vmscan.c revision 0c917313a8d84fcc0c376db3f7edb7c06f06f920
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int swappiness;
99
100	int order;
101
102	/*
103	 * Intend to reclaim enough continuous memory rather than reclaim
104	 * enough amount of memory. i.e, mode for high order allocation.
105	 */
106	reclaim_mode_t reclaim_mode;
107
108	/* Which cgroup do we reclaim from */
109	struct mem_cgroup *mem_cgroup;
110
111	/*
112	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113	 * are scanned.
114	 */
115	nodemask_t	*nodemask;
116};
117
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field)			\
122	do {								\
123		if ((_page)->lru.prev != _base) {			\
124			struct page *prev;				\
125									\
126			prev = lru_to_page(&(_page->lru));		\
127			prefetch(&prev->_field);			\
128		}							\
129	} while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field)			\
136	do {								\
137		if ((_page)->lru.prev != _base) {			\
138			struct page *prev;				\
139									\
140			prev = lru_to_page(&(_page->lru));		\
141			prefetchw(&prev->_field);			\
142		}							\
143	} while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100.  Higher means more swappy.
150 */
151int vm_swappiness = 60;
152long vm_total_pages;	/* The total number of pages which the VM controls */
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159#else
160#define scanning_global_lru(sc)	(1)
161#endif
162
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164						  struct scan_control *sc)
165{
166	if (!scanning_global_lru(sc))
167		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169	return &zone->reclaim_stat;
170}
171
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173				struct scan_control *sc, enum lru_list lru)
174{
175	if (!scanning_global_lru(sc))
176		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
177
178	return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
182/*
183 * Add a shrinker callback to be called from the vm
184 */
185void register_shrinker(struct shrinker *shrinker)
186{
187	shrinker->nr = 0;
188	down_write(&shrinker_rwsem);
189	list_add_tail(&shrinker->list, &shrinker_list);
190	up_write(&shrinker_rwsem);
191}
192EXPORT_SYMBOL(register_shrinker);
193
194/*
195 * Remove one
196 */
197void unregister_shrinker(struct shrinker *shrinker)
198{
199	down_write(&shrinker_rwsem);
200	list_del(&shrinker->list);
201	up_write(&shrinker_rwsem);
202}
203EXPORT_SYMBOL(unregister_shrinker);
204
205#define SHRINK_BATCH 128
206/*
207 * Call the shrink functions to age shrinkable caches
208 *
209 * Here we assume it costs one seek to replace a lru page and that it also
210 * takes a seek to recreate a cache object.  With this in mind we age equal
211 * percentages of the lru and ageable caches.  This should balance the seeks
212 * generated by these structures.
213 *
214 * If the vm encountered mapped pages on the LRU it increase the pressure on
215 * slab to avoid swapping.
216 *
217 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
218 *
219 * `lru_pages' represents the number of on-LRU pages in all the zones which
220 * are eligible for the caller's allocation attempt.  It is used for balancing
221 * slab reclaim versus page reclaim.
222 *
223 * Returns the number of slab objects which we shrunk.
224 */
225unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
226			unsigned long lru_pages)
227{
228	struct shrinker *shrinker;
229	unsigned long ret = 0;
230
231	if (scanned == 0)
232		scanned = SWAP_CLUSTER_MAX;
233
234	if (!down_read_trylock(&shrinker_rwsem)) {
235		/* Assume we'll be able to shrink next time */
236		ret = 1;
237		goto out;
238	}
239
240	list_for_each_entry(shrinker, &shrinker_list, list) {
241		unsigned long long delta;
242		unsigned long total_scan;
243		unsigned long max_pass;
244
245		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
246		delta = (4 * scanned) / shrinker->seeks;
247		delta *= max_pass;
248		do_div(delta, lru_pages + 1);
249		shrinker->nr += delta;
250		if (shrinker->nr < 0) {
251			printk(KERN_ERR "shrink_slab: %pF negative objects to "
252			       "delete nr=%ld\n",
253			       shrinker->shrink, shrinker->nr);
254			shrinker->nr = max_pass;
255		}
256
257		/*
258		 * Avoid risking looping forever due to too large nr value:
259		 * never try to free more than twice the estimate number of
260		 * freeable entries.
261		 */
262		if (shrinker->nr > max_pass * 2)
263			shrinker->nr = max_pass * 2;
264
265		total_scan = shrinker->nr;
266		shrinker->nr = 0;
267
268		while (total_scan >= SHRINK_BATCH) {
269			long this_scan = SHRINK_BATCH;
270			int shrink_ret;
271			int nr_before;
272
273			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
274			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
275								gfp_mask);
276			if (shrink_ret == -1)
277				break;
278			if (shrink_ret < nr_before)
279				ret += nr_before - shrink_ret;
280			count_vm_events(SLABS_SCANNED, this_scan);
281			total_scan -= this_scan;
282
283			cond_resched();
284		}
285
286		shrinker->nr += total_scan;
287	}
288	up_read(&shrinker_rwsem);
289out:
290	cond_resched();
291	return ret;
292}
293
294static void set_reclaim_mode(int priority, struct scan_control *sc,
295				   bool sync)
296{
297	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
298
299	/*
300	 * Initially assume we are entering either lumpy reclaim or
301	 * reclaim/compaction.Depending on the order, we will either set the
302	 * sync mode or just reclaim order-0 pages later.
303	 */
304	if (COMPACTION_BUILD)
305		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
306	else
307		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
308
309	/*
310	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
311	 * restricting when its set to either costly allocations or when
312	 * under memory pressure
313	 */
314	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
315		sc->reclaim_mode |= syncmode;
316	else if (sc->order && priority < DEF_PRIORITY - 2)
317		sc->reclaim_mode |= syncmode;
318	else
319		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
320}
321
322static void reset_reclaim_mode(struct scan_control *sc)
323{
324	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
325}
326
327static inline int is_page_cache_freeable(struct page *page)
328{
329	/*
330	 * A freeable page cache page is referenced only by the caller
331	 * that isolated the page, the page cache radix tree and
332	 * optional buffer heads at page->private.
333	 */
334	return page_count(page) - page_has_private(page) == 2;
335}
336
337static int may_write_to_queue(struct backing_dev_info *bdi,
338			      struct scan_control *sc)
339{
340	if (current->flags & PF_SWAPWRITE)
341		return 1;
342	if (!bdi_write_congested(bdi))
343		return 1;
344	if (bdi == current->backing_dev_info)
345		return 1;
346
347	/* lumpy reclaim for hugepage often need a lot of write */
348	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
349		return 1;
350	return 0;
351}
352
353/*
354 * We detected a synchronous write error writing a page out.  Probably
355 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
356 * fsync(), msync() or close().
357 *
358 * The tricky part is that after writepage we cannot touch the mapping: nothing
359 * prevents it from being freed up.  But we have a ref on the page and once
360 * that page is locked, the mapping is pinned.
361 *
362 * We're allowed to run sleeping lock_page() here because we know the caller has
363 * __GFP_FS.
364 */
365static void handle_write_error(struct address_space *mapping,
366				struct page *page, int error)
367{
368	lock_page(page);
369	if (page_mapping(page) == mapping)
370		mapping_set_error(mapping, error);
371	unlock_page(page);
372}
373
374/* possible outcome of pageout() */
375typedef enum {
376	/* failed to write page out, page is locked */
377	PAGE_KEEP,
378	/* move page to the active list, page is locked */
379	PAGE_ACTIVATE,
380	/* page has been sent to the disk successfully, page is unlocked */
381	PAGE_SUCCESS,
382	/* page is clean and locked */
383	PAGE_CLEAN,
384} pageout_t;
385
386/*
387 * pageout is called by shrink_page_list() for each dirty page.
388 * Calls ->writepage().
389 */
390static pageout_t pageout(struct page *page, struct address_space *mapping,
391			 struct scan_control *sc)
392{
393	/*
394	 * If the page is dirty, only perform writeback if that write
395	 * will be non-blocking.  To prevent this allocation from being
396	 * stalled by pagecache activity.  But note that there may be
397	 * stalls if we need to run get_block().  We could test
398	 * PagePrivate for that.
399	 *
400	 * If this process is currently in __generic_file_aio_write() against
401	 * this page's queue, we can perform writeback even if that
402	 * will block.
403	 *
404	 * If the page is swapcache, write it back even if that would
405	 * block, for some throttling. This happens by accident, because
406	 * swap_backing_dev_info is bust: it doesn't reflect the
407	 * congestion state of the swapdevs.  Easy to fix, if needed.
408	 */
409	if (!is_page_cache_freeable(page))
410		return PAGE_KEEP;
411	if (!mapping) {
412		/*
413		 * Some data journaling orphaned pages can have
414		 * page->mapping == NULL while being dirty with clean buffers.
415		 */
416		if (page_has_private(page)) {
417			if (try_to_free_buffers(page)) {
418				ClearPageDirty(page);
419				printk("%s: orphaned page\n", __func__);
420				return PAGE_CLEAN;
421			}
422		}
423		return PAGE_KEEP;
424	}
425	if (mapping->a_ops->writepage == NULL)
426		return PAGE_ACTIVATE;
427	if (!may_write_to_queue(mapping->backing_dev_info, sc))
428		return PAGE_KEEP;
429
430	if (clear_page_dirty_for_io(page)) {
431		int res;
432		struct writeback_control wbc = {
433			.sync_mode = WB_SYNC_NONE,
434			.nr_to_write = SWAP_CLUSTER_MAX,
435			.range_start = 0,
436			.range_end = LLONG_MAX,
437			.for_reclaim = 1,
438		};
439
440		SetPageReclaim(page);
441		res = mapping->a_ops->writepage(page, &wbc);
442		if (res < 0)
443			handle_write_error(mapping, page, res);
444		if (res == AOP_WRITEPAGE_ACTIVATE) {
445			ClearPageReclaim(page);
446			return PAGE_ACTIVATE;
447		}
448
449		/*
450		 * Wait on writeback if requested to. This happens when
451		 * direct reclaiming a large contiguous area and the
452		 * first attempt to free a range of pages fails.
453		 */
454		if (PageWriteback(page) &&
455		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
456			wait_on_page_writeback(page);
457
458		if (!PageWriteback(page)) {
459			/* synchronous write or broken a_ops? */
460			ClearPageReclaim(page);
461		}
462		trace_mm_vmscan_writepage(page,
463			trace_reclaim_flags(page, sc->reclaim_mode));
464		inc_zone_page_state(page, NR_VMSCAN_WRITE);
465		return PAGE_SUCCESS;
466	}
467
468	return PAGE_CLEAN;
469}
470
471/*
472 * Same as remove_mapping, but if the page is removed from the mapping, it
473 * gets returned with a refcount of 0.
474 */
475static int __remove_mapping(struct address_space *mapping, struct page *page)
476{
477	BUG_ON(!PageLocked(page));
478	BUG_ON(mapping != page_mapping(page));
479
480	spin_lock_irq(&mapping->tree_lock);
481	/*
482	 * The non racy check for a busy page.
483	 *
484	 * Must be careful with the order of the tests. When someone has
485	 * a ref to the page, it may be possible that they dirty it then
486	 * drop the reference. So if PageDirty is tested before page_count
487	 * here, then the following race may occur:
488	 *
489	 * get_user_pages(&page);
490	 * [user mapping goes away]
491	 * write_to(page);
492	 *				!PageDirty(page)    [good]
493	 * SetPageDirty(page);
494	 * put_page(page);
495	 *				!page_count(page)   [good, discard it]
496	 *
497	 * [oops, our write_to data is lost]
498	 *
499	 * Reversing the order of the tests ensures such a situation cannot
500	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
501	 * load is not satisfied before that of page->_count.
502	 *
503	 * Note that if SetPageDirty is always performed via set_page_dirty,
504	 * and thus under tree_lock, then this ordering is not required.
