vmscan.c revision 08951e545918c1594434d000d88a7793e2452a9b
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int swappiness;
99
100	int order;
101
102	/*
103	 * Intend to reclaim enough continuous memory rather than reclaim
104	 * enough amount of memory. i.e, mode for high order allocation.
105	 */
106	reclaim_mode_t reclaim_mode;
107
108	/* Which cgroup do we reclaim from */
109	struct mem_cgroup *mem_cgroup;
110
111	/*
112	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113	 * are scanned.
114	 */
115	nodemask_t	*nodemask;
116};
117
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field)			\
122	do {								\
123		if ((_page)->lru.prev != _base) {			\
124			struct page *prev;				\
125									\
126			prev = lru_to_page(&(_page->lru));		\
127			prefetch(&prev->_field);			\
128		}							\
129	} while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field)			\
136	do {								\
137		if ((_page)->lru.prev != _base) {			\
138			struct page *prev;				\
139									\
140			prev = lru_to_page(&(_page->lru));		\
141			prefetchw(&prev->_field);			\
142		}							\
143	} while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100.  Higher means more swappy.
150 */
151int vm_swappiness = 60;
152long vm_total_pages;	/* The total number of pages which the VM controls */
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159#else
160#define scanning_global_lru(sc)	(1)
161#endif
162
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164						  struct scan_control *sc)
165{
166	if (!scanning_global_lru(sc))
167		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169	return &zone->reclaim_stat;
170}
171
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173				struct scan_control *sc, enum lru_list lru)
174{
175	if (!scanning_global_lru(sc))
176		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178	return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
182/*
183 * Add a shrinker callback to be called from the vm
184 */
185void register_shrinker(struct shrinker *shrinker)
186{
187	shrinker->nr = 0;
188	down_write(&shrinker_rwsem);
189	list_add_tail(&shrinker->list, &shrinker_list);
190	up_write(&shrinker_rwsem);
191}
192EXPORT_SYMBOL(register_shrinker);
193
194/*
195 * Remove one
196 */
197void unregister_shrinker(struct shrinker *shrinker)
198{
199	down_write(&shrinker_rwsem);
200	list_del(&shrinker->list);
201	up_write(&shrinker_rwsem);
202}
203EXPORT_SYMBOL(unregister_shrinker);
204
205static inline int do_shrinker_shrink(struct shrinker *shrinker,
206				     struct shrink_control *sc,
207				     unsigned long nr_to_scan)
208{
209	sc->nr_to_scan = nr_to_scan;
210	return (*shrinker->shrink)(shrinker, sc);
211}
212
213#define SHRINK_BATCH 128
214/*
215 * Call the shrink functions to age shrinkable caches
216 *
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object.  With this in mind we age equal
219 * percentages of the lru and ageable caches.  This should balance the seeks
220 * generated by these structures.
221 *
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
224 *
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 *
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt.  It is used for balancing
229 * slab reclaim versus page reclaim.
230 *
231 * Returns the number of slab objects which we shrunk.
232 */
233unsigned long shrink_slab(struct shrink_control *shrink,
234			  unsigned long nr_pages_scanned,
235			  unsigned long lru_pages)
236{
237	struct shrinker *shrinker;
238	unsigned long ret = 0;
239
240	if (nr_pages_scanned == 0)
241		nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243	if (!down_read_trylock(&shrinker_rwsem)) {
244		/* Assume we'll be able to shrink next time */
245		ret = 1;
246		goto out;
247	}
248
249	list_for_each_entry(shrinker, &shrinker_list, list) {
250		unsigned long long delta;
251		unsigned long total_scan;
252		unsigned long max_pass;
253
254		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
255		delta = (4 * nr_pages_scanned) / shrinker->seeks;
256		delta *= max_pass;
257		do_div(delta, lru_pages + 1);
258		shrinker->nr += delta;
259		if (shrinker->nr < 0) {
260			printk(KERN_ERR "shrink_slab: %pF negative objects to "
261			       "delete nr=%ld\n",
262			       shrinker->shrink, shrinker->nr);
263			shrinker->nr = max_pass;
264		}
265
266		/*
267		 * Avoid risking looping forever due to too large nr value:
268		 * never try to free more than twice the estimate number of
269		 * freeable entries.
270		 */
271		if (shrinker->nr > max_pass * 2)
272			shrinker->nr = max_pass * 2;
273
274		total_scan = shrinker->nr;
275		shrinker->nr = 0;
276
277		while (total_scan >= SHRINK_BATCH) {
278			long this_scan = SHRINK_BATCH;
279			int shrink_ret;
280			int nr_before;
281
282			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
283			shrink_ret = do_shrinker_shrink(shrinker, shrink,
284							this_scan);
285			if (shrink_ret == -1)
286				break;
287			if (shrink_ret < nr_before)
288				ret += nr_before - shrink_ret;
289			count_vm_events(SLABS_SCANNED, this_scan);
290			total_scan -= this_scan;
291
292			cond_resched();
293		}
294
295		shrinker->nr += total_scan;
296	}
297	up_read(&shrinker_rwsem);
298out:
299	cond_resched();
300	return ret;
301}
302
303static void set_reclaim_mode(int priority, struct scan_control *sc,
304				   bool sync)
305{
306	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
307
308	/*
309	 * Initially assume we are entering either lumpy reclaim or
310	 * reclaim/compaction.Depending on the order, we will either set the
311	 * sync mode or just reclaim order-0 pages later.
312	 */
313	if (COMPACTION_BUILD)
314		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
315	else
316		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
317
318	/*
319	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
320	 * restricting when its set to either costly allocations or when
321	 * under memory pressure
322	 */
323	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
324		sc->reclaim_mode |= syncmode;
325	else if (sc->order && priority < DEF_PRIORITY - 2)
326		sc->reclaim_mode |= syncmode;
327	else
328		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
329}
330
331static void reset_reclaim_mode(struct scan_control *sc)
332{
333	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
334}
335
336static inline int is_page_cache_freeable(struct page *page)
337{
338	/*
339	 * A freeable page cache page is referenced only by the caller
340	 * that isolated the page, the page cache radix tree and
341	 * optional buffer heads at page->private.
342	 */
343	return page_count(page) - page_has_private(page) == 2;
344}
345
346static int may_write_to_queue(struct backing_dev_info *bdi,
347			      struct scan_control *sc)
348{
349	if (current->flags & PF_SWAPWRITE)
350		return 1;
351	if (!bdi_write_congested(bdi))
352		return 1;
353	if (bdi == current->backing_dev_info)
354		return 1;
355
356	/* lumpy reclaim for hugepage often need a lot of write */
357	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
358		return 1;
359	return 0;
360}
361
362/*
363 * We detected a synchronous write error writing a page out.  Probably
364 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
365 * fsync(), msync() or close().
366 *
367 * The tricky part is that after writepage we cannot touch the mapping: nothing
368 * prevents it from being freed up.  But we have a ref on the page and once
369 * that page is locked, the mapping is pinned.
370 *
371 * We're allowed to run sleeping lock_page() here because we know the caller has
372 * __GFP_FS.
373 */
374static void handle_write_error(struct address_space *mapping,
375				struct page *page, int error)
376{
377	lock_page(page);
378	if (page_mapping(page) == mapping)
379		mapping_set_error(mapping, error);
380	unlock_page(page);
381}
382
383/* possible outcome of pageout() */
384typedef enum {
385	/* failed to write page out, page is locked */
386	PAGE_KEEP,
387	/* move page to the active list, page is locked */
388	PAGE_ACTIVATE,
389	/* page has been sent to the disk successfully, page is unlocked */
390	PAGE_SUCCESS,
391	/* page is clean and locked */
392	PAGE_CLEAN,
393} pageout_t;
394
395/*
396 * pageout is called by shrink_page_list() for each dirty page.
397 * Calls ->writepage().
398 */
399static pageout_t pageout(struct page *page, struct address_space *mapping,
400			 struct scan_control *sc)
401{
402	/*
403	 * If the page is dirty, only perform writeback if that write
404	 * will be non-blocking.  To prevent this allocation from being
405	 * stalled by pagecache activity.  But note that there may be
406	 * stalls if we need to run get_block().  We could test
407	 * PagePrivate for that.
408	 *
409	 * If this process is currently in __generic_file_aio_write() against
410	 * this page's queue, we can perform writeback even if that
411	 * will block.
412	 *
413	 * If the page is swapcache, write it back even if that would
414	 * block, for some throttling. This happens by accident, because
415	 * swap_backing_dev_info is bust: it doesn't reflect the
416	 * congestion state of the swapdevs.  Easy to fix, if needed.
417	 */
418	if (!is_page_cache_freeable(page))
419		return PAGE_KEEP;
420	if (!mapping) {
421		/*
422		 * Some data journaling orphaned pages can have
423		 * page->mapping == NULL while being dirty with clean buffers.
424		 */
425		if (page_has_private(page)) {
426			if (try_to_free_buffers(page)) {
427				ClearPageDirty(page);
428				printk("%s: orphaned page\n", __func__);
429				return PAGE_CLEAN;
430			}
431		}
432		return PAGE_KEEP;
433	}
434	if (mapping->a_ops->writepage == NULL)
435		return PAGE_ACTIVATE;
436	if (!may_write_to_queue(mapping->backing_dev_info, sc))
437		return PAGE_KEEP;
438
439	if (clear_page_dirty_for_io(page)) {
440		int res;
441		struct writeback_control wbc = {
442			.sync_mode = WB_SYNC_NONE,
443			.nr_to_write = SWAP_CLUSTER_MAX,
444			.range_start = 0,
445			.range_end = LLONG_MAX,
446			.for_reclaim = 1,
447		};
448
449		SetPageReclaim(page);
450		res = mapping->a_ops->writepage(page, &wbc);
451		if (res < 0)
452			handle_write_error(mapping, page, res);
453		if (res == AOP_WRITEPAGE_ACTIVATE) {
454			ClearPageReclaim(page);
455			return PAGE_ACTIVATE;
456		}
457
458		/*
459		 * Wait on writeback if requested to. This happens when
460		 * direct reclaiming a large contiguous area and the
461		 * first attempt to free a range of pages fails.
462		 */
463		if (PageWriteback(page) &&
464		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
465			wait_on_page_writeback(page);
466
467		if (!PageWriteback(page)) {
468			/* synchronous write or broken a_ops? */
469			ClearPageReclaim(page);
470		}
471		trace_mm_vmscan_writepage(page,
472			trace_reclaim_flags(page, sc->reclaim_mode));
473		inc_zone_page_state(page, NR_VMSCAN_WRITE);
474		return PAGE_SUCCESS;
475	}
476
477	return PAGE_CLEAN;
478}
479
480/*
481 * Same as remove_mapping, but if the page is removed from the mapping, it
482 * gets returned with a refcount of 0.
483 */
484static int __remove_mapping(struct address_space *mapping, struct page *page)
485{
486	BUG_ON(!PageLocked(page));
487	BUG_ON(mapping != page_mapping(page));
488
489	spin_lock_irq(&mapping->tree_lock);
490	/*
491	 * The non racy check for a busy page.
492	 *
493	 * Must be careful with the order of the tests. When someone has
494	 * a ref to the page, it may be possible that they dirty it then
495	 * drop the reference. So if PageDirty is tested before page_count
496	 * here, then the following race may occur:
497	 *
498	 * get_user_pages(&page);
499	 * [user mapping goes away]
500	 * write_to(page);
501	 *				!PageDirty(page)    [good]
502	 * SetPageDirty(page);
503	 * put_page(page);
504	 *				!page_count(page)   [good, discard it]
505	 *
506	 * [oops, our write_to data is lost]
507	 *
508	 * Reversing the order of the tests ensures such a situation cannot
509	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510	 * load is not satisfied before that of page->_count.
511	 *
512	 * Note that if SetPageDirty is always performed via set_page_dirty,
513	 * and thus under tree_lock, then this ordering is not required.
514	 */
515	if (!page_freeze_refs(page, 2))
516		goto cannot_free;
517	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518	if (unlikely(PageDirty(page))) {
519		page_unfreeze_refs(page, 2);
520		goto cannot_free;
521	}
522
523	if (PageSwapCache(page)) {
524		swp_entry_t swap = { .val = page_private(page) };
525		__delete_from_swap_cache(page);
526		spin_unlock_irq(&mapping->tree_lock);
527		swapcache_free(swap, page);
528	} else {
529		void (*freepage)(struct page *);
530
531		freepage = mapping->a_ops->freepage;
532
533		__delete_from_page_cache(page);
534		spin_unlock_irq(&mapping->tree_lock);
535		mem_cgroup_uncharge_cache_page(page);
536
537		if (freepage != NULL)
538			freepage(page);
539	}
540
541	return 1;
542
543cannot_free:
544	spin_unlock_irq(&mapping->tree_lock);
545	return 0;
546}
547
548/*
549 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
550 * someone else has a ref on the page, abort and return 0.  If it was
551 * successfully detached, return 1.  Assumes the caller has a single ref on
552 * this page.
