vmscan.c revision 0abdee2bd4118366c62349a304f81537be69af33
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47
48#include <linux/swapops.h>
49
50#include "internal.h"
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/vmscan.h>
54
55/*
56 * reclaim_mode determines how the inactive list is shrunk
57 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
58 * RECLAIM_MODE_ASYNC:  Do not block
59 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
60 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
61 *			page from the LRU and reclaim all pages within a
62 *			naturally aligned range
63 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
64 *			order-0 pages and then compact the zone
65 */
66typedef unsigned __bitwise__ reclaim_mode_t;
67#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
68#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
69#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
70#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
71#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
72
73struct scan_control {
74	/* Incremented by the number of inactive pages that were scanned */
75	unsigned long nr_scanned;
76
77	/* Number of pages freed so far during a call to shrink_zones() */
78	unsigned long nr_reclaimed;
79
80	/* How many pages shrink_list() should reclaim */
81	unsigned long nr_to_reclaim;
82
83	unsigned long hibernation_mode;
84
85	/* This context's GFP mask */
86	gfp_t gfp_mask;
87
88	int may_writepage;
89
90	/* Can mapped pages be reclaimed? */
91	int may_unmap;
92
93	/* Can pages be swapped as part of reclaim? */
94	int may_swap;
95
96	int swappiness;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/* Which cgroup do we reclaim from */
107	struct mem_cgroup *mem_cgroup;
108
109	/*
110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111	 * are scanned.
112	 */
113	nodemask_t	*nodemask;
114};
115
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field)			\
120	do {								\
121		if ((_page)->lru.prev != _base) {			\
122			struct page *prev;				\
123									\
124			prev = lru_to_page(&(_page->lru));		\
125			prefetch(&prev->_field);			\
126		}							\
127	} while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field)			\
134	do {								\
135		if ((_page)->lru.prev != _base) {			\
136			struct page *prev;				\
137									\
138			prev = lru_to_page(&(_page->lru));		\
139			prefetchw(&prev->_field);			\
140		}							\
141	} while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100.  Higher means more swappy.
148 */
149int vm_swappiness = 60;
150long vm_total_pages;	/* The total number of pages which the VM controls */
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157#else
158#define scanning_global_lru(sc)	(1)
159#endif
160
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162						  struct scan_control *sc)
163{
164	if (!scanning_global_lru(sc))
165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167	return &zone->reclaim_stat;
168}
169
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171				struct scan_control *sc, enum lru_list lru)
172{
173	if (!scanning_global_lru(sc))
174		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
175
176	return zone_page_state(zone, NR_LRU_BASE + lru);
177}
178
179
180/*
181 * Add a shrinker callback to be called from the vm
182 */
183void register_shrinker(struct shrinker *shrinker)
184{
185	shrinker->nr = 0;
186	down_write(&shrinker_rwsem);
187	list_add_tail(&shrinker->list, &shrinker_list);
188	up_write(&shrinker_rwsem);
189}
190EXPORT_SYMBOL(register_shrinker);
191
192/*
193 * Remove one
194 */
195void unregister_shrinker(struct shrinker *shrinker)
196{
197	down_write(&shrinker_rwsem);
198	list_del(&shrinker->list);
199	up_write(&shrinker_rwsem);
200}
201EXPORT_SYMBOL(unregister_shrinker);
202
203#define SHRINK_BATCH 128
204/*
205 * Call the shrink functions to age shrinkable caches
206 *
207 * Here we assume it costs one seek to replace a lru page and that it also
208 * takes a seek to recreate a cache object.  With this in mind we age equal
209 * percentages of the lru and ageable caches.  This should balance the seeks
210 * generated by these structures.
211 *
212 * If the vm encountered mapped pages on the LRU it increase the pressure on
213 * slab to avoid swapping.
214 *
215 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
216 *
217 * `lru_pages' represents the number of on-LRU pages in all the zones which
218 * are eligible for the caller's allocation attempt.  It is used for balancing
219 * slab reclaim versus page reclaim.
220 *
221 * Returns the number of slab objects which we shrunk.
222 */
223unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
224			unsigned long lru_pages)
225{
226	struct shrinker *shrinker;
227	unsigned long ret = 0;
228
229	if (scanned == 0)
230		scanned = SWAP_CLUSTER_MAX;
231
232	if (!down_read_trylock(&shrinker_rwsem))
233		return 1;	/* Assume we'll be able to shrink next time */
234
235	list_for_each_entry(shrinker, &shrinker_list, list) {
236		unsigned long long delta;
237		unsigned long total_scan;
238		unsigned long max_pass;
239
240		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
241		delta = (4 * scanned) / shrinker->seeks;
242		delta *= max_pass;
243		do_div(delta, lru_pages + 1);
244		shrinker->nr += delta;
245		if (shrinker->nr < 0) {
246			printk(KERN_ERR "shrink_slab: %pF negative objects to "
247			       "delete nr=%ld\n",
248			       shrinker->shrink, shrinker->nr);
249			shrinker->nr = max_pass;
250		}
251
252		/*
253		 * Avoid risking looping forever due to too large nr value:
254		 * never try to free more than twice the estimate number of
255		 * freeable entries.
256		 */
257		if (shrinker->nr > max_pass * 2)
258			shrinker->nr = max_pass * 2;
259
260		total_scan = shrinker->nr;
261		shrinker->nr = 0;
262
263		while (total_scan >= SHRINK_BATCH) {
264			long this_scan = SHRINK_BATCH;
265			int shrink_ret;
266			int nr_before;
267
268			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
269			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
270								gfp_mask);
271			if (shrink_ret == -1)
272				break;
273			if (shrink_ret < nr_before)
274				ret += nr_before - shrink_ret;
275			count_vm_events(SLABS_SCANNED, this_scan);
276			total_scan -= this_scan;
277
278			cond_resched();
279		}
280
281		shrinker->nr += total_scan;
282	}
283	up_read(&shrinker_rwsem);
284	return ret;
285}
286
287static void set_reclaim_mode(int priority, struct scan_control *sc,
288				   bool sync)
289{
290	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
291
292	/*
293	 * Initially assume we are entering either lumpy reclaim or
294	 * reclaim/compaction.Depending on the order, we will either set the
295	 * sync mode or just reclaim order-0 pages later.
296	 */
297	if (COMPACTION_BUILD)
298		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
299	else
300		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
301
302	/*
303	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
304	 * restricting when its set to either costly allocations or when
305	 * under memory pressure
306	 */
307	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
308		sc->reclaim_mode |= syncmode;
309	else if (sc->order && priority < DEF_PRIORITY - 2)
310		sc->reclaim_mode |= syncmode;
311	else
312		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
313}
314
315static void reset_reclaim_mode(struct scan_control *sc)
316{
317	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
318}
319
320static inline int is_page_cache_freeable(struct page *page)
321{
322	/*
323	 * A freeable page cache page is referenced only by the caller
324	 * that isolated the page, the page cache radix tree and
325	 * optional buffer heads at page->private.
326	 */
327	return page_count(page) - page_has_private(page) == 2;
328}
329
330static int may_write_to_queue(struct backing_dev_info *bdi,
331			      struct scan_control *sc)
332{
333	if (current->flags & PF_SWAPWRITE)
334		return 1;
335	if (!bdi_write_congested(bdi))
336		return 1;
337	if (bdi == current->backing_dev_info)
338		return 1;
339
340	/* lumpy reclaim for hugepage often need a lot of write */
341	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
342		return 1;
343	return 0;
344}
345
346/*
347 * We detected a synchronous write error writing a page out.  Probably
348 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
349 * fsync(), msync() or close().
350 *
351 * The tricky part is that after writepage we cannot touch the mapping: nothing
352 * prevents it from being freed up.  But we have a ref on the page and once
353 * that page is locked, the mapping is pinned.
354 *
355 * We're allowed to run sleeping lock_page() here because we know the caller has
356 * __GFP_FS.
357 */
358static void handle_write_error(struct address_space *mapping,
359				struct page *page, int error)
360{
361	lock_page_nosync(page);
362	if (page_mapping(page) == mapping)
363		mapping_set_error(mapping, error);
364	unlock_page(page);
365}
366
367/* possible outcome of pageout() */
368typedef enum {
369	/* failed to write page out, page is locked */
370	PAGE_KEEP,
371	/* move page to the active list, page is locked */
372	PAGE_ACTIVATE,
373	/* page has been sent to the disk successfully, page is unlocked */
374	PAGE_SUCCESS,
375	/* page is clean and locked */
376	PAGE_CLEAN,
377} pageout_t;
378
379/*
380 * pageout is called by shrink_page_list() for each dirty page.
381 * Calls ->writepage().
382 */
383static pageout_t pageout(struct page *page, struct address_space *mapping,
384			 struct scan_control *sc)
385{
386	/*
387	 * If the page is dirty, only perform writeback if that write
388	 * will be non-blocking.  To prevent this allocation from being
389	 * stalled by pagecache activity.  But note that there may be
390	 * stalls if we need to run get_block().  We could test
391	 * PagePrivate for that.
392	 *
393	 * If this process is currently in __generic_file_aio_write() against
394	 * this page's queue, we can perform writeback even if that
395	 * will block.
396	 *
397	 * If the page is swapcache, write it back even if that would
398	 * block, for some throttling. This happens by accident, because
399	 * swap_backing_dev_info is bust: it doesn't reflect the
400	 * congestion state of the swapdevs.  Easy to fix, if needed.
401	 */
402	if (!is_page_cache_freeable(page))
403		return PAGE_KEEP;
404	if (!mapping) {
405		/*
406		 * Some data journaling orphaned pages can have
407		 * page->mapping == NULL while being dirty with clean buffers.
408		 */
409		if (page_has_private(page)) {
410			if (try_to_free_buffers(page)) {
411				ClearPageDirty(page);
412				printk("%s: orphaned page\n", __func__);
413				return PAGE_CLEAN;
414			}
415		}
416		return PAGE_KEEP;
417	}
418	if (mapping->a_ops->writepage == NULL)
419		return PAGE_ACTIVATE;
420	if (!may_write_to_queue(mapping->backing_dev_info, sc))
421		return PAGE_KEEP;
422
423	if (clear_page_dirty_for_io(page)) {
424		int res;
425		struct writeback_control wbc = {
426			.sync_mode = WB_SYNC_NONE,
427			.nr_to_write = SWAP_CLUSTER_MAX,
428			.range_start = 0,
429			.range_end = LLONG_MAX,
430			.for_reclaim = 1,
431		};
432
433		SetPageReclaim(page);
434		res = mapping->a_ops->writepage(page, &wbc);
435		if (res < 0)
436			handle_write_error(mapping, page, res);
437		if (res == AOP_WRITEPAGE_ACTIVATE) {
438			ClearPageReclaim(page);
439			return PAGE_ACTIVATE;
440		}
441
442		/*
443		 * Wait on writeback if requested to. This happens when
444		 * direct reclaiming a large contiguous area and the
445		 * first attempt to free a range of pages fails.
446		 */
447		if (PageWriteback(page) &&
448		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
449			wait_on_page_writeback(page);
450
451		if (!PageWriteback(page)) {
452			/* synchronous write or broken a_ops? */
453			ClearPageReclaim(page);
454		}
455		trace_mm_vmscan_writepage(page,
456			trace_reclaim_flags(page, sc->reclaim_mode));
457		inc_zone_page_state(page, NR_VMSCAN_WRITE);
458		return PAGE_SUCCESS;
459	}
460
461	return PAGE_CLEAN;
462}
463
464/*
465 * Same as remove_mapping, but if the page is removed from the mapping, it
466 * gets returned with a refcount of 0.
467 */
468static int __remove_mapping(struct address_space *mapping, struct page *page)
469{
470	BUG_ON(!PageLocked(page));
471	BUG_ON(mapping != page_mapping(page));
472
473	spin_lock_irq(&mapping->tree_lock);
474	/*
475	 * The non racy check for a busy page.
476	 *
477	 * Must be careful with the order of the tests. When someone has
478	 * a ref to the page, it may be possible that they dirty it then
479	 * drop the reference. So if PageDirty is tested before page_count
480	 * here, then the following race may occur:
481	 *
482	 * get_user_pages(&page);
483	 * [user mapping goes away]
484	 * write_to(page);
485	 *				!PageDirty(page)    [good]
486	 * SetPageDirty(page);
487	 * put_page(page);
488	 *				!page_count(page)   [good, discard it]
489	 *
490	 * [oops, our write_to data is lost]
491	 *
492	 * Reversing the order of the tests ensures such a situation cannot
493	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
494	 * load is not satisfied before that of page->_count.