505	 */
506	if (!page_freeze_refs(page, 2))
507		goto cannot_free;
508	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
509	if (unlikely(PageDirty(page))) {
510		page_unfreeze_refs(page, 2);
511		goto cannot_free;
512	}
513
514	if (PageSwapCache(page)) {
515		swp_entry_t swap = { .val = page_private(page) };
516		__delete_from_swap_cache(page);
517		spin_unlock_irq(&mapping->tree_lock);
518		swapcache_free(swap, page);
519	} else {
520		void (*freepage)(struct page *);
521
522		freepage = mapping->a_ops->freepage;
523
524		__delete_from_page_cache(page);
525		spin_unlock_irq(&mapping->tree_lock);
526		mem_cgroup_uncharge_cache_page(page);
527
528		if (freepage != NULL)
529			freepage(page);
530	}
531
532	return 1;
533
534cannot_free:
535	spin_unlock_irq(&mapping->tree_lock);
536	return 0;
537}
538
539/*
540 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
541 * someone else has a ref on the page, abort and return 0.  If it was
542 * successfully detached, return 1.  Assumes the caller has a single ref on
543 * this page.
544 */
545int remove_mapping(struct address_space *mapping, struct page *page)
546{
547	if (__remove_mapping(mapping, page)) {
548		/*
549		 * Unfreezing the refcount with 1 rather than 2 effectively
550		 * drops the pagecache ref for us without requiring another
551		 * atomic operation.
552		 */
553		page_unfreeze_refs(page, 1);
554		return 1;
555	}
556	return 0;
557}
558
559/**
560 * putback_lru_page - put previously isolated page onto appropriate LRU list
561 * @page: page to be put back to appropriate lru list
562 *
563 * Add previously isolated @page to appropriate LRU list.
564 * Page may still be unevictable for other reasons.
565 *
566 * lru_lock must not be held, interrupts must be enabled.
567 */
568void putback_lru_page(struct page *page)
569{
570	int lru;
571	int active = !!TestClearPageActive(page);
572	int was_unevictable = PageUnevictable(page);
573
574	VM_BUG_ON(PageLRU(page));
575
576redo:
577	ClearPageUnevictable(page);
578
579	if (page_evictable(page, NULL)) {
580		/*
581		 * For evictable pages, we can use the cache.
582		 * In event of a race, worst case is we end up with an
583		 * unevictable page on [in]active list.
584		 * We know how to handle that.
585		 */
586		lru = active + page_lru_base_type(page);
587		lru_cache_add_lru(page, lru);
588	} else {
589		/*
590		 * Put unevictable pages directly on zone's unevictable
591		 * list.
592		 */
593		lru = LRU_UNEVICTABLE;
594		add_page_to_unevictable_list(page);
595		/*
596		 * When racing with an mlock clearing (page is
597		 * unlocked), make sure that if the other thread does
598		 * not observe our setting of PG_lru and fails
599		 * isolation, we see PG_mlocked cleared below and move
600		 * the page back to the evictable list.
601		 *
602		 * The other side is TestClearPageMlocked().
603		 */
604		smp_mb();
605	}
606
607	/*
608	 * page's status can change while we move it among lru. If an evictable
609	 * page is on unevictable list, it never be freed. To avoid that,
610	 * check after we added it to the list, again.
611	 */
612	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
613		if (!isolate_lru_page(page)) {
614			put_page(page);
615			goto redo;
616		}
617		/* This means someone else dropped this page from LRU
618		 * So, it will be freed or putback to LRU again. There is
619		 * nothing to do here.
620		 */
621	}
622
623	if (was_unevictable && lru != LRU_UNEVICTABLE)
624		count_vm_event(UNEVICTABLE_PGRESCUED);
625	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
626		count_vm_event(UNEVICTABLE_PGCULLED);
627
628	put_page(page);		/* drop ref from isolate */
629}
630
631enum page_references {
632	PAGEREF_RECLAIM,
633	PAGEREF_RECLAIM_CLEAN,
634	PAGEREF_KEEP,
635	PAGEREF_ACTIVATE,
636};
637
638static enum page_references page_check_references(struct page *page,
639						  struct scan_control *sc)
640{
641	int referenced_ptes, referenced_page;
642	unsigned long vm_flags;
643
644	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
645	referenced_page = TestClearPageReferenced(page);
646
647	/* Lumpy reclaim - ignore references */
648	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
649		return PAGEREF_RECLAIM;
650
651	/*
652	 * Mlock lost the isolation race with us.  Let try_to_unmap()
653	 * move the page to the unevictable list.
654	 */
655	if (vm_flags & VM_LOCKED)
656		return PAGEREF_RECLAIM;
657
658	if (referenced_ptes) {
659		if (PageAnon(page))
660			return PAGEREF_ACTIVATE;
661		/*
662		 * All mapped pages start out with page table
663		 * references from the instantiating fault, so we need
664		 * to look twice if a mapped file page is used more
665		 * than once.
666		 *
667		 * Mark it and spare it for another trip around the
668		 * inactive list.  Another page table reference will
669		 * lead to its activation.
670		 *
671		 * Note: the mark is set for activated pages as well
672		 * so that recently deactivated but used pages are
673		 * quickly recovered.
674		 */
675		SetPageReferenced(page);
676
677		if (referenced_page)
678			return PAGEREF_ACTIVATE;
679
680		return PAGEREF_KEEP;
681	}
682
683	/* Reclaim if clean, defer dirty pages to writeback */
684	if (referenced_page && !PageSwapBacked(page))
685		return PAGEREF_RECLAIM_CLEAN;
686
687	return PAGEREF_RECLAIM;
688}
689
690static noinline_for_stack void free_page_list(struct list_head *free_pages)
691{
692	struct pagevec freed_pvec;
693	struct page *page, *tmp;
694
695	pagevec_init(&freed_pvec, 1);
696
697	list_for_each_entry_safe(page, tmp, free_pages, lru) {
698		list_del(&page->lru);
699		if (!pagevec_add(&freed_pvec, page)) {
700			__pagevec_free(&freed_pvec);
701			pagevec_reinit(&freed_pvec);
702		}
703	}
704
705	pagevec_free(&freed_pvec);
706}
707
708/*
709 * shrink_page_list() returns the number of reclaimed pages
710 */
711static unsigned long shrink_page_list(struct list_head *page_list,
712				      struct zone *zone,
713				      struct scan_control *sc)
714{
715	LIST_HEAD(ret_pages);
716	LIST_HEAD(free_pages);
717	int pgactivate = 0;
718	unsigned long nr_dirty = 0;
719	unsigned long nr_congested = 0;
720	unsigned long nr_reclaimed = 0;
721
722	cond_resched();
723
724	while (!list_empty(page_list)) {
725		enum page_references references;
726		struct address_space *mapping;
727		struct page *page;
728		int may_enter_fs;
729
730		cond_resched();
731
732		page = lru_to_page(page_list);
733		list_del(&page->lru);
734
735		if (!trylock_page(page))
736			goto keep;
737
738		VM_BUG_ON(PageActive(page));
739		VM_BUG_ON(page_zone(page) != zone);
740
741		sc->nr_scanned++;
742
743		if (unlikely(!page_evictable(page, NULL)))
744			goto cull_mlocked;
745
746		if (!sc->may_unmap && page_mapped(page))
747			goto keep_locked;
748
749		/* Double the slab pressure for mapped and swapcache pages */
750		if (page_mapped(page) || PageSwapCache(page))
751			sc->nr_scanned++;
752
753		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
754			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
755
756		if (PageWriteback(page)) {
757			/*
758			 * Synchronous reclaim is performed in two passes,
759			 * first an asynchronous pass over the list to
760			 * start parallel writeback, and a second synchronous
761			 * pass to wait for the IO to complete.  Wait here
762			 * for any page for which writeback has already
763			 * started.
764			 */
765			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
766			    may_enter_fs)
767				wait_on_page_writeback(page);
768			else {
769				unlock_page(page);
770				goto keep_lumpy;
771			}
772		}
773
774		references = page_check_references(page, sc);
775		switch (references) {
776		case PAGEREF_ACTIVATE:
777			goto activate_locked;
778		case PAGEREF_KEEP:
779			goto keep_locked;
780		case PAGEREF_RECLAIM:
781		case PAGEREF_RECLAIM_CLEAN:
782			; /* try to reclaim the page below */
783		}
784
785		/*
786		 * Anonymous process memory has backing store?
787		 * Try to allocate it some swap space here.
788		 */
789		if (PageAnon(page) && !PageSwapCache(page)) {
790			if (!(sc->gfp_mask & __GFP_IO))
791				goto keep_locked;
792			if (!add_to_swap(page))
793				goto activate_locked;
794			may_enter_fs = 1;
795		}
796
797		mapping = page_mapping(page);
798
799		/*
800		 * The page is mapped into the page tables of one or more
801		 * processes. Try to unmap it here.
802		 */
803		if (page_mapped(page) && mapping) {
804			switch (try_to_unmap(page, TTU_UNMAP)) {
805			case SWAP_FAIL:
806				goto activate_locked;
807			case SWAP_AGAIN:
808				goto keep_locked;
809			case SWAP_MLOCK:
810				goto cull_mlocked;
811			case SWAP_SUCCESS:
812				; /* try to free the page below */
813			}
814		}
815
816		if (PageDirty(page)) {
817			nr_dirty++;
818
819			if (references == PAGEREF_RECLAIM_CLEAN)
820				goto keep_locked;
821			if (!may_enter_fs)
822				goto keep_locked;
823			if (!sc->may_writepage)
824				goto keep_locked;
825
826			/* Page is dirty, try to write it out here */
827			switch (pageout(page, mapping, sc)) {
828			case PAGE_KEEP:
829				nr_congested++;
830				goto keep_locked;
831			case PAGE_ACTIVATE:
832				goto activate_locked;
833			case PAGE_SUCCESS:
834				if (PageWriteback(page))
835					goto keep_lumpy;
836				if (PageDirty(page))
837					goto keep;
838
839				/*
840				 * A synchronous write - probably a ramdisk.  Go
841				 * ahead and try to reclaim the page.
842				 */
843				if (!trylock_page(page))
844					goto keep;
845				if (PageDirty(page) || PageWriteback(page))
846					goto keep_locked;
847				mapping = page_mapping(page);
848			case PAGE_CLEAN:
849				; /* try to free the page below */
850			}
851		}
852
853		/*
854		 * If the page has buffers, try to free the buffer mappings
855		 * associated with this page. If we succeed we try to free
856		 * the page as well.
857		 *
858		 * We do this even if the page is PageDirty().
859		 * try_to_release_page() does not perform I/O, but it is
860		 * possible for a page to have PageDirty set, but it is actually
861		 * clean (all its buffers are clean).  This happens if the
862		 * buffers were written out directly, with submit_bh(). ext3
863		 * will do this, as well as the blockdev mapping.
864		 * try_to_release_page() will discover that cleanness and will
865		 * drop the buffers and mark the page clean - it can be freed.
866		 *
867		 * Rarely, pages can have buffers and no ->mapping.  These are
868		 * the pages which were not successfully invalidated in
869		 * truncate_complete_page().  We try to drop those buffers here
870		 * and if that worked, and the page is no longer mapped into
871		 * process address space (page_count == 1) it can be freed.
872		 * Otherwise, leave the page on the LRU so it is swappable.
873		 */
874		if (page_has_private(page)) {
875			if (!try_to_release_page(page, sc->gfp_mask))
876				goto activate_locked;
877			if (!mapping && page_count(page) == 1) {
878				unlock_page(page);
879				if (put_page_testzero(page))
880					goto free_it;
881				else {
882					/*
883					 * rare race with speculative reference.
884					 * the speculative reference will free
885					 * this page shortly, so we may
886					 * increment nr_reclaimed here (and
887					 * leave it off the LRU).
888					 */
889					nr_reclaimed++;
890					continue;
891				}
892			}
893		}
894
895		if (!mapping || !__remove_mapping(mapping, page))
896			goto keep_locked;
897
898		/*
899		 * At this point, we have no other references and there is
900		 * no way to pick any more up (removed from LRU, removed
901		 * from pagecache). Can use non-atomic bitops now (and
902		 * we obviously don't have to worry about waking up a process
903		 * waiting on the page lock, because there are no references.
