2166}
2167
2168
2169static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2170{
2171	pte_t ***p = data;
2172
2173	if (p) {
2174		*(*p) = pte;
2175		(*p)++;
2176	}
2177	return 0;
2178}
2179
2180/**
2181 *	alloc_vm_area - allocate a range of kernel address space
2182 *	@size:		size of the area
2183 *	@ptes:		returns the PTEs for the address space
2184 *
2185 *	Returns:	NULL on failure, vm_struct on success
2186 *
2187 *	This function reserves a range of kernel address space, and
2188 *	allocates pagetables to map that range.  No actual mappings
2189 *	are created.
2190 *
2191 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2192 *	allocated for the VM area are returned.
2193 */
2194struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2195{
2196	struct vm_struct *area;
2197
2198	area = get_vm_area_caller(size, VM_IOREMAP,
2199				__builtin_return_address(0));
2200	if (area == NULL)
2201		return NULL;
2202
2203	/*
2204	 * This ensures that page tables are constructed for this region
2205	 * of kernel virtual address space and mapped into init_mm.
2206	 */
2207	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2208				size, f, ptes ? &ptes : NULL)) {
2209		free_vm_area(area);
2210		return NULL;
2211	}
2212
2213	return area;
2214}
2215EXPORT_SYMBOL_GPL(alloc_vm_area);
2216
2217void free_vm_area(struct vm_struct *area)
2218{
2219	struct vm_struct *ret;
2220	ret = remove_vm_area(area->addr);
2221	BUG_ON(ret != area);
2222	kfree(area);
2223}
2224EXPORT_SYMBOL_GPL(free_vm_area);
2225
2226#ifdef CONFIG_SMP
2227static struct vmap_area *node_to_va(struct rb_node *n)
2228{
2229	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2230}
2231
2232/**
2233 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2234 * @end: target address
2235 * @pnext: out arg for the next vmap_area
2236 * @pprev: out arg for the previous vmap_area
2237 *
2238 * Returns: %true if either or both of next and prev are found,
2239 *	    %false if no vmap_area exists
2240 *
2241 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2242 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2243 */
2244static bool pvm_find_next_prev(unsigned long end,
2245			       struct vmap_area **pnext,
2246			       struct vmap_area **pprev)
2247{
2248	struct rb_node *n = vmap_area_root.rb_node;
2249	struct vmap_area *va = NULL;
2250
2251	while (n) {
2252		va = rb_entry(n, struct vmap_area, rb_node);
2253		if (end < va->va_end)
2254			n = n->rb_left;
2255		else if (end > va->va_end)
2256			n = n->rb_right;
2257		else
2258			break;
2259	}
2260
2261	if (!va)
2262		return false;
2263
2264	if (va->va_end > end) {
2265		*pnext = va;
2266		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2267	} else {
2268		*pprev = va;
2269		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2270	}
2271	return true;
2272}
2273
2274/**
2275 * pvm_determine_end - find the highest aligned address between two vmap_areas
2276 * @pnext: in/out arg for the next vmap_area
2277 * @pprev: in/out arg for the previous vmap_area
2278 * @align: alignment
2279 *
2280 * Returns: determined end address
2281 *
2282 * Find the highest aligned address between *@pnext and *@pprev below
2283 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2284 * down address is between the end addresses of the two vmap_areas.
2285 *
2286 * Please note that the address returned by this function may fall
2287 * inside *@pnext vmap_area.  The caller is responsible for checking
2288 * that.
2289 */
2290static unsigned long pvm_determine_end(struct vmap_area **pnext,
2291				       struct vmap_area **pprev,
2292				       unsigned long align)
2293{
2294	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2295	unsigned long addr;
2296
2297	if (*pnext)
2298		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2299	else
2300		addr = vmalloc_end;
2301
2302	while (*pprev && (*pprev)->va_end > addr) {
2303		*pnext = *pprev;
2304		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2305	}
2306
2307	return addr;
2308}
2309
2310/**
2311 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2312 * @offsets: array containing offset of each area
2313 * @sizes: array containing size of each area
2314 * @nr_vms: the number of areas to allocate
2315 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2316 *
2317 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2318 *	    vm_structs on success, %NULL on failure
2319 *
2320 * Percpu allocator wants to use congruent vm areas so that it can
2321 * maintain the offsets among percpu areas.  This function allocates
2322 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2323 * be scattered pretty far, distance between two areas easily going up
2324 * to gigabytes.  To avoid interacting with regular vmallocs, these
2325 * areas are allocated from top.