495	 *
496	 * Note that if SetPageDirty is always performed via set_page_dirty,
497	 * and thus under tree_lock, then this ordering is not required.
498	 */
499	if (!page_freeze_refs(page, 2))
500		goto cannot_free;
501	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
502	if (unlikely(PageDirty(page))) {
503		page_unfreeze_refs(page, 2);
504		goto cannot_free;
505	}
506
507	if (PageSwapCache(page)) {
508		swp_entry_t swap = { .val = page_private(page) };
509		__delete_from_swap_cache(page);
510		spin_unlock_irq(&mapping->tree_lock);
511		swapcache_free(swap, page);
512	} else {
513		void (*freepage)(struct page *);
514
515		freepage = mapping->a_ops->freepage;
516
517		__remove_from_page_cache(page);
518		spin_unlock_irq(&mapping->tree_lock);
519		mem_cgroup_uncharge_cache_page(page);
520
521		if (freepage != NULL)
522			freepage(page);
523	}
524
525	return 1;
526
527cannot_free:
528	spin_unlock_irq(&mapping->tree_lock);
529	return 0;
530}
531
532/*
533 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
534 * someone else has a ref on the page, abort and return 0.  If it was
535 * successfully detached, return 1.  Assumes the caller has a single ref on
536 * this page.
537 */
538int remove_mapping(struct address_space *mapping, struct page *page)
539{
540	if (__remove_mapping(mapping, page)) {
541		/*
542		 * Unfreezing the refcount with 1 rather than 2 effectively
543		 * drops the pagecache ref for us without requiring another
544		 * atomic operation.
545		 */
546		page_unfreeze_refs(page, 1);
547		return 1;
548	}
549	return 0;
550}
551
552/**
553 * putback_lru_page - put previously isolated page onto appropriate LRU list
554 * @page: page to be put back to appropriate lru list
555 *
556 * Add previously isolated @page to appropriate LRU list.
557 * Page may still be unevictable for other reasons.
558 *
559 * lru_lock must not be held, interrupts must be enabled.
560 */
561void putback_lru_page(struct page *page)
562{
563	int lru;
564	int active = !!TestClearPageActive(page);
565	int was_unevictable = PageUnevictable(page);
566
567	VM_BUG_ON(PageLRU(page));
568
569redo:
570	ClearPageUnevictable(page);
571
572	if (page_evictable(page, NULL)) {
573		/*
574		 * For evictable pages, we can use the cache.
575		 * In event of a race, worst case is we end up with an
576		 * unevictable page on [in]active list.
577		 * We know how to handle that.
578		 */
579		lru = active + page_lru_base_type(page);
580		lru_cache_add_lru(page, lru);
581	} else {
582		/*
583		 * Put unevictable pages directly on zone's unevictable
584		 * list.
585		 */
586		lru = LRU_UNEVICTABLE;
587		add_page_to_unevictable_list(page);
588		/*
589		 * When racing with an mlock clearing (page is
590		 * unlocked), make sure that if the other thread does
591		 * not observe our setting of PG_lru and fails
592		 * isolation, we see PG_mlocked cleared below and move
593		 * the page back to the evictable list.
594		 *
595		 * The other side is TestClearPageMlocked().
596		 */
597		smp_mb();
598	}
599
600	/*
601	 * page's status can change while we move it among lru. If an evictable
602	 * page is on unevictable list, it never be freed. To avoid that,
603	 * check after we added it to the list, again.
604	 */
605	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606		if (!isolate_lru_page(page)) {
607			put_page(page);
608			goto redo;
609		}
610		/* This means someone else dropped this page from LRU
611		 * So, it will be freed or putback to LRU again. There is
612		 * nothing to do here.
613		 */
614	}
615
616	if (was_unevictable && lru != LRU_UNEVICTABLE)
617		count_vm_event(UNEVICTABLE_PGRESCUED);
618	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619		count_vm_event(UNEVICTABLE_PGCULLED);
620
621	put_page(page);		/* drop ref from isolate */
622}
623
624enum page_references {
625	PAGEREF_RECLAIM,
626	PAGEREF_RECLAIM_CLEAN,
627	PAGEREF_KEEP,
628	PAGEREF_ACTIVATE,
629};
630
631static enum page_references page_check_references(struct page *page,
632						  struct scan_control *sc)
633{
634	int referenced_ptes, referenced_page;
635	unsigned long vm_flags;
636
637	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
638	referenced_page = TestClearPageReferenced(page);
639
640	/* Lumpy reclaim - ignore references */
641	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
642		return PAGEREF_RECLAIM;
643
644	/*
645	 * Mlock lost the isolation race with us.  Let try_to_unmap()
646	 * move the page to the unevictable list.
647	 */
648	if (vm_flags & VM_LOCKED)
649		return PAGEREF_RECLAIM;
650
651	if (referenced_ptes) {
652		if (PageAnon(page))
653			return PAGEREF_ACTIVATE;
654		/*
655		 * All mapped pages start out with page table
656		 * references from the instantiating fault, so we need
657		 * to look twice if a mapped file page is used more
658		 * than once.
659		 *
660		 * Mark it and spare it for another trip around the
661		 * inactive list.  Another page table reference will
662		 * lead to its activation.
663		 *
664		 * Note: the mark is set for activated pages as well
665		 * so that recently deactivated but used pages are
666		 * quickly recovered.
667		 */
668		SetPageReferenced(page);
669
670		if (referenced_page)
671			return PAGEREF_ACTIVATE;
672
673		return PAGEREF_KEEP;
674	}
675
676	/* Reclaim if clean, defer dirty pages to writeback */
677	if (referenced_page && !PageSwapBacked(page))
678		return PAGEREF_RECLAIM_CLEAN;
679
680	return PAGEREF_RECLAIM;
681}
682
683static noinline_for_stack void free_page_list(struct list_head *free_pages)
684{
685	struct pagevec freed_pvec;
686	struct page *page, *tmp;
687
688	pagevec_init(&freed_pvec, 1);
689
690	list_for_each_entry_safe(page, tmp, free_pages, lru) {
691		list_del(&page->lru);
692		if (!pagevec_add(&freed_pvec, page)) {
693			__pagevec_free(&freed_pvec);
694			pagevec_reinit(&freed_pvec);
695		}
696	}
697
698	pagevec_free(&freed_pvec);
699}
700
701/*
702 * shrink_page_list() returns the number of reclaimed pages
703 */
704static unsigned long shrink_page_list(struct list_head *page_list,
705				      struct zone *zone,
706				      struct scan_control *sc)
707{
708	LIST_HEAD(ret_pages);
709	LIST_HEAD(free_pages);
710	int pgactivate = 0;
711	unsigned long nr_dirty = 0;
712	unsigned long nr_congested = 0;
713	unsigned long nr_reclaimed = 0;
714
715	cond_resched();
716
717	while (!list_empty(page_list)) {
718		enum page_references references;
719		struct address_space *mapping;
720		struct page *page;
721		int may_enter_fs;
722
723		cond_resched();
724
725		page = lru_to_page(page_list);
726		list_del(&page->lru);
727
728		if (!trylock_page(page))
729			goto keep;
730
731		VM_BUG_ON(PageActive(page));
732		VM_BUG_ON(page_zone(page) != zone);
733
734		sc->nr_scanned++;
735
736		if (unlikely(!page_evictable(page, NULL)))
737			goto cull_mlocked;
738
739		if (!sc->may_unmap && page_mapped(page))
740			goto keep_locked;
741
742		/* Double the slab pressure for mapped and swapcache pages */
743		if (page_mapped(page) || PageSwapCache(page))
744			sc->nr_scanned++;
745
746		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
747			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
748
749		if (PageWriteback(page)) {
750			/*
751			 * Synchronous reclaim is performed in two passes,
752			 * first an asynchronous pass over the list to
753			 * start parallel writeback, and a second synchronous
754			 * pass to wait for the IO to complete.  Wait here
755			 * for any page for which writeback has already
756			 * started.
757			 */
758			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
759			    may_enter_fs)
760				wait_on_page_writeback(page);
761			else {
762				unlock_page(page);
763				goto keep_lumpy;
764			}
765		}
766
767		references = page_check_references(page, sc);
768		switch (references) {
769		case PAGEREF_ACTIVATE:
770			goto activate_locked;
771		case PAGEREF_KEEP:
772			goto keep_locked;
773		case PAGEREF_RECLAIM:
774		case PAGEREF_RECLAIM_CLEAN:
775			; /* try to reclaim the page below */
776		}
777
778		/*
779		 * Anonymous process memory has backing store?
780		 * Try to allocate it some swap space here.
781		 */
782		if (PageAnon(page) && !PageSwapCache(page)) {
783			if (!(sc->gfp_mask & __GFP_IO))
784				goto keep_locked;
785			if (!add_to_swap(page))
786				goto activate_locked;
787			may_enter_fs = 1;
788		}
789
790		mapping = page_mapping(page);
791
792		/*
793		 * The page is mapped into the page tables of one or more
794		 * processes. Try to unmap it here.
795		 */
796		if (page_mapped(page) && mapping) {
797			switch (try_to_unmap(page, TTU_UNMAP)) {
798			case SWAP_FAIL:
799				goto activate_locked;
800			case SWAP_AGAIN:
801				goto keep_locked;
802			case SWAP_MLOCK:
803				goto cull_mlocked;
804			case SWAP_SUCCESS:
805				; /* try to free the page below */
806			}
807		}
808
809		if (PageDirty(page)) {
810			nr_dirty++;
811
812			if (references == PAGEREF_RECLAIM_CLEAN)
813				goto keep_locked;
814			if (!may_enter_fs)
815				goto keep_locked;
816			if (!sc->may_writepage)
817				goto keep_locked;
818
819			/* Page is dirty, try to write it out here */
820			switch (pageout(page, mapping, sc)) {
821			case PAGE_KEEP:
822				nr_congested++;
823				goto keep_locked;
824			case PAGE_ACTIVATE:
825				goto activate_locked;
826			case PAGE_SUCCESS:
827				if (PageWriteback(page))
828					goto keep_lumpy;
829				if (PageDirty(page))
830					goto keep;
831
832				/*
833				 * A synchronous write - probably a ramdisk.  Go
834				 * ahead and try to reclaim the page.
835				 */
836				if (!trylock_page(page))
837					goto keep;
838				if (PageDirty(page) || PageWriteback(page))
839					goto keep_locked;
840				mapping = page_mapping(page);
841			case PAGE_CLEAN:
842				; /* try to free the page below */
843			}
844		}
845
846		/*
847		 * If the page has buffers, try to free the buffer mappings
848		 * associated with this page. If we succeed we try to free
849		 * the page as well.
850		 *
851		 * We do this even if the page is PageDirty().
852		 * try_to_release_page() does not perform I/O, but it is
853		 * possible for a page to have PageDirty set, but it is actually
854		 * clean (all its buffers are clean).  This happens if the
855		 * buffers were written out directly, with submit_bh(). ext3
856		 * will do this, as well as the blockdev mapping.
857		 * try_to_release_page() will discover that cleanness and will
858		 * drop the buffers and mark the page clean - it can be freed.
859		 *
860		 * Rarely, pages can have buffers and no ->mapping.  These are
861		 * the pages which were not successfully invalidated in
862		 * truncate_complete_page().  We try to drop those buffers here
863		 * and if that worked, and the page is no longer mapped into
864		 * process address space (page_count == 1) it can be freed.
865		 * Otherwise, leave the page on the LRU so it is swappable.
866		 */
867		if (page_has_private(page)) {
868			if (!try_to_release_page(page, sc->gfp_mask))
869				goto activate_locked;
870			if (!mapping && page_count(page) == 1) {
871				unlock_page(page);
872				if (put_page_testzero(page))
873					goto free_it;
874				else {
875					/*
876					 * rare race with speculative reference.
877					 * the speculative reference will free
878					 * this page shortly, so we may
879					 * increment nr_reclaimed here (and
880					 * leave it off the LRU).