904		 */
905		__clear_page_locked(page);
906free_it:
907		nr_reclaimed++;
908
909		/*
910		 * Is there need to periodically free_page_list? It would
911		 * appear not as the counts should be low
912		 */
913		list_add(&page->lru, &free_pages);
914		continue;
915
916cull_mlocked:
917		if (PageSwapCache(page))
918			try_to_free_swap(page);
919		unlock_page(page);
920		putback_lru_page(page);
921		reset_reclaim_mode(sc);
922		continue;
923
924activate_locked:
925		/* Not a candidate for swapping, so reclaim swap space. */
926		if (PageSwapCache(page) && vm_swap_full())
927			try_to_free_swap(page);
928		VM_BUG_ON(PageActive(page));
929		SetPageActive(page);
930		pgactivate++;
931keep_locked:
932		unlock_page(page);
933keep:
934		reset_reclaim_mode(sc);
935keep_lumpy:
936		list_add(&page->lru, &ret_pages);
937		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
938	}
939
940	/*
941	 * Tag a zone as congested if all the dirty pages encountered were
942	 * backed by a congested BDI. In this case, reclaimers should just
943	 * back off and wait for congestion to clear because further reclaim
944	 * will encounter the same problem
945	 */
946	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
947		zone_set_flag(zone, ZONE_CONGESTED);
948
949	free_page_list(&free_pages);
950
951	list_splice(&ret_pages, page_list);
952	count_vm_events(PGACTIVATE, pgactivate);
953	return nr_reclaimed;
954}
955
956/*
957 * Attempt to remove the specified page from its LRU.  Only take this page
958 * if it is of the appropriate PageActive status.  Pages which are being
959 * freed elsewhere are also ignored.
960 *
961 * page:	page to consider
962 * mode:	one of the LRU isolation modes defined above
963 *
964 * returns 0 on success, -ve errno on failure.
965 */
966int __isolate_lru_page(struct page *page, int mode, int file)
967{
968	int ret = -EINVAL;
969
970	/* Only take pages on the LRU. */
971	if (!PageLRU(page))
972		return ret;
973
974	/*
975	 * When checking the active state, we need to be sure we are
976	 * dealing with comparible boolean values.  Take the logical not
977	 * of each.
978	 */
979	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
980		return ret;
981
982	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
983		return ret;
984
985	/*
986	 * When this function is being called for lumpy reclaim, we
987	 * initially look into all LRU pages, active, inactive and
988	 * unevictable; only give shrink_page_list evictable pages.
989	 */
990	if (PageUnevictable(page))
991		return ret;
992
993	ret = -EBUSY;
994
995	if (likely(get_page_unless_zero(page))) {
996		/*
997		 * Be careful not to clear PageLRU until after we're
998		 * sure the page is not being freed elsewhere -- the
999		 * page release code relies on it.
1000		 */
1001		ClearPageLRU(page);
1002		ret = 0;
1003	}
1004
1005	return ret;
1006}
1007
1008/*
1009 * zone->lru_lock is heavily contended.  Some of the functions that
1010 * shrink the lists perform better by taking out a batch of pages
1011 * and working on them outside the LRU lock.
1012 *
1013 * For pagecache intensive workloads, this function is the hottest
1014 * spot in the kernel (apart from copy_*_user functions).
1015 *
1016 * Appropriate locks must be held before calling this function.
1017 *
1018 * @nr_to_scan:	The number of pages to look through on the list.
1019 * @src:	The LRU list to pull pages off.
1020 * @dst:	The temp list to put pages on to.
1021 * @scanned:	The number of pages that were scanned.
1022 * @order:	The caller's attempted allocation order
1023 * @mode:	One of the LRU isolation modes
1024 * @file:	True [1] if isolating file [!anon] pages
1025 *
1026 * returns how many pages were moved onto *@dst.
1027 */
1028static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1029		struct list_head *src, struct list_head *dst,
1030		unsigned long *scanned, int order, int mode, int file)
1031{
1032	unsigned long nr_taken = 0;
1033	unsigned long nr_lumpy_taken = 0;
1034	unsigned long nr_lumpy_dirty = 0;
1035	unsigned long nr_lumpy_failed = 0;
1036	unsigned long scan;
1037
1038	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1039		struct page *page;
1040		unsigned long pfn;
1041		unsigned long end_pfn;
1042		unsigned long page_pfn;
1043		int zone_id;
1044
1045		page = lru_to_page(src);
1046		prefetchw_prev_lru_page(page, src, flags);
1047
1048		VM_BUG_ON(!PageLRU(page));
1049
1050		switch (__isolate_lru_page(page, mode, file)) {
1051		case 0:
1052			list_move(&page->lru, dst);
1053			mem_cgroup_del_lru(page);
1054			nr_taken += hpage_nr_pages(page);
1055			break;
1056
1057		case -EBUSY:
1058			/* else it is being freed elsewhere */
1059			list_move(&page->lru, src);
1060			mem_cgroup_rotate_lru_list(page, page_lru(page));
1061			continue;
1062
1063		default:
1064			BUG();
1065		}
1066
1067		if (!order)
1068			continue;
1069
1070		/*
1071		 * Attempt to take all pages in the order aligned region
1072		 * surrounding the tag page.  Only take those pages of
1073		 * the same active state as that tag page.  We may safely
1074		 * round the target page pfn down to the requested order
1075		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1076		 * where that page is in a different zone we will detect
1077		 * it from its zone id and abort this block scan.
1078		 */
1079		zone_id = page_zone_id(page);
1080		page_pfn = page_to_pfn(page);
1081		pfn = page_pfn & ~((1 << order) - 1);
1082		end_pfn = pfn + (1 << order);
1083		for (; pfn < end_pfn; pfn++) {
1084			struct page *cursor_page;
1085
1086			/* The target page is in the block, ignore it. */
1087			if (unlikely(pfn == page_pfn))
1088				continue;
1089
1090			/* Avoid holes within the zone. */
1091			if (unlikely(!pfn_valid_within(pfn)))
1092				break;
1093
1094			cursor_page = pfn_to_page(pfn);
1095
1096			/* Check that we have not crossed a zone boundary. */
1097			if (unlikely(page_zone_id(cursor_page) != zone_id))
1098				break;
1099
1100			/*
1101			 * If we don't have enough swap space, reclaiming of
1102			 * anon page which don't already have a swap slot is
1103			 * pointless.
1104			 */
1105			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1106			    !PageSwapCache(cursor_page))
1107				break;
1108
1109			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1110				list_move(&cursor_page->lru, dst);
1111				mem_cgroup_del_lru(cursor_page);
1112				nr_taken += hpage_nr_pages(page);
1113				nr_lumpy_taken++;
1114				if (PageDirty(cursor_page))
1115					nr_lumpy_dirty++;
1116				scan++;
1117			} else {
1118				/* the page is freed already. */
1119				if (!page_count(cursor_page))
1120					continue;
1121				break;
1122			}
1123		}
1124
1125		/* If we break out of the loop above, lumpy reclaim failed */
1126		if (pfn < end_pfn)
1127			nr_lumpy_failed++;
1128	}
1129
1130	*scanned = scan;
1131
1132	trace_mm_vmscan_lru_isolate(order,
1133			nr_to_scan, scan,
1134			nr_taken,
1135			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1136			mode);
1137	return nr_taken;
1138}
1139
1140static unsigned long isolate_pages_global(unsigned long nr,
1141					struct list_head *dst,
1142					unsigned long *scanned, int order,
1143					int mode, struct zone *z,
1144					int active, int file)
1145{
1146	int lru = LRU_BASE;
1147	if (active)
1148		lru += LRU_ACTIVE;
1149	if (file)
1150		lru += LRU_FILE;
1151	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1152								mode, file);
1153}
1154
1155/*
1156 * clear_active_flags() is a helper for shrink_active_list(), clearing
1157 * any active bits from the pages in the list.
1158 */
1159static unsigned long clear_active_flags(struct list_head *page_list,
1160					unsigned int *count)
1161{
1162	int nr_active = 0;
1163	int lru;
1164	struct page *page;
1165
1166	list_for_each_entry(page, page_list, lru) {
1167		int numpages = hpage_nr_pages(page);
1168		lru = page_lru_base_type(page);
1169		if (PageActive(page)) {
1170			lru += LRU_ACTIVE;
1171			ClearPageActive(page);
1172			nr_active += numpages;
1173		}
1174		if (count)
1175			count[lru] += numpages;
1176	}
1177
1178	return nr_active;
1179}
1180
1181/**
1182 * isolate_lru_page - tries to isolate a page from its LRU list
1183 * @page: page to isolate from its LRU list
1184 *
1185 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1186 * vmstat statistic corresponding to whatever LRU list the page was on.
1187 *
1188 * Returns 0 if the page was removed from an LRU list.
1189 * Returns -EBUSY if the page was not on an LRU list.
1190 *
1191 * The returned page will have PageLRU() cleared.  If it was found on
1192 * the active list, it will have PageActive set.  If it was found on
1193 * the unevictable list, it will have the PageUnevictable bit set. That flag
1194 * may need to be cleared by the caller before letting the page go.
1195 *
1196 * The vmstat statistic corresponding to the list on which the page was
1197 * found will be decremented.
1198 *
1199 * Restrictions:
1200 * (1) Must be called with an elevated refcount on the page. This is a
1201 *     fundamentnal difference from isolate_lru_pages (which is called
1202 *     without a stable reference).
1203 * (2) the lru_lock must not be held.
1204 * (3) interrupts must be enabled.
1205 */
1206int isolate_lru_page(struct page *page)
1207{
1208	int ret = -EBUSY;
1209
1210	VM_BUG_ON(!page_count(page));
1211
1212	if (PageLRU(page)) {
1213		struct zone *zone = page_zone(page);
1214
1215		spin_lock_irq(&zone->lru_lock);
1216		if (PageLRU(page)) {
1217			int lru = page_lru(page);
1218			ret = 0;
1219			get_page(page);
1220			ClearPageLRU(page);
1221
1222			del_page_from_lru_list(zone, page, lru);
1223		}
1224		spin_unlock_irq(&zone->lru_lock);
1225	}
1226	return ret;
1227}
1228
1229/*
1230 * Are there way too many processes in the direct reclaim path already?
1231 */
1232static int too_many_isolated(struct zone *zone, int file,
1233		struct scan_control *sc)
1234{
1235	unsigned long inactive, isolated;
1236
1237	if (current_is_kswapd())
1238		return 0;
1239
1240	if (!scanning_global_lru(sc))
1241		return 0;
1242
1243	if (file) {
1244		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1245		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1246	} else {
1247		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1248		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1249	}
1250
1251	return isolated > inactive;
1252}
1253
1254/*
1255 * TODO: Try merging with migrations version of putback_lru_pages
1256 */
1257static noinline_for_stack void
1258putback_lru_pages(struct zone *zone, struct scan_control *sc,
1259				unsigned long nr_anon, unsigned long nr_file,
1260				struct list_head *page_list)
1261{
1262	struct page *page;
1263	struct pagevec pvec;
1264	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1265
1266	pagevec_init(&pvec, 1);
1267
1268	/*
1269	 * Put back any unfreeable pages.
1270	 */
1271	spin_lock(&zone->lru_lock);
1272	while (!list_empty(page_list)) {
1273		int lru;
1274		page = lru_to_page(page_list);
1275		VM_BUG_ON(PageLRU(page));
1276		list_del(&page->lru);
1277		if (unlikely(!page_evictable(page, NULL))) {
1278			spin_unlock_irq(&zone->lru_lock);
1279			putback_lru_page(page);
1280			spin_lock_irq(&zone->lru_lock);
1281			continue;
1282		}
1283		SetPageLRU(page);
1284		lru = page_lru(page);
1285		add_page_to_lru_list(zone, page, lru);
1286		if (is_active_lru(lru)) {
1287			int file = is_file_lru(lru);
1288			int numpages = hpage_nr_pages(page);
1289			reclaim_stat->recent_rotated[file] += numpages;
1290		}
1291		if (!pagevec_add(&pvec, page)) {
1292			spin_unlock_irq(&zone->lru_lock);
1293			__pagevec_release(&pvec);
1294			spin_lock_irq(&zone->lru_lock);
1295		}
1296	}
1297	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1298	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1299
1300	spin_unlock_irq(&zone->lru_lock);
1301	pagevec_release(&pvec);
1302}
1303
1304static noinline_for_stack void update_isolated_counts(struct zone *zone,
1305					struct scan_control *sc,
1306					unsigned long *nr_anon,
1307					unsigned long *nr_file,
1308					struct list_head *isolated_list)
1309{
1310	unsigned long nr_active;
1311	unsigned int count[NR_LRU_LISTS] = { 0, };
1312	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1313
1314	nr_active = clear_active_flags(isolated_list, count);
1315	__count_vm_events(PGDEACTIVATE, nr_active);
1316
1317	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1318			      -count[LRU_ACTIVE_FILE]);
1319	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1320			      -count[LRU_INACTIVE_FILE]);
1321	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1322			      -count[LRU_ACTIVE_ANON]);
1323	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1324			      -count[LRU_INACTIVE_ANON]);
1325
1326	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1327	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1328	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1329	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1330
1331	reclaim_stat->recent_scanned[0] += *nr_anon;
1332	reclaim_stat->recent_scanned[1] += *nr_file;
1333}
1334
1335/*
1336 * Returns true if the caller should wait to clean dirty/writeback pages.