553 */
554int remove_mapping(struct address_space *mapping, struct page *page)
555{
556	if (__remove_mapping(mapping, page)) {
557		/*
558		 * Unfreezing the refcount with 1 rather than 2 effectively
559		 * drops the pagecache ref for us without requiring another
560		 * atomic operation.
561		 */
562		page_unfreeze_refs(page, 1);
563		return 1;
564	}
565	return 0;
566}
567
568/**
569 * putback_lru_page - put previously isolated page onto appropriate LRU list
570 * @page: page to be put back to appropriate lru list
571 *
572 * Add previously isolated @page to appropriate LRU list.
573 * Page may still be unevictable for other reasons.
574 *
575 * lru_lock must not be held, interrupts must be enabled.
576 */
577void putback_lru_page(struct page *page)
578{
579	int lru;
580	int active = !!TestClearPageActive(page);
581	int was_unevictable = PageUnevictable(page);
582
583	VM_BUG_ON(PageLRU(page));
584
585redo:
586	ClearPageUnevictable(page);
587
588	if (page_evictable(page, NULL)) {
589		/*
590		 * For evictable pages, we can use the cache.
591		 * In event of a race, worst case is we end up with an
592		 * unevictable page on [in]active list.
593		 * We know how to handle that.
594		 */
595		lru = active + page_lru_base_type(page);
596		lru_cache_add_lru(page, lru);
597	} else {
598		/*
599		 * Put unevictable pages directly on zone's unevictable
600		 * list.
601		 */
602		lru = LRU_UNEVICTABLE;
603		add_page_to_unevictable_list(page);
604		/*
605		 * When racing with an mlock clearing (page is
606		 * unlocked), make sure that if the other thread does
607		 * not observe our setting of PG_lru and fails
608		 * isolation, we see PG_mlocked cleared below and move
609		 * the page back to the evictable list.
610		 *
611		 * The other side is TestClearPageMlocked().
612		 */
613		smp_mb();
614	}
615
616	/*
617	 * page's status can change while we move it among lru. If an evictable
618	 * page is on unevictable list, it never be freed. To avoid that,
619	 * check after we added it to the list, again.
620	 */
621	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
622		if (!isolate_lru_page(page)) {
623			put_page(page);
624			goto redo;
625		}
626		/* This means someone else dropped this page from LRU
627		 * So, it will be freed or putback to LRU again. There is
628		 * nothing to do here.
629		 */
630	}
631
632	if (was_unevictable && lru != LRU_UNEVICTABLE)
633		count_vm_event(UNEVICTABLE_PGRESCUED);
634	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
635		count_vm_event(UNEVICTABLE_PGCULLED);
636
637	put_page(page);		/* drop ref from isolate */
638}
639
640enum page_references {
641	PAGEREF_RECLAIM,
642	PAGEREF_RECLAIM_CLEAN,
643	PAGEREF_KEEP,
644	PAGEREF_ACTIVATE,
645};
646
647static enum page_references page_check_references(struct page *page,
648						  struct scan_control *sc)
649{
650	int referenced_ptes, referenced_page;
651	unsigned long vm_flags;
652
653	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
654	referenced_page = TestClearPageReferenced(page);
655
656	/* Lumpy reclaim - ignore references */
657	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
658		return PAGEREF_RECLAIM;
659
660	/*
661	 * Mlock lost the isolation race with us.  Let try_to_unmap()
662	 * move the page to the unevictable list.
663	 */
664	if (vm_flags & VM_LOCKED)
665		return PAGEREF_RECLAIM;
666
667	if (referenced_ptes) {
668		if (PageAnon(page))
669			return PAGEREF_ACTIVATE;
670		/*
671		 * All mapped pages start out with page table
672		 * references from the instantiating fault, so we need
673		 * to look twice if a mapped file page is used more
674		 * than once.
675		 *
676		 * Mark it and spare it for another trip around the
677		 * inactive list.  Another page table reference will
678		 * lead to its activation.
679		 *
680		 * Note: the mark is set for activated pages as well
681		 * so that recently deactivated but used pages are
682		 * quickly recovered.
683		 */
684		SetPageReferenced(page);
685
686		if (referenced_page)
687			return PAGEREF_ACTIVATE;
688
689		return PAGEREF_KEEP;
690	}
691
692	/* Reclaim if clean, defer dirty pages to writeback */
693	if (referenced_page && !PageSwapBacked(page))
694		return PAGEREF_RECLAIM_CLEAN;
695
696	return PAGEREF_RECLAIM;
697}
698
699static noinline_for_stack void free_page_list(struct list_head *free_pages)
700{
701	struct pagevec freed_pvec;
702	struct page *page, *tmp;
703
704	pagevec_init(&freed_pvec, 1);
705
706	list_for_each_entry_safe(page, tmp, free_pages, lru) {
707		list_del(&page->lru);
708		if (!pagevec_add(&freed_pvec, page)) {
709			__pagevec_free(&freed_pvec);
710			pagevec_reinit(&freed_pvec);
711		}
712	}
713
714	pagevec_free(&freed_pvec);
715}
716
717/*
718 * shrink_page_list() returns the number of reclaimed pages
719 */
720static unsigned long shrink_page_list(struct list_head *page_list,
721				      struct zone *zone,
722				      struct scan_control *sc)
723{
724	LIST_HEAD(ret_pages);
725	LIST_HEAD(free_pages);
726	int pgactivate = 0;
727	unsigned long nr_dirty = 0;
728	unsigned long nr_congested = 0;
729	unsigned long nr_reclaimed = 0;
730
731	cond_resched();
732
733	while (!list_empty(page_list)) {
734		enum page_references references;
735		struct address_space *mapping;
736		struct page *page;
737		int may_enter_fs;
738
739		cond_resched();
740
741		page = lru_to_page(page_list);
742		list_del(&page->lru);
743
744		if (!trylock_page(page))
745			goto keep;
746
747		VM_BUG_ON(PageActive(page));
748		VM_BUG_ON(page_zone(page) != zone);
749
750		sc->nr_scanned++;
751
752		if (unlikely(!page_evictable(page, NULL)))
753			goto cull_mlocked;
754
755		if (!sc->may_unmap && page_mapped(page))
756			goto keep_locked;
757
758		/* Double the slab pressure for mapped and swapcache pages */
759		if (page_mapped(page) || PageSwapCache(page))
760			sc->nr_scanned++;
761
762		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
763			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
764
765		if (PageWriteback(page)) {
766			/*
767			 * Synchronous reclaim is performed in two passes,
768			 * first an asynchronous pass over the list to
769			 * start parallel writeback, and a second synchronous
770			 * pass to wait for the IO to complete.  Wait here
771			 * for any page for which writeback has already
772			 * started.
773			 */
774			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
775			    may_enter_fs)
776				wait_on_page_writeback(page);
777			else {
778				unlock_page(page);
779				goto keep_lumpy;
780			}
781		}
782
783		references = page_check_references(page, sc);
784		switch (references) {
785		case PAGEREF_ACTIVATE:
786			goto activate_locked;
787		case PAGEREF_KEEP:
788			goto keep_locked;
789		case PAGEREF_RECLAIM:
790		case PAGEREF_RECLAIM_CLEAN:
791			; /* try to reclaim the page below */
792		}
793
794		/*
795		 * Anonymous process memory has backing store?
796		 * Try to allocate it some swap space here.
797		 */
798		if (PageAnon(page) && !PageSwapCache(page)) {
799			if (!(sc->gfp_mask & __GFP_IO))
800				goto keep_locked;
801			if (!add_to_swap(page))
802				goto activate_locked;
803			may_enter_fs = 1;
804		}
805
806		mapping = page_mapping(page);
807
808		/*
809		 * The page is mapped into the page tables of one or more
810		 * processes. Try to unmap it here.
811		 */
812		if (page_mapped(page) && mapping) {
813			switch (try_to_unmap(page, TTU_UNMAP)) {
814			case SWAP_FAIL:
815				goto activate_locked;
816			case SWAP_AGAIN:
817				goto keep_locked;
818			case SWAP_MLOCK:
819				goto cull_mlocked;
820			case SWAP_SUCCESS:
821				; /* try to free the page below */
822			}
823		}
824
825		if (PageDirty(page)) {
826			nr_dirty++;
827
828			if (references == PAGEREF_RECLAIM_CLEAN)
829				goto keep_locked;
830			if (!may_enter_fs)
831				goto keep_locked;
832			if (!sc->may_writepage)
833				goto keep_locked;
834
835			/* Page is dirty, try to write it out here */
836			switch (pageout(page, mapping, sc)) {
837			case PAGE_KEEP:
838				nr_congested++;
839				goto keep_locked;
840			case PAGE_ACTIVATE:
841				goto activate_locked;
842			case PAGE_SUCCESS:
843				if (PageWriteback(page))
844					goto keep_lumpy;
845				if (PageDirty(page))
846					goto keep;
847
848				/*
849				 * A synchronous write - probably a ramdisk.  Go
850				 * ahead and try to reclaim the page.
851				 */
852				if (!trylock_page(page))
853					goto keep;
854				if (PageDirty(page) || PageWriteback(page))
855					goto keep_locked;
856				mapping = page_mapping(page);
857			case PAGE_CLEAN:
858				; /* try to free the page below */
859			}
860		}
861
862		/*
863		 * If the page has buffers, try to free the buffer mappings
864		 * associated with this page. If we succeed we try to free
865		 * the page as well.
866		 *
867		 * We do this even if the page is PageDirty().
868		 * try_to_release_page() does not perform I/O, but it is
869		 * possible for a page to have PageDirty set, but it is actually
870		 * clean (all its buffers are clean).  This happens if the
871		 * buffers were written out directly, with submit_bh(). ext3
872		 * will do this, as well as the blockdev mapping.
873		 * try_to_release_page() will discover that cleanness and will
874		 * drop the buffers and mark the page clean - it can be freed.
875		 *
876		 * Rarely, pages can have buffers and no ->mapping.  These are
877		 * the pages which were not successfully invalidated in
878		 * truncate_complete_page().  We try to drop those buffers here
879		 * and if that worked, and the page is no longer mapped into
880		 * process address space (page_count == 1) it can be freed.
881		 * Otherwise, leave the page on the LRU so it is swappable.
882		 */
883		if (page_has_private(page)) {
884			if (!try_to_release_page(page, sc->gfp_mask))
885				goto activate_locked;
886			if (!mapping && page_count(page) == 1) {
887				unlock_page(page);
888				if (put_page_testzero(page))
889					goto free_it;
890				else {
891					/*
892					 * rare race with speculative reference.
893					 * the speculative reference will free
894					 * this page shortly, so we may
895					 * increment nr_reclaimed here (and
896					 * leave it off the LRU).
897					 */
898					nr_reclaimed++;
899					continue;
900				}
901			}
902		}
903
904		if (!mapping || !__remove_mapping(mapping, page))
905			goto keep_locked;
906
907		/*
908		 * At this point, we have no other references and there is
909		 * no way to pick any more up (removed from LRU, removed
910		 * from pagecache). Can use non-atomic bitops now (and
911		 * we obviously don't have to worry about waking up a process
912		 * waiting on the page lock, because there are no references.
913		 */
914		__clear_page_locked(page);
915free_it:
916		nr_reclaimed++;
917
918		/*
919		 * Is there need to periodically free_page_list? It would
920		 * appear not as the counts should be low
921		 */
922		list_add(&page->lru, &free_pages);
923		continue;
924
925cull_mlocked:
926		if (PageSwapCache(page))
927			try_to_free_swap(page);
928		unlock_page(page);
929		putback_lru_page(page);
930		reset_reclaim_mode(sc);
931		continue;
932
933activate_locked:
934		/* Not a candidate for swapping, so reclaim swap space. */
935		if (PageSwapCache(page) && vm_swap_full())
936			try_to_free_swap(page);
937		VM_BUG_ON(PageActive(page));
938		SetPageActive(page);
939		pgactivate++;
940keep_locked:
941		unlock_page(page);
942keep:
943		reset_reclaim_mode(sc);
944keep_lumpy:
945		list_add(&page->lru, &ret_pages);
946		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947	}
948
949	/*
950	 * Tag a zone as congested if all the dirty pages encountered were
951	 * backed by a congested BDI. In this case, reclaimers should just
952	 * back off and wait for congestion to clear because further reclaim
953	 * will encounter the same problem
954	 */
955	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
956		zone_set_flag(zone, ZONE_CONGESTED);
957
958	free_page_list(&free_pages);
959
960	list_splice(&ret_pages, page_list);
961	count_vm_events(PGACTIVATE, pgactivate);
962	return nr_reclaimed;
963}
964
965/*
966 * Attempt to remove the specified page from its LRU.  Only take this page
967 * if it is of the appropriate PageActive status.  Pages which are being
968 * freed elsewhere are also ignored.