881					 */
882					nr_reclaimed++;
883					continue;
884				}
885			}
886		}
887
888		if (!mapping || !__remove_mapping(mapping, page))
889			goto keep_locked;
890
891		/*
892		 * At this point, we have no other references and there is
893		 * no way to pick any more up (removed from LRU, removed
894		 * from pagecache). Can use non-atomic bitops now (and
895		 * we obviously don't have to worry about waking up a process
896		 * waiting on the page lock, because there are no references.
897		 */
898		__clear_page_locked(page);
899free_it:
900		nr_reclaimed++;
901
902		/*
903		 * Is there need to periodically free_page_list? It would
904		 * appear not as the counts should be low
905		 */
906		list_add(&page->lru, &free_pages);
907		continue;
908
909cull_mlocked:
910		if (PageSwapCache(page))
911			try_to_free_swap(page);
912		unlock_page(page);
913		putback_lru_page(page);
914		reset_reclaim_mode(sc);
915		continue;
916
917activate_locked:
918		/* Not a candidate for swapping, so reclaim swap space. */
919		if (PageSwapCache(page) && vm_swap_full())
920			try_to_free_swap(page);
921		VM_BUG_ON(PageActive(page));
922		SetPageActive(page);
923		pgactivate++;
924keep_locked:
925		unlock_page(page);
926keep:
927		reset_reclaim_mode(sc);
928keep_lumpy:
929		list_add(&page->lru, &ret_pages);
930		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
931	}
932
933	/*
934	 * Tag a zone as congested if all the dirty pages encountered were
935	 * backed by a congested BDI. In this case, reclaimers should just
936	 * back off and wait for congestion to clear because further reclaim
937	 * will encounter the same problem
938	 */
939	if (nr_dirty == nr_congested && nr_dirty != 0)
940		zone_set_flag(zone, ZONE_CONGESTED);
941
942	free_page_list(&free_pages);
943
944	list_splice(&ret_pages, page_list);
945	count_vm_events(PGACTIVATE, pgactivate);
946	return nr_reclaimed;
947}
948
949/*
950 * Attempt to remove the specified page from its LRU.  Only take this page
951 * if it is of the appropriate PageActive status.  Pages which are being
952 * freed elsewhere are also ignored.
953 *
954 * page:	page to consider
955 * mode:	one of the LRU isolation modes defined above
956 *
957 * returns 0 on success, -ve errno on failure.
958 */
959int __isolate_lru_page(struct page *page, int mode, int file)
960{
961	int ret = -EINVAL;
962
963	/* Only take pages on the LRU. */
964	if (!PageLRU(page))
965		return ret;
966
967	/*
968	 * When checking the active state, we need to be sure we are
969	 * dealing with comparible boolean values.  Take the logical not
970	 * of each.
971	 */
972	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
973		return ret;
974
975	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
976		return ret;
977
978	/*
979	 * When this function is being called for lumpy reclaim, we
980	 * initially look into all LRU pages, active, inactive and
981	 * unevictable; only give shrink_page_list evictable pages.
982	 */
983	if (PageUnevictable(page))
984		return ret;
985
986	ret = -EBUSY;
987
988	if (likely(get_page_unless_zero(page))) {
989		/*
990		 * Be careful not to clear PageLRU until after we're
991		 * sure the page is not being freed elsewhere -- the
992		 * page release code relies on it.
993		 */
994		ClearPageLRU(page);
995		ret = 0;
996	}
997
998	return ret;
999}
1000
1001/*
1002 * zone->lru_lock is heavily contended.  Some of the functions that
1003 * shrink the lists perform better by taking out a batch of pages
1004 * and working on them outside the LRU lock.
1005 *
1006 * For pagecache intensive workloads, this function is the hottest
1007 * spot in the kernel (apart from copy_*_user functions).
1008 *
1009 * Appropriate locks must be held before calling this function.
1010 *
1011 * @nr_to_scan:	The number of pages to look through on the list.
1012 * @src:	The LRU list to pull pages off.
1013 * @dst:	The temp list to put pages on to.
1014 * @scanned:	The number of pages that were scanned.
1015 * @order:	The caller's attempted allocation order
1016 * @mode:	One of the LRU isolation modes
1017 * @file:	True [1] if isolating file [!anon] pages
1018 *
1019 * returns how many pages were moved onto *@dst.
1020 */
1021static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1022		struct list_head *src, struct list_head *dst,
1023		unsigned long *scanned, int order, int mode, int file)
1024{
1025	unsigned long nr_taken = 0;
1026	unsigned long nr_lumpy_taken = 0;
1027	unsigned long nr_lumpy_dirty = 0;
1028	unsigned long nr_lumpy_failed = 0;
1029	unsigned long scan;
1030
1031	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1032		struct page *page;
1033		unsigned long pfn;
1034		unsigned long end_pfn;
1035		unsigned long page_pfn;
1036		int zone_id;
1037
1038		page = lru_to_page(src);
1039		prefetchw_prev_lru_page(page, src, flags);
1040
1041		VM_BUG_ON(!PageLRU(page));
1042
1043		switch (__isolate_lru_page(page, mode, file)) {
1044		case 0:
1045			list_move(&page->lru, dst);
1046			mem_cgroup_del_lru(page);
1047			nr_taken++;
1048			break;
1049
1050		case -EBUSY:
1051			/* else it is being freed elsewhere */
1052			list_move(&page->lru, src);
1053			mem_cgroup_rotate_lru_list(page, page_lru(page));
1054			continue;
1055
1056		default:
1057			BUG();
1058		}
1059
1060		if (!order)
1061			continue;
1062
1063		/*
1064		 * Attempt to take all pages in the order aligned region
1065		 * surrounding the tag page.  Only take those pages of
1066		 * the same active state as that tag page.  We may safely
1067		 * round the target page pfn down to the requested order
1068		 * as the mem_map is guarenteed valid out to MAX_ORDER,
1069		 * where that page is in a different zone we will detect
1070		 * it from its zone id and abort this block scan.
1071		 */
1072		zone_id = page_zone_id(page);
1073		page_pfn = page_to_pfn(page);
1074		pfn = page_pfn & ~((1 << order) - 1);
1075		end_pfn = pfn + (1 << order);
1076		for (; pfn < end_pfn; pfn++) {
1077			struct page *cursor_page;
1078
1079			/* The target page is in the block, ignore it. */
1080			if (unlikely(pfn == page_pfn))
1081				continue;
1082
1083			/* Avoid holes within the zone. */
1084			if (unlikely(!pfn_valid_within(pfn)))
1085				break;
1086
1087			cursor_page = pfn_to_page(pfn);
1088
1089			/* Check that we have not crossed a zone boundary. */
1090			if (unlikely(page_zone_id(cursor_page) != zone_id))
1091				break;
1092
1093			/*
1094			 * If we don't have enough swap space, reclaiming of
1095			 * anon page which don't already have a swap slot is
1096			 * pointless.
1097			 */
1098			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1099			    !PageSwapCache(cursor_page))
1100				break;
1101
1102			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1103				list_move(&cursor_page->lru, dst);
1104				mem_cgroup_del_lru(cursor_page);
1105				nr_taken++;
1106				nr_lumpy_taken++;
1107				if (PageDirty(cursor_page))
1108					nr_lumpy_dirty++;
1109				scan++;
1110			} else {
1111				/* the page is freed already. */
1112				if (!page_count(cursor_page))
1113					continue;
1114				break;
1115			}
1116		}
1117
1118		/* If we break out of the loop above, lumpy reclaim failed */
1119		if (pfn < end_pfn)
1120			nr_lumpy_failed++;
1121	}
1122
1123	*scanned = scan;
1124
1125	trace_mm_vmscan_lru_isolate(order,
1126			nr_to_scan, scan,
1127			nr_taken,
1128			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1129			mode);
1130	return nr_taken;
1131}
1132
1133static unsigned long isolate_pages_global(unsigned long nr,
1134					struct list_head *dst,
1135					unsigned long *scanned, int order,
1136					int mode, struct zone *z,
1137					int active, int file)
1138{
1139	int lru = LRU_BASE;
1140	if (active)
1141		lru += LRU_ACTIVE;
1142	if (file)
1143		lru += LRU_FILE;
1144	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1145								mode, file);
1146}
1147
1148/*
1149 * clear_active_flags() is a helper for shrink_active_list(), clearing
1150 * any active bits from the pages in the list.
1151 */
1152static unsigned long clear_active_flags(struct list_head *page_list,
1153					unsigned int *count)
1154{
1155	int nr_active = 0;
1156	int lru;
1157	struct page *page;
1158
1159	list_for_each_entry(page, page_list, lru) {
1160		lru = page_lru_base_type(page);
1161		if (PageActive(page)) {
1162			lru += LRU_ACTIVE;
1163			ClearPageActive(page);
1164			nr_active++;
1165		}
1166		if (count)
1167			count[lru]++;
1168	}
1169
1170	return nr_active;
1171}
1172
1173/**
1174 * isolate_lru_page - tries to isolate a page from its LRU list
1175 * @page: page to isolate from its LRU list
1176 *
1177 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1178 * vmstat statistic corresponding to whatever LRU list the page was on.
1179 *
1180 * Returns 0 if the page was removed from an LRU list.
1181 * Returns -EBUSY if the page was not on an LRU list.
1182 *
1183 * The returned page will have PageLRU() cleared.  If it was found on
1184 * the active list, it will have PageActive set.  If it was found on
1185 * the unevictable list, it will have the PageUnevictable bit set. That flag
1186 * may need to be cleared by the caller before letting the page go.
1187 *
1188 * The vmstat statistic corresponding to the list on which the page was
1189 * found will be decremented.
1190 *
1191 * Restrictions:
1192 * (1) Must be called with an elevated refcount on the page. This is a
1193 *     fundamentnal difference from isolate_lru_pages (which is called
1194 *     without a stable reference).
1195 * (2) the lru_lock must not be held.
1196 * (3) interrupts must be enabled.
1197 */
1198int isolate_lru_page(struct page *page)
1199{
1200	int ret = -EBUSY;
1201
1202	if (PageLRU(page)) {
1203		struct zone *zone = page_zone(page);
1204
1205		spin_lock_irq(&zone->lru_lock);
1206		if (PageLRU(page) && get_page_unless_zero(page)) {
1207			int lru = page_lru(page);
1208			ret = 0;
1209			ClearPageLRU(page);
1210
1211			del_page_from_lru_list(zone, page, lru);
1212		}
1213		spin_unlock_irq(&zone->lru_lock);
1214	}
1215	return ret;
1216}
1217
1218/*
1219 * Are there way too many processes in the direct reclaim path already?
1220 */
1221static int too_many_isolated(struct zone *zone, int file,
1222		struct scan_control *sc)
1223{
1224	unsigned long inactive, isolated;
1225
1226	if (current_is_kswapd())
1227		return 0;
1228
1229	if (!scanning_global_lru(sc))
1230		return 0;
1231
1232	if (file) {
1233		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1234		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1235	} else {
1236		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1237		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1238	}
1239
1240	return isolated > inactive;
1241}
1242
1243/*
1244 * TODO: Try merging with migrations version of putback_lru_pages
1245 */
1246static noinline_for_stack void
1247putback_lru_pages(struct zone *zone, struct scan_control *sc,
1248				unsigned long nr_anon, unsigned long nr_file,
1249				struct list_head *page_list)
1250{
1251	struct page *page;
1252	struct pagevec pvec;
1253	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1254
1255	pagevec_init(&pvec, 1);
1256
1257	/*
1258	 * Put back any unfreeable pages.