1337 *
1338 * If we are direct reclaiming for contiguous pages and we do not reclaim
1339 * everything in the list, try again and wait for writeback IO to complete.
1340 * This will stall high-order allocations noticeably. Only do that when really
1341 * need to free the pages under high memory pressure.
1342 */
1343static inline bool should_reclaim_stall(unsigned long nr_taken,
1344					unsigned long nr_freed,
1345					int priority,
1346					struct scan_control *sc)
1347{
1348	int lumpy_stall_priority;
1349
1350	/* kswapd should not stall on sync IO */
1351	if (current_is_kswapd())
1352		return false;
1353
1354	/* Only stall on lumpy reclaim */
1355	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1356		return false;
1357
1358	/* If we have relaimed everything on the isolated list, no stall */
1359	if (nr_freed == nr_taken)
1360		return false;
1361
1362	/*
1363	 * For high-order allocations, there are two stall thresholds.
1364	 * High-cost allocations stall immediately where as lower
1365	 * order allocations such as stacks require the scanning
1366	 * priority to be much higher before stalling.
1367	 */
1368	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1369		lumpy_stall_priority = DEF_PRIORITY;
1370	else
1371		lumpy_stall_priority = DEF_PRIORITY / 3;
1372
1373	return priority <= lumpy_stall_priority;
1374}
1375
1376/*
1377 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1378 * of reclaimed pages
1379 */
1380static noinline_for_stack unsigned long
1381shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1382			struct scan_control *sc, int priority, int file)
1383{
1384	LIST_HEAD(page_list);
1385	unsigned long nr_scanned;
1386	unsigned long nr_reclaimed = 0;
1387	unsigned long nr_taken;
1388	unsigned long nr_anon;
1389	unsigned long nr_file;
1390
1391	while (unlikely(too_many_isolated(zone, file, sc))) {
1392		congestion_wait(BLK_RW_ASYNC, HZ/10);
1393
1394		/* We are about to die and free our memory. Return now. */
1395		if (fatal_signal_pending(current))
1396			return SWAP_CLUSTER_MAX;
1397	}
1398
1399	set_reclaim_mode(priority, sc, false);
1400	lru_add_drain();
1401	spin_lock_irq(&zone->lru_lock);
1402
1403	if (scanning_global_lru(sc)) {
1404		nr_taken = isolate_pages_global(nr_to_scan,
1405			&page_list, &nr_scanned, sc->order,
1406			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1407					ISOLATE_BOTH : ISOLATE_INACTIVE,
1408			zone, 0, file);
1409		zone->pages_scanned += nr_scanned;
1410		if (current_is_kswapd())
1411			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1412					       nr_scanned);
1413		else
1414			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1415					       nr_scanned);
1416	} else {
1417		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1418			&page_list, &nr_scanned, sc->order,
1419			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1420					ISOLATE_BOTH : ISOLATE_INACTIVE,
1421			zone, sc->mem_cgroup,
1422			0, file);
1423		/*
1424		 * mem_cgroup_isolate_pages() keeps track of
1425		 * scanned pages on its own.
1426		 */
1427	}
1428
1429	if (nr_taken == 0) {
1430		spin_unlock_irq(&zone->lru_lock);
1431		return 0;
1432	}
1433
1434	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1435
1436	spin_unlock_irq(&zone->lru_lock);
1437
1438	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1439
1440	/* Check if we should syncronously wait for writeback */
1441	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1442		set_reclaim_mode(priority, sc, true);
1443		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1444	}
1445
1446	local_irq_disable();
1447	if (current_is_kswapd())
1448		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1449	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1450
1451	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1452
1453	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1454		zone_idx(zone),
1455		nr_scanned, nr_reclaimed,
1456		priority,
1457		trace_shrink_flags(file, sc->reclaim_mode));
1458	return nr_reclaimed;
1459}
1460
1461/*
1462 * This moves pages from the active list to the inactive list.
1463 *
1464 * We move them the other way if the page is referenced by one or more
1465 * processes, from rmap.
1466 *
1467 * If the pages are mostly unmapped, the processing is fast and it is
1468 * appropriate to hold zone->lru_lock across the whole operation.  But if
1469 * the pages are mapped, the processing is slow (page_referenced()) so we
1470 * should drop zone->lru_lock around each page.  It's impossible to balance
1471 * this, so instead we remove the pages from the LRU while processing them.
1472 * It is safe to rely on PG_active against the non-LRU pages in here because
1473 * nobody will play with that bit on a non-LRU page.
1474 *
1475 * The downside is that we have to touch page->_count against each page.
1476 * But we had to alter page->flags anyway.
1477 */
1478
1479static void move_active_pages_to_lru(struct zone *zone,
1480				     struct list_head *list,
1481				     enum lru_list lru)
1482{
1483	unsigned long pgmoved = 0;
1484	struct pagevec pvec;
1485	struct page *page;
1486
1487	pagevec_init(&pvec, 1);
1488
1489	while (!list_empty(list)) {
1490		page = lru_to_page(list);
1491
1492		VM_BUG_ON(PageLRU(page));
1493		SetPageLRU(page);
1494
1495		list_move(&page->lru, &zone->lru[lru].list);
1496		mem_cgroup_add_lru_list(page, lru);
1497		pgmoved += hpage_nr_pages(page);
1498
1499		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1500			spin_unlock_irq(&zone->lru_lock);
1501			if (buffer_heads_over_limit)
1502				pagevec_strip(&pvec);
1503			__pagevec_release(&pvec);
1504			spin_lock_irq(&zone->lru_lock);
1505		}
1506	}
1507	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1508	if (!is_active_lru(lru))
1509		__count_vm_events(PGDEACTIVATE, pgmoved);
1510}
1511
1512static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1513			struct scan_control *sc, int priority, int file)
1514{
1515	unsigned long nr_taken;
1516	unsigned long pgscanned;
1517	unsigned long vm_flags;
1518	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1519	LIST_HEAD(l_active);
1520	LIST_HEAD(l_inactive);
1521	struct page *page;
1522	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1523	unsigned long nr_rotated = 0;
1524
1525	lru_add_drain();
1526	spin_lock_irq(&zone->lru_lock);
1527	if (scanning_global_lru(sc)) {
1528		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1529						&pgscanned, sc->order,
1530						ISOLATE_ACTIVE, zone,
1531						1, file);
1532		zone->pages_scanned += pgscanned;
1533	} else {
1534		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1535						&pgscanned, sc->order,
1536						ISOLATE_ACTIVE, zone,
1537						sc->mem_cgroup, 1, file);
1538		/*
1539		 * mem_cgroup_isolate_pages() keeps track of
1540		 * scanned pages on its own.
1541		 */
1542	}
1543
1544	reclaim_stat->recent_scanned[file] += nr_taken;
1545
1546	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1547	if (file)
1548		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1549	else
1550		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1551	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1552	spin_unlock_irq(&zone->lru_lock);
1553
1554	while (!list_empty(&l_hold)) {
1555		cond_resched();
1556		page = lru_to_page(&l_hold);
1557		list_del(&page->lru);
1558
1559		if (unlikely(!page_evictable(page, NULL))) {
1560			putback_lru_page(page);
1561			continue;
1562		}
1563
1564		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1565			nr_rotated += hpage_nr_pages(page);
1566			/*
1567			 * Identify referenced, file-backed active pages and
1568			 * give them one more trip around the active list. So
1569			 * that executable code get better chances to stay in
1570			 * memory under moderate memory pressure.  Anon pages
1571			 * are not likely to be evicted by use-once streaming
1572			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1573			 * so we ignore them here.
1574			 */
1575			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1576				list_add(&page->lru, &l_active);
1577				continue;
1578			}
1579		}
1580
1581		ClearPageActive(page);	/* we are de-activating */
1582		list_add(&page->lru, &l_inactive);
1583	}
1584
1585	/*
1586	 * Move pages back to the lru list.
1587	 */
1588	spin_lock_irq(&zone->lru_lock);
1589	/*
1590	 * Count referenced pages from currently used mappings as rotated,
1591	 * even though only some of them are actually re-activated.  This
1592	 * helps balance scan pressure between file and anonymous pages in
1593	 * get_scan_ratio.
1594	 */
1595	reclaim_stat->recent_rotated[file] += nr_rotated;
1596
1597	move_active_pages_to_lru(zone, &l_active,
1598						LRU_ACTIVE + file * LRU_FILE);
1599	move_active_pages_to_lru(zone, &l_inactive,
1600						LRU_BASE   + file * LRU_FILE);
1601	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1602	spin_unlock_irq(&zone->lru_lock);
1603}
1604
1605#ifdef CONFIG_SWAP
1606static int inactive_anon_is_low_global(struct zone *zone)
1607{
1608	unsigned long active, inactive;
1609
1610	active = zone_page_state(zone, NR_ACTIVE_ANON);
1611	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1612
1613	if (inactive * zone->inactive_ratio < active)
1614		return 1;
1615
1616	return 0;
1617}
1618
1619/**
1620 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1621 * @zone: zone to check
1622 * @sc:   scan control of this context
1623 *
1624 * Returns true if the zone does not have enough inactive anon pages,
1625 * meaning some active anon pages need to be deactivated.
1626 */
1627static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1628{
1629	int low;
1630
1631	/*
1632	 * If we don't have swap space, anonymous page deactivation
1633	 * is pointless.
1634	 */
1635	if (!total_swap_pages)
1636		return 0;
1637
1638	if (scanning_global_lru(sc))
1639		low = inactive_anon_is_low_global(zone);
1640	else
1641		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1642	return low;
1643}
1644#else
1645static inline int inactive_anon_is_low(struct zone *zone,
1646					struct scan_control *sc)
1647{
1648	return 0;
1649}
1650#endif
1651
1652static int inactive_file_is_low_global(struct zone *zone)
1653{
1654	unsigned long active, inactive;
1655
1656	active = zone_page_state(zone, NR_ACTIVE_FILE);
1657	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1658
1659	return (active > inactive);
1660}
1661
1662/**
1663 * inactive_file_is_low - check if file pages need to be deactivated
1664 * @zone: zone to check
1665 * @sc:   scan control of this context
1666 *
1667 * When the system is doing streaming IO, memory pressure here
1668 * ensures that active file pages get deactivated, until more
1669 * than half of the file pages are on the inactive list.
1670 *
1671 * Once we get to that situation, protect the system's working
1672 * set from being evicted by disabling active file page aging.
1673 *
1674 * This uses a different ratio than the anonymous pages, because
1675 * the page cache uses a use-once replacement algorithm.
1676 */
1677static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1678{
1679	int low;
1680
1681	if (scanning_global_lru(sc))
1682		low = inactive_file_is_low_global(zone);
1683	else
1684		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1685	return low;
1686}
1687
1688static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1689				int file)
1690{
1691	if (file)
1692		return inactive_file_is_low(zone, sc);
1693	else
1694		return inactive_anon_is_low(zone, sc);
1695}
1696
1697static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1698	struct zone *zone, struct scan_control *sc, int priority)
1699{
1700	int file = is_file_lru(lru);
1701
1702	if (is_active_lru(lru)) {
1703		if (inactive_list_is_low(zone, sc, file))
1704		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1705		return 0;
1706	}
1707
1708	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1709}
1710
1711/*
1712 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1713 * until we collected @swap_cluster_max pages to scan.
1714 */
1715static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1716				       unsigned long *nr_saved_scan)
1717{
1718	unsigned long nr;
1719
1720	*nr_saved_scan += nr_to_scan;
1721	nr = *nr_saved_scan;
1722
1723	if (nr >= SWAP_CLUSTER_MAX)
1724		*nr_saved_scan = 0;
1725	else
1726		nr = 0;
1727
1728	return nr;
1729}
1730
1731/*
1732 * Determine how aggressively the anon and file LRU lists should be
1733 * scanned.  The relative value of each set of LRU lists is determined
1734 * by looking at the fraction of the pages scanned we did rotate back
1735 * onto the active list instead of evict.