969 *
970 * page:	page to consider
971 * mode:	one of the LRU isolation modes defined above
972 *
973 * returns 0 on success, -ve errno on failure.
974 */
975int __isolate_lru_page(struct page *page, int mode, int file)
976{
977	int ret = -EINVAL;
978
979	/* Only take pages on the LRU. */
980	if (!PageLRU(page))
981		return ret;
982
983	/*
984	 * When checking the active state, we need to be sure we are
985	 * dealing with comparible boolean values.  Take the logical not
986	 * of each.
987	 */
988	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
989		return ret;
990
991	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
992		return ret;
993
994	/*
995	 * When this function is being called for lumpy reclaim, we
996	 * initially look into all LRU pages, active, inactive and
997	 * unevictable; only give shrink_page_list evictable pages.
998	 */
999	if (PageUnevictable(page))
1000		return ret;
1001
1002	ret = -EBUSY;
1003
1004	if (likely(get_page_unless_zero(page))) {
1005		/*
1006		 * Be careful not to clear PageLRU until after we're
1007		 * sure the page is not being freed elsewhere -- the
1008		 * page release code relies on it.
1009		 */
1010		ClearPageLRU(page);
1011		ret = 0;
1012	}
1013
1014	return ret;
1015}
1016
1017/*
1018 * zone->lru_lock is heavily contended.  Some of the functions that
1019 * shrink the lists perform better by taking out a batch of pages
1020 * and working on them outside the LRU lock.
1021 *
1022 * For pagecache intensive workloads, this function is the hottest
1023 * spot in the kernel (apart from copy_*_user functions).
1024 *
1025 * Appropriate locks must be held before calling this function.
1026 *
1027 * @nr_to_scan:	The number of pages to look through on the list.
1028 * @src:	The LRU list to pull pages off.
1029 * @dst:	The temp list to put pages on to.
1030 * @scanned:	The number of pages that were scanned.
1031 * @order:	The caller's attempted allocation order
1032 * @mode:	One of the LRU isolation modes
1033 * @file:	True [1] if isolating file [!anon] pages
1034 *
1035 * returns how many pages were moved onto *@dst.
1036 */
1037static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1038		struct list_head *src, struct list_head *dst,
1039		unsigned long *scanned, int order, int mode, int file)
1040{
1041	unsigned long nr_taken = 0;
1042	unsigned long nr_lumpy_taken = 0;
1043	unsigned long nr_lumpy_dirty = 0;
1044	unsigned long nr_lumpy_failed = 0;
1045	unsigned long scan;
1046
1047	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1048		struct page *page;
1049		unsigned long pfn;
1050		unsigned long end_pfn;
1051		unsigned long page_pfn;
1052		int zone_id;
1053
1054		page = lru_to_page(src);
1055		prefetchw_prev_lru_page(page, src, flags);
1056
1057		VM_BUG_ON(!PageLRU(page));
1058
1059		switch (__isolate_lru_page(page, mode, file)) {
1060		case 0:
1061			list_move(&page->lru, dst);
1062			mem_cgroup_del_lru(page);
1063			nr_taken += hpage_nr_pages(page);
1064			break;
1065
1066		case -EBUSY:
1067			/* else it is being freed elsewhere */
1068			list_move(&page->lru, src);
1069			mem_cgroup_rotate_lru_list(page, page_lru(page));
1070			continue;
1071
1072		default:
1073			BUG();
1074		}
1075
1076		if (!order)
1077			continue;
1078
1079		/*
1080		 * Attempt to take all pages in the order aligned region
1081		 * surrounding the tag page.  Only take those pages of
1082		 * the same active state as that tag page.  We may safely
1083		 * round the target page pfn down to the requested order
1084		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1085		 * where that page is in a different zone we will detect
1086		 * it from its zone id and abort this block scan.
1087		 */
1088		zone_id = page_zone_id(page);
1089		page_pfn = page_to_pfn(page);
1090		pfn = page_pfn & ~((1 << order) - 1);
1091		end_pfn = pfn + (1 << order);
1092		for (; pfn < end_pfn; pfn++) {
1093			struct page *cursor_page;
1094
1095			/* The target page is in the block, ignore it. */
1096			if (unlikely(pfn == page_pfn))
1097				continue;
1098
1099			/* Avoid holes within the zone. */
1100			if (unlikely(!pfn_valid_within(pfn)))
1101				break;
1102
1103			cursor_page = pfn_to_page(pfn);
1104
1105			/* Check that we have not crossed a zone boundary. */
1106			if (unlikely(page_zone_id(cursor_page) != zone_id))
1107				break;
1108
1109			/*
1110			 * If we don't have enough swap space, reclaiming of
1111			 * anon page which don't already have a swap slot is
1112			 * pointless.
1113			 */
1114			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1115			    !PageSwapCache(cursor_page))
1116				break;
1117
1118			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1119				list_move(&cursor_page->lru, dst);
1120				mem_cgroup_del_lru(cursor_page);
1121				nr_taken += hpage_nr_pages(page);
1122				nr_lumpy_taken++;
1123				if (PageDirty(cursor_page))
1124					nr_lumpy_dirty++;
1125				scan++;
1126			} else {
1127				/*
1128				 * Check if the page is freed already.
1129				 *
1130				 * We can't use page_count() as that
1131				 * requires compound_head and we don't
1132				 * have a pin on the page here. If a
1133				 * page is tail, we may or may not
1134				 * have isolated the head, so assume
1135				 * it's not free, it'd be tricky to
1136				 * track the head status without a
1137				 * page pin.
1138				 */
1139				if (!PageTail(cursor_page) &&
1140				    !atomic_read(&cursor_page->_count))
1141					continue;
1142				break;
1143			}
1144		}
1145
1146		/* If we break out of the loop above, lumpy reclaim failed */
1147		if (pfn < end_pfn)
1148			nr_lumpy_failed++;
1149	}
1150
1151	*scanned = scan;
1152
1153	trace_mm_vmscan_lru_isolate(order,
1154			nr_to_scan, scan,
1155			nr_taken,
1156			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1157			mode);
1158	return nr_taken;
1159}
1160
1161static unsigned long isolate_pages_global(unsigned long nr,
1162					struct list_head *dst,
1163					unsigned long *scanned, int order,
1164					int mode, struct zone *z,
1165					int active, int file)
1166{
1167	int lru = LRU_BASE;
1168	if (active)
1169		lru += LRU_ACTIVE;
1170	if (file)
1171		lru += LRU_FILE;
1172	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1173								mode, file);
1174}
1175
1176/*
1177 * clear_active_flags() is a helper for shrink_active_list(), clearing
1178 * any active bits from the pages in the list.
1179 */
1180static unsigned long clear_active_flags(struct list_head *page_list,
1181					unsigned int *count)
1182{
1183	int nr_active = 0;
1184	int lru;
1185	struct page *page;
1186
1187	list_for_each_entry(page, page_list, lru) {
1188		int numpages = hpage_nr_pages(page);
1189		lru = page_lru_base_type(page);
1190		if (PageActive(page)) {
1191			lru += LRU_ACTIVE;
1192			ClearPageActive(page);
1193			nr_active += numpages;
1194		}
1195		if (count)
1196			count[lru] += numpages;
1197	}
1198
1199	return nr_active;
1200}
1201
1202/**
1203 * isolate_lru_page - tries to isolate a page from its LRU list
1204 * @page: page to isolate from its LRU list
1205 *
1206 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1207 * vmstat statistic corresponding to whatever LRU list the page was on.
1208 *
1209 * Returns 0 if the page was removed from an LRU list.
1210 * Returns -EBUSY if the page was not on an LRU list.
1211 *
1212 * The returned page will have PageLRU() cleared.  If it was found on
1213 * the active list, it will have PageActive set.  If it was found on
1214 * the unevictable list, it will have the PageUnevictable bit set. That flag
1215 * may need to be cleared by the caller before letting the page go.
1216 *
1217 * The vmstat statistic corresponding to the list on which the page was
1218 * found will be decremented.
1219 *
1220 * Restrictions:
1221 * (1) Must be called with an elevated refcount on the page. This is a
1222 *     fundamentnal difference from isolate_lru_pages (which is called
1223 *     without a stable reference).
1224 * (2) the lru_lock must not be held.
1225 * (3) interrupts must be enabled.
1226 */
1227int isolate_lru_page(struct page *page)
1228{
1229	int ret = -EBUSY;
1230
1231	VM_BUG_ON(!page_count(page));
1232
1233	if (PageLRU(page)) {
1234		struct zone *zone = page_zone(page);
1235
1236		spin_lock_irq(&zone->lru_lock);
1237		if (PageLRU(page)) {
1238			int lru = page_lru(page);
1239			ret = 0;
1240			get_page(page);
1241			ClearPageLRU(page);
1242
1243			del_page_from_lru_list(zone, page, lru);
1244		}
1245		spin_unlock_irq(&zone->lru_lock);
1246	}
1247	return ret;
1248}
1249
1250/*
1251 * Are there way too many processes in the direct reclaim path already?
1252 */
1253static int too_many_isolated(struct zone *zone, int file,
1254		struct scan_control *sc)
1255{
1256	unsigned long inactive, isolated;
1257
1258	if (current_is_kswapd())
1259		return 0;
1260
1261	if (!scanning_global_lru(sc))
1262		return 0;
1263
1264	if (file) {
1265		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1266		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1267	} else {
1268		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1269		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1270	}
1271
1272	return isolated > inactive;
1273}
1274
1275/*
1276 * TODO: Try merging with migrations version of putback_lru_pages
1277 */
1278static noinline_for_stack void
1279putback_lru_pages(struct zone *zone, struct scan_control *sc,
1280				unsigned long nr_anon, unsigned long nr_file,
1281				struct list_head *page_list)
1282{
1283	struct page *page;
1284	struct pagevec pvec;
1285	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1286
1287	pagevec_init(&pvec, 1);
1288
1289	/*
1290	 * Put back any unfreeable pages.
1291	 */
1292	spin_lock(&zone->lru_lock);
1293	while (!list_empty(page_list)) {
1294		int lru;
1295		page = lru_to_page(page_list);
1296		VM_BUG_ON(PageLRU(page));
1297		list_del(&page->lru);
1298		if (unlikely(!page_evictable(page, NULL))) {
1299			spin_unlock_irq(&zone->lru_lock);
1300			putback_lru_page(page);
1301			spin_lock_irq(&zone->lru_lock);
1302			continue;
1303		}
1304		SetPageLRU(page);
1305		lru = page_lru(page);
1306		add_page_to_lru_list(zone, page, lru);
1307		if (is_active_lru(lru)) {
1308			int file = is_file_lru(lru);
1309			int numpages = hpage_nr_pages(page);
1310			reclaim_stat->recent_rotated[file] += numpages;
1311		}
1312		if (!pagevec_add(&pvec, page)) {
1313			spin_unlock_irq(&zone->lru_lock);
1314			__pagevec_release(&pvec);
1315			spin_lock_irq(&zone->lru_lock);
1316		}
1317	}
1318	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1319	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1320
1321	spin_unlock_irq(&zone->lru_lock);
1322	pagevec_release(&pvec);
1323}
1324
1325static noinline_for_stack void update_isolated_counts(struct zone *zone,
1326					struct scan_control *sc,
1327					unsigned long *nr_anon,
1328					unsigned long *nr_file,
1329					struct list_head *isolated_list)
1330{
1331	unsigned long nr_active;
1332	unsigned int count[NR_LRU_LISTS] = { 0, };
1333	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1334
1335	nr_active = clear_active_flags(isolated_list, count);
1336	__count_vm_events(PGDEACTIVATE, nr_active);
1337
1338	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1339			      -count[LRU_ACTIVE_FILE]);
1340	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1341			      -count[LRU_INACTIVE_FILE]);
1342	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1343			      -count[LRU_ACTIVE_ANON]);
1344	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1345			      -count[LRU_INACTIVE_ANON]);
1346
1347	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1348	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1349	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1350	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1351
1352	reclaim_stat->recent_scanned[0] += *nr_anon;
1353	reclaim_stat->recent_scanned[1] += *nr_file;
1354}
1355
1356/*
1357 * Returns true if the caller should wait to clean dirty/writeback pages.
