vmscan.c revision 14797e2363c2b2f1ce139fd1c5a215e4e05aa1d9
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51struct scan_control {
52	/* Incremented by the number of inactive pages that were scanned */
53	unsigned long nr_scanned;
54
55	/* Number of pages freed so far during a call to shrink_zones() */
56	unsigned long nr_reclaimed;
57
58	/* This context's GFP mask */
59	gfp_t gfp_mask;
60
61	int may_writepage;
62
63	/* Can pages be swapped as part of reclaim? */
64	int may_swap;
65
66	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
67	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68	 * In this context, it doesn't matter that we scan the
69	 * whole list at once. */
70	int swap_cluster_max;
71
72	int swappiness;
73
74	int all_unreclaimable;
75
76	int order;
77
78	/* Which cgroup do we reclaim from */
79	struct mem_cgroup *mem_cgroup;
80
81	/* Pluggable isolate pages callback */
82	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83			unsigned long *scanned, int order, int mode,
84			struct zone *z, struct mem_cgroup *mem_cont,
85			int active, int file);
86};
87
88#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90#ifdef ARCH_HAS_PREFETCH
91#define prefetch_prev_lru_page(_page, _base, _field)			\
92	do {								\
93		if ((_page)->lru.prev != _base) {			\
94			struct page *prev;				\
95									\
96			prev = lru_to_page(&(_page->lru));		\
97			prefetch(&prev->_field);			\
98		}							\
99	} while (0)
100#else
101#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102#endif
103
104#ifdef ARCH_HAS_PREFETCHW
105#define prefetchw_prev_lru_page(_page, _base, _field)			\
106	do {								\
107		if ((_page)->lru.prev != _base) {			\
108			struct page *prev;				\
109									\
110			prev = lru_to_page(&(_page->lru));		\
111			prefetchw(&prev->_field);			\
112		}							\
113	} while (0)
114#else
115#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118/*
119 * From 0 .. 100.  Higher means more swappy.
120 */
121int vm_swappiness = 60;
122long vm_total_pages;	/* The total number of pages which the VM controls */
123
124static LIST_HEAD(shrinker_list);
125static DECLARE_RWSEM(shrinker_rwsem);
126
127#ifdef CONFIG_CGROUP_MEM_RES_CTLR
128#define scan_global_lru(sc)	(!(sc)->mem_cgroup)
129#else
130#define scan_global_lru(sc)	(1)
131#endif
132
133static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134						  struct scan_control *sc)
135{
136	return &zone->reclaim_stat;
137}
138
139static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
140				   enum lru_list lru)
141{
142	return zone_page_state(zone, NR_LRU_BASE + lru);
143}
144
145
146/*
147 * Add a shrinker callback to be called from the vm
148 */
149void register_shrinker(struct shrinker *shrinker)
150{
151	shrinker->nr = 0;
152	down_write(&shrinker_rwsem);
153	list_add_tail(&shrinker->list, &shrinker_list);
154	up_write(&shrinker_rwsem);
155}
156EXPORT_SYMBOL(register_shrinker);
157
158/*
159 * Remove one
160 */
161void unregister_shrinker(struct shrinker *shrinker)
162{
163	down_write(&shrinker_rwsem);
164	list_del(&shrinker->list);
165	up_write(&shrinker_rwsem);
166}
167EXPORT_SYMBOL(unregister_shrinker);
168
169#define SHRINK_BATCH 128
170/*
171 * Call the shrink functions to age shrinkable caches
172 *
173 * Here we assume it costs one seek to replace a lru page and that it also
174 * takes a seek to recreate a cache object.  With this in mind we age equal
175 * percentages of the lru and ageable caches.  This should balance the seeks
176 * generated by these structures.
177 *
178 * If the vm encountered mapped pages on the LRU it increase the pressure on
179 * slab to avoid swapping.
180 *
181 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
182 *
183 * `lru_pages' represents the number of on-LRU pages in all the zones which
184 * are eligible for the caller's allocation attempt.  It is used for balancing
185 * slab reclaim versus page reclaim.
186 *
187 * Returns the number of slab objects which we shrunk.
188 */
189unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
190			unsigned long lru_pages)
191{
192	struct shrinker *shrinker;
193	unsigned long ret = 0;
194
195	if (scanned == 0)
196		scanned = SWAP_CLUSTER_MAX;
197
198	if (!down_read_trylock(&shrinker_rwsem))
199		return 1;	/* Assume we'll be able to shrink next time */
200
201	list_for_each_entry(shrinker, &shrinker_list, list) {
202		unsigned long long delta;
203		unsigned long total_scan;
204		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
205
206		delta = (4 * scanned) / shrinker->seeks;
207		delta *= max_pass;
208		do_div(delta, lru_pages + 1);
209		shrinker->nr += delta;
210		if (shrinker->nr < 0) {
211			printk(KERN_ERR "%s: nr=%ld\n",
212					__func__, shrinker->nr);
213			shrinker->nr = max_pass;
214		}
215
216		/*
217		 * Avoid risking looping forever due to too large nr value:
218		 * never try to free more than twice the estimate number of
219		 * freeable entries.