1736 *
1737 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1738 */
1739static void get_scan_count(struct zone *zone, struct scan_control *sc,
1740					unsigned long *nr, int priority)
1741{
1742	unsigned long anon, file, free;
1743	unsigned long anon_prio, file_prio;
1744	unsigned long ap, fp;
1745	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1746	u64 fraction[2], denominator;
1747	enum lru_list l;
1748	int noswap = 0;
1749
1750	/* If we have no swap space, do not bother scanning anon pages. */
1751	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1752		noswap = 1;
1753		fraction[0] = 0;
1754		fraction[1] = 1;
1755		denominator = 1;
1756		goto out;
1757	}
1758
1759	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1760		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1761	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1762		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1763
1764	if (scanning_global_lru(sc)) {
1765		free  = zone_page_state(zone, NR_FREE_PAGES);
1766		/* If we have very few page cache pages,
1767		   force-scan anon pages. */
1768		if (unlikely(file + free <= high_wmark_pages(zone))) {
1769			fraction[0] = 1;
1770			fraction[1] = 0;
1771			denominator = 1;
1772			goto out;
1773		}
1774	}
1775
1776	/*
1777	 * With swappiness at 100, anonymous and file have the same priority.
1778	 * This scanning priority is essentially the inverse of IO cost.
1779	 */
1780	anon_prio = sc->swappiness;
1781	file_prio = 200 - sc->swappiness;
1782
1783	/*
1784	 * OK, so we have swap space and a fair amount of page cache
1785	 * pages.  We use the recently rotated / recently scanned
1786	 * ratios to determine how valuable each cache is.
1787	 *
1788	 * Because workloads change over time (and to avoid overflow)
1789	 * we keep these statistics as a floating average, which ends
1790	 * up weighing recent references more than old ones.
1791	 *
1792	 * anon in [0], file in [1]
1793	 */
1794	spin_lock_irq(&zone->lru_lock);
1795	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1796		reclaim_stat->recent_scanned[0] /= 2;
1797		reclaim_stat->recent_rotated[0] /= 2;
1798	}
1799
1800	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1801		reclaim_stat->recent_scanned[1] /= 2;
1802		reclaim_stat->recent_rotated[1] /= 2;
1803	}
1804
1805	/*
1806	 * The amount of pressure on anon vs file pages is inversely
1807	 * proportional to the fraction of recently scanned pages on
1808	 * each list that were recently referenced and in active use.
1809	 */
1810	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1811	ap /= reclaim_stat->recent_rotated[0] + 1;
1812
1813	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1814	fp /= reclaim_stat->recent_rotated[1] + 1;
1815	spin_unlock_irq(&zone->lru_lock);
1816
1817	fraction[0] = ap;
1818	fraction[1] = fp;
1819	denominator = ap + fp + 1;
1820out:
1821	for_each_evictable_lru(l) {
1822		int file = is_file_lru(l);
1823		unsigned long scan;
1824
1825		scan = zone_nr_lru_pages(zone, sc, l);
1826		if (priority || noswap) {
1827			scan >>= priority;
1828			scan = div64_u64(scan * fraction[file], denominator);
1829		}
1830		nr[l] = nr_scan_try_batch(scan,
1831					  &reclaim_stat->nr_saved_scan[l]);
1832	}
1833}
1834
1835/*
1836 * Reclaim/compaction depends on a number of pages being freed. To avoid
1837 * disruption to the system, a small number of order-0 pages continue to be
1838 * rotated and reclaimed in the normal fashion. However, by the time we get
1839 * back to the allocator and call try_to_compact_zone(), we ensure that
1840 * there are enough free pages for it to be likely successful
1841 */
1842static inline bool should_continue_reclaim(struct zone *zone,
1843					unsigned long nr_reclaimed,
1844					unsigned long nr_scanned,
1845					struct scan_control *sc)
1846{
1847	unsigned long pages_for_compaction;
1848	unsigned long inactive_lru_pages;
1849
1850	/* If not in reclaim/compaction mode, stop */
1851	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1852		return false;
1853
1854	/* Consider stopping depending on scan and reclaim activity */
1855	if (sc->gfp_mask & __GFP_REPEAT) {
1856		/*
1857		 * For __GFP_REPEAT allocations, stop reclaiming if the
1858		 * full LRU list has been scanned and we are still failing
1859		 * to reclaim pages. This full LRU scan is potentially
1860		 * expensive but a __GFP_REPEAT caller really wants to succeed
1861		 */
1862		if (!nr_reclaimed && !nr_scanned)
1863			return false;
1864	} else {
1865		/*
1866		 * For non-__GFP_REPEAT allocations which can presumably
1867		 * fail without consequence, stop if we failed to reclaim
1868		 * any pages from the last SWAP_CLUSTER_MAX number of
1869		 * pages that were scanned. This will return to the
1870		 * caller faster at the risk reclaim/compaction and
1871		 * the resulting allocation attempt fails
1872		 */
1873		if (!nr_reclaimed)
1874			return false;
1875	}
1876
1877	/*
1878	 * If we have not reclaimed enough pages for compaction and the
1879	 * inactive lists are large enough, continue reclaiming
1880	 */
1881	pages_for_compaction = (2UL << sc->order);
1882	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1883				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1884	if (sc->nr_reclaimed < pages_for_compaction &&
1885			inactive_lru_pages > pages_for_compaction)
1886		return true;
1887
1888	/* If compaction would go ahead or the allocation would succeed, stop */
1889	switch (compaction_suitable(zone, sc->order)) {
1890	case COMPACT_PARTIAL:
1891	case COMPACT_CONTINUE:
1892		return false;
1893	default:
1894		return true;
1895	}
1896}
1897
1898/*
1899 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1900 */
1901static void shrink_zone(int priority, struct zone *zone,
1902				struct scan_control *sc)
1903{
1904	unsigned long nr[NR_LRU_LISTS];
1905	unsigned long nr_to_scan;
1906	enum lru_list l;
1907	unsigned long nr_reclaimed, nr_scanned;
1908	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1909
1910restart:
1911	nr_reclaimed = 0;
1912	nr_scanned = sc->nr_scanned;
1913	get_scan_count(zone, sc, nr, priority);
1914
1915	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1916					nr[LRU_INACTIVE_FILE]) {
1917		for_each_evictable_lru(l) {
1918			if (nr[l]) {
1919				nr_to_scan = min_t(unsigned long,
1920						   nr[l], SWAP_CLUSTER_MAX);
1921				nr[l] -= nr_to_scan;
1922
1923				nr_reclaimed += shrink_list(l, nr_to_scan,
1924							    zone, sc, priority);
1925			}
1926		}
1927		/*
1928		 * On large memory systems, scan >> priority can become
1929		 * really large. This is fine for the starting priority;
1930		 * we want to put equal scanning pressure on each zone.
1931		 * However, if the VM has a harder time of freeing pages,
1932		 * with multiple processes reclaiming pages, the total
1933		 * freeing target can get unreasonably large.
1934		 */
1935		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1936			break;
1937	}
1938	sc->nr_reclaimed += nr_reclaimed;
1939
1940	/*
1941	 * Even if we did not try to evict anon pages at all, we want to
1942	 * rebalance the anon lru active/inactive ratio.
1943	 */
1944	if (inactive_anon_is_low(zone, sc))
1945		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1946
1947	/* reclaim/compaction might need reclaim to continue */
1948	if (should_continue_reclaim(zone, nr_reclaimed,
1949					sc->nr_scanned - nr_scanned, sc))
1950		goto restart;
1951
1952	throttle_vm_writeout(sc->gfp_mask);
1953}
1954
1955/*
1956 * This is the direct reclaim path, for page-allocating processes.  We only
1957 * try to reclaim pages from zones which will satisfy the caller's allocation
1958 * request.
1959 *
1960 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1961 * Because:
1962 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1963 *    allocation or
1964 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1965 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1966 *    zone defense algorithm.
1967 *
1968 * If a zone is deemed to be full of pinned pages then just give it a light
1969 * scan then give up on it.
1970 */
1971static void shrink_zones(int priority, struct zonelist *zonelist,
1972					struct scan_control *sc)
1973{
1974	struct zoneref *z;
1975	struct zone *zone;
1976
1977	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1978					gfp_zone(sc->gfp_mask), sc->nodemask) {
1979		if (!populated_zone(zone))
1980			continue;
1981		/*
1982		 * Take care memory controller reclaiming has small influence
1983		 * to global LRU.
1984		 */
1985		if (scanning_global_lru(sc)) {
1986			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1987				continue;
1988			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1989				continue;	/* Let kswapd poll it */
1990		}
1991
1992		shrink_zone(priority, zone, sc);
1993	}
1994}
1995
1996static bool zone_reclaimable(struct zone *zone)
1997{
1998	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1999}
2000
2001/* All zones in zonelist are unreclaimable? */
2002static bool all_unreclaimable(struct zonelist *zonelist,
2003		struct scan_control *sc)
2004{
2005	struct zoneref *z;
2006	struct zone *zone;
2007
2008	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2009			gfp_zone(sc->gfp_mask), sc->nodemask) {
2010		if (!populated_zone(zone))
2011			continue;
2012		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2013			continue;
2014		if (!zone->all_unreclaimable)
2015			return false;
2016	}
2017
2018	return true;
2019}
2020
2021/*
2022 * This is the main entry point to direct page reclaim.
2023 *
2024 * If a full scan of the inactive list fails to free enough memory then we
2025 * are "out of memory" and something needs to be killed.
2026 *
2027 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2028 * high - the zone may be full of dirty or under-writeback pages, which this
2029 * caller can't do much about.  We kick the writeback threads and take explicit
2030 * naps in the hope that some of these pages can be written.  But if the
2031 * allocating task holds filesystem locks which prevent writeout this might not
2032 * work, and the allocation attempt will fail.
2033 *
2034 * returns:	0, if no pages reclaimed
2035 * 		else, the number of pages reclaimed
2036 */
2037static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2038					struct scan_control *sc)
2039{
2040	int priority;
2041	unsigned long total_scanned = 0;
2042	struct reclaim_state *reclaim_state = current->reclaim_state;
2043	struct zoneref *z;
2044	struct zone *zone;
2045	unsigned long writeback_threshold;
2046
2047	get_mems_allowed();
2048	delayacct_freepages_start();
2049
2050	if (scanning_global_lru(sc))
2051		count_vm_event(ALLOCSTALL);
2052
2053	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2054		sc->nr_scanned = 0;
2055		if (!priority)
2056			disable_swap_token();
2057		shrink_zones(priority, zonelist, sc);
2058		/*
2059		 * Don't shrink slabs when reclaiming memory from
2060		 * over limit cgroups
2061		 */
2062		if (scanning_global_lru(sc)) {
2063			unsigned long lru_pages = 0;
2064			for_each_zone_zonelist(zone, z, zonelist,
2065					gfp_zone(sc->gfp_mask)) {
2066				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2067					continue;
2068
2069				lru_pages += zone_reclaimable_pages(zone);
2070			}
2071
2072			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2073			if (reclaim_state) {
2074				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2075				reclaim_state->reclaimed_slab = 0;
2076			}
2077		}
2078		total_scanned += sc->nr_scanned;
2079		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2080			goto out;
2081
2082		/*
2083		 * Try to write back as many pages as we just scanned.  This
2084		 * tends to cause slow streaming writers to write data to the
2085		 * disk smoothly, at the dirtying rate, which is nice.   But
2086		 * that's undesirable in laptop mode, where we *want* lumpy
2087		 * writeout.  So in laptop mode, write out the whole world.
2088		 */
2089		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2090		if (total_scanned > writeback_threshold) {
2091			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2092			sc->may_writepage = 1;
2093		}
2094
2095		/* Take a nap, wait for some writeback to complete */
2096		if (!sc->hibernation_mode && sc->nr_scanned &&
2097		    priority < DEF_PRIORITY - 2) {
2098			struct zone *preferred_zone;
2099
2100			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2101						&cpuset_current_mems_allowed,
2102						&preferred_zone);
2103			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2104		}
2105	}
2106
2107out:
2108	delayacct_freepages_end();
2109	put_mems_allowed();
2110
2111	if (sc->nr_reclaimed)
2112		return sc->nr_reclaimed;
2113
2114	/*
2115	 * As hibernation is going on, kswapd is freezed so that it can't mark
2116	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2117	 * check.