1358 *
1359 * If we are direct reclaiming for contiguous pages and we do not reclaim
1360 * everything in the list, try again and wait for writeback IO to complete.
1361 * This will stall high-order allocations noticeably. Only do that when really
1362 * need to free the pages under high memory pressure.
1363 */
1364static inline bool should_reclaim_stall(unsigned long nr_taken,
1365					unsigned long nr_freed,
1366					int priority,
1367					struct scan_control *sc)
1368{
1369	int lumpy_stall_priority;
1370
1371	/* kswapd should not stall on sync IO */
1372	if (current_is_kswapd())
1373		return false;
1374
1375	/* Only stall on lumpy reclaim */
1376	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1377		return false;
1378
1379	/* If we have relaimed everything on the isolated list, no stall */
1380	if (nr_freed == nr_taken)
1381		return false;
1382
1383	/*
1384	 * For high-order allocations, there are two stall thresholds.
1385	 * High-cost allocations stall immediately where as lower
1386	 * order allocations such as stacks require the scanning
1387	 * priority to be much higher before stalling.
1388	 */
1389	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1390		lumpy_stall_priority = DEF_PRIORITY;
1391	else
1392		lumpy_stall_priority = DEF_PRIORITY / 3;
1393
1394	return priority <= lumpy_stall_priority;
1395}
1396
1397/*
1398 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1399 * of reclaimed pages
1400 */
1401static noinline_for_stack unsigned long
1402shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1403			struct scan_control *sc, int priority, int file)
1404{
1405	LIST_HEAD(page_list);
1406	unsigned long nr_scanned;
1407	unsigned long nr_reclaimed = 0;
1408	unsigned long nr_taken;
1409	unsigned long nr_anon;
1410	unsigned long nr_file;
1411
1412	while (unlikely(too_many_isolated(zone, file, sc))) {
1413		congestion_wait(BLK_RW_ASYNC, HZ/10);
1414
1415		/* We are about to die and free our memory. Return now. */
1416		if (fatal_signal_pending(current))
1417			return SWAP_CLUSTER_MAX;
1418	}
1419
1420	set_reclaim_mode(priority, sc, false);
1421	lru_add_drain();
1422	spin_lock_irq(&zone->lru_lock);
1423
1424	if (scanning_global_lru(sc)) {
1425		nr_taken = isolate_pages_global(nr_to_scan,
1426			&page_list, &nr_scanned, sc->order,
1427			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1428					ISOLATE_BOTH : ISOLATE_INACTIVE,
1429			zone, 0, file);
1430		zone->pages_scanned += nr_scanned;
1431		if (current_is_kswapd())
1432			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1433					       nr_scanned);
1434		else
1435			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1436					       nr_scanned);
1437	} else {
1438		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1439			&page_list, &nr_scanned, sc->order,
1440			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1441					ISOLATE_BOTH : ISOLATE_INACTIVE,
1442			zone, sc->mem_cgroup,
1443			0, file);
1444		/*
1445		 * mem_cgroup_isolate_pages() keeps track of
1446		 * scanned pages on its own.
1447		 */
1448	}
1449
1450	if (nr_taken == 0) {
1451		spin_unlock_irq(&zone->lru_lock);
1452		return 0;
1453	}
1454
1455	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1456
1457	spin_unlock_irq(&zone->lru_lock);
1458
1459	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1460
1461	/* Check if we should syncronously wait for writeback */
1462	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1463		set_reclaim_mode(priority, sc, true);
1464		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1465	}
1466
1467	local_irq_disable();
1468	if (current_is_kswapd())
1469		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1470	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1471
1472	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1473
1474	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1475		zone_idx(zone),
1476		nr_scanned, nr_reclaimed,
1477		priority,
1478		trace_shrink_flags(file, sc->reclaim_mode));
1479	return nr_reclaimed;
1480}
1481
1482/*
1483 * This moves pages from the active list to the inactive list.
1484 *
1485 * We move them the other way if the page is referenced by one or more
1486 * processes, from rmap.
1487 *
1488 * If the pages are mostly unmapped, the processing is fast and it is
1489 * appropriate to hold zone->lru_lock across the whole operation.  But if
1490 * the pages are mapped, the processing is slow (page_referenced()) so we
1491 * should drop zone->lru_lock around each page.  It's impossible to balance
1492 * this, so instead we remove the pages from the LRU while processing them.
1493 * It is safe to rely on PG_active against the non-LRU pages in here because
1494 * nobody will play with that bit on a non-LRU page.
1495 *
1496 * The downside is that we have to touch page->_count against each page.
1497 * But we had to alter page->flags anyway.
1498 */
1499
1500static void move_active_pages_to_lru(struct zone *zone,
1501				     struct list_head *list,
1502				     enum lru_list lru)
1503{
1504	unsigned long pgmoved = 0;
1505	struct pagevec pvec;
1506	struct page *page;
1507
1508	pagevec_init(&pvec, 1);
1509
1510	while (!list_empty(list)) {
1511		page = lru_to_page(list);
1512
1513		VM_BUG_ON(PageLRU(page));
1514		SetPageLRU(page);
1515
1516		list_move(&page->lru, &zone->lru[lru].list);
1517		mem_cgroup_add_lru_list(page, lru);
1518		pgmoved += hpage_nr_pages(page);
1519
1520		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1521			spin_unlock_irq(&zone->lru_lock);
1522			if (buffer_heads_over_limit)
1523				pagevec_strip(&pvec);
1524			__pagevec_release(&pvec);
1525			spin_lock_irq(&zone->lru_lock);
1526		}
1527	}
1528	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1529	if (!is_active_lru(lru))
1530		__count_vm_events(PGDEACTIVATE, pgmoved);
1531}
1532
1533static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1534			struct scan_control *sc, int priority, int file)
1535{
1536	unsigned long nr_taken;
1537	unsigned long pgscanned;
1538	unsigned long vm_flags;
1539	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1540	LIST_HEAD(l_active);
1541	LIST_HEAD(l_inactive);
1542	struct page *page;
1543	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1544	unsigned long nr_rotated = 0;
1545
1546	lru_add_drain();
1547	spin_lock_irq(&zone->lru_lock);
1548	if (scanning_global_lru(sc)) {
1549		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1550						&pgscanned, sc->order,
1551						ISOLATE_ACTIVE, zone,
1552						1, file);
1553		zone->pages_scanned += pgscanned;
1554	} else {
1555		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1556						&pgscanned, sc->order,
1557						ISOLATE_ACTIVE, zone,
1558						sc->mem_cgroup, 1, file);
1559		/*
1560		 * mem_cgroup_isolate_pages() keeps track of
1561		 * scanned pages on its own.
1562		 */
1563	}
1564
1565	reclaim_stat->recent_scanned[file] += nr_taken;
1566
1567	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1568	if (file)
1569		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1570	else
1571		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1572	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1573	spin_unlock_irq(&zone->lru_lock);
1574
1575	while (!list_empty(&l_hold)) {
1576		cond_resched();
1577		page = lru_to_page(&l_hold);
1578		list_del(&page->lru);
1579
1580		if (unlikely(!page_evictable(page, NULL))) {
1581			putback_lru_page(page);
1582			continue;
1583		}
1584
1585		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1586			nr_rotated += hpage_nr_pages(page);
1587			/*
1588			 * Identify referenced, file-backed active pages and
1589			 * give them one more trip around the active list. So
1590			 * that executable code get better chances to stay in
1591			 * memory under moderate memory pressure.  Anon pages
1592			 * are not likely to be evicted by use-once streaming
1593			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1594			 * so we ignore them here.
1595			 */
1596			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1597				list_add(&page->lru, &l_active);
1598				continue;
1599			}
1600		}
1601
1602		ClearPageActive(page);	/* we are de-activating */
1603		list_add(&page->lru, &l_inactive);
1604	}
1605
1606	/*
1607	 * Move pages back to the lru list.
1608	 */
1609	spin_lock_irq(&zone->lru_lock);
1610	/*
1611	 * Count referenced pages from currently used mappings as rotated,
1612	 * even though only some of them are actually re-activated.  This
1613	 * helps balance scan pressure between file and anonymous pages in
1614	 * get_scan_ratio.
1615	 */
1616	reclaim_stat->recent_rotated[file] += nr_rotated;
1617
1618	move_active_pages_to_lru(zone, &l_active,
1619						LRU_ACTIVE + file * LRU_FILE);
1620	move_active_pages_to_lru(zone, &l_inactive,
1621						LRU_BASE   + file * LRU_FILE);
1622	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1623	spin_unlock_irq(&zone->lru_lock);
1624}
1625
1626#ifdef CONFIG_SWAP
1627static int inactive_anon_is_low_global(struct zone *zone)
1628{
1629	unsigned long active, inactive;
1630
1631	active = zone_page_state(zone, NR_ACTIVE_ANON);
1632	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1633
1634	if (inactive * zone->inactive_ratio < active)
1635		return 1;
1636
1637	return 0;
1638}
1639
1640/**
1641 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1642 * @zone: zone to check
1643 * @sc:   scan control of this context
1644 *
1645 * Returns true if the zone does not have enough inactive anon pages,
1646 * meaning some active anon pages need to be deactivated.
1647 */
1648static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1649{
1650	int low;
1651
1652	/*
1653	 * If we don't have swap space, anonymous page deactivation
1654	 * is pointless.
1655	 */
1656	if (!total_swap_pages)
1657		return 0;
1658
1659	if (scanning_global_lru(sc))
1660		low = inactive_anon_is_low_global(zone);
1661	else
1662		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1663	return low;
1664}
1665#else
1666static inline int inactive_anon_is_low(struct zone *zone,
1667					struct scan_control *sc)
1668{
1669	return 0;
1670}
1671#endif
1672
1673static int inactive_file_is_low_global(struct zone *zone)
1674{
1675	unsigned long active, inactive;
1676
1677	active = zone_page_state(zone, NR_ACTIVE_FILE);
1678	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1679
1680	return (active > inactive);
1681}
1682
1683/**
1684 * inactive_file_is_low - check if file pages need to be deactivated
1685 * @zone: zone to check
1686 * @sc:   scan control of this context
1687 *
1688 * When the system is doing streaming IO, memory pressure here
1689 * ensures that active file pages get deactivated, until more
1690 * than half of the file pages are on the inactive list.
1691 *
1692 * Once we get to that situation, protect the system's working
1693 * set from being evicted by disabling active file page aging.
1694 *
1695 * This uses a different ratio than the anonymous pages, because
1696 * the page cache uses a use-once replacement algorithm.
1697 */
1698static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1699{
1700	int low;
1701
1702	if (scanning_global_lru(sc))
1703		low = inactive_file_is_low_global(zone);
1704	else
1705		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1706	return low;
1707}
1708
1709static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1710				int file)
1711{
1712	if (file)
1713		return inactive_file_is_low(zone, sc);
1714	else
1715		return inactive_anon_is_low(zone, sc);
1716}
1717
1718static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1719	struct zone *zone, struct scan_control *sc, int priority)
1720{
1721	int file = is_file_lru(lru);
1722
1723	if (is_active_lru(lru)) {
1724		if (inactive_list_is_low(zone, sc, file))
1725		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1726		return 0;
1727	}
1728
1729	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1730}
1731
1732/*
1733 * Determine how aggressively the anon and file LRU lists should be
1734 * scanned.  The relative value of each set of LRU lists is determined
1735 * by looking at the fraction of the pages scanned we did rotate back
1736 * onto the active list instead of evict.
1737 *
1738 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1739 */
1740static void get_scan_count(struct zone *zone, struct scan_control *sc,
1741					unsigned long *nr, int priority)
1742{
1743	unsigned long anon, file, free;
1744	unsigned long anon_prio, file_prio;
1745	unsigned long ap, fp;
1746	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1747	u64 fraction[2], denominator;
1748	enum lru_list l;
1749	int noswap = 0;
1750	int force_scan = 0;
1751
1752
1753	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1754		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1755	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1756		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1757
1758	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1759		/* kswapd does zone balancing and need to scan this zone */
1760		if (scanning_global_lru(sc) && current_is_kswapd())
1761			force_scan = 1;
1762		/* memcg may have small limit and need to avoid priority drop */
1763		if (!scanning_global_lru(sc))
1764			force_scan = 1;
1765	}
1766
1767	/* If we have no swap space, do not bother scanning anon pages. */
1768	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1769		noswap = 1;
1770		fraction[0] = 0;
1771		fraction[1] = 1;
1772		denominator = 1;
1773		goto out;
1774	}
1775
1776	if (scanning_global_lru(sc)) {
1777		free  = zone_page_state(zone, NR_FREE_PAGES);
1778		/* If we have very few page cache pages,
1779		   force-scan anon pages. */
1780		if (unlikely(file + free <= high_wmark_pages(zone))) {
1781			fraction[0] = 1;
1782			fraction[1] = 0;
1783			denominator = 1;
1784			goto out;
1785		}
1786	}
1787
1788	/*
1789	 * With swappiness at 100, anonymous and file have the same priority.