2326 *
2327 * Despite its complicated look, this allocator is rather simple.  It
2328 * does everything top-down and scans areas from the end looking for
2329 * matching slot.  While scanning, if any of the areas overlaps with
2330 * existing vmap_area, the base address is pulled down to fit the
2331 * area.  Scanning is repeated till all the areas fit and then all
2332 * necessary data structres are inserted and the result is returned.
2333 */
2334struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2335				     const size_t *sizes, int nr_vms,
2336				     size_t align)
2337{
2338	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2339	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2340	struct vmap_area **vas, *prev, *next;
2341	struct vm_struct **vms;
2342	int area, area2, last_area, term_area;
2343	unsigned long base, start, end, last_end;
2344	bool purged = false;
2345
2346	/* verify parameters and allocate data structures */
2347	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2348	for (last_area = 0, area = 0; area < nr_vms; area++) {
2349		start = offsets[area];
2350		end = start + sizes[area];
2351
2352		/* is everything aligned properly? */
2353		BUG_ON(!IS_ALIGNED(offsets[area], align));
2354		BUG_ON(!IS_ALIGNED(sizes[area], align));
2355
2356		/* detect the area with the highest address */
2357		if (start > offsets[last_area])
2358			last_area = area;
2359
2360		for (area2 = 0; area2 < nr_vms; area2++) {
2361			unsigned long start2 = offsets[area2];
2362			unsigned long end2 = start2 + sizes[area2];
2363
2364			if (area2 == area)
2365				continue;
2366
2367			BUG_ON(start2 >= start && start2 < end);
2368			BUG_ON(end2 <= end && end2 > start);
2369		}
2370	}
2371	last_end = offsets[last_area] + sizes[last_area];
2372
2373	if (vmalloc_end - vmalloc_start < last_end) {
2374		WARN_ON(true);
2375		return NULL;
2376	}
2377
2378	vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2379	vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2380	if (!vas || !vms)
2381		goto err_free2;
2382
2383	for (area = 0; area < nr_vms; area++) {
2384		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2385		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2386		if (!vas[area] || !vms[area])
2387			goto err_free;
2388	}
2389retry:
2390	spin_lock(&vmap_area_lock);
2391
2392	/* start scanning - we scan from the top, begin with the last area */
2393	area = term_area = last_area;
2394	start = offsets[area];
2395	end = start + sizes[area];
2396
2397	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2398		base = vmalloc_end - last_end;
2399		goto found;
2400	}
2401	base = pvm_determine_end(&next, &prev, align) - end;
2402
2403	while (true) {
2404		BUG_ON(next && next->va_end <= base + end);
2405		BUG_ON(prev && prev->va_end > base + end);
2406
2407		/*
2408		 * base might have underflowed, add last_end before
2409		 * comparing.
2410		 */
2411		if (base + last_end < vmalloc_start + last_end) {
2412			spin_unlock(&vmap_area_lock);
2413			if (!purged) {
2414				purge_vmap_area_lazy();
2415				purged = true;
2416				goto retry;
2417			}
2418			goto err_free;
2419		}
2420
2421		/*
2422		 * If next overlaps, move base downwards so that it's
2423		 * right below next and then recheck.
2424		 */
2425		if (next && next->va_start < base + end) {
2426			base = pvm_determine_end(&next, &prev, align) - end;
2427			term_area = area;
2428			continue;
2429		}
2430
2431		/*
2432		 * If prev overlaps, shift down next and prev and move
2433		 * base so that it's right below new next and then
2434		 * recheck.
2435		 */
2436		if (prev && prev->va_end > base + start)  {
2437			next = prev;
2438			prev = node_to_va(rb_prev(&next->rb_node));
2439			base = pvm_determine_end(&next, &prev, align) - end;
2440			term_area = area;
2441			continue;
2442		}
2443
2444		/*
2445		 * This area fits, move on to the previous one.  If
2446		 * the previous one is the terminal one, we're done.