2118	 */
2119	if (oom_killer_disabled)
2120		return 0;
2121
2122	/* top priority shrink_zones still had more to do? don't OOM, then */
2123	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2124		return 1;
2125
2126	return 0;
2127}
2128
2129unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2130				gfp_t gfp_mask, nodemask_t *nodemask)
2131{
2132	unsigned long nr_reclaimed;
2133	struct scan_control sc = {
2134		.gfp_mask = gfp_mask,
2135		.may_writepage = !laptop_mode,
2136		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2137		.may_unmap = 1,
2138		.may_swap = 1,
2139		.swappiness = vm_swappiness,
2140		.order = order,
2141		.mem_cgroup = NULL,
2142		.nodemask = nodemask,
2143	};
2144
2145	trace_mm_vmscan_direct_reclaim_begin(order,
2146				sc.may_writepage,
2147				gfp_mask);
2148
2149	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2150
2151	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2152
2153	return nr_reclaimed;
2154}
2155
2156#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2157
2158unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2159						gfp_t gfp_mask, bool noswap,
2160						unsigned int swappiness,
2161						struct zone *zone)
2162{
2163	struct scan_control sc = {
2164		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2165		.may_writepage = !laptop_mode,
2166		.may_unmap = 1,
2167		.may_swap = !noswap,
2168		.swappiness = swappiness,
2169		.order = 0,
2170		.mem_cgroup = mem,
2171	};
2172	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2173			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2174
2175	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2176						      sc.may_writepage,
2177						      sc.gfp_mask);
2178
2179	/*
2180	 * NOTE: Although we can get the priority field, using it
2181	 * here is not a good idea, since it limits the pages we can scan.
2182	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2183	 * will pick up pages from other mem cgroup's as well. We hack
2184	 * the priority and make it zero.
2185	 */
2186	shrink_zone(0, zone, &sc);
2187
2188	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2189
2190	return sc.nr_reclaimed;
2191}
2192
2193unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2194					   gfp_t gfp_mask,
2195					   bool noswap,
2196					   unsigned int swappiness)
2197{
2198	struct zonelist *zonelist;
2199	unsigned long nr_reclaimed;
2200	struct scan_control sc = {
2201		.may_writepage = !laptop_mode,
2202		.may_unmap = 1,
2203		.may_swap = !noswap,
2204		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2205		.swappiness = swappiness,
2206		.order = 0,
2207		.mem_cgroup = mem_cont,
2208		.nodemask = NULL, /* we don't care the placement */
2209	};
2210
2211	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2212			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2213	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2214
2215	trace_mm_vmscan_memcg_reclaim_begin(0,
2216					    sc.may_writepage,
2217					    sc.gfp_mask);
2218
2219	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2220
2221	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2222
2223	return nr_reclaimed;
2224}
2225#endif
2226
2227/*
2228 * pgdat_balanced is used when checking if a node is balanced for high-order
2229 * allocations. Only zones that meet watermarks and are in a zone allowed
2230 * by the callers classzone_idx are added to balanced_pages. The total of
2231 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2232 * for the node to be considered balanced. Forcing all zones to be balanced
2233 * for high orders can cause excessive reclaim when there are imbalanced zones.
2234 * The choice of 25% is due to
2235 *   o a 16M DMA zone that is balanced will not balance a zone on any
2236 *     reasonable sized machine
2237 *   o On all other machines, the top zone must be at least a reasonable
2238 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2239 *     would need to be at least 256M for it to be balance a whole node.
2240 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2241 *     to balance a node on its own. These seemed like reasonable ratios.
2242 */
2243static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2244						int classzone_idx)
2245{
2246	unsigned long present_pages = 0;
2247	int i;
2248
2249	for (i = 0; i <= classzone_idx; i++)
2250		present_pages += pgdat->node_zones[i].present_pages;
2251
2252	return balanced_pages > (present_pages >> 2);
2253}
2254
2255/* is kswapd sleeping prematurely? */
2256static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2257					int classzone_idx)
2258{
2259	int i;
2260	unsigned long balanced = 0;
2261	bool all_zones_ok = true;
2262
2263	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2264	if (remaining)
2265		return true;
2266
2267	/* Check the watermark levels */
2268	for (i = 0; i < pgdat->nr_zones; i++) {
2269		struct zone *zone = pgdat->node_zones + i;
2270
2271		if (!populated_zone(zone))
2272			continue;
2273
2274		/*
2275		 * balance_pgdat() skips over all_unreclaimable after
2276		 * DEF_PRIORITY. Effectively, it considers them balanced so
2277		 * they must be considered balanced here as well if kswapd
2278		 * is to sleep
2279		 */
2280		if (zone->all_unreclaimable) {
2281			balanced += zone->present_pages;
2282			continue;
2283		}
2284
2285		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2286							classzone_idx, 0))
2287			all_zones_ok = false;
2288		else
2289			balanced += zone->present_pages;
2290	}
2291
2292	/*
2293	 * For high-order requests, the balanced zones must contain at least
2294	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2295	 * must be balanced
2296	 */
2297	if (order)
2298		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2299	else
2300		return !all_zones_ok;
2301}
2302
2303/*
2304 * For kswapd, balance_pgdat() will work across all this node's zones until
2305 * they are all at high_wmark_pages(zone).
2306 *
2307 * Returns the final order kswapd was reclaiming at
2308 *
2309 * There is special handling here for zones which are full of pinned pages.
2310 * This can happen if the pages are all mlocked, or if they are all used by
2311 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2312 * What we do is to detect the case where all pages in the zone have been
2313 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2314 * dead and from now on, only perform a short scan.  Basically we're polling
2315 * the zone for when the problem goes away.
2316 *
2317 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2318 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2319 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2320 * lower zones regardless of the number of free pages in the lower zones. This
2321 * interoperates with the page allocator fallback scheme to ensure that aging
2322 * of pages is balanced across the zones.
2323 */
2324static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2325							int *classzone_idx)
2326{
2327	int all_zones_ok;
2328	unsigned long balanced;
2329	int priority;
2330	int i;
2331	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2332	unsigned long total_scanned;
2333	struct reclaim_state *reclaim_state = current->reclaim_state;
2334	struct scan_control sc = {
2335		.gfp_mask = GFP_KERNEL,
2336		.may_unmap = 1,
2337		.may_swap = 1,
2338		/*
2339		 * kswapd doesn't want to be bailed out while reclaim. because
2340		 * we want to put equal scanning pressure on each zone.
2341		 */
2342		.nr_to_reclaim = ULONG_MAX,
2343		.swappiness = vm_swappiness,
2344		.order = order,
2345		.mem_cgroup = NULL,
2346	};
2347loop_again:
2348	total_scanned = 0;
2349	sc.nr_reclaimed = 0;
2350	sc.may_writepage = !laptop_mode;
2351	count_vm_event(PAGEOUTRUN);
2352
2353	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2354		unsigned long lru_pages = 0;
2355		int has_under_min_watermark_zone = 0;
2356
2357		/* The swap token gets in the way of swapout... */
2358		if (!priority)
2359			disable_swap_token();
2360
2361		all_zones_ok = 1;
2362		balanced = 0;
2363
2364		/*
2365		 * Scan in the highmem->dma direction for the highest
2366		 * zone which needs scanning
2367		 */
2368		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2369			struct zone *zone = pgdat->node_zones + i;
2370
2371			if (!populated_zone(zone))
2372				continue;
2373
2374			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2375				continue;
2376
2377			/*
2378			 * Do some background aging of the anon list, to give
2379			 * pages a chance to be referenced before reclaiming.
2380			 */
2381			if (inactive_anon_is_low(zone, &sc))
2382				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2383							&sc, priority, 0);
2384
2385			if (!zone_watermark_ok_safe(zone, order,
2386					high_wmark_pages(zone), 0, 0)) {
2387				end_zone = i;
2388				*classzone_idx = i;
2389				break;
2390			}
2391		}
2392		if (i < 0)
2393			goto out;
2394
2395		for (i = 0; i <= end_zone; i++) {
2396			struct zone *zone = pgdat->node_zones + i;
2397
2398			lru_pages += zone_reclaimable_pages(zone);
2399		}
2400
2401		/*
2402		 * Now scan the zone in the dma->highmem direction, stopping
2403		 * at the last zone which needs scanning.
2404		 *
2405		 * We do this because the page allocator works in the opposite
2406		 * direction.  This prevents the page allocator from allocating
2407		 * pages behind kswapd's direction of progress, which would
2408		 * cause too much scanning of the lower zones.
2409		 */
2410		for (i = 0; i <= end_zone; i++) {
2411			struct zone *zone = pgdat->node_zones + i;
2412			int nr_slab;
2413			unsigned long balance_gap;
2414
2415			if (!populated_zone(zone))
2416				continue;
2417
2418			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2419				continue;
2420
2421			sc.nr_scanned = 0;
2422
2423			/*
2424			 * Call soft limit reclaim before calling shrink_zone.
2425			 * For now we ignore the return value
2426			 */
2427			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2428
2429			/*
2430			 * We put equal pressure on every zone, unless
2431			 * one zone has way too many pages free
2432			 * already. The "too many pages" is defined
2433			 * as the high wmark plus a "gap" where the
2434			 * gap is either the low watermark or 1%
2435			 * of the zone, whichever is smaller.
2436			 */
2437			balance_gap = min(low_wmark_pages(zone),
2438				(zone->present_pages +
2439					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2440				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2441			if (!zone_watermark_ok_safe(zone, order,
2442					high_wmark_pages(zone) + balance_gap,
2443					end_zone, 0))
2444				shrink_zone(priority, zone, &sc);
2445			reclaim_state->reclaimed_slab = 0;
2446			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2447						lru_pages);
2448			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2449			total_scanned += sc.nr_scanned;
2450
2451			if (zone->all_unreclaimable)
2452				continue;
2453			if (nr_slab == 0 &&
2454			    !zone_reclaimable(zone))
2455				zone->all_unreclaimable = 1;
2456			/*
2457			 * If we've done a decent amount of scanning and
2458			 * the reclaim ratio is low, start doing writepage
2459			 * even in laptop mode
2460			 */
2461			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2462			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2463				sc.may_writepage = 1;
2464
2465			if (!zone_watermark_ok_safe(zone, order,
2466					high_wmark_pages(zone), end_zone, 0)) {
2467				all_zones_ok = 0;
2468				/*
2469				 * We are still under min water mark.  This
2470				 * means that we have a GFP_ATOMIC allocation
2471				 * failure risk. Hurry up!
2472				 */
2473				if (!zone_watermark_ok_safe(zone, order,
2474					    min_wmark_pages(zone), end_zone, 0))
2475					has_under_min_watermark_zone = 1;
2476			} else {
2477				/*
2478				 * If a zone reaches its high watermark,
2479				 * consider it to be no longer congested. It's
2480				 * possible there are dirty pages backed by
2481				 * congested BDIs but as pressure is relieved,
2482				 * spectulatively avoid congestion waits
2483				 */
2484				zone_clear_flag(zone, ZONE_CONGESTED);
2485				if (i <= *classzone_idx)
2486					balanced += zone->present_pages;
2487			}
2488
2489		}
2490		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2491			break;		/* kswapd: all done */
2492		/*
2493		 * OK, kswapd is getting into trouble.  Take a nap, then take
2494		 * another pass across the zones.
2495		 */
2496		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2497			if (has_under_min_watermark_zone)
2498				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2499			else
2500				congestion_wait(BLK_RW_ASYNC, HZ/10);
2501		}
2502
2503		/*
2504		 * We do this so kswapd doesn't build up large priorities for
2505		 * example when it is freeing in parallel with allocators. It
2506		 * matches the direct reclaim path behaviour in terms of impact
2507		 * on zone->*_priority.