1790	 * This scanning priority is essentially the inverse of IO cost.
1791	 */
1792	anon_prio = sc->swappiness;
1793	file_prio = 200 - sc->swappiness;
1794
1795	/*
1796	 * OK, so we have swap space and a fair amount of page cache
1797	 * pages.  We use the recently rotated / recently scanned
1798	 * ratios to determine how valuable each cache is.
1799	 *
1800	 * Because workloads change over time (and to avoid overflow)
1801	 * we keep these statistics as a floating average, which ends
1802	 * up weighing recent references more than old ones.
1803	 *
1804	 * anon in [0], file in [1]
1805	 */
1806	spin_lock_irq(&zone->lru_lock);
1807	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1808		reclaim_stat->recent_scanned[0] /= 2;
1809		reclaim_stat->recent_rotated[0] /= 2;
1810	}
1811
1812	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1813		reclaim_stat->recent_scanned[1] /= 2;
1814		reclaim_stat->recent_rotated[1] /= 2;
1815	}
1816
1817	/*
1818	 * The amount of pressure on anon vs file pages is inversely
1819	 * proportional to the fraction of recently scanned pages on
1820	 * each list that were recently referenced and in active use.
1821	 */
1822	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1823	ap /= reclaim_stat->recent_rotated[0] + 1;
1824
1825	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1826	fp /= reclaim_stat->recent_rotated[1] + 1;
1827	spin_unlock_irq(&zone->lru_lock);
1828
1829	fraction[0] = ap;
1830	fraction[1] = fp;
1831	denominator = ap + fp + 1;
1832out:
1833	for_each_evictable_lru(l) {
1834		int file = is_file_lru(l);
1835		unsigned long scan;
1836
1837		scan = zone_nr_lru_pages(zone, sc, l);
1838		if (priority || noswap) {
1839			scan >>= priority;
1840			scan = div64_u64(scan * fraction[file], denominator);
1841		}
1842
1843		/*
1844		 * If zone is small or memcg is small, nr[l] can be 0.
1845		 * This results no-scan on this priority and priority drop down.
1846		 * For global direct reclaim, it can visit next zone and tend
1847		 * not to have problems. For global kswapd, it's for zone
1848		 * balancing and it need to scan a small amounts. When using
1849		 * memcg, priority drop can cause big latency. So, it's better
1850		 * to scan small amount. See may_noscan above.
1851		 */
1852		if (!scan && force_scan) {
1853			if (file)
1854				scan = SWAP_CLUSTER_MAX;
1855			else if (!noswap)
1856				scan = SWAP_CLUSTER_MAX;
1857		}
1858		nr[l] = scan;
1859	}
1860}
1861
1862/*
1863 * Reclaim/compaction depends on a number of pages being freed. To avoid
1864 * disruption to the system, a small number of order-0 pages continue to be
1865 * rotated and reclaimed in the normal fashion. However, by the time we get
1866 * back to the allocator and call try_to_compact_zone(), we ensure that
1867 * there are enough free pages for it to be likely successful
1868 */
1869static inline bool should_continue_reclaim(struct zone *zone,
1870					unsigned long nr_reclaimed,
1871					unsigned long nr_scanned,
1872					struct scan_control *sc)
1873{
1874	unsigned long pages_for_compaction;
1875	unsigned long inactive_lru_pages;
1876
1877	/* If not in reclaim/compaction mode, stop */
1878	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1879		return false;
1880
1881	/* Consider stopping depending on scan and reclaim activity */
1882	if (sc->gfp_mask & __GFP_REPEAT) {
1883		/*
1884		 * For __GFP_REPEAT allocations, stop reclaiming if the
1885		 * full LRU list has been scanned and we are still failing
1886		 * to reclaim pages. This full LRU scan is potentially
1887		 * expensive but a __GFP_REPEAT caller really wants to succeed
1888		 */
1889		if (!nr_reclaimed && !nr_scanned)
1890			return false;
1891	} else {
1892		/*
1893		 * For non-__GFP_REPEAT allocations which can presumably
1894		 * fail without consequence, stop if we failed to reclaim
1895		 * any pages from the last SWAP_CLUSTER_MAX number of
1896		 * pages that were scanned. This will return to the
1897		 * caller faster at the risk reclaim/compaction and
1898		 * the resulting allocation attempt fails
1899		 */
1900		if (!nr_reclaimed)
1901			return false;
1902	}
1903
1904	/*
1905	 * If we have not reclaimed enough pages for compaction and the
1906	 * inactive lists are large enough, continue reclaiming
1907	 */
1908	pages_for_compaction = (2UL << sc->order);
1909	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1910				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1911	if (sc->nr_reclaimed < pages_for_compaction &&
1912			inactive_lru_pages > pages_for_compaction)
1913		return true;
1914
1915	/* If compaction would go ahead or the allocation would succeed, stop */
1916	switch (compaction_suitable(zone, sc->order)) {
1917	case COMPACT_PARTIAL:
1918	case COMPACT_CONTINUE:
1919		return false;
1920	default:
1921		return true;
1922	}
1923}
1924
1925/*
1926 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1927 */
1928static void shrink_zone(int priority, struct zone *zone,
1929				struct scan_control *sc)
1930{
1931	unsigned long nr[NR_LRU_LISTS];
1932	unsigned long nr_to_scan;
1933	enum lru_list l;
1934	unsigned long nr_reclaimed, nr_scanned;
1935	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1936
1937restart:
1938	nr_reclaimed = 0;
1939	nr_scanned = sc->nr_scanned;
1940	get_scan_count(zone, sc, nr, priority);
1941
1942	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1943					nr[LRU_INACTIVE_FILE]) {
1944		for_each_evictable_lru(l) {
1945			if (nr[l]) {
1946				nr_to_scan = min_t(unsigned long,
1947						   nr[l], SWAP_CLUSTER_MAX);
1948				nr[l] -= nr_to_scan;
1949
1950				nr_reclaimed += shrink_list(l, nr_to_scan,
1951							    zone, sc, priority);
1952			}
1953		}
1954		/*
1955		 * On large memory systems, scan >> priority can become
1956		 * really large. This is fine for the starting priority;
1957		 * we want to put equal scanning pressure on each zone.
1958		 * However, if the VM has a harder time of freeing pages,
1959		 * with multiple processes reclaiming pages, the total
1960		 * freeing target can get unreasonably large.
1961		 */
1962		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1963			break;
1964	}
1965	sc->nr_reclaimed += nr_reclaimed;
1966
1967	/*
1968	 * Even if we did not try to evict anon pages at all, we want to
1969	 * rebalance the anon lru active/inactive ratio.
1970	 */
1971	if (inactive_anon_is_low(zone, sc))
1972		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1973
1974	/* reclaim/compaction might need reclaim to continue */
1975	if (should_continue_reclaim(zone, nr_reclaimed,
1976					sc->nr_scanned - nr_scanned, sc))
1977		goto restart;
1978
1979	throttle_vm_writeout(sc->gfp_mask);
1980}
1981
1982/*
1983 * This is the direct reclaim path, for page-allocating processes.  We only
1984 * try to reclaim pages from zones which will satisfy the caller's allocation
1985 * request.
1986 *
1987 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1988 * Because:
1989 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1990 *    allocation or
1991 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1992 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1993 *    zone defense algorithm.
1994 *
1995 * If a zone is deemed to be full of pinned pages then just give it a light
1996 * scan then give up on it.
1997 */
1998static void shrink_zones(int priority, struct zonelist *zonelist,
1999					struct scan_control *sc)
2000{
2001	struct zoneref *z;
2002	struct zone *zone;
2003	unsigned long nr_soft_reclaimed;
2004	unsigned long nr_soft_scanned;
2005
2006	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2007					gfp_zone(sc->gfp_mask), sc->nodemask) {
2008		if (!populated_zone(zone))
2009			continue;
2010		/*
2011		 * Take care memory controller reclaiming has small influence
2012		 * to global LRU.
2013		 */
2014		if (scanning_global_lru(sc)) {
2015			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2016				continue;
2017			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2018				continue;	/* Let kswapd poll it */
2019			/*
2020			 * This steals pages from memory cgroups over softlimit
2021			 * and returns the number of reclaimed pages and
2022			 * scanned pages. This works for global memory pressure
2023			 * and balancing, not for a memcg's limit.
2024			 */
2025			nr_soft_scanned = 0;
2026			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2027						sc->order, sc->gfp_mask,
2028						&nr_soft_scanned);
2029			sc->nr_reclaimed += nr_soft_reclaimed;
2030			sc->nr_scanned += nr_soft_scanned;
2031			/* need some check for avoid more shrink_zone() */
2032		}
2033
2034		shrink_zone(priority, zone, sc);
2035	}
2036}
2037
2038static bool zone_reclaimable(struct zone *zone)
2039{
2040	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2041}
2042
2043/* All zones in zonelist are unreclaimable? */
2044static bool all_unreclaimable(struct zonelist *zonelist,
2045		struct scan_control *sc)
2046{
2047	struct zoneref *z;
2048	struct zone *zone;
2049
2050	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2051			gfp_zone(sc->gfp_mask), sc->nodemask) {
2052		if (!populated_zone(zone))
2053			continue;
2054		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2055			continue;
2056		if (!zone->all_unreclaimable)
2057			return false;
2058	}
2059
2060	return true;
2061}
2062
2063/*
2064 * This is the main entry point to direct page reclaim.
2065 *
2066 * If a full scan of the inactive list fails to free enough memory then we
2067 * are "out of memory" and something needs to be killed.
2068 *
2069 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2070 * high - the zone may be full of dirty or under-writeback pages, which this
2071 * caller can't do much about.  We kick the writeback threads and take explicit
2072 * naps in the hope that some of these pages can be written.  But if the
2073 * allocating task holds filesystem locks which prevent writeout this might not
2074 * work, and the allocation attempt will fail.
2075 *
2076 * returns:	0, if no pages reclaimed
2077 * 		else, the number of pages reclaimed
2078 */
2079static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2080					struct scan_control *sc,
2081					struct shrink_control *shrink)
2082{
2083	int priority;
2084	unsigned long total_scanned = 0;
2085	struct reclaim_state *reclaim_state = current->reclaim_state;
2086	struct zoneref *z;
2087	struct zone *zone;
2088	unsigned long writeback_threshold;
2089
2090	get_mems_allowed();
2091	delayacct_freepages_start();
2092
2093	if (scanning_global_lru(sc))
2094		count_vm_event(ALLOCSTALL);
2095
2096	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2097		sc->nr_scanned = 0;
2098		if (!priority)
2099			disable_swap_token(sc->mem_cgroup);
2100		shrink_zones(priority, zonelist, sc);
2101		/*
2102		 * Don't shrink slabs when reclaiming memory from
2103		 * over limit cgroups
2104		 */
2105		if (scanning_global_lru(sc)) {
2106			unsigned long lru_pages = 0;
2107			for_each_zone_zonelist(zone, z, zonelist,
2108					gfp_zone(sc->gfp_mask)) {
2109				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2110					continue;
2111
2112				lru_pages += zone_reclaimable_pages(zone);
2113			}
2114
2115			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2116			if (reclaim_state) {
2117				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2118				reclaim_state->reclaimed_slab = 0;
2119			}
2120		}
2121		total_scanned += sc->nr_scanned;
2122		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2123			goto out;
2124
2125		/*
2126		 * Try to write back as many pages as we just scanned.  This
2127		 * tends to cause slow streaming writers to write data to the
2128		 * disk smoothly, at the dirtying rate, which is nice.   But
2129		 * that's undesirable in laptop mode, where we *want* lumpy
2130		 * writeout.  So in laptop mode, write out the whole world.
2131		 */
2132		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2133		if (total_scanned > writeback_threshold) {
2134			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2135			sc->may_writepage = 1;
2136		}
2137
2138		/* Take a nap, wait for some writeback to complete */
2139		if (!sc->hibernation_mode && sc->nr_scanned &&
2140		    priority < DEF_PRIORITY - 2) {
2141			struct zone *preferred_zone;
2142
2143			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2144						&cpuset_current_mems_allowed,
2145						&preferred_zone);
2146			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2147		}
2148	}
2149
2150out:
2151	delayacct_freepages_end();
2152	put_mems_allowed();
2153
2154	if (sc->nr_reclaimed)
2155		return sc->nr_reclaimed;
2156
2157	/*
2158	 * As hibernation is going on, kswapd is freezed so that it can't mark
2159	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2160	 * check.