1259	 */
1260	spin_lock(&zone->lru_lock);
1261	while (!list_empty(page_list)) {
1262		int lru;
1263		page = lru_to_page(page_list);
1264		VM_BUG_ON(PageLRU(page));
1265		list_del(&page->lru);
1266		if (unlikely(!page_evictable(page, NULL))) {
1267			spin_unlock_irq(&zone->lru_lock);
1268			putback_lru_page(page);
1269			spin_lock_irq(&zone->lru_lock);
1270			continue;
1271		}
1272		SetPageLRU(page);
1273		lru = page_lru(page);
1274		add_page_to_lru_list(zone, page, lru);
1275		if (is_active_lru(lru)) {
1276			int file = is_file_lru(lru);
1277			reclaim_stat->recent_rotated[file]++;
1278		}
1279		if (!pagevec_add(&pvec, page)) {
1280			spin_unlock_irq(&zone->lru_lock);
1281			__pagevec_release(&pvec);
1282			spin_lock_irq(&zone->lru_lock);
1283		}
1284	}
1285	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1286	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1287
1288	spin_unlock_irq(&zone->lru_lock);
1289	pagevec_release(&pvec);
1290}
1291
1292static noinline_for_stack void update_isolated_counts(struct zone *zone,
1293					struct scan_control *sc,
1294					unsigned long *nr_anon,
1295					unsigned long *nr_file,
1296					struct list_head *isolated_list)
1297{
1298	unsigned long nr_active;
1299	unsigned int count[NR_LRU_LISTS] = { 0, };
1300	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1301
1302	nr_active = clear_active_flags(isolated_list, count);
1303	__count_vm_events(PGDEACTIVATE, nr_active);
1304
1305	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1306			      -count[LRU_ACTIVE_FILE]);
1307	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1308			      -count[LRU_INACTIVE_FILE]);
1309	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1310			      -count[LRU_ACTIVE_ANON]);
1311	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1312			      -count[LRU_INACTIVE_ANON]);
1313
1314	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1315	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1316	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1317	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1318
1319	reclaim_stat->recent_scanned[0] += *nr_anon;
1320	reclaim_stat->recent_scanned[1] += *nr_file;
1321}
1322
1323/*
1324 * Returns true if the caller should wait to clean dirty/writeback pages.
1325 *
1326 * If we are direct reclaiming for contiguous pages and we do not reclaim
1327 * everything in the list, try again and wait for writeback IO to complete.
1328 * This will stall high-order allocations noticeably. Only do that when really
1329 * need to free the pages under high memory pressure.
1330 */
1331static inline bool should_reclaim_stall(unsigned long nr_taken,
1332					unsigned long nr_freed,
1333					int priority,
1334					struct scan_control *sc)
1335{
1336	int lumpy_stall_priority;
1337
1338	/* kswapd should not stall on sync IO */
1339	if (current_is_kswapd())
1340		return false;
1341
1342	/* Only stall on lumpy reclaim */
1343	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1344		return false;
1345
1346	/* If we have relaimed everything on the isolated list, no stall */
1347	if (nr_freed == nr_taken)
1348		return false;
1349
1350	/*
1351	 * For high-order allocations, there are two stall thresholds.
1352	 * High-cost allocations stall immediately where as lower
1353	 * order allocations such as stacks require the scanning
1354	 * priority to be much higher before stalling.
1355	 */
1356	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1357		lumpy_stall_priority = DEF_PRIORITY;
1358	else
1359		lumpy_stall_priority = DEF_PRIORITY / 3;
1360
1361	return priority <= lumpy_stall_priority;
1362}
1363
1364/*
1365 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1366 * of reclaimed pages
1367 */
1368static noinline_for_stack unsigned long
1369shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1370			struct scan_control *sc, int priority, int file)
1371{
1372	LIST_HEAD(page_list);
1373	unsigned long nr_scanned;
1374	unsigned long nr_reclaimed = 0;
1375	unsigned long nr_taken;
1376	unsigned long nr_anon;
1377	unsigned long nr_file;
1378
1379	while (unlikely(too_many_isolated(zone, file, sc))) {
1380		congestion_wait(BLK_RW_ASYNC, HZ/10);
1381
1382		/* We are about to die and free our memory. Return now. */
1383		if (fatal_signal_pending(current))
1384			return SWAP_CLUSTER_MAX;
1385	}
1386
1387	set_reclaim_mode(priority, sc, false);
1388	lru_add_drain();
1389	spin_lock_irq(&zone->lru_lock);
1390
1391	if (scanning_global_lru(sc)) {
1392		nr_taken = isolate_pages_global(nr_to_scan,
1393			&page_list, &nr_scanned, sc->order,
1394			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1395					ISOLATE_BOTH : ISOLATE_INACTIVE,
1396			zone, 0, file);
1397		zone->pages_scanned += nr_scanned;
1398		if (current_is_kswapd())
1399			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1400					       nr_scanned);
1401		else
1402			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1403					       nr_scanned);
1404	} else {
1405		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1406			&page_list, &nr_scanned, sc->order,
1407			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1408					ISOLATE_BOTH : ISOLATE_INACTIVE,
1409			zone, sc->mem_cgroup,
1410			0, file);
1411		/*
1412		 * mem_cgroup_isolate_pages() keeps track of
1413		 * scanned pages on its own.
1414		 */
1415	}
1416
1417	if (nr_taken == 0) {
1418		spin_unlock_irq(&zone->lru_lock);
1419		return 0;
1420	}
1421
1422	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1423
1424	spin_unlock_irq(&zone->lru_lock);
1425
1426	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1427
1428	/* Check if we should syncronously wait for writeback */
1429	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1430		set_reclaim_mode(priority, sc, true);
1431		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1432	}
1433
1434	local_irq_disable();
1435	if (current_is_kswapd())
1436		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1437	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1438
1439	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1440
1441	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1442		zone_idx(zone),
1443		nr_scanned, nr_reclaimed,
1444		priority,
1445		trace_shrink_flags(file, sc->reclaim_mode));
1446	return nr_reclaimed;
1447}
1448
1449/*
1450 * This moves pages from the active list to the inactive list.
1451 *
1452 * We move them the other way if the page is referenced by one or more
1453 * processes, from rmap.
1454 *
1455 * If the pages are mostly unmapped, the processing is fast and it is
1456 * appropriate to hold zone->lru_lock across the whole operation.  But if
1457 * the pages are mapped, the processing is slow (page_referenced()) so we
1458 * should drop zone->lru_lock around each page.  It's impossible to balance
1459 * this, so instead we remove the pages from the LRU while processing them.
1460 * It is safe to rely on PG_active against the non-LRU pages in here because
1461 * nobody will play with that bit on a non-LRU page.
1462 *
1463 * The downside is that we have to touch page->_count against each page.
1464 * But we had to alter page->flags anyway.
1465 */
1466
1467static void move_active_pages_to_lru(struct zone *zone,
1468				     struct list_head *list,
1469				     enum lru_list lru)
1470{
1471	unsigned long pgmoved = 0;
1472	struct pagevec pvec;
1473	struct page *page;
1474
1475	pagevec_init(&pvec, 1);
1476
1477	while (!list_empty(list)) {
1478		page = lru_to_page(list);
1479
1480		VM_BUG_ON(PageLRU(page));
1481		SetPageLRU(page);
1482
1483		list_move(&page->lru, &zone->lru[lru].list);
1484		mem_cgroup_add_lru_list(page, lru);
1485		pgmoved++;
1486
1487		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1488			spin_unlock_irq(&zone->lru_lock);
1489			if (buffer_heads_over_limit)
1490				pagevec_strip(&pvec);
1491			__pagevec_release(&pvec);
1492			spin_lock_irq(&zone->lru_lock);
1493		}
1494	}
1495	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1496	if (!is_active_lru(lru))
1497		__count_vm_events(PGDEACTIVATE, pgmoved);
1498}
1499
1500static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1501			struct scan_control *sc, int priority, int file)
1502{
1503	unsigned long nr_taken;
1504	unsigned long pgscanned;
1505	unsigned long vm_flags;
1506	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1507	LIST_HEAD(l_active);
1508	LIST_HEAD(l_inactive);
1509	struct page *page;
1510	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1511	unsigned long nr_rotated = 0;
1512
1513	lru_add_drain();
1514	spin_lock_irq(&zone->lru_lock);
1515	if (scanning_global_lru(sc)) {
1516		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1517						&pgscanned, sc->order,
1518						ISOLATE_ACTIVE, zone,
1519						1, file);
1520		zone->pages_scanned += pgscanned;
1521	} else {
1522		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1523						&pgscanned, sc->order,
1524						ISOLATE_ACTIVE, zone,
1525						sc->mem_cgroup, 1, file);
1526		/*
1527		 * mem_cgroup_isolate_pages() keeps track of
1528		 * scanned pages on its own.
1529		 */
1530	}
1531
1532	reclaim_stat->recent_scanned[file] += nr_taken;
1533
1534	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1535	if (file)
1536		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1537	else
1538		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1539	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1540	spin_unlock_irq(&zone->lru_lock);
1541
1542	while (!list_empty(&l_hold)) {
1543		cond_resched();
1544		page = lru_to_page(&l_hold);
1545		list_del(&page->lru);
1546
1547		if (unlikely(!page_evictable(page, NULL))) {
1548			putback_lru_page(page);
1549			continue;
1550		}
1551
1552		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1553			nr_rotated++;
1554			/*
1555			 * Identify referenced, file-backed active pages and
1556			 * give them one more trip around the active list. So
1557			 * that executable code get better chances to stay in
1558			 * memory under moderate memory pressure.  Anon pages
1559			 * are not likely to be evicted by use-once streaming
1560			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1561			 * so we ignore them here.
1562			 */
1563			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1564				list_add(&page->lru, &l_active);
1565				continue;
1566			}
1567		}
1568
1569		ClearPageActive(page);	/* we are de-activating */
1570		list_add(&page->lru, &l_inactive);
1571	}
1572
1573	/*
1574	 * Move pages back to the lru list.
1575	 */
1576	spin_lock_irq(&zone->lru_lock);
1577	/*
1578	 * Count referenced pages from currently used mappings as rotated,
1579	 * even though only some of them are actually re-activated.  This
1580	 * helps balance scan pressure between file and anonymous pages in
1581	 * get_scan_ratio.
1582	 */
1583	reclaim_stat->recent_rotated[file] += nr_rotated;
1584
1585	move_active_pages_to_lru(zone, &l_active,
1586						LRU_ACTIVE + file * LRU_FILE);
1587	move_active_pages_to_lru(zone, &l_inactive,
1588						LRU_BASE   + file * LRU_FILE);
1589	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1590	spin_unlock_irq(&zone->lru_lock);
1591}
1592
1593#ifdef CONFIG_SWAP
1594static int inactive_anon_is_low_global(struct zone *zone)
1595{
1596	unsigned long active, inactive;
1597
1598	active = zone_page_state(zone, NR_ACTIVE_ANON);
1599	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1600
1601	if (inactive * zone->inactive_ratio < active)
1602		return 1;
1603
1604	return 0;
1605}
1606
1607/**
1608 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1609 * @zone: zone to check
1610 * @sc:   scan control of this context
1611 *
1612 * Returns true if the zone does not have enough inactive anon pages,
1613 * meaning some active anon pages need to be deactivated.
1614 */
1615static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1616{
1617	int low;
1618
1619	/*
1620	 * If we don't have swap space, anonymous page deactivation
1621	 * is pointless.
1622	 */
1623	if (!total_swap_pages)
1624		return 0;
1625
1626	if (scanning_global_lru(sc))
1627		low = inactive_anon_is_low_global(zone);
1628	else
1629		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1630	return low;
1631}
1632#else
1633static inline int inactive_anon_is_low(struct zone *zone,
1634					struct scan_control *sc)
1635{
1636	return 0;
1637}
1638#endif
1639
1640static int inactive_file_is_low_global(struct zone *zone)
1641{
1642	unsigned long active, inactive;
1643
1644	active = zone_page_state(zone, NR_ACTIVE_FILE);
1645	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1646
1647	return (active > inactive);
1648}
1649
1650/**
1651 * inactive_file_is_low - check if file pages need to be deactivated
1652 * @zone: zone to check
1653 * @sc:   scan control of this context
1654 *
1655 * When the system is doing streaming IO, memory pressure here
1656 * ensures that active file pages get deactivated, until more
1657 * than half of the file pages are on the inactive list.
1658 *
1659 * Once we get to that situation, protect the system's working
1660 * set from being evicted by disabling active file page aging.
1661 *
1662 * This uses a different ratio than the anonymous pages, because
1663 * the page cache uses a use-once replacement algorithm.
1664 */
1665static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1666{
1667	int low;
1668
1669	if (scanning_global_lru(sc))
1670		low = inactive_file_is_low_global(zone);
1671	else
1672		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1673	return low;
1674}
1675
1676static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1677				int file)
1678{
1679	if (file)
1680		return inactive_file_is_low(zone, sc);
1681	else
1682		return inactive_anon_is_low(zone, sc);
1683}
1684
1685static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1686	struct zone *zone, struct scan_control *sc, int priority)
1687{
1688	int file = is_file_lru(lru);
1689
1690	if (is_active_lru(lru)) {
1691		if (inactive_list_is_low(zone, sc, file))
1692		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1693		return 0;
1694	}
1695
1696	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1697}
1698
1699/*
1700 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1701 * until we collected @swap_cluster_max pages to scan.