2508		 */
2509		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2510			break;
2511	}
2512out:
2513
2514	/*
2515	 * order-0: All zones must meet high watermark for a balanced node
2516	 * high-order: Balanced zones must make up at least 25% of the node
2517	 *             for the node to be balanced
2518	 */
2519	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2520		cond_resched();
2521
2522		try_to_freeze();
2523
2524		/*
2525		 * Fragmentation may mean that the system cannot be
2526		 * rebalanced for high-order allocations in all zones.
2527		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2528		 * it means the zones have been fully scanned and are still
2529		 * not balanced. For high-order allocations, there is
2530		 * little point trying all over again as kswapd may
2531		 * infinite loop.
2532		 *
2533		 * Instead, recheck all watermarks at order-0 as they
2534		 * are the most important. If watermarks are ok, kswapd will go
2535		 * back to sleep. High-order users can still perform direct
2536		 * reclaim if they wish.
2537		 */
2538		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2539			order = sc.order = 0;
2540
2541		goto loop_again;
2542	}
2543
2544	/*
2545	 * If kswapd was reclaiming at a higher order, it has the option of
2546	 * sleeping without all zones being balanced. Before it does, it must
2547	 * ensure that the watermarks for order-0 on *all* zones are met and
2548	 * that the congestion flags are cleared. The congestion flag must
2549	 * be cleared as kswapd is the only mechanism that clears the flag
2550	 * and it is potentially going to sleep here.
2551	 */
2552	if (order) {
2553		for (i = 0; i <= end_zone; i++) {
2554			struct zone *zone = pgdat->node_zones + i;
2555
2556			if (!populated_zone(zone))
2557				continue;
2558
2559			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2560				continue;
2561
2562			/* Confirm the zone is balanced for order-0 */
2563			if (!zone_watermark_ok(zone, 0,
2564					high_wmark_pages(zone), 0, 0)) {
2565				order = sc.order = 0;
2566				goto loop_again;
2567			}
2568
2569			/* If balanced, clear the congested flag */
2570			zone_clear_flag(zone, ZONE_CONGESTED);
2571		}
2572	}
2573
2574	/*
2575	 * Return the order we were reclaiming at so sleeping_prematurely()
2576	 * makes a decision on the order we were last reclaiming at. However,
2577	 * if another caller entered the allocator slow path while kswapd
2578	 * was awake, order will remain at the higher level
2579	 */
2580	*classzone_idx = end_zone;
2581	return order;
2582}
2583
2584static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2585{
2586	long remaining = 0;
2587	DEFINE_WAIT(wait);
2588
2589	if (freezing(current) || kthread_should_stop())
2590		return;
2591
2592	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2593
2594	/* Try to sleep for a short interval */
2595	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2596		remaining = schedule_timeout(HZ/10);
2597		finish_wait(&pgdat->kswapd_wait, &wait);
2598		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2599	}
2600
2601	/*
2602	 * After a short sleep, check if it was a premature sleep. If not, then
2603	 * go fully to sleep until explicitly woken up.
2604	 */
2605	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2606		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2607
2608		/*
2609		 * vmstat counters are not perfectly accurate and the estimated
2610		 * value for counters such as NR_FREE_PAGES can deviate from the
2611		 * true value by nr_online_cpus * threshold. To avoid the zone
2612		 * watermarks being breached while under pressure, we reduce the
2613		 * per-cpu vmstat threshold while kswapd is awake and restore
2614		 * them before going back to sleep.
2615		 */
2616		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2617		schedule();
2618		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2619	} else {
2620		if (remaining)
2621			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2622		else
2623			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2624	}
2625	finish_wait(&pgdat->kswapd_wait, &wait);
2626}
2627
2628/*
2629 * The background pageout daemon, started as a kernel thread
2630 * from the init process.
2631 *
2632 * This basically trickles out pages so that we have _some_
2633 * free memory available even if there is no other activity
2634 * that frees anything up. This is needed for things like routing
2635 * etc, where we otherwise might have all activity going on in
2636 * asynchronous contexts that cannot page things out.
2637 *
2638 * If there are applications that are active memory-allocators
2639 * (most normal use), this basically shouldn't matter.
2640 */
2641static int kswapd(void *p)
2642{
2643	unsigned long order;
2644	int classzone_idx;
2645	pg_data_t *pgdat = (pg_data_t*)p;
2646	struct task_struct *tsk = current;
2647
2648	struct reclaim_state reclaim_state = {
2649		.reclaimed_slab = 0,
2650	};
2651	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2652
2653	lockdep_set_current_reclaim_state(GFP_KERNEL);
2654
2655	if (!cpumask_empty(cpumask))
2656		set_cpus_allowed_ptr(tsk, cpumask);
2657	current->reclaim_state = &reclaim_state;
2658
2659	/*
2660	 * Tell the memory management that we're a "memory allocator",
2661	 * and that if we need more memory we should get access to it
2662	 * regardless (see "__alloc_pages()"). "kswapd" should
2663	 * never get caught in the normal page freeing logic.
2664	 *
2665	 * (Kswapd normally doesn't need memory anyway, but sometimes
2666	 * you need a small amount of memory in order to be able to
2667	 * page out something else, and this flag essentially protects
2668	 * us from recursively trying to free more memory as we're
2669	 * trying to free the first piece of memory in the first place).
2670	 */
2671	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2672	set_freezable();
2673
2674	order = 0;
2675	classzone_idx = MAX_NR_ZONES - 1;
2676	for ( ; ; ) {
2677		unsigned long new_order;
2678		int new_classzone_idx;
2679		int ret;
2680
2681		new_order = pgdat->kswapd_max_order;
2682		new_classzone_idx = pgdat->classzone_idx;
2683		pgdat->kswapd_max_order = 0;
2684		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2685		if (order < new_order || classzone_idx > new_classzone_idx) {
2686			/*
2687			 * Don't sleep if someone wants a larger 'order'
2688			 * allocation or has tigher zone constraints
2689			 */
2690			order = new_order;
2691			classzone_idx = new_classzone_idx;
2692		} else {
2693			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2694			order = pgdat->kswapd_max_order;
2695			classzone_idx = pgdat->classzone_idx;
2696			pgdat->kswapd_max_order = 0;
2697			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2698		}
2699
2700		ret = try_to_freeze();
2701		if (kthread_should_stop())
2702			break;
2703
2704		/*
2705		 * We can speed up thawing tasks if we don't call balance_pgdat
2706		 * after returning from the refrigerator
2707		 */
2708		if (!ret) {
2709			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2710			order = balance_pgdat(pgdat, order, &classzone_idx);
2711		}
2712	}
2713	return 0;
2714}
2715
2716/*
2717 * A zone is low on free memory, so wake its kswapd task to service it.
2718 */
2719void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2720{
2721	pg_data_t *pgdat;
2722
2723	if (!populated_zone(zone))
2724		return;
2725
2726	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2727		return;
2728	pgdat = zone->zone_pgdat;
2729	if (pgdat->kswapd_max_order < order) {
2730		pgdat->kswapd_max_order = order;
2731		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2732	}
2733	if (!waitqueue_active(&pgdat->kswapd_wait))
2734		return;
2735	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2736		return;
2737
2738	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2739	wake_up_interruptible(&pgdat->kswapd_wait);
2740}
2741
2742/*
2743 * The reclaimable count would be mostly accurate.
2744 * The less reclaimable pages may be
2745 * - mlocked pages, which will be moved to unevictable list when encountered
2746 * - mapped pages, which may require several travels to be reclaimed
2747 * - dirty pages, which is not "instantly" reclaimable
2748 */
2749unsigned long global_reclaimable_pages(void)
2750{
2751	int nr;
2752
2753	nr = global_page_state(NR_ACTIVE_FILE) +
2754	     global_page_state(NR_INACTIVE_FILE);
2755
2756	if (nr_swap_pages > 0)
2757		nr += global_page_state(NR_ACTIVE_ANON) +
2758		      global_page_state(NR_INACTIVE_ANON);
2759
2760	return nr;
2761}
2762
2763unsigned long zone_reclaimable_pages(struct zone *zone)
2764{
2765	int nr;
2766
2767	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2768	     zone_page_state(zone, NR_INACTIVE_FILE);
2769
2770	if (nr_swap_pages > 0)
2771		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2772		      zone_page_state(zone, NR_INACTIVE_ANON);
2773
2774	return nr;
2775}
2776
2777#ifdef CONFIG_HIBERNATION
2778/*
2779 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2780 * freed pages.
2781 *
2782 * Rather than trying to age LRUs the aim is to preserve the overall
2783 * LRU order by reclaiming preferentially
2784 * inactive > active > active referenced > active mapped
2785 */
2786unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2787{
2788	struct reclaim_state reclaim_state;
2789	struct scan_control sc = {
2790		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2791		.may_swap = 1,
2792		.may_unmap = 1,
2793		.may_writepage = 1,
2794		.nr_to_reclaim = nr_to_reclaim,
2795		.hibernation_mode = 1,
2796		.swappiness = vm_swappiness,
2797		.order = 0,
2798	};
2799	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2800	struct task_struct *p = current;
2801	unsigned long nr_reclaimed;
2802
2803	p->flags |= PF_MEMALLOC;
2804	lockdep_set_current_reclaim_state(sc.gfp_mask);
2805	reclaim_state.reclaimed_slab = 0;
2806	p->reclaim_state = &reclaim_state;
2807
2808	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2809
2810	p->reclaim_state = NULL;
2811	lockdep_clear_current_reclaim_state();
2812	p->flags &= ~PF_MEMALLOC;
2813
2814	return nr_reclaimed;
2815}
2816#endif /* CONFIG_HIBERNATION */
2817
2818/* It's optimal to keep kswapds on the same CPUs as their memory, but
2819   not required for correctness.  So if the last cpu in a node goes
2820   away, we get changed to run anywhere: as the first one comes back,
2821   restore their cpu bindings. */
2822static int __devinit cpu_callback(struct notifier_block *nfb,
2823				  unsigned long action, void *hcpu)
2824{
2825	int nid;
2826
2827	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2828		for_each_node_state(nid, N_HIGH_MEMORY) {
2829			pg_data_t *pgdat = NODE_DATA(nid);
2830			const struct cpumask *mask;
2831
2832			mask = cpumask_of_node(pgdat->node_id);
2833
2834			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2835				/* One of our CPUs online: restore mask */
2836				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2837		}
2838	}
2839	return NOTIFY_OK;
2840}
2841
2842/*
2843 * This kswapd start function will be called by init and node-hot-add.
2844 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2845 */
2846int kswapd_run(int nid)
2847{
2848	pg_data_t *pgdat = NODE_DATA(nid);
2849	int ret = 0;
2850
2851	if (pgdat->kswapd)
2852		return 0;
2853
2854	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2855	if (IS_ERR(pgdat->kswapd)) {
2856		/* failure at boot is fatal */
2857		BUG_ON(system_state == SYSTEM_BOOTING);
2858		printk("Failed to start kswapd on node %d\n",nid);
2859		ret = -1;
2860	}
2861	return ret;
2862}
2863
2864/*
2865 * Called by memory hotplug when all memory in a node is offlined.
2866 */
2867void kswapd_stop(int nid)
2868{
2869	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2870
2871	if (kswapd)
2872		kthread_stop(kswapd);
2873}
2874
2875static int __init kswapd_init(void)
2876{
2877	int nid;
2878
2879	swap_setup();
2880	for_each_node_state(nid, N_HIGH_MEMORY)
2881 		kswapd_run(nid);
2882	hotcpu_notifier(cpu_callback, 0);
2883	return 0;
2884}
2885
2886module_init(kswapd_init)
2887
2888#ifdef CONFIG_NUMA
2889/*
2890 * Zone reclaim mode
2891 *
2892 * If non-zero call zone_reclaim when the number of free pages falls below
2893 * the watermarks.
2894 */
2895int zone_reclaim_mode __read_mostly;
2896
2897#define RECLAIM_OFF 0
2898#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2899#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2900#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2901
2902/*
2903 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2904 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2905 * a zone.
2906 */
2907#define ZONE_RECLAIM_PRIORITY 4
2908
2909/*
2910 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2911 * occur.
2912 */
2913int sysctl_min_unmapped_ratio = 1;
2914
2915/*
2916 * If the number of slab pages in a zone grows beyond this percentage then
2917 * slab reclaim needs to occur.