2161	 */
2162	if (oom_killer_disabled)
2163		return 0;
2164
2165	/* top priority shrink_zones still had more to do? don't OOM, then */
2166	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2167		return 1;
2168
2169	return 0;
2170}
2171
2172unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2173				gfp_t gfp_mask, nodemask_t *nodemask)
2174{
2175	unsigned long nr_reclaimed;
2176	struct scan_control sc = {
2177		.gfp_mask = gfp_mask,
2178		.may_writepage = !laptop_mode,
2179		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2180		.may_unmap = 1,
2181		.may_swap = 1,
2182		.swappiness = vm_swappiness,
2183		.order = order,
2184		.mem_cgroup = NULL,
2185		.nodemask = nodemask,
2186	};
2187	struct shrink_control shrink = {
2188		.gfp_mask = sc.gfp_mask,
2189	};
2190
2191	trace_mm_vmscan_direct_reclaim_begin(order,
2192				sc.may_writepage,
2193				gfp_mask);
2194
2195	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2196
2197	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2198
2199	return nr_reclaimed;
2200}
2201
2202#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2203
2204unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2205						gfp_t gfp_mask, bool noswap,
2206						unsigned int swappiness,
2207						struct zone *zone,
2208						unsigned long *nr_scanned)
2209{
2210	struct scan_control sc = {
2211		.nr_scanned = 0,
2212		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2213		.may_writepage = !laptop_mode,
2214		.may_unmap = 1,
2215		.may_swap = !noswap,
2216		.swappiness = swappiness,
2217		.order = 0,
2218		.mem_cgroup = mem,
2219	};
2220
2221	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2222			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2223
2224	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2225						      sc.may_writepage,
2226						      sc.gfp_mask);
2227
2228	/*
2229	 * NOTE: Although we can get the priority field, using it
2230	 * here is not a good idea, since it limits the pages we can scan.
2231	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2232	 * will pick up pages from other mem cgroup's as well. We hack
2233	 * the priority and make it zero.
2234	 */
2235	shrink_zone(0, zone, &sc);
2236
2237	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2238
2239	*nr_scanned = sc.nr_scanned;
2240	return sc.nr_reclaimed;
2241}
2242
2243unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2244					   gfp_t gfp_mask,
2245					   bool noswap,
2246					   unsigned int swappiness)
2247{
2248	struct zonelist *zonelist;
2249	unsigned long nr_reclaimed;
2250	int nid;
2251	struct scan_control sc = {
2252		.may_writepage = !laptop_mode,
2253		.may_unmap = 1,
2254		.may_swap = !noswap,
2255		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2256		.swappiness = swappiness,
2257		.order = 0,
2258		.mem_cgroup = mem_cont,
2259		.nodemask = NULL, /* we don't care the placement */
2260		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2261				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2262	};
2263	struct shrink_control shrink = {
2264		.gfp_mask = sc.gfp_mask,
2265	};
2266
2267	/*
2268	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2269	 * take care of from where we get pages. So the node where we start the
2270	 * scan does not need to be the current node.
2271	 */
2272	nid = mem_cgroup_select_victim_node(mem_cont);
2273
2274	zonelist = NODE_DATA(nid)->node_zonelists;
2275
2276	trace_mm_vmscan_memcg_reclaim_begin(0,
2277					    sc.may_writepage,
2278					    sc.gfp_mask);
2279
2280	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2281
2282	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2283
2284	return nr_reclaimed;
2285}
2286#endif
2287
2288/*
2289 * pgdat_balanced is used when checking if a node is balanced for high-order
2290 * allocations. Only zones that meet watermarks and are in a zone allowed
2291 * by the callers classzone_idx are added to balanced_pages. The total of
2292 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2293 * for the node to be considered balanced. Forcing all zones to be balanced
2294 * for high orders can cause excessive reclaim when there are imbalanced zones.
2295 * The choice of 25% is due to
2296 *   o a 16M DMA zone that is balanced will not balance a zone on any
2297 *     reasonable sized machine
2298 *   o On all other machines, the top zone must be at least a reasonable
2299 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2300 *     would need to be at least 256M for it to be balance a whole node.
2301 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2302 *     to balance a node on its own. These seemed like reasonable ratios.
2303 */
2304static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2305						int classzone_idx)
2306{
2307	unsigned long present_pages = 0;
2308	int i;
2309
2310	for (i = 0; i <= classzone_idx; i++)
2311		present_pages += pgdat->node_zones[i].present_pages;
2312
2313	return balanced_pages > (present_pages >> 2);
2314}
2315
2316/* is kswapd sleeping prematurely? */
2317static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2318					int classzone_idx)
2319{
2320	int i;
2321	unsigned long balanced = 0;
2322	bool all_zones_ok = true;
2323
2324	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2325	if (remaining)
2326		return true;
2327
2328	/* Check the watermark levels */
2329	for (i = 0; i <= classzone_idx; i++) {
2330		struct zone *zone = pgdat->node_zones + i;
2331
2332		if (!populated_zone(zone))
2333			continue;
2334
2335		/*
2336		 * balance_pgdat() skips over all_unreclaimable after
2337		 * DEF_PRIORITY. Effectively, it considers them balanced so
2338		 * they must be considered balanced here as well if kswapd
2339		 * is to sleep
2340		 */
2341		if (zone->all_unreclaimable) {
2342			balanced += zone->present_pages;
2343			continue;
2344		}
2345
2346		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2347							classzone_idx, 0))
2348			all_zones_ok = false;
2349		else
2350			balanced += zone->present_pages;
2351	}
2352
2353	/*
2354	 * For high-order requests, the balanced zones must contain at least
2355	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2356	 * must be balanced
2357	 */
2358	if (order)
2359		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2360	else
2361		return !all_zones_ok;
2362}
2363
2364/*
2365 * For kswapd, balance_pgdat() will work across all this node's zones until
2366 * they are all at high_wmark_pages(zone).
2367 *
2368 * Returns the final order kswapd was reclaiming at
2369 *
2370 * There is special handling here for zones which are full of pinned pages.
2371 * This can happen if the pages are all mlocked, or if they are all used by
2372 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2373 * What we do is to detect the case where all pages in the zone have been
2374 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2375 * dead and from now on, only perform a short scan.  Basically we're polling
2376 * the zone for when the problem goes away.
2377 *
2378 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2379 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2380 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2381 * lower zones regardless of the number of free pages in the lower zones. This
2382 * interoperates with the page allocator fallback scheme to ensure that aging
2383 * of pages is balanced across the zones.
2384 */
2385static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2386							int *classzone_idx)
2387{
2388	int all_zones_ok;
2389	unsigned long balanced;
2390	int priority;
2391	int i;
2392	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2393	unsigned long total_scanned;
2394	struct reclaim_state *reclaim_state = current->reclaim_state;
2395	unsigned long nr_soft_reclaimed;
2396	unsigned long nr_soft_scanned;
2397	struct scan_control sc = {
2398		.gfp_mask = GFP_KERNEL,
2399		.may_unmap = 1,
2400		.may_swap = 1,
2401		/*
2402		 * kswapd doesn't want to be bailed out while reclaim. because
2403		 * we want to put equal scanning pressure on each zone.
2404		 */
2405		.nr_to_reclaim = ULONG_MAX,
2406		.swappiness = vm_swappiness,
2407		.order = order,
2408		.mem_cgroup = NULL,
2409	};
2410	struct shrink_control shrink = {
2411		.gfp_mask = sc.gfp_mask,
2412	};
2413loop_again:
2414	total_scanned = 0;
2415	sc.nr_reclaimed = 0;
2416	sc.may_writepage = !laptop_mode;
2417	count_vm_event(PAGEOUTRUN);
2418
2419	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2420		unsigned long lru_pages = 0;
2421		int has_under_min_watermark_zone = 0;
2422
2423		/* The swap token gets in the way of swapout... */
2424		if (!priority)
2425			disable_swap_token(NULL);
2426
2427		all_zones_ok = 1;
2428		balanced = 0;
2429
2430		/*
2431		 * Scan in the highmem->dma direction for the highest
2432		 * zone which needs scanning
2433		 */
2434		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2435			struct zone *zone = pgdat->node_zones + i;
2436
2437			if (!populated_zone(zone))
2438				continue;
2439
2440			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2441				continue;
2442
2443			/*
2444			 * Do some background aging of the anon list, to give
2445			 * pages a chance to be referenced before reclaiming.
2446			 */
2447			if (inactive_anon_is_low(zone, &sc))
2448				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2449							&sc, priority, 0);
2450
2451			if (!zone_watermark_ok_safe(zone, order,
2452					high_wmark_pages(zone), 0, 0)) {
2453				end_zone = i;
2454				*classzone_idx = i;
2455				break;
2456			}
2457		}
2458		if (i < 0)
2459			goto out;
2460
2461		for (i = 0; i <= end_zone; i++) {
2462			struct zone *zone = pgdat->node_zones + i;
2463
2464			lru_pages += zone_reclaimable_pages(zone);
2465		}
2466
2467		/*
2468		 * Now scan the zone in the dma->highmem direction, stopping
2469		 * at the last zone which needs scanning.
2470		 *
2471		 * We do this because the page allocator works in the opposite
2472		 * direction.  This prevents the page allocator from allocating
2473		 * pages behind kswapd's direction of progress, which would
2474		 * cause too much scanning of the lower zones.
2475		 */
2476		for (i = 0; i <= end_zone; i++) {
2477			struct zone *zone = pgdat->node_zones + i;
2478			int nr_slab;
2479			unsigned long balance_gap;
2480
2481			if (!populated_zone(zone))
2482				continue;
2483
2484			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2485				continue;
2486
2487			sc.nr_scanned = 0;
2488
2489			nr_soft_scanned = 0;
2490			/*
2491			 * Call soft limit reclaim before calling shrink_zone.
2492			 */
2493			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2494							order, sc.gfp_mask,
2495							&nr_soft_scanned);
2496			sc.nr_reclaimed += nr_soft_reclaimed;
2497			total_scanned += nr_soft_scanned;
2498
2499			/*
2500			 * We put equal pressure on every zone, unless
2501			 * one zone has way too many pages free
2502			 * already. The "too many pages" is defined
2503			 * as the high wmark plus a "gap" where the
2504			 * gap is either the low watermark or 1%
2505			 * of the zone, whichever is smaller.
2506			 */
2507			balance_gap = min(low_wmark_pages(zone),
2508				(zone->present_pages +
2509					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2510				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2511			if (!zone_watermark_ok_safe(zone, order,
2512					high_wmark_pages(zone) + balance_gap,
2513					end_zone, 0))
2514				shrink_zone(priority, zone, &sc);
2515			reclaim_state->reclaimed_slab = 0;
2516			nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2517			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2518			total_scanned += sc.nr_scanned;
2519
2520			if (zone->all_unreclaimable)
2521				continue;
2522			if (nr_slab == 0 &&
2523			    !zone_reclaimable(zone))
2524				zone->all_unreclaimable = 1;
2525			/*
2526			 * If we've done a decent amount of scanning and
2527			 * the reclaim ratio is low, start doing writepage
2528			 * even in laptop mode
2529			 */
2530			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2531			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2532				sc.may_writepage = 1;
2533
2534			if (!zone_watermark_ok_safe(zone, order,
2535					high_wmark_pages(zone), end_zone, 0)) {
2536				all_zones_ok = 0;
2537				/*
2538				 * We are still under min water mark.  This
2539				 * means that we have a GFP_ATOMIC allocation
2540				 * failure risk. Hurry up!
2541				 */
2542				if (!zone_watermark_ok_safe(zone, order,
2543					    min_wmark_pages(zone), end_zone, 0))
2544					has_under_min_watermark_zone = 1;
2545			} else {
2546				/*
2547				 * If a zone reaches its high watermark,
2548				 * consider it to be no longer congested. It's
2549				 * possible there are dirty pages backed by
2550				 * congested BDIs but as pressure is relieved,
2551				 * spectulatively avoid congestion waits
2552				 */
2553				zone_clear_flag(zone, ZONE_CONGESTED);
2554				if (i <= *classzone_idx)
2555					balanced += zone->present_pages;
2556			}
2557
2558		}
2559		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2560			break;		/* kswapd: all done */
2561		/*
2562		 * OK, kswapd is getting into trouble.  Take a nap, then take
2563		 * another pass across the zones.