1702 */
1703static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1704				       unsigned long *nr_saved_scan)
1705{
1706	unsigned long nr;
1707
1708	*nr_saved_scan += nr_to_scan;
1709	nr = *nr_saved_scan;
1710
1711	if (nr >= SWAP_CLUSTER_MAX)
1712		*nr_saved_scan = 0;
1713	else
1714		nr = 0;
1715
1716	return nr;
1717}
1718
1719/*
1720 * Determine how aggressively the anon and file LRU lists should be
1721 * scanned.  The relative value of each set of LRU lists is determined
1722 * by looking at the fraction of the pages scanned we did rotate back
1723 * onto the active list instead of evict.
1724 *
1725 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1726 */
1727static void get_scan_count(struct zone *zone, struct scan_control *sc,
1728					unsigned long *nr, int priority)
1729{
1730	unsigned long anon, file, free;
1731	unsigned long anon_prio, file_prio;
1732	unsigned long ap, fp;
1733	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1734	u64 fraction[2], denominator;
1735	enum lru_list l;
1736	int noswap = 0;
1737
1738	/* If we have no swap space, do not bother scanning anon pages. */
1739	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1740		noswap = 1;
1741		fraction[0] = 0;
1742		fraction[1] = 1;
1743		denominator = 1;
1744		goto out;
1745	}
1746
1747	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1748		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1749	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1750		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1751
1752	if (scanning_global_lru(sc)) {
1753		free  = zone_page_state(zone, NR_FREE_PAGES);
1754		/* If we have very few page cache pages,
1755		   force-scan anon pages. */
1756		if (unlikely(file + free <= high_wmark_pages(zone))) {
1757			fraction[0] = 1;
1758			fraction[1] = 0;
1759			denominator = 1;
1760			goto out;
1761		}
1762	}
1763
1764	/*
1765	 * With swappiness at 100, anonymous and file have the same priority.
1766	 * This scanning priority is essentially the inverse of IO cost.
1767	 */
1768	anon_prio = sc->swappiness;
1769	file_prio = 200 - sc->swappiness;
1770
1771	/*
1772	 * OK, so we have swap space and a fair amount of page cache
1773	 * pages.  We use the recently rotated / recently scanned
1774	 * ratios to determine how valuable each cache is.
1775	 *
1776	 * Because workloads change over time (and to avoid overflow)
1777	 * we keep these statistics as a floating average, which ends
1778	 * up weighing recent references more than old ones.
1779	 *
1780	 * anon in [0], file in [1]
1781	 */
1782	spin_lock_irq(&zone->lru_lock);
1783	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1784		reclaim_stat->recent_scanned[0] /= 2;
1785		reclaim_stat->recent_rotated[0] /= 2;
1786	}
1787
1788	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1789		reclaim_stat->recent_scanned[1] /= 2;
1790		reclaim_stat->recent_rotated[1] /= 2;
1791	}
1792
1793	/*
1794	 * The amount of pressure on anon vs file pages is inversely
1795	 * proportional to the fraction of recently scanned pages on
1796	 * each list that were recently referenced and in active use.
1797	 */
1798	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1799	ap /= reclaim_stat->recent_rotated[0] + 1;
1800
1801	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1802	fp /= reclaim_stat->recent_rotated[1] + 1;
1803	spin_unlock_irq(&zone->lru_lock);
1804
1805	fraction[0] = ap;
1806	fraction[1] = fp;
1807	denominator = ap + fp + 1;
1808out:
1809	for_each_evictable_lru(l) {
1810		int file = is_file_lru(l);
1811		unsigned long scan;
1812
1813		scan = zone_nr_lru_pages(zone, sc, l);
1814		if (priority || noswap) {
1815			scan >>= priority;
1816			scan = div64_u64(scan * fraction[file], denominator);
1817		}
1818		nr[l] = nr_scan_try_batch(scan,
1819					  &reclaim_stat->nr_saved_scan[l]);
1820	}
1821}
1822
1823/*
1824 * Reclaim/compaction depends on a number of pages being freed. To avoid
1825 * disruption to the system, a small number of order-0 pages continue to be
1826 * rotated and reclaimed in the normal fashion. However, by the time we get
1827 * back to the allocator and call try_to_compact_zone(), we ensure that
1828 * there are enough free pages for it to be likely successful
1829 */
1830static inline bool should_continue_reclaim(struct zone *zone,
1831					unsigned long nr_reclaimed,
1832					unsigned long nr_scanned,
1833					struct scan_control *sc)
1834{
1835	unsigned long pages_for_compaction;
1836	unsigned long inactive_lru_pages;
1837
1838	/* If not in reclaim/compaction mode, stop */
1839	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1840		return false;
1841
1842	/*
1843	 * If we failed to reclaim and have scanned the full list, stop.
1844	 * NOTE: Checking just nr_reclaimed would exit reclaim/compaction far
1845	 *       faster but obviously would be less likely to succeed
1846	 *       allocation. If this is desirable, use GFP_REPEAT to decide
1847	 *       if both reclaimed and scanned should be checked or just
1848	 *       reclaimed
1849	 */
1850	if (!nr_reclaimed && !nr_scanned)
1851		return false;
1852
1853	/*
1854	 * If we have not reclaimed enough pages for compaction and the
1855	 * inactive lists are large enough, continue reclaiming
1856	 */
1857	pages_for_compaction = (2UL << sc->order);
1858	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1859				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1860	if (sc->nr_reclaimed < pages_for_compaction &&
1861			inactive_lru_pages > pages_for_compaction)
1862		return true;
1863
1864	/* If compaction would go ahead or the allocation would succeed, stop */
1865	switch (compaction_suitable(zone, sc->order)) {
1866	case COMPACT_PARTIAL:
1867	case COMPACT_CONTINUE:
1868		return false;
1869	default:
1870		return true;
1871	}
1872}
1873
1874/*
1875 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1876 */
1877static void shrink_zone(int priority, struct zone *zone,
1878				struct scan_control *sc)
1879{
1880	unsigned long nr[NR_LRU_LISTS];
1881	unsigned long nr_to_scan;
1882	enum lru_list l;
1883	unsigned long nr_reclaimed;
1884	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1885	unsigned long nr_scanned = sc->nr_scanned;
1886
1887restart:
1888	nr_reclaimed = 0;
1889	get_scan_count(zone, sc, nr, priority);
1890
1891	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1892					nr[LRU_INACTIVE_FILE]) {
1893		for_each_evictable_lru(l) {
1894			if (nr[l]) {
1895				nr_to_scan = min_t(unsigned long,
1896						   nr[l], SWAP_CLUSTER_MAX);
1897				nr[l] -= nr_to_scan;
1898
1899				nr_reclaimed += shrink_list(l, nr_to_scan,
1900							    zone, sc, priority);
1901			}
1902		}
1903		/*
1904		 * On large memory systems, scan >> priority can become
1905		 * really large. This is fine for the starting priority;
1906		 * we want to put equal scanning pressure on each zone.
1907		 * However, if the VM has a harder time of freeing pages,
1908		 * with multiple processes reclaiming pages, the total
1909		 * freeing target can get unreasonably large.
1910		 */
1911		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1912			break;
1913	}
1914	sc->nr_reclaimed += nr_reclaimed;
1915
1916	/*
1917	 * Even if we did not try to evict anon pages at all, we want to
1918	 * rebalance the anon lru active/inactive ratio.
1919	 */
1920	if (inactive_anon_is_low(zone, sc))
1921		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1922
1923	/* reclaim/compaction might need reclaim to continue */
1924	if (should_continue_reclaim(zone, nr_reclaimed,
1925					sc->nr_scanned - nr_scanned, sc))
1926		goto restart;
1927
1928	throttle_vm_writeout(sc->gfp_mask);
1929}
1930
1931/*
1932 * This is the direct reclaim path, for page-allocating processes.  We only
1933 * try to reclaim pages from zones which will satisfy the caller's allocation
1934 * request.
1935 *
1936 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1937 * Because:
1938 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1939 *    allocation or
1940 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1941 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1942 *    zone defense algorithm.
1943 *
1944 * If a zone is deemed to be full of pinned pages then just give it a light
1945 * scan then give up on it.
1946 */
1947static void shrink_zones(int priority, struct zonelist *zonelist,
1948					struct scan_control *sc)
1949{
1950	struct zoneref *z;
1951	struct zone *zone;
1952
1953	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1954					gfp_zone(sc->gfp_mask), sc->nodemask) {
1955		if (!populated_zone(zone))
1956			continue;
1957		/*
1958		 * Take care memory controller reclaiming has small influence
1959		 * to global LRU.
1960		 */
1961		if (scanning_global_lru(sc)) {
1962			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1963				continue;
1964			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1965				continue;	/* Let kswapd poll it */
1966		}
1967
1968		shrink_zone(priority, zone, sc);
1969	}
1970}
1971
1972static bool zone_reclaimable(struct zone *zone)
1973{
1974	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1975}
1976
1977/*
1978 * As hibernation is going on, kswapd is freezed so that it can't mark
1979 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1980 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1981 */
1982static bool all_unreclaimable(struct zonelist *zonelist,
1983		struct scan_control *sc)
1984{
1985	struct zoneref *z;
1986	struct zone *zone;
1987	bool all_unreclaimable = true;
1988
1989	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1990			gfp_zone(sc->gfp_mask), sc->nodemask) {
1991		if (!populated_zone(zone))
1992			continue;
1993		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1994			continue;
1995		if (zone_reclaimable(zone)) {
1996			all_unreclaimable = false;
1997			break;
1998		}
1999	}
2000
2001	return all_unreclaimable;
2002}
2003
2004/*
2005 * This is the main entry point to direct page reclaim.
2006 *
2007 * If a full scan of the inactive list fails to free enough memory then we
2008 * are "out of memory" and something needs to be killed.
2009 *
2010 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2011 * high - the zone may be full of dirty or under-writeback pages, which this
2012 * caller can't do much about.  We kick the writeback threads and take explicit
2013 * naps in the hope that some of these pages can be written.  But if the
2014 * allocating task holds filesystem locks which prevent writeout this might not
2015 * work, and the allocation attempt will fail.
2016 *
2017 * returns:	0, if no pages reclaimed
2018 * 		else, the number of pages reclaimed
2019 */
2020static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2021					struct scan_control *sc)
2022{
2023	int priority;
2024	unsigned long total_scanned = 0;
2025	struct reclaim_state *reclaim_state = current->reclaim_state;
2026	struct zoneref *z;
2027	struct zone *zone;
2028	unsigned long writeback_threshold;
2029
2030	get_mems_allowed();
2031	delayacct_freepages_start();
2032
2033	if (scanning_global_lru(sc))
2034		count_vm_event(ALLOCSTALL);
2035
2036	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2037		sc->nr_scanned = 0;
2038		if (!priority)
2039			disable_swap_token();
2040		shrink_zones(priority, zonelist, sc);
2041		/*
2042		 * Don't shrink slabs when reclaiming memory from
2043		 * over limit cgroups
2044		 */
2045		if (scanning_global_lru(sc)) {
2046			unsigned long lru_pages = 0;
2047			for_each_zone_zonelist(zone, z, zonelist,
2048					gfp_zone(sc->gfp_mask)) {
2049				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2050					continue;
2051
2052				lru_pages += zone_reclaimable_pages(zone);
2053			}
2054
2055			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2056			if (reclaim_state) {
2057				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2058				reclaim_state->reclaimed_slab = 0;
2059			}
2060		}
2061		total_scanned += sc->nr_scanned;
2062		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2063			goto out;
2064
2065		/*
2066		 * Try to write back as many pages as we just scanned.  This
2067		 * tends to cause slow streaming writers to write data to the
2068		 * disk smoothly, at the dirtying rate, which is nice.   But
2069		 * that's undesirable in laptop mode, where we *want* lumpy
2070		 * writeout.  So in laptop mode, write out the whole world.