2918 */
2919int sysctl_min_slab_ratio = 5;
2920
2921static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2922{
2923	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2924	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2925		zone_page_state(zone, NR_ACTIVE_FILE);
2926
2927	/*
2928	 * It's possible for there to be more file mapped pages than
2929	 * accounted for by the pages on the file LRU lists because
2930	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2931	 */
2932	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2933}
2934
2935/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2936static long zone_pagecache_reclaimable(struct zone *zone)
2937{
2938	long nr_pagecache_reclaimable;
2939	long delta = 0;
2940
2941	/*
2942	 * If RECLAIM_SWAP is set, then all file pages are considered
2943	 * potentially reclaimable. Otherwise, we have to worry about
2944	 * pages like swapcache and zone_unmapped_file_pages() provides
2945	 * a better estimate
2946	 */
2947	if (zone_reclaim_mode & RECLAIM_SWAP)
2948		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2949	else
2950		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2951
2952	/* If we can't clean pages, remove dirty pages from consideration */
2953	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2954		delta += zone_page_state(zone, NR_FILE_DIRTY);
2955
2956	/* Watch for any possible underflows due to delta */
2957	if (unlikely(delta > nr_pagecache_reclaimable))
2958		delta = nr_pagecache_reclaimable;
2959
2960	return nr_pagecache_reclaimable - delta;
2961}
2962
2963/*
2964 * Try to free up some pages from this zone through reclaim.
2965 */
2966static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2967{
2968	/* Minimum pages needed in order to stay on node */
2969	const unsigned long nr_pages = 1 << order;
2970	struct task_struct *p = current;
2971	struct reclaim_state reclaim_state;
2972	int priority;
2973	struct scan_control sc = {
2974		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2975		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2976		.may_swap = 1,
2977		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2978				       SWAP_CLUSTER_MAX),
2979		.gfp_mask = gfp_mask,
2980		.swappiness = vm_swappiness,
2981		.order = order,
2982	};
2983	unsigned long nr_slab_pages0, nr_slab_pages1;
2984
2985	cond_resched();
2986	/*
2987	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2988	 * and we also need to be able to write out pages for RECLAIM_WRITE
2989	 * and RECLAIM_SWAP.
2990	 */
2991	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2992	lockdep_set_current_reclaim_state(gfp_mask);
2993	reclaim_state.reclaimed_slab = 0;
2994	p->reclaim_state = &reclaim_state;
2995
2996	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2997		/*
2998		 * Free memory by calling shrink zone with increasing
2999		 * priorities until we have enough memory freed.
3000		 */
3001		priority = ZONE_RECLAIM_PRIORITY;
3002		do {
3003			shrink_zone(priority, zone, &sc);
3004			priority--;
3005		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3006	}
3007
3008	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3009	if (nr_slab_pages0 > zone->min_slab_pages) {
3010		/*
3011		 * shrink_slab() does not currently allow us to determine how
3012		 * many pages were freed in this zone. So we take the current
3013		 * number of slab pages and shake the slab until it is reduced
3014		 * by the same nr_pages that we used for reclaiming unmapped
3015		 * pages.
3016		 *
3017		 * Note that shrink_slab will free memory on all zones and may
3018		 * take a long time.
3019		 */
3020		for (;;) {
3021			unsigned long lru_pages = zone_reclaimable_pages(zone);
3022
3023			/* No reclaimable slab or very low memory pressure */
3024			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3025				break;
3026
3027			/* Freed enough memory */
3028			nr_slab_pages1 = zone_page_state(zone,
3029							NR_SLAB_RECLAIMABLE);
3030			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3031				break;
3032		}
3033
3034		/*
3035		 * Update nr_reclaimed by the number of slab pages we
3036		 * reclaimed from this zone.
3037		 */
3038		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3039		if (nr_slab_pages1 < nr_slab_pages0)
3040			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3041	}
3042
3043	p->reclaim_state = NULL;
3044	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3045	lockdep_clear_current_reclaim_state();
3046	return sc.nr_reclaimed >= nr_pages;
3047}
3048
3049int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3050{
3051	int node_id;
3052	int ret;
3053
3054	/*
3055	 * Zone reclaim reclaims unmapped file backed pages and
3056	 * slab pages if we are over the defined limits.
3057	 *
3058	 * A small portion of unmapped file backed pages is needed for
3059	 * file I/O otherwise pages read by file I/O will be immediately
3060	 * thrown out if the zone is overallocated. So we do not reclaim
3061	 * if less than a specified percentage of the zone is used by
3062	 * unmapped file backed pages.
3063	 */
3064	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3065	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3066		return ZONE_RECLAIM_FULL;
3067
3068	if (zone->all_unreclaimable)
3069		return ZONE_RECLAIM_FULL;
3070
3071	/*
3072	 * Do not scan if the allocation should not be delayed.
3073	 */
3074	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3075		return ZONE_RECLAIM_NOSCAN;
3076
3077	/*
3078	 * Only run zone reclaim on the local zone or on zones that do not
3079	 * have associated processors. This will favor the local processor
3080	 * over remote processors and spread off node memory allocations
3081	 * as wide as possible.
3082	 */
3083	node_id = zone_to_nid(zone);
3084	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3085		return ZONE_RECLAIM_NOSCAN;
3086
3087	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3088		return ZONE_RECLAIM_NOSCAN;
3089
3090	ret = __zone_reclaim(zone, gfp_mask, order);
3091	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3092
3093	if (!ret)
3094		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3095
3096	return ret;
3097}
3098#endif
3099
3100/*
3101 * page_evictable - test whether a page is evictable
3102 * @page: the page to test
3103 * @vma: the VMA in which the page is or will be mapped, may be NULL
3104 *
3105 * Test whether page is evictable--i.e., should be placed on active/inactive
3106 * lists vs unevictable list.  The vma argument is !NULL when called from the
3107 * fault path to determine how to instantate a new page.
3108 *
3109 * Reasons page might not be evictable:
3110 * (1) page's mapping marked unevictable
3111 * (2) page is part of an mlocked VMA
3112 *
3113 */
3114int page_evictable(struct page *page, struct vm_area_struct *vma)
3115{
3116
3117	if (mapping_unevictable(page_mapping(page)))
3118		return 0;
3119
3120	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3121		return 0;
3122
3123	return 1;
3124}
3125
3126/**
3127 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3128 * @page: page to check evictability and move to appropriate lru list
3129 * @zone: zone page is in
3130 *
3131 * Checks a page for evictability and moves the page to the appropriate
3132 * zone lru list.
3133 *
3134 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3135 * have PageUnevictable set.
3136 */
3137static void check_move_unevictable_page(struct page *page, struct zone *zone)
3138{
3139	VM_BUG_ON(PageActive(page));
3140
3141retry:
3142	ClearPageUnevictable(page);
3143	if (page_evictable(page, NULL)) {
3144		enum lru_list l = page_lru_base_type(page);
3145
3146		__dec_zone_state(zone, NR_UNEVICTABLE);
3147		list_move(&page->lru, &zone->lru[l].list);
3148		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3149		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3150		__count_vm_event(UNEVICTABLE_PGRESCUED);
3151	} else {
3152		/*
3153		 * rotate unevictable list
3154		 */
3155		SetPageUnevictable(page);
3156		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3157		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3158		if (page_evictable(page, NULL))
3159			goto retry;
3160	}
3161}
3162
3163/**
3164 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3165 * @mapping: struct address_space to scan for evictable pages
3166 *
3167 * Scan all pages in mapping.  Check unevictable pages for
3168 * evictability and move them to the appropriate zone lru list.
3169 */
3170void scan_mapping_unevictable_pages(struct address_space *mapping)
3171{
3172	pgoff_t next = 0;
3173	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3174			 PAGE_CACHE_SHIFT;
3175	struct zone *zone;
3176	struct pagevec pvec;
3177
3178	if (mapping->nrpages == 0)
3179		return;
3180
3181	pagevec_init(&pvec, 0);
3182	while (next < end &&
3183		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3184		int i;
3185		int pg_scanned = 0;
3186
3187		zone = NULL;
3188
3189		for (i = 0; i < pagevec_count(&pvec); i++) {
3190			struct page *page = pvec.pages[i];
3191			pgoff_t page_index = page->index;
3192			struct zone *pagezone = page_zone(page);
3193
3194			pg_scanned++;
3195			if (page_index > next)
3196				next = page_index;
3197			next++;
3198
3199			if (pagezone != zone) {
3200				if (zone)
3201					spin_unlock_irq(&zone->lru_lock);
3202				zone = pagezone;
3203				spin_lock_irq(&zone->lru_lock);
3204			}
3205
3206			if (PageLRU(page) && PageUnevictable(page))
3207				check_move_unevictable_page(page, zone);
3208		}
3209		if (zone)
3210			spin_unlock_irq(&zone->lru_lock);
3211		pagevec_release(&pvec);
3212
3213		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3214	}
3215
3216}
3217
3218/**
3219 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3220 * @zone - zone of which to scan the unevictable list
3221 *
3222 * Scan @zone's unevictable LRU lists to check for pages that have become
3223 * evictable.  Move those that have to @zone's inactive list where they
3224 * become candidates for reclaim, unless shrink_inactive_zone() decides
3225 * to reactivate them.  Pages that are still unevictable are rotated
3226 * back onto @zone's unevictable list.
3227 */
3228#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3229static void scan_zone_unevictable_pages(struct zone *zone)
3230{
3231	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3232	unsigned long scan;
3233	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3234
3235	while (nr_to_scan > 0) {
3236		unsigned long batch_size = min(nr_to_scan,
3237						SCAN_UNEVICTABLE_BATCH_SIZE);
3238
3239		spin_lock_irq(&zone->lru_lock);
3240		for (scan = 0;  scan < batch_size; scan++) {
3241			struct page *page = lru_to_page(l_unevictable);
3242
3243			if (!trylock_page(page))
3244				continue;
3245
3246			prefetchw_prev_lru_page(page, l_unevictable, flags);
3247
3248			if (likely(PageLRU(page) && PageUnevictable(page)))
3249				check_move_unevictable_page(page, zone);
3250
3251			unlock_page(page);
3252		}
3253		spin_unlock_irq(&zone->lru_lock);
3254
3255		nr_to_scan -= batch_size;
3256	}
3257}
3258
3259
3260/**
3261 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3262 *
3263 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3264 * pages that have become evictable.  Move those back to the zones'
3265 * inactive list where they become candidates for reclaim.
3266 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3267 * and we add swap to the system.  As such, it runs in the context of a task
3268 * that has possibly/probably made some previously unevictable pages
3269 * evictable.
3270 */
3271static void scan_all_zones_unevictable_pages(void)
3272{
3273	struct zone *zone;
3274
3275	for_each_zone(zone) {
3276		scan_zone_unevictable_pages(zone);
3277	}
3278}
3279
3280/*
3281 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3282 * all nodes' unevictable lists for evictable pages
3283 */
3284unsigned long scan_unevictable_pages;
3285
3286int scan_unevictable_handler(struct ctl_table *table, int write,
3287			   void __user *buffer,
3288			   size_t *length, loff_t *ppos)
3289{
3290	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3291
3292	if (write && *(unsigned long *)table->data)
3293		scan_all_zones_unevictable_pages();
3294
3295	scan_unevictable_pages = 0;
3296	return 0;
3297}
3298
3299#ifdef CONFIG_NUMA
3300/*
3301 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3302 * a specified node's per zone unevictable lists for evictable pages.
3303 */
3304
3305static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3306					  struct sysdev_attribute *attr,
3307					  char *buf)
3308{
3309	return sprintf(buf, "0\n");	/* always zero; should fit... */
3310}
3311
3312static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3313					   struct sysdev_attribute *attr,
3314					const char *buf, size_t count)
3315{
3316	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3317	struct zone *zone;
3318	unsigned long res;
3319	unsigned long req = strict_strtoul(buf, 10, &res);
3320
3321	if (!req)
3322		return 1;	/* zero is no-op */
3323
3324	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3325		if (!populated_zone(zone))
3326			continue;
3327		scan_zone_unevictable_pages(zone);
3328	}
3329	return 1;
3330}
3331
3332
3333static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3334			read_scan_unevictable_node,
3335			write_scan_unevictable_node);
3336
3337int scan_unevictable_register_node(struct node *node)
3338{
3339	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3340}
3341
3342void scan_unevictable_unregister_node(struct node *node)
3343{
3344	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3345}
3346#endif
3347