2564		 */
2565		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2566			if (has_under_min_watermark_zone)
2567				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2568			else
2569				congestion_wait(BLK_RW_ASYNC, HZ/10);
2570		}
2571
2572		/*
2573		 * We do this so kswapd doesn't build up large priorities for
2574		 * example when it is freeing in parallel with allocators. It
2575		 * matches the direct reclaim path behaviour in terms of impact
2576		 * on zone->*_priority.
2577		 */
2578		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2579			break;
2580	}
2581out:
2582
2583	/*
2584	 * order-0: All zones must meet high watermark for a balanced node
2585	 * high-order: Balanced zones must make up at least 25% of the node
2586	 *             for the node to be balanced
2587	 */
2588	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2589		cond_resched();
2590
2591		try_to_freeze();
2592
2593		/*
2594		 * Fragmentation may mean that the system cannot be
2595		 * rebalanced for high-order allocations in all zones.
2596		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2597		 * it means the zones have been fully scanned and are still
2598		 * not balanced. For high-order allocations, there is
2599		 * little point trying all over again as kswapd may
2600		 * infinite loop.
2601		 *
2602		 * Instead, recheck all watermarks at order-0 as they
2603		 * are the most important. If watermarks are ok, kswapd will go
2604		 * back to sleep. High-order users can still perform direct
2605		 * reclaim if they wish.
2606		 */
2607		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2608			order = sc.order = 0;
2609
2610		goto loop_again;
2611	}
2612
2613	/*
2614	 * If kswapd was reclaiming at a higher order, it has the option of
2615	 * sleeping without all zones being balanced. Before it does, it must
2616	 * ensure that the watermarks for order-0 on *all* zones are met and
2617	 * that the congestion flags are cleared. The congestion flag must
2618	 * be cleared as kswapd is the only mechanism that clears the flag
2619	 * and it is potentially going to sleep here.
2620	 */
2621	if (order) {
2622		for (i = 0; i <= end_zone; i++) {
2623			struct zone *zone = pgdat->node_zones + i;
2624
2625			if (!populated_zone(zone))
2626				continue;
2627
2628			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2629				continue;
2630
2631			/* Confirm the zone is balanced for order-0 */
2632			if (!zone_watermark_ok(zone, 0,
2633					high_wmark_pages(zone), 0, 0)) {
2634				order = sc.order = 0;
2635				goto loop_again;
2636			}
2637
2638			/* If balanced, clear the congested flag */
2639			zone_clear_flag(zone, ZONE_CONGESTED);
2640		}
2641	}
2642
2643	/*
2644	 * Return the order we were reclaiming at so sleeping_prematurely()
2645	 * makes a decision on the order we were last reclaiming at. However,
2646	 * if another caller entered the allocator slow path while kswapd
2647	 * was awake, order will remain at the higher level
2648	 */
2649	*classzone_idx = end_zone;
2650	return order;
2651}
2652
2653static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2654{
2655	long remaining = 0;
2656	DEFINE_WAIT(wait);
2657
2658	if (freezing(current) || kthread_should_stop())
2659		return;
2660
2661	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2662
2663	/* Try to sleep for a short interval */
2664	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2665		remaining = schedule_timeout(HZ/10);
2666		finish_wait(&pgdat->kswapd_wait, &wait);
2667		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2668	}
2669
2670	/*
2671	 * After a short sleep, check if it was a premature sleep. If not, then
2672	 * go fully to sleep until explicitly woken up.
2673	 */
2674	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2675		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2676
2677		/*
2678		 * vmstat counters are not perfectly accurate and the estimated
2679		 * value for counters such as NR_FREE_PAGES can deviate from the
2680		 * true value by nr_online_cpus * threshold. To avoid the zone
2681		 * watermarks being breached while under pressure, we reduce the
2682		 * per-cpu vmstat threshold while kswapd is awake and restore
2683		 * them before going back to sleep.
2684		 */
2685		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2686		schedule();
2687		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2688	} else {
2689		if (remaining)
2690			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2691		else
2692			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2693	}
2694	finish_wait(&pgdat->kswapd_wait, &wait);
2695}
2696
2697/*
2698 * The background pageout daemon, started as a kernel thread
2699 * from the init process.
2700 *
2701 * This basically trickles out pages so that we have _some_
2702 * free memory available even if there is no other activity
2703 * that frees anything up. This is needed for things like routing
2704 * etc, where we otherwise might have all activity going on in
2705 * asynchronous contexts that cannot page things out.
2706 *
2707 * If there are applications that are active memory-allocators
2708 * (most normal use), this basically shouldn't matter.
2709 */
2710static int kswapd(void *p)
2711{
2712	unsigned long order;
2713	int classzone_idx;
2714	pg_data_t *pgdat = (pg_data_t*)p;
2715	struct task_struct *tsk = current;
2716
2717	struct reclaim_state reclaim_state = {
2718		.reclaimed_slab = 0,
2719	};
2720	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2721
2722	lockdep_set_current_reclaim_state(GFP_KERNEL);
2723
2724	if (!cpumask_empty(cpumask))
2725		set_cpus_allowed_ptr(tsk, cpumask);
2726	current->reclaim_state = &reclaim_state;
2727
2728	/*
2729	 * Tell the memory management that we're a "memory allocator",
2730	 * and that if we need more memory we should get access to it
2731	 * regardless (see "__alloc_pages()"). "kswapd" should
2732	 * never get caught in the normal page freeing logic.
2733	 *
2734	 * (Kswapd normally doesn't need memory anyway, but sometimes
2735	 * you need a small amount of memory in order to be able to
2736	 * page out something else, and this flag essentially protects
2737	 * us from recursively trying to free more memory as we're
2738	 * trying to free the first piece of memory in the first place).
2739	 */
2740	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2741	set_freezable();
2742
2743	order = 0;
2744	classzone_idx = MAX_NR_ZONES - 1;
2745	for ( ; ; ) {
2746		unsigned long new_order;
2747		int new_classzone_idx;
2748		int ret;
2749
2750		new_order = pgdat->kswapd_max_order;
2751		new_classzone_idx = pgdat->classzone_idx;
2752		pgdat->kswapd_max_order = 0;
2753		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2754		if (order < new_order || classzone_idx > new_classzone_idx) {
2755			/*
2756			 * Don't sleep if someone wants a larger 'order'
2757			 * allocation or has tigher zone constraints
2758			 */
2759			order = new_order;
2760			classzone_idx = new_classzone_idx;
2761		} else {
2762			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2763			order = pgdat->kswapd_max_order;
2764			classzone_idx = pgdat->classzone_idx;
2765			pgdat->kswapd_max_order = 0;
2766			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2767		}
2768
2769		ret = try_to_freeze();
2770		if (kthread_should_stop())
2771			break;
2772
2773		/*
2774		 * We can speed up thawing tasks if we don't call balance_pgdat
2775		 * after returning from the refrigerator
2776		 */
2777		if (!ret) {
2778			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2779			order = balance_pgdat(pgdat, order, &classzone_idx);
2780		}
2781	}
2782	return 0;
2783}
2784
2785/*
2786 * A zone is low on free memory, so wake its kswapd task to service it.
2787 */
2788void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2789{
2790	pg_data_t *pgdat;
2791
2792	if (!populated_zone(zone))
2793		return;
2794
2795	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2796		return;
2797	pgdat = zone->zone_pgdat;
2798	if (pgdat->kswapd_max_order < order) {
2799		pgdat->kswapd_max_order = order;
2800		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2801	}
2802	if (!waitqueue_active(&pgdat->kswapd_wait))
2803		return;
2804	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2805		return;
2806
2807	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2808	wake_up_interruptible(&pgdat->kswapd_wait);
2809}
2810
2811/*
2812 * The reclaimable count would be mostly accurate.
2813 * The less reclaimable pages may be
2814 * - mlocked pages, which will be moved to unevictable list when encountered
2815 * - mapped pages, which may require several travels to be reclaimed
2816 * - dirty pages, which is not "instantly" reclaimable
2817 */
2818unsigned long global_reclaimable_pages(void)
2819{
2820	int nr;
2821
2822	nr = global_page_state(NR_ACTIVE_FILE) +
2823	     global_page_state(NR_INACTIVE_FILE);
2824
2825	if (nr_swap_pages > 0)
2826		nr += global_page_state(NR_ACTIVE_ANON) +
2827		      global_page_state(NR_INACTIVE_ANON);
2828
2829	return nr;
2830}
2831
2832unsigned long zone_reclaimable_pages(struct zone *zone)
2833{
2834	int nr;
2835
2836	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2837	     zone_page_state(zone, NR_INACTIVE_FILE);
2838
2839	if (nr_swap_pages > 0)
2840		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2841		      zone_page_state(zone, NR_INACTIVE_ANON);
2842
2843	return nr;
2844}
2845
2846#ifdef CONFIG_HIBERNATION
2847/*
2848 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2849 * freed pages.
2850 *
2851 * Rather than trying to age LRUs the aim is to preserve the overall
2852 * LRU order by reclaiming preferentially
2853 * inactive > active > active referenced > active mapped
2854 */
2855unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2856{
2857	struct reclaim_state reclaim_state;
2858	struct scan_control sc = {
2859		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2860		.may_swap = 1,
2861		.may_unmap = 1,
2862		.may_writepage = 1,
2863		.nr_to_reclaim = nr_to_reclaim,
2864		.hibernation_mode = 1,
2865		.swappiness = vm_swappiness,
2866		.order = 0,
2867	};
2868	struct shrink_control shrink = {
2869		.gfp_mask = sc.gfp_mask,
2870	};
2871	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2872	struct task_struct *p = current;
2873	unsigned long nr_reclaimed;
2874
2875	p->flags |= PF_MEMALLOC;
2876	lockdep_set_current_reclaim_state(sc.gfp_mask);
2877	reclaim_state.reclaimed_slab = 0;
2878	p->reclaim_state = &reclaim_state;
2879
2880	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2881
2882	p->reclaim_state = NULL;
2883	lockdep_clear_current_reclaim_state();
2884	p->flags &= ~PF_MEMALLOC;
2885
2886	return nr_reclaimed;
2887}
2888#endif /* CONFIG_HIBERNATION */
2889
2890/* It's optimal to keep kswapds on the same CPUs as their memory, but
2891   not required for correctness.  So if the last cpu in a node goes
2892   away, we get changed to run anywhere: as the first one comes back,
2893   restore their cpu bindings. */
2894static int __devinit cpu_callback(struct notifier_block *nfb,
2895				  unsigned long action, void *hcpu)
2896{
2897	int nid;
2898
2899	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2900		for_each_node_state(nid, N_HIGH_MEMORY) {
2901			pg_data_t *pgdat = NODE_DATA(nid);
2902			const struct cpumask *mask;
2903
2904			mask = cpumask_of_node(pgdat->node_id);
2905
2906			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2907				/* One of our CPUs online: restore mask */
2908				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2909		}
2910	}
2911	return NOTIFY_OK;
2912}
2913
2914/*
2915 * This kswapd start function will be called by init and node-hot-add.
2916 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2917 */
2918int kswapd_run(int nid)
2919{
2920	pg_data_t *pgdat = NODE_DATA(nid);
2921	int ret = 0;
2922
2923	if (pgdat->kswapd)
2924		return 0;
2925
2926	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2927	if (IS_ERR(pgdat->kswapd)) {
2928		/* failure at boot is fatal */
2929		BUG_ON(system_state == SYSTEM_BOOTING);
2930		printk("Failed to start kswapd on node %d\n",nid);
2931		ret = -1;
2932	}
2933	return ret;
2934}
2935
2936/*
2937 * Called by memory hotplug when all memory in a node is offlined.
2938 */
2939void kswapd_stop(int nid)
2940{
2941	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2942
2943	if (kswapd)
2944		kthread_stop(kswapd);
2945}
2946
2947static int __init kswapd_init(void)
2948{
2949	int nid;
2950
2951	swap_setup();
2952	for_each_node_state(nid, N_HIGH_MEMORY)
2953 		kswapd_run(nid);
2954	hotcpu_notifier(cpu_callback, 0);
2955	return 0;
2956}
2957
2958module_init(kswapd_init)
2959
2960#ifdef CONFIG_NUMA
2961/*
2962 * Zone reclaim mode
2963 *
2964 * If non-zero call zone_reclaim when the number of free pages falls below
2965 * the watermarks.
2966 */
2967int zone_reclaim_mode __read_mostly;
2968
2969#define RECLAIM_OFF 0
2970#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2971#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2972#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2973
2974/*
2975 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2976 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2977 * a zone.
2978 */
2979#define ZONE_RECLAIM_PRIORITY 4
2980
2981/*
2982 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2983 * occur.