2071		 */
2072		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2073		if (total_scanned > writeback_threshold) {
2074			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2075			sc->may_writepage = 1;
2076		}
2077
2078		/* Take a nap, wait for some writeback to complete */
2079		if (!sc->hibernation_mode && sc->nr_scanned &&
2080		    priority < DEF_PRIORITY - 2) {
2081			struct zone *preferred_zone;
2082
2083			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2084							NULL, &preferred_zone);
2085			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2086		}
2087	}
2088
2089out:
2090	delayacct_freepages_end();
2091	put_mems_allowed();
2092
2093	if (sc->nr_reclaimed)
2094		return sc->nr_reclaimed;
2095
2096	/* top priority shrink_zones still had more to do? don't OOM, then */
2097	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2098		return 1;
2099
2100	return 0;
2101}
2102
2103unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2104				gfp_t gfp_mask, nodemask_t *nodemask)
2105{
2106	unsigned long nr_reclaimed;
2107	struct scan_control sc = {
2108		.gfp_mask = gfp_mask,
2109		.may_writepage = !laptop_mode,
2110		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2111		.may_unmap = 1,
2112		.may_swap = 1,
2113		.swappiness = vm_swappiness,
2114		.order = order,
2115		.mem_cgroup = NULL,
2116		.nodemask = nodemask,
2117	};
2118
2119	trace_mm_vmscan_direct_reclaim_begin(order,
2120				sc.may_writepage,
2121				gfp_mask);
2122
2123	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2124
2125	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2126
2127	return nr_reclaimed;
2128}
2129
2130#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2131
2132unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2133						gfp_t gfp_mask, bool noswap,
2134						unsigned int swappiness,
2135						struct zone *zone)
2136{
2137	struct scan_control sc = {
2138		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2139		.may_writepage = !laptop_mode,
2140		.may_unmap = 1,
2141		.may_swap = !noswap,
2142		.swappiness = swappiness,
2143		.order = 0,
2144		.mem_cgroup = mem,
2145	};
2146	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2147			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2148
2149	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2150						      sc.may_writepage,
2151						      sc.gfp_mask);
2152
2153	/*
2154	 * NOTE: Although we can get the priority field, using it
2155	 * here is not a good idea, since it limits the pages we can scan.
2156	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2157	 * will pick up pages from other mem cgroup's as well. We hack
2158	 * the priority and make it zero.
2159	 */
2160	shrink_zone(0, zone, &sc);
2161
2162	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2163
2164	return sc.nr_reclaimed;
2165}
2166
2167unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2168					   gfp_t gfp_mask,
2169					   bool noswap,
2170					   unsigned int swappiness)
2171{
2172	struct zonelist *zonelist;
2173	unsigned long nr_reclaimed;
2174	struct scan_control sc = {
2175		.may_writepage = !laptop_mode,
2176		.may_unmap = 1,
2177		.may_swap = !noswap,
2178		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2179		.swappiness = swappiness,
2180		.order = 0,
2181		.mem_cgroup = mem_cont,
2182		.nodemask = NULL, /* we don't care the placement */
2183	};
2184
2185	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2186			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2187	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2188
2189	trace_mm_vmscan_memcg_reclaim_begin(0,
2190					    sc.may_writepage,
2191					    sc.gfp_mask);
2192
2193	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2194
2195	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2196
2197	return nr_reclaimed;
2198}
2199#endif
2200
2201/*
2202 * pgdat_balanced is used when checking if a node is balanced for high-order
2203 * allocations. Only zones that meet watermarks and are in a zone allowed
2204 * by the callers classzone_idx are added to balanced_pages. The total of
2205 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2206 * for the node to be considered balanced. Forcing all zones to be balanced
2207 * for high orders can cause excessive reclaim when there are imbalanced zones.
2208 * The choice of 25% is due to
2209 *   o a 16M DMA zone that is balanced will not balance a zone on any
2210 *     reasonable sized machine
2211 *   o On all other machines, the top zone must be at least a reasonable
2212 *     precentage of the middle zones. For example, on 32-bit x86, highmem
2213 *     would need to be at least 256M for it to be balance a whole node.
2214 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2215 *     to balance a node on its own. These seemed like reasonable ratios.
2216 */
2217static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2218						int classzone_idx)
2219{
2220	unsigned long present_pages = 0;
2221	int i;
2222
2223	for (i = 0; i <= classzone_idx; i++)
2224		present_pages += pgdat->node_zones[i].present_pages;
2225
2226	return balanced_pages > (present_pages >> 2);
2227}
2228
2229/* is kswapd sleeping prematurely? */
2230static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2231{
2232	int i;
2233	unsigned long balanced = 0;
2234	bool all_zones_ok = true;
2235
2236	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2237	if (remaining)
2238		return 1;
2239
2240	/* Check the watermark levels */
2241	for (i = 0; i < pgdat->nr_zones; i++) {
2242		struct zone *zone = pgdat->node_zones + i;
2243
2244		if (!populated_zone(zone))
2245			continue;
2246
2247		if (zone->all_unreclaimable)
2248			continue;
2249
2250		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2251								0, 0))
2252			all_zones_ok = false;
2253		else
2254			balanced += zone->present_pages;
2255	}
2256
2257	/*
2258	 * For high-order requests, the balanced zones must contain at least
2259	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2260	 * must be balanced
2261	 */
2262	if (order)
2263		return pgdat_balanced(pgdat, balanced, 0);
2264	else
2265		return !all_zones_ok;
2266}
2267
2268/*
2269 * For kswapd, balance_pgdat() will work across all this node's zones until
2270 * they are all at high_wmark_pages(zone).
2271 *
2272 * Returns the final order kswapd was reclaiming at
2273 *
2274 * There is special handling here for zones which are full of pinned pages.
2275 * This can happen if the pages are all mlocked, or if they are all used by
2276 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2277 * What we do is to detect the case where all pages in the zone have been
2278 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2279 * dead and from now on, only perform a short scan.  Basically we're polling
2280 * the zone for when the problem goes away.
2281 *
2282 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2283 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2284 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2285 * lower zones regardless of the number of free pages in the lower zones. This
2286 * interoperates with the page allocator fallback scheme to ensure that aging
2287 * of pages is balanced across the zones.
2288 */
2289static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2290							int classzone_idx)
2291{
2292	int all_zones_ok;
2293	unsigned long balanced;
2294	int priority;
2295	int i;
2296	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2297	unsigned long total_scanned;
2298	struct reclaim_state *reclaim_state = current->reclaim_state;
2299	struct scan_control sc = {
2300		.gfp_mask = GFP_KERNEL,
2301		.may_unmap = 1,
2302		.may_swap = 1,
2303		/*
2304		 * kswapd doesn't want to be bailed out while reclaim. because
2305		 * we want to put equal scanning pressure on each zone.
2306		 */
2307		.nr_to_reclaim = ULONG_MAX,
2308		.swappiness = vm_swappiness,
2309		.order = order,
2310		.mem_cgroup = NULL,
2311	};
2312loop_again:
2313	total_scanned = 0;
2314	sc.nr_reclaimed = 0;
2315	sc.may_writepage = !laptop_mode;
2316	count_vm_event(PAGEOUTRUN);
2317
2318	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2319		unsigned long lru_pages = 0;
2320		int has_under_min_watermark_zone = 0;
2321
2322		/* The swap token gets in the way of swapout... */
2323		if (!priority)
2324			disable_swap_token();
2325
2326		all_zones_ok = 1;
2327		balanced = 0;
2328
2329		/*
2330		 * Scan in the highmem->dma direction for the highest
2331		 * zone which needs scanning
2332		 */
2333		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2334			struct zone *zone = pgdat->node_zones + i;
2335
2336			if (!populated_zone(zone))
2337				continue;
2338
2339			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2340				continue;
2341
2342			/*
2343			 * Do some background aging of the anon list, to give
2344			 * pages a chance to be referenced before reclaiming.
2345			 */
2346			if (inactive_anon_is_low(zone, &sc))
2347				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2348							&sc, priority, 0);
2349
2350			if (!zone_watermark_ok_safe(zone, order,
2351					high_wmark_pages(zone), 0, 0)) {
2352				end_zone = i;
2353				break;
2354			}
2355		}
2356		if (i < 0)
2357			goto out;
2358
2359		for (i = 0; i <= end_zone; i++) {
2360			struct zone *zone = pgdat->node_zones + i;
2361
2362			lru_pages += zone_reclaimable_pages(zone);
2363		}
2364
2365		/*
2366		 * Now scan the zone in the dma->highmem direction, stopping
2367		 * at the last zone which needs scanning.
2368		 *
2369		 * We do this because the page allocator works in the opposite
2370		 * direction.  This prevents the page allocator from allocating
2371		 * pages behind kswapd's direction of progress, which would
2372		 * cause too much scanning of the lower zones.
2373		 */
2374		for (i = 0; i <= end_zone; i++) {
2375			struct zone *zone = pgdat->node_zones + i;
2376			int nr_slab;
2377
2378			if (!populated_zone(zone))
2379				continue;
2380
2381			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2382				continue;
2383
2384			sc.nr_scanned = 0;
2385
2386			/*
2387			 * Call soft limit reclaim before calling shrink_zone.
2388			 * For now we ignore the return value
2389			 */
2390			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2391
2392			/*
2393			 * We put equal pressure on every zone, unless one
2394			 * zone has way too many pages free already.
2395			 */
2396			if (!zone_watermark_ok_safe(zone, order,
2397					8*high_wmark_pages(zone), end_zone, 0))
2398				shrink_zone(priority, zone, &sc);
2399			reclaim_state->reclaimed_slab = 0;
2400			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2401						lru_pages);
2402			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2403			total_scanned += sc.nr_scanned;
2404			if (zone->all_unreclaimable)
2405				continue;
2406			if (nr_slab == 0 && !zone_reclaimable(zone))
2407				zone->all_unreclaimable = 1;
2408			/*
2409			 * If we've done a decent amount of scanning and
2410			 * the reclaim ratio is low, start doing writepage
2411			 * even in laptop mode
2412			 */
2413			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2414			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2415				sc.may_writepage = 1;
2416
2417			/*
2418			 * Compact the zone for higher orders to reduce
2419			 * latencies for higher-order allocations that
2420			 * would ordinarily call try_to_compact_pages()
2421			 */
2422			if (sc.order > PAGE_ALLOC_COSTLY_ORDER)
2423				compact_zone_order(zone, sc.order, sc.gfp_mask,
2424							false);
2425
2426			if (!zone_watermark_ok_safe(zone, order,
2427					high_wmark_pages(zone), end_zone, 0)) {
2428				all_zones_ok = 0;
2429				/*
2430				 * We are still under min water mark.  This
2431				 * means that we have a GFP_ATOMIC allocation
2432				 * failure risk. Hurry up!
2433				 */
2434				if (!zone_watermark_ok_safe(zone, order,
2435					    min_wmark_pages(zone), end_zone, 0))
2436					has_under_min_watermark_zone = 1;
2437			} else {
2438				/*
2439				 * If a zone reaches its high watermark,
2440				 * consider it to be no longer congested. It's
2441				 * possible there are dirty pages backed by
2442				 * congested BDIs but as pressure is relieved,
2443				 * spectulatively avoid congestion waits
2444				 */
2445				zone_clear_flag(zone, ZONE_CONGESTED);
2446				if (i <= classzone_idx)
2447					balanced += zone->present_pages;
2448			}
2449
2450		}
2451		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, classzone_idx)))
2452			break;		/* kswapd: all done */
2453		/*
2454		 * OK, kswapd is getting into trouble.  Take a nap, then take
2455		 * another pass across the zones.
2456		 */
2457		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2458			if (has_under_min_watermark_zone)
2459				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2460			else
2461				congestion_wait(BLK_RW_ASYNC, HZ/10);
2462		}
2463
2464		/*
2465		 * We do this so kswapd doesn't build up large priorities for
2466		 * example when it is freeing in parallel with allocators. It
2467		 * matches the direct reclaim path behaviour in terms of impact
2468		 * on zone->*_priority.
2469		 */
2470		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2471			break;
2472	}
2473out:
2474
2475	/*
2476	 * order-0: All zones must meet high watermark for a balanced node
2477	 * high-order: Balanced zones must make up at least 25% of the node
2478	 *             for the node to be balanced
2479	 */
2480	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, classzone_idx)))) {
2481		cond_resched();
2482
2483		try_to_freeze();
2484
2485		/*
2486		 * Fragmentation may mean that the system cannot be
2487		 * rebalanced for high-order allocations in all zones.