2447		 */
2448		area = (area + nr_vms - 1) % nr_vms;
2449		if (area == term_area)
2450			break;
2451		start = offsets[area];
2452		end = start + sizes[area];
2453		pvm_find_next_prev(base + end, &next, &prev);
2454	}
2455found:
2456	/* we've found a fitting base, insert all va's */
2457	for (area = 0; area < nr_vms; area++) {
2458		struct vmap_area *va = vas[area];
2459
2460		va->va_start = base + offsets[area];
2461		va->va_end = va->va_start + sizes[area];
2462		__insert_vmap_area(va);
2463	}
2464
2465	vmap_area_pcpu_hole = base + offsets[last_area];
2466
2467	spin_unlock(&vmap_area_lock);
2468
2469	/* insert all vm's */
2470	for (area = 0; area < nr_vms; area++)
2471		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2472				  pcpu_get_vm_areas);
2473
2474	kfree(vas);
2475	return vms;
2476
2477err_free:
2478	for (area = 0; area < nr_vms; area++) {
2479		kfree(vas[area]);
2480		kfree(vms[area]);
2481	}
2482err_free2:
2483	kfree(vas);
2484	kfree(vms);
2485	return NULL;
2486}
2487
2488/**
2489 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2490 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2491 * @nr_vms: the number of allocated areas
2492 *
2493 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2494 */
2495void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2496{
2497	int i;
2498
2499	for (i = 0; i < nr_vms; i++)
2500		free_vm_area(vms[i]);
2501	kfree(vms);
2502}
2503#endif	/* CONFIG_SMP */
2504
2505#ifdef CONFIG_PROC_FS
2506static void *s_start(struct seq_file *m, loff_t *pos)
2507	__acquires(&vmlist_lock)
2508{
2509	loff_t n = *pos;
2510	struct vm_struct *v;
2511
2512	read_lock(&vmlist_lock);
2513	v = vmlist;
2514	while (n > 0 && v) {
2515		n--;
2516		v = v->next;
2517	}
2518	if (!n)
2519		return v;
2520
2521	return NULL;
2522
2523}
2524
2525static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2526{
2527	struct vm_struct *v = p;
2528
2529	++*pos;
2530	return v->next;
2531}
2532
2533static void s_stop(struct seq_file *m, void *p)
2534	__releases(&vmlist_lock)
2535{
2536	read_unlock(&vmlist_lock);
2537}
2538
2539static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2540{
2541	if (NUMA_BUILD) {
2542		unsigned int nr, *counters = m->private;
2543
2544		if (!counters)
2545			return;
2546
2547		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2548
2549		for (nr = 0; nr < v->nr_pages; nr++)
2550			counters[page_to_nid(v->pages[nr])]++;
2551
2552		for_each_node_state(nr, N_HIGH_MEMORY)
2553			if (counters[nr])
2554				seq_printf(m, " N%u=%u", nr, counters[nr]);
2555	}
2556}
2557
2558static int s_show(struct seq_file *m, void *p)
2559{
2560	struct vm_struct *v = p;
2561
2562	seq_printf(m, "0x%p-0x%p %7ld",
2563		v->addr, v->addr + v->size, v->size);
2564
2565	if (v->caller)
2566		seq_printf(m, " %pS", v->caller);
2567
2568	if (v->nr_pages)
2569		seq_printf(m, " pages=%d", v->nr_pages);
2570
2571	if (v->phys_addr)
2572		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2573
2574	if (v->flags & VM_IOREMAP)
2575		seq_printf(m, " ioremap");
2576
2577	if (v->flags & VM_ALLOC)
2578		seq_printf(m, " vmalloc");
2579
2580	if (v->flags & VM_MAP)
2581		seq_printf(m, " vmap");
2582
2583	if (v->flags & VM_USERMAP)
2584		seq_printf(m, " user");
2585
2586	if (v->flags & VM_VPAGES)
2587		seq_printf(m, " vpages");
2588
2589	show_numa_info(m, v);
2590	seq_putc(m, '\n');
2591	return 0;
2592}
2593
2594static const struct seq_operations vmalloc_op = {
2595	.start = s_start,
2596	.next = s_next,
2597	.stop = s_stop,
2598	.show = s_show,
2599};
2600
2601static int vmalloc_open(struct inode *inode, struct file *file)
2602{
2603	unsigned int *ptr = NULL;
2604	int ret;
2605
2606	if (NUMA_BUILD) {
2607		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2608		if (ptr == NULL)
2609			return -ENOMEM;
2610	}
2611	ret = seq_open(file, &vmalloc_op);
2612	if (!ret) {
2613		struct seq_file *m = file->private_data;
2614		m->private = ptr;
2615	} else
2616		kfree(ptr);
2617	return ret;
2618}
2619
2620static const struct file_operations proc_vmalloc_operations = {
2621	.open		= vmalloc_open,
2622	.read		= seq_read,
2623	.llseek		= seq_lseek,
2624	.release	= seq_release_private,
2625};
2626
2627static int __init proc_vmalloc_init(void)
2628{
2629	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2630	return 0;
2631}
2632module_init(proc_vmalloc_init);
2633#endif
2634
2635