2984 */
2985int sysctl_min_unmapped_ratio = 1;
2986
2987/*
2988 * If the number of slab pages in a zone grows beyond this percentage then
2989 * slab reclaim needs to occur.
2990 */
2991int sysctl_min_slab_ratio = 5;
2992
2993static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2994{
2995	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2996	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2997		zone_page_state(zone, NR_ACTIVE_FILE);
2998
2999	/*
3000	 * It's possible for there to be more file mapped pages than
3001	 * accounted for by the pages on the file LRU lists because
3002	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3003	 */
3004	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3005}
3006
3007/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3008static long zone_pagecache_reclaimable(struct zone *zone)
3009{
3010	long nr_pagecache_reclaimable;
3011	long delta = 0;
3012
3013	/*
3014	 * If RECLAIM_SWAP is set, then all file pages are considered
3015	 * potentially reclaimable. Otherwise, we have to worry about
3016	 * pages like swapcache and zone_unmapped_file_pages() provides
3017	 * a better estimate
3018	 */
3019	if (zone_reclaim_mode & RECLAIM_SWAP)
3020		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3021	else
3022		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3023
3024	/* If we can't clean pages, remove dirty pages from consideration */
3025	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3026		delta += zone_page_state(zone, NR_FILE_DIRTY);
3027
3028	/* Watch for any possible underflows due to delta */
3029	if (unlikely(delta > nr_pagecache_reclaimable))
3030		delta = nr_pagecache_reclaimable;
3031
3032	return nr_pagecache_reclaimable - delta;
3033}
3034
3035/*
3036 * Try to free up some pages from this zone through reclaim.
3037 */
3038static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3039{
3040	/* Minimum pages needed in order to stay on node */
3041	const unsigned long nr_pages = 1 << order;
3042	struct task_struct *p = current;
3043	struct reclaim_state reclaim_state;
3044	int priority;
3045	struct scan_control sc = {
3046		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3047		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3048		.may_swap = 1,
3049		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3050				       SWAP_CLUSTER_MAX),
3051		.gfp_mask = gfp_mask,
3052		.swappiness = vm_swappiness,
3053		.order = order,
3054	};
3055	struct shrink_control shrink = {
3056		.gfp_mask = sc.gfp_mask,
3057	};
3058	unsigned long nr_slab_pages0, nr_slab_pages1;
3059
3060	cond_resched();
3061	/*
3062	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3063	 * and we also need to be able to write out pages for RECLAIM_WRITE
3064	 * and RECLAIM_SWAP.
3065	 */
3066	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3067	lockdep_set_current_reclaim_state(gfp_mask);
3068	reclaim_state.reclaimed_slab = 0;
3069	p->reclaim_state = &reclaim_state;
3070
3071	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3072		/*
3073		 * Free memory by calling shrink zone with increasing
3074		 * priorities until we have enough memory freed.
3075		 */
3076		priority = ZONE_RECLAIM_PRIORITY;
3077		do {
3078			shrink_zone(priority, zone, &sc);
3079			priority--;
3080		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3081	}
3082
3083	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3084	if (nr_slab_pages0 > zone->min_slab_pages) {
3085		/*
3086		 * shrink_slab() does not currently allow us to determine how
3087		 * many pages were freed in this zone. So we take the current
3088		 * number of slab pages and shake the slab until it is reduced
3089		 * by the same nr_pages that we used for reclaiming unmapped
3090		 * pages.
3091		 *
3092		 * Note that shrink_slab will free memory on all zones and may
3093		 * take a long time.
3094		 */
3095		for (;;) {
3096			unsigned long lru_pages = zone_reclaimable_pages(zone);
3097
3098			/* No reclaimable slab or very low memory pressure */
3099			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3100				break;
3101
3102			/* Freed enough memory */
3103			nr_slab_pages1 = zone_page_state(zone,
3104							NR_SLAB_RECLAIMABLE);
3105			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3106				break;
3107		}
3108
3109		/*
3110		 * Update nr_reclaimed by the number of slab pages we
3111		 * reclaimed from this zone.
3112		 */
3113		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3114		if (nr_slab_pages1 < nr_slab_pages0)
3115			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3116	}
3117
3118	p->reclaim_state = NULL;
3119	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3120	lockdep_clear_current_reclaim_state();
3121	return sc.nr_reclaimed >= nr_pages;
3122}
3123
3124int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3125{
3126	int node_id;
3127	int ret;
3128
3129	/*
3130	 * Zone reclaim reclaims unmapped file backed pages and
3131	 * slab pages if we are over the defined limits.
3132	 *
3133	 * A small portion of unmapped file backed pages is needed for
3134	 * file I/O otherwise pages read by file I/O will be immediately
3135	 * thrown out if the zone is overallocated. So we do not reclaim
3136	 * if less than a specified percentage of the zone is used by
3137	 * unmapped file backed pages.
3138	 */
3139	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3140	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3141		return ZONE_RECLAIM_FULL;
3142
3143	if (zone->all_unreclaimable)
3144		return ZONE_RECLAIM_FULL;
3145
3146	/*
3147	 * Do not scan if the allocation should not be delayed.
3148	 */
3149	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3150		return ZONE_RECLAIM_NOSCAN;
3151
3152	/*
3153	 * Only run zone reclaim on the local zone or on zones that do not
3154	 * have associated processors. This will favor the local processor
3155	 * over remote processors and spread off node memory allocations
3156	 * as wide as possible.
3157	 */
3158	node_id = zone_to_nid(zone);
3159	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3160		return ZONE_RECLAIM_NOSCAN;
3161
3162	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3163		return ZONE_RECLAIM_NOSCAN;
3164
3165	ret = __zone_reclaim(zone, gfp_mask, order);
3166	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3167
3168	if (!ret)
3169		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3170
3171	return ret;
3172}
3173#endif
3174
3175/*
3176 * page_evictable - test whether a page is evictable
3177 * @page: the page to test
3178 * @vma: the VMA in which the page is or will be mapped, may be NULL
3179 *
3180 * Test whether page is evictable--i.e., should be placed on active/inactive
3181 * lists vs unevictable list.  The vma argument is !NULL when called from the
3182 * fault path to determine how to instantate a new page.
3183 *
3184 * Reasons page might not be evictable:
3185 * (1) page's mapping marked unevictable
3186 * (2) page is part of an mlocked VMA
3187 *
3188 */
3189int page_evictable(struct page *page, struct vm_area_struct *vma)
3190{
3191
3192	if (mapping_unevictable(page_mapping(page)))
3193		return 0;
3194
3195	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3196		return 0;
3197
3198	return 1;
3199}
3200
3201/**
3202 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3203 * @page: page to check evictability and move to appropriate lru list
3204 * @zone: zone page is in
3205 *
3206 * Checks a page for evictability and moves the page to the appropriate
3207 * zone lru list.
3208 *
3209 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3210 * have PageUnevictable set.
3211 */
3212static void check_move_unevictable_page(struct page *page, struct zone *zone)
3213{
3214	VM_BUG_ON(PageActive(page));
3215
3216retry:
3217	ClearPageUnevictable(page);
3218	if (page_evictable(page, NULL)) {
3219		enum lru_list l = page_lru_base_type(page);
3220
3221		__dec_zone_state(zone, NR_UNEVICTABLE);
3222		list_move(&page->lru, &zone->lru[l].list);
3223		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3224		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3225		__count_vm_event(UNEVICTABLE_PGRESCUED);
3226	} else {
3227		/*
3228		 * rotate unevictable list
3229		 */
3230		SetPageUnevictable(page);
3231		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3232		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3233		if (page_evictable(page, NULL))
3234			goto retry;
3235	}
3236}
3237
3238/**
3239 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3240 * @mapping: struct address_space to scan for evictable pages
3241 *
3242 * Scan all pages in mapping.  Check unevictable pages for
3243 * evictability and move them to the appropriate zone lru list.
3244 */
3245void scan_mapping_unevictable_pages(struct address_space *mapping)
3246{
3247	pgoff_t next = 0;
3248	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3249			 PAGE_CACHE_SHIFT;
3250	struct zone *zone;
3251	struct pagevec pvec;
3252
3253	if (mapping->nrpages == 0)
3254		return;
3255
3256	pagevec_init(&pvec, 0);
3257	while (next < end &&
3258		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3259		int i;
3260		int pg_scanned = 0;
3261
3262		zone = NULL;
3263
3264		for (i = 0; i < pagevec_count(&pvec); i++) {
3265			struct page *page = pvec.pages[i];
3266			pgoff_t page_index = page->index;
3267			struct zone *pagezone = page_zone(page);
3268
3269			pg_scanned++;
3270			if (page_index > next)
3271				next = page_index;
3272			next++;
3273
3274			if (pagezone != zone) {
3275				if (zone)
3276					spin_unlock_irq(&zone->lru_lock);
3277				zone = pagezone;
3278				spin_lock_irq(&zone->lru_lock);
3279			}
3280
3281			if (PageLRU(page) && PageUnevictable(page))
3282				check_move_unevictable_page(page, zone);
3283		}
3284		if (zone)
3285			spin_unlock_irq(&zone->lru_lock);
3286		pagevec_release(&pvec);
3287
3288		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3289	}
3290
3291}
3292
3293/**
3294 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3295 * @zone - zone of which to scan the unevictable list
3296 *
3297 * Scan @zone's unevictable LRU lists to check for pages that have become
3298 * evictable.  Move those that have to @zone's inactive list where they
3299 * become candidates for reclaim, unless shrink_inactive_zone() decides
3300 * to reactivate them.  Pages that are still unevictable are rotated
3301 * back onto @zone's unevictable list.
3302 */
3303#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3304static void scan_zone_unevictable_pages(struct zone *zone)
3305{
3306	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3307	unsigned long scan;
3308	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3309
3310	while (nr_to_scan > 0) {
3311		unsigned long batch_size = min(nr_to_scan,
3312						SCAN_UNEVICTABLE_BATCH_SIZE);
3313
3314		spin_lock_irq(&zone->lru_lock);
3315		for (scan = 0;  scan < batch_size; scan++) {
3316			struct page *page = lru_to_page(l_unevictable);
3317
3318			if (!trylock_page(page))
3319				continue;
3320
3321			prefetchw_prev_lru_page(page, l_unevictable, flags);
3322
3323			if (likely(PageLRU(page) && PageUnevictable(page)))
3324				check_move_unevictable_page(page, zone);
3325
3326			unlock_page(page);
3327		}
3328		spin_unlock_irq(&zone->lru_lock);
3329
3330		nr_to_scan -= batch_size;
3331	}
3332}
3333
3334
3335/**
3336 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3337 *
3338 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3339 * pages that have become evictable.  Move those back to the zones'
3340 * inactive list where they become candidates for reclaim.
3341 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3342 * and we add swap to the system.  As such, it runs in the context of a task
3343 * that has possibly/probably made some previously unevictable pages
3344 * evictable.
3345 */
3346static void scan_all_zones_unevictable_pages(void)
3347{
3348	struct zone *zone;
3349
3350	for_each_zone(zone) {
3351		scan_zone_unevictable_pages(zone);
3352	}
3353}
3354
3355/*
3356 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3357 * all nodes' unevictable lists for evictable pages
3358 */
3359unsigned long scan_unevictable_pages;
3360
3361int scan_unevictable_handler(struct ctl_table *table, int write,
3362			   void __user *buffer,
3363			   size_t *length, loff_t *ppos)
3364{
3365	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3366
3367	if (write && *(unsigned long *)table->data)
3368		scan_all_zones_unevictable_pages();
3369
3370	scan_unevictable_pages = 0;
3371	return 0;
3372}
3373
3374#ifdef CONFIG_NUMA
3375/*
3376 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3377 * a specified node's per zone unevictable lists for evictable pages.
3378 */
3379
3380static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3381					  struct sysdev_attribute *attr,
3382					  char *buf)
3383{
3384	return sprintf(buf, "0\n");	/* always zero; should fit... */
3385}
3386
3387static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3388					   struct sysdev_attribute *attr,
3389					const char *buf, size_t count)
3390{
3391	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3392	struct zone *zone;
3393	unsigned long res;
3394	unsigned long req = strict_strtoul(buf, 10, &res);
3395
3396	if (!req)
3397		return 1;	/* zero is no-op */
3398
3399	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3400		if (!populated_zone(zone))
3401			continue;
3402		scan_zone_unevictable_pages(zone);
3403	}
3404	return 1;
3405}
3406
3407
3408static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3409			read_scan_unevictable_node,
3410			write_scan_unevictable_node);
3411
3412int scan_unevictable_register_node(struct node *node)
3413{
3414	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3415}
3416
3417void scan_unevictable_unregister_node(struct node *node)
3418{
3419	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3420}
3421#endif
3422