2488		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2489		 * it means the zones have been fully scanned and are still
2490		 * not balanced. For high-order allocations, there is
2491		 * little point trying all over again as kswapd may
2492		 * infinite loop.
2493		 *
2494		 * Instead, recheck all watermarks at order-0 as they
2495		 * are the most important. If watermarks are ok, kswapd will go
2496		 * back to sleep. High-order users can still perform direct
2497		 * reclaim if they wish.
2498		 */
2499		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2500			order = sc.order = 0;
2501
2502		goto loop_again;
2503	}
2504
2505	/*
2506	 * If kswapd was reclaiming at a higher order, it has the option of
2507	 * sleeping without all zones being balanced. Before it does, it must
2508	 * ensure that the watermarks for order-0 on *all* zones are met and
2509	 * that the congestion flags are cleared. The congestion flag must
2510	 * be cleared as kswapd is the only mechanism that clears the flag
2511	 * and it is potentially going to sleep here.
2512	 */
2513	if (order) {
2514		for (i = 0; i <= end_zone; i++) {
2515			struct zone *zone = pgdat->node_zones + i;
2516
2517			if (!populated_zone(zone))
2518				continue;
2519
2520			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2521				continue;
2522
2523			/* Confirm the zone is balanced for order-0 */
2524			if (!zone_watermark_ok(zone, 0,
2525					high_wmark_pages(zone), 0, 0)) {
2526				order = sc.order = 0;
2527				goto loop_again;
2528			}
2529
2530			/* If balanced, clear the congested flag */
2531			zone_clear_flag(zone, ZONE_CONGESTED);
2532		}
2533	}
2534
2535	/*
2536	 * Return the order we were reclaiming at so sleeping_prematurely()
2537	 * makes a decision on the order we were last reclaiming at. However,
2538	 * if another caller entered the allocator slow path while kswapd
2539	 * was awake, order will remain at the higher level
2540	 */
2541	return order;
2542}
2543
2544static void kswapd_try_to_sleep(pg_data_t *pgdat, int order)
2545{
2546	long remaining = 0;
2547	DEFINE_WAIT(wait);
2548
2549	if (freezing(current) || kthread_should_stop())
2550		return;
2551
2552	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2553
2554	/* Try to sleep for a short interval */
2555	if (!sleeping_prematurely(pgdat, order, remaining)) {
2556		remaining = schedule_timeout(HZ/10);
2557		finish_wait(&pgdat->kswapd_wait, &wait);
2558		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2559	}
2560
2561	/*
2562	 * After a short sleep, check if it was a premature sleep. If not, then
2563	 * go fully to sleep until explicitly woken up.
2564	 */
2565	if (!sleeping_prematurely(pgdat, order, remaining)) {
2566		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2567
2568		/*
2569		 * vmstat counters are not perfectly accurate and the estimated
2570		 * value for counters such as NR_FREE_PAGES can deviate from the
2571		 * true value by nr_online_cpus * threshold. To avoid the zone
2572		 * watermarks being breached while under pressure, we reduce the
2573		 * per-cpu vmstat threshold while kswapd is awake and restore
2574		 * them before going back to sleep.
2575		 */
2576		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2577		schedule();
2578		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2579	} else {
2580		if (remaining)
2581			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2582		else
2583			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2584	}
2585	finish_wait(&pgdat->kswapd_wait, &wait);
2586}
2587
2588/*
2589 * The background pageout daemon, started as a kernel thread
2590 * from the init process.
2591 *
2592 * This basically trickles out pages so that we have _some_
2593 * free memory available even if there is no other activity
2594 * that frees anything up. This is needed for things like routing
2595 * etc, where we otherwise might have all activity going on in
2596 * asynchronous contexts that cannot page things out.
2597 *
2598 * If there are applications that are active memory-allocators
2599 * (most normal use), this basically shouldn't matter.
2600 */
2601static int kswapd(void *p)
2602{
2603	unsigned long order;
2604	int classzone_idx;
2605	pg_data_t *pgdat = (pg_data_t*)p;
2606	struct task_struct *tsk = current;
2607
2608	struct reclaim_state reclaim_state = {
2609		.reclaimed_slab = 0,
2610	};
2611	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2612
2613	lockdep_set_current_reclaim_state(GFP_KERNEL);
2614
2615	if (!cpumask_empty(cpumask))
2616		set_cpus_allowed_ptr(tsk, cpumask);
2617	current->reclaim_state = &reclaim_state;
2618
2619	/*
2620	 * Tell the memory management that we're a "memory allocator",
2621	 * and that if we need more memory we should get access to it
2622	 * regardless (see "__alloc_pages()"). "kswapd" should
2623	 * never get caught in the normal page freeing logic.
2624	 *
2625	 * (Kswapd normally doesn't need memory anyway, but sometimes
2626	 * you need a small amount of memory in order to be able to
2627	 * page out something else, and this flag essentially protects
2628	 * us from recursively trying to free more memory as we're
2629	 * trying to free the first piece of memory in the first place).
2630	 */
2631	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2632	set_freezable();
2633
2634	order = 0;
2635	classzone_idx = MAX_NR_ZONES - 1;
2636	for ( ; ; ) {
2637		unsigned long new_order;
2638		int new_classzone_idx;
2639		int ret;
2640
2641		new_order = pgdat->kswapd_max_order;
2642		new_classzone_idx = pgdat->classzone_idx;
2643		pgdat->kswapd_max_order = 0;
2644		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2645		if (order < new_order || classzone_idx > new_classzone_idx) {
2646			/*
2647			 * Don't sleep if someone wants a larger 'order'
2648			 * allocation or has tigher zone constraints
2649			 */
2650			order = new_order;
2651			classzone_idx = new_classzone_idx;
2652		} else {
2653			kswapd_try_to_sleep(pgdat, order);
2654			order = pgdat->kswapd_max_order;
2655			classzone_idx = pgdat->classzone_idx;
2656		}
2657
2658		ret = try_to_freeze();
2659		if (kthread_should_stop())
2660			break;
2661
2662		/*
2663		 * We can speed up thawing tasks if we don't call balance_pgdat
2664		 * after returning from the refrigerator
2665		 */
2666		if (!ret) {
2667			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2668			order = balance_pgdat(pgdat, order, classzone_idx);
2669		}
2670	}
2671	return 0;
2672}
2673
2674/*
2675 * A zone is low on free memory, so wake its kswapd task to service it.
2676 */
2677void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2678{
2679	pg_data_t *pgdat;
2680
2681	if (!populated_zone(zone))
2682		return;
2683
2684	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2685		return;
2686	pgdat = zone->zone_pgdat;
2687	if (pgdat->kswapd_max_order < order) {
2688		pgdat->kswapd_max_order = order;
2689		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2690	}
2691	if (!waitqueue_active(&pgdat->kswapd_wait))
2692		return;
2693	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2694		return;
2695
2696	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2697	wake_up_interruptible(&pgdat->kswapd_wait);
2698}
2699
2700/*
2701 * The reclaimable count would be mostly accurate.
2702 * The less reclaimable pages may be
2703 * - mlocked pages, which will be moved to unevictable list when encountered
2704 * - mapped pages, which may require several travels to be reclaimed
2705 * - dirty pages, which is not "instantly" reclaimable
2706 */
2707unsigned long global_reclaimable_pages(void)
2708{
2709	int nr;
2710
2711	nr = global_page_state(NR_ACTIVE_FILE) +
2712	     global_page_state(NR_INACTIVE_FILE);
2713
2714	if (nr_swap_pages > 0)
2715		nr += global_page_state(NR_ACTIVE_ANON) +
2716		      global_page_state(NR_INACTIVE_ANON);
2717
2718	return nr;
2719}
2720
2721unsigned long zone_reclaimable_pages(struct zone *zone)
2722{
2723	int nr;
2724
2725	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2726	     zone_page_state(zone, NR_INACTIVE_FILE);
2727
2728	if (nr_swap_pages > 0)
2729		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2730		      zone_page_state(zone, NR_INACTIVE_ANON);
2731
2732	return nr;
2733}
2734
2735#ifdef CONFIG_HIBERNATION
2736/*
2737 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2738 * freed pages.
2739 *
2740 * Rather than trying to age LRUs the aim is to preserve the overall
2741 * LRU order by reclaiming preferentially
2742 * inactive > active > active referenced > active mapped
2743 */
2744unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2745{
2746	struct reclaim_state reclaim_state;
2747	struct scan_control sc = {
2748		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2749		.may_swap = 1,
2750		.may_unmap = 1,
2751		.may_writepage = 1,
2752		.nr_to_reclaim = nr_to_reclaim,
2753		.hibernation_mode = 1,
2754		.swappiness = vm_swappiness,
2755		.order = 0,
2756	};
2757	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2758	struct task_struct *p = current;
2759	unsigned long nr_reclaimed;
2760
2761	p->flags |= PF_MEMALLOC;
2762	lockdep_set_current_reclaim_state(sc.gfp_mask);
2763	reclaim_state.reclaimed_slab = 0;
2764	p->reclaim_state = &reclaim_state;
2765
2766	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2767
2768	p->reclaim_state = NULL;
2769	lockdep_clear_current_reclaim_state();
2770	p->flags &= ~PF_MEMALLOC;
2771
2772	return nr_reclaimed;
2773}
2774#endif /* CONFIG_HIBERNATION */
2775
2776/* It's optimal to keep kswapds on the same CPUs as their memory, but
2777   not required for correctness.  So if the last cpu in a node goes
2778   away, we get changed to run anywhere: as the first one comes back,
2779   restore their cpu bindings. */
2780static int __devinit cpu_callback(struct notifier_block *nfb,
2781				  unsigned long action, void *hcpu)
2782{
2783	int nid;
2784
2785	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2786		for_each_node_state(nid, N_HIGH_MEMORY) {
2787			pg_data_t *pgdat = NODE_DATA(nid);
2788			const struct cpumask *mask;
2789
2790			mask = cpumask_of_node(pgdat->node_id);
2791
2792			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2793				/* One of our CPUs online: restore mask */
2794				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2795		}
2796	}
2797	return NOTIFY_OK;
2798}
2799
2800/*
2801 * This kswapd start function will be called by init and node-hot-add.
2802 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2803 */
2804int kswapd_run(int nid)
2805{
2806	pg_data_t *pgdat = NODE_DATA(nid);
2807	int ret = 0;
2808
2809	if (pgdat->kswapd)
2810		return 0;
2811
2812	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2813	if (IS_ERR(pgdat->kswapd)) {
2814		/* failure at boot is fatal */
2815		BUG_ON(system_state == SYSTEM_BOOTING);
2816		printk("Failed to start kswapd on node %d\n",nid);
2817		ret = -1;
2818	}
2819	return ret;
2820}
2821
2822/*
2823 * Called by memory hotplug when all memory in a node is offlined.
2824 */
2825void kswapd_stop(int nid)
2826{
2827	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2828
2829	if (kswapd)
2830		kthread_stop(kswapd);
2831}
2832
2833static int __init kswapd_init(void)
2834{
2835	int nid;
2836
2837	swap_setup();
2838	for_each_node_state(nid, N_HIGH_MEMORY)
2839 		kswapd_run(nid);
2840	hotcpu_notifier(cpu_callback, 0);
2841	return 0;
2842}
2843
2844module_init(kswapd_init)
2845
2846#ifdef CONFIG_NUMA
2847/*
2848 * Zone reclaim mode
2849 *
2850 * If non-zero call zone_reclaim when the number of free pages falls below
2851 * the watermarks.
2852 */
2853int zone_reclaim_mode __read_mostly;
2854
2855#define RECLAIM_OFF 0
2856#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2857#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2858#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2859
2860/*
2861 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2862 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2863 * a zone.
2864 */
2865#define ZONE_RECLAIM_PRIORITY 4
2866
2867/*
2868 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2869 * occur.
2870 */
2871int sysctl_min_unmapped_ratio = 1;
2872
2873/*
2874 * If the number of slab pages in a zone grows beyond this percentage then
2875 * slab reclaim needs to occur.
2876 */
2877int sysctl_min_slab_ratio = 5;
2878
2879static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2880{
2881	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2882	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2883		zone_page_state(zone, NR_ACTIVE_FILE);
2884
2885	/*
2886	 * It's possible for there to be more file mapped pages than
2887	 * accounted for by the pages on the file LRU lists because
2888	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2889	 */
2890	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2891}
2892
2893/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2894static long zone_pagecache_reclaimable(struct zone *zone)
2895{
2896	long nr_pagecache_reclaimable;
2897	long delta = 0;
2898
2899	/*
2900	 * If RECLAIM_SWAP is set, then all file pages are considered
2901	 * potentially reclaimable. Otherwise, we have to worry about
2902	 * pages like swapcache and zone_unmapped_file_pages() provides
2903	 * a better estimate
2904	 */
2905	if (zone_reclaim_mode & RECLAIM_SWAP)
2906		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2907	else
2908		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2909
2910	/* If we can't clean pages, remove dirty pages from consideration */
2911	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2912		delta += zone_page_state(zone, NR_FILE_DIRTY);
2913
2914	/* Watch for any possible underflows due to delta */
2915	if (unlikely(delta > nr_pagecache_reclaimable))
2916		delta = nr_pagecache_reclaimable;
2917
2918	return nr_pagecache_reclaimable - delta;
2919}
2920
2921/*
2922 * Try to free up some pages from this zone through reclaim.
2923 */
2924static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2925{
2926	/* Minimum pages needed in order to stay on node */
2927	const unsigned long nr_pages = 1 << order;
2928	struct task_struct *p = current;
2929	struct reclaim_state reclaim_state;
2930	int priority;
2931	struct scan_control sc = {
2932		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2933		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2934		.may_swap = 1,
2935		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2936				       SWAP_CLUSTER_MAX),
2937		.gfp_mask = gfp_mask,
2938		.swappiness = vm_swappiness,
2939		.order = order,
2940	};
2941	unsigned long nr_slab_pages0, nr_slab_pages1;
2942
2943	cond_resched();
2944	/*
2945	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2946	 * and we also need to be able to write out pages for RECLAIM_WRITE
2947	 * and RECLAIM_SWAP.
2948	 */
2949	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2950	lockdep_set_current_reclaim_state(gfp_mask);
2951	reclaim_state.reclaimed_slab = 0;
2952	p->reclaim_state = &reclaim_state;
2953
2954	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2955		/*
2956		 * Free memory by calling shrink zone with increasing
2957		 * priorities until we have enough memory freed.
2958		 */
2959		priority = ZONE_RECLAIM_PRIORITY;
2960		do {
2961			shrink_zone(priority, zone, &sc);
2962			priority--;
2963		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2964	}
2965
2966	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2967	if (nr_slab_pages0 > zone->min_slab_pages) {
2968		/*
2969		 * shrink_slab() does not currently allow us to determine how
2970		 * many pages were freed in this zone. So we take the current
2971		 * number of slab pages and shake the slab until it is reduced
2972		 * by the same nr_pages that we used for reclaiming unmapped
2973		 * pages.
2974		 *
2975		 * Note that shrink_slab will free memory on all zones and may
2976		 * take a long time.
2977		 */
2978		for (;;) {
2979			unsigned long lru_pages = zone_reclaimable_pages(zone);
2980
2981			/* No reclaimable slab or very low memory pressure */
2982			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2983				break;
2984
2985			/* Freed enough memory */
2986			nr_slab_pages1 = zone_page_state(zone,
2987							NR_SLAB_RECLAIMABLE);
2988			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2989				break;
2990		}
2991
2992		/*
2993		 * Update nr_reclaimed by the number of slab pages we
2994		 * reclaimed from this zone.
2995		 */
2996		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2997		if (nr_slab_pages1 < nr_slab_pages0)
2998			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2999	}
3000
3001	p->reclaim_state = NULL;
3002	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3003	lockdep_clear_current_reclaim_state();
3004	return sc.nr_reclaimed >= nr_pages;
3005}
3006
3007int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3008{
3009	int node_id;
3010	int ret;
3011
3012	/*
3013	 * Zone reclaim reclaims unmapped file backed pages and
3014	 * slab pages if we are over the defined limits.
3015	 *
3016	 * A small portion of unmapped file backed pages is needed for
3017	 * file I/O otherwise pages read by file I/O will be immediately
3018	 * thrown out if the zone is overallocated. So we do not reclaim
3019	 * if less than a specified percentage of the zone is used by
3020	 * unmapped file backed pages.
3021	 */
3022	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3023	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3024		return ZONE_RECLAIM_FULL;
3025
3026	if (zone->all_unreclaimable)
3027		return ZONE_RECLAIM_FULL;
3028
3029	/*
3030	 * Do not scan if the allocation should not be delayed.
3031	 */
3032	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3033		return ZONE_RECLAIM_NOSCAN;
3034
3035	/*
3036	 * Only run zone reclaim on the local zone or on zones that do not
3037	 * have associated processors. This will favor the local processor
3038	 * over remote processors and spread off node memory allocations
3039	 * as wide as possible.
3040	 */
3041	node_id = zone_to_nid(zone);
3042	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3043		return ZONE_RECLAIM_NOSCAN;
3044
3045	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3046		return ZONE_RECLAIM_NOSCAN;
3047
3048	ret = __zone_reclaim(zone, gfp_mask, order);
3049	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3050
3051	if (!ret)
3052		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3053
3054	return ret;
3055}
3056#endif
3057
3058/*
3059 * page_evictable - test whether a page is evictable
3060 * @page: the page to test
3061 * @vma: the VMA in which the page is or will be mapped, may be NULL
3062 *
3063 * Test whether page is evictable--i.e., should be placed on active/inactive
3064 * lists vs unevictable list.  The vma argument is !NULL when called from the
3065 * fault path to determine how to instantate a new page.
3066 *
3067 * Reasons page might not be evictable:
3068 * (1) page's mapping marked unevictable
3069 * (2) page is part of an mlocked VMA
3070 *
3071 */
3072int page_evictable(struct page *page, struct vm_area_struct *vma)
3073{
3074
3075	if (mapping_unevictable(page_mapping(page)))
3076		return 0;
3077
3078	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3079		return 0;
3080
3081	return 1;
3082}
3083
3084/**
3085 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3086 * @page: page to check evictability and move to appropriate lru list
3087 * @zone: zone page is in
3088 *
3089 * Checks a page for evictability and moves the page to the appropriate
3090 * zone lru list.
3091 *
3092 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3093 * have PageUnevictable set.
3094 */
3095static void check_move_unevictable_page(struct page *page, struct zone *zone)
3096{
3097	VM_BUG_ON(PageActive(page));
3098
3099retry:
3100	ClearPageUnevictable(page);
3101	if (page_evictable(page, NULL)) {
3102		enum lru_list l = page_lru_base_type(page);
3103
3104		__dec_zone_state(zone, NR_UNEVICTABLE);
3105		list_move(&page->lru, &zone->lru[l].list);
3106		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3107		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3108		__count_vm_event(UNEVICTABLE_PGRESCUED);
3109	} else {
3110		/*
3111		 * rotate unevictable list
3112		 */
3113		SetPageUnevictable(page);
3114		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3115		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3116		if (page_evictable(page, NULL))
3117			goto retry;
3118	}
3119}
3120
3121/**
3122 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3123 * @mapping: struct address_space to scan for evictable pages
3124 *
3125 * Scan all pages in mapping.  Check unevictable pages for
3126 * evictability and move them to the appropriate zone lru list.
3127 */
3128void scan_mapping_unevictable_pages(struct address_space *mapping)
3129{
3130	pgoff_t next = 0;
3131	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3132			 PAGE_CACHE_SHIFT;
3133	struct zone *zone;
3134	struct pagevec pvec;
3135
3136	if (mapping->nrpages == 0)
3137		return;
3138
3139	pagevec_init(&pvec, 0);
3140	while (next < end &&
3141		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3142		int i;
3143		int pg_scanned = 0;
3144
3145		zone = NULL;
3146
3147		for (i = 0; i < pagevec_count(&pvec); i++) {
3148			struct page *page = pvec.pages[i];
3149			pgoff_t page_index = page->index;
3150			struct zone *pagezone = page_zone(page);
3151
3152			pg_scanned++;
3153			if (page_index > next)
3154				next = page_index;
3155			next++;
3156
3157			if (pagezone != zone) {
3158				if (zone)
3159					spin_unlock_irq(&zone->lru_lock);
3160				zone = pagezone;
3161				spin_lock_irq(&zone->lru_lock);
3162			}
3163
3164			if (PageLRU(page) && PageUnevictable(page))
3165				check_move_unevictable_page(page, zone);
3166		}
3167		if (zone)
3168			spin_unlock_irq(&zone->lru_lock);
3169		pagevec_release(&pvec);
3170
3171		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3172	}
3173
3174}
3175
3176/**
3177 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3178 * @zone - zone of which to scan the unevictable list
3179 *
3180 * Scan @zone's unevictable LRU lists to check for pages that have become
3181 * evictable.  Move those that have to @zone's inactive list where they
3182 * become candidates for reclaim, unless shrink_inactive_zone() decides
3183 * to reactivate them.  Pages that are still unevictable are rotated
3184 * back onto @zone's unevictable list.
3185 */
3186#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3187static void scan_zone_unevictable_pages(struct zone *zone)
3188{
3189	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3190	unsigned long scan;
3191	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3192
3193	while (nr_to_scan > 0) {
3194		unsigned long batch_size = min(nr_to_scan,
3195						SCAN_UNEVICTABLE_BATCH_SIZE);
3196
3197		spin_lock_irq(&zone->lru_lock);
3198		for (scan = 0;  scan < batch_size; scan++) {
3199			struct page *page = lru_to_page(l_unevictable);
3200
3201			if (!trylock_page(page))
3202				continue;
3203
3204			prefetchw_prev_lru_page(page, l_unevictable, flags);
3205
3206			if (likely(PageLRU(page) && PageUnevictable(page)))
3207				check_move_unevictable_page(page, zone);
3208
3209			unlock_page(page);
3210		}
3211		spin_unlock_irq(&zone->lru_lock);
3212
3213		nr_to_scan -= batch_size;
3214	}
3215}
3216
3217
3218/**
3219 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3220 *
3221 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3222 * pages that have become evictable.  Move those back to the zones'
3223 * inactive list where they become candidates for reclaim.
3224 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3225 * and we add swap to the system.  As such, it runs in the context of a task
3226 * that has possibly/probably made some previously unevictable pages
3227 * evictable.
3228 */
3229static void scan_all_zones_unevictable_pages(void)
3230{
3231	struct zone *zone;
3232
3233	for_each_zone(zone) {
3234		scan_zone_unevictable_pages(zone);
3235	}
3236}
3237
3238/*
3239 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3240 * all nodes' unevictable lists for evictable pages
3241 */
3242unsigned long scan_unevictable_pages;
3243
3244int scan_unevictable_handler(struct ctl_table *table, int write,
3245			   void __user *buffer,
3246			   size_t *length, loff_t *ppos)
3247{
3248	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3249
3250	if (write && *(unsigned long *)table->data)
3251		scan_all_zones_unevictable_pages();
3252
3253	scan_unevictable_pages = 0;
3254	return 0;
3255}
3256
3257#ifdef CONFIG_NUMA
3258/*
3259 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3260 * a specified node's per zone unevictable lists for evictable pages.
3261 */
3262
3263static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3264					  struct sysdev_attribute *attr,
3265					  char *buf)
3266{
3267	return sprintf(buf, "0\n");	/* always zero; should fit... */
3268}
3269
3270static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3271					   struct sysdev_attribute *attr,
3272					const char *buf, size_t count)
3273{
3274	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3275	struct zone *zone;
3276	unsigned long res;
3277	unsigned long req = strict_strtoul(buf, 10, &res);
3278
3279	if (!req)
3280		return 1;	/* zero is no-op */
3281
3282	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3283		if (!populated_zone(zone))
3284			continue;
3285		scan_zone_unevictable_pages(zone);
3286	}
3287	return 1;
3288}
3289
3290
3291static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3292			read_scan_unevictable_node,
3293			write_scan_unevictable_node);
3294
3295int scan_unevictable_register_node(struct node *node)
3296{
3297	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3298}
3299
3300void scan_unevictable_unregister_node(struct node *node)
3301{
3302	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3303}
3304#endif
3305