220		 */
221		if (shrinker->nr > max_pass * 2)
222			shrinker->nr = max_pass * 2;
223
224		total_scan = shrinker->nr;
225		shrinker->nr = 0;
226
227		while (total_scan >= SHRINK_BATCH) {
228			long this_scan = SHRINK_BATCH;
229			int shrink_ret;
230			int nr_before;
231
232			nr_before = (*shrinker->shrink)(0, gfp_mask);
233			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
234			if (shrink_ret == -1)
235				break;
236			if (shrink_ret < nr_before)
237				ret += nr_before - shrink_ret;
238			count_vm_events(SLABS_SCANNED, this_scan);
239			total_scan -= this_scan;
240
241			cond_resched();
242		}
243
244		shrinker->nr += total_scan;
245	}
246	up_read(&shrinker_rwsem);
247	return ret;
248}
249
250/* Called without lock on whether page is mapped, so answer is unstable */
251static inline int page_mapping_inuse(struct page *page)
252{
253	struct address_space *mapping;
254
255	/* Page is in somebody's page tables. */
256	if (page_mapped(page))
257		return 1;
258
259	/* Be more reluctant to reclaim swapcache than pagecache */
260	if (PageSwapCache(page))
261		return 1;
262
263	mapping = page_mapping(page);
264	if (!mapping)
265		return 0;
266
267	/* File is mmap'd by somebody? */
268	return mapping_mapped(mapping);
269}
270
271static inline int is_page_cache_freeable(struct page *page)
272{
273	return page_count(page) - !!PagePrivate(page) == 2;
274}
275
276static int may_write_to_queue(struct backing_dev_info *bdi)
277{
278	if (current->flags & PF_SWAPWRITE)
279		return 1;
280	if (!bdi_write_congested(bdi))
281		return 1;
282	if (bdi == current->backing_dev_info)
283		return 1;
284	return 0;
285}
286
287/*
288 * We detected a synchronous write error writing a page out.  Probably
289 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
290 * fsync(), msync() or close().
291 *
292 * The tricky part is that after writepage we cannot touch the mapping: nothing
293 * prevents it from being freed up.  But we have a ref on the page and once
294 * that page is locked, the mapping is pinned.
295 *
296 * We're allowed to run sleeping lock_page() here because we know the caller has
297 * __GFP_FS.
298 */
299static void handle_write_error(struct address_space *mapping,
300				struct page *page, int error)
301{
302	lock_page(page);
303	if (page_mapping(page) == mapping)
304		mapping_set_error(mapping, error);
305	unlock_page(page);
306}
307
308/* Request for sync pageout. */
309enum pageout_io {
310	PAGEOUT_IO_ASYNC,
311	PAGEOUT_IO_SYNC,
312};
313
314/* possible outcome of pageout() */
315typedef enum {
316	/* failed to write page out, page is locked */
317	PAGE_KEEP,
318	/* move page to the active list, page is locked */
319	PAGE_ACTIVATE,
320	/* page has been sent to the disk successfully, page is unlocked */
321	PAGE_SUCCESS,
322	/* page is clean and locked */
323	PAGE_CLEAN,
324} pageout_t;
325
326/*
327 * pageout is called by shrink_page_list() for each dirty page.
328 * Calls ->writepage().
329 */
330static pageout_t pageout(struct page *page, struct address_space *mapping,
331						enum pageout_io sync_writeback)
332{
333	/*
334	 * If the page is dirty, only perform writeback if that write
335	 * will be non-blocking.  To prevent this allocation from being
336	 * stalled by pagecache activity.  But note that there may be
337	 * stalls if we need to run get_block().  We could test
338	 * PagePrivate for that.
339	 *
340	 * If this process is currently in generic_file_write() against
341	 * this page's queue, we can perform writeback even if that
342	 * will block.
343	 *
344	 * If the page is swapcache, write it back even if that would
345	 * block, for some throttling. This happens by accident, because
346	 * swap_backing_dev_info is bust: it doesn't reflect the
347	 * congestion state of the swapdevs.  Easy to fix, if needed.
348	 * See swapfile.c:page_queue_congested().
349	 */
350	if (!is_page_cache_freeable(page))
351		return PAGE_KEEP;
352	if (!mapping) {
353		/*
354		 * Some data journaling orphaned pages can have
355		 * page->mapping == NULL while being dirty with clean buffers.
356		 */
357		if (PagePrivate(page)) {
358			if (try_to_free_buffers(page)) {
359				ClearPageDirty(page);
360				printk("%s: orphaned page\n", __func__);
361				return PAGE_CLEAN;
362			}
363		}
364		return PAGE_KEEP;
365	}
366	if (mapping->a_ops->writepage == NULL)
367		return PAGE_ACTIVATE;
368	if (!may_write_to_queue(mapping->backing_dev_info))
369		return PAGE_KEEP;
370
371	if (clear_page_dirty_for_io(page)) {
372		int res;
373		struct writeback_control wbc = {
374			.sync_mode = WB_SYNC_NONE,
375			.nr_to_write = SWAP_CLUSTER_MAX,
376			.range_start = 0,
377			.range_end = LLONG_MAX,
378			.nonblocking = 1,
379			.for_reclaim = 1,
380		};
381
382		SetPageReclaim(page);
383		res = mapping->a_ops->writepage(page, &wbc);
384		if (res < 0)
385			handle_write_error(mapping, page, res);
386		if (res == AOP_WRITEPAGE_ACTIVATE) {
387			ClearPageReclaim(page);
388			return PAGE_ACTIVATE;
389		}
390
391		/*
392		 * Wait on writeback if requested to. This happens when
393		 * direct reclaiming a large contiguous area and the
394		 * first attempt to free a range of pages fails.
395		 */
396		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
397			wait_on_page_writeback(page);
398
399		if (!PageWriteback(page)) {
400			/* synchronous write or broken a_ops? */
401			ClearPageReclaim(page);
402		}
403		inc_zone_page_state(page, NR_VMSCAN_WRITE);
404		return PAGE_SUCCESS;
405	}
406
407	return PAGE_CLEAN;
408}
409
410/*
411 * Same as remove_mapping, but if the page is removed from the mapping, it
412 * gets returned with a refcount of 0.
413 */
414static int __remove_mapping(struct address_space *mapping, struct page *page)
415{
416	BUG_ON(!PageLocked(page));
417	BUG_ON(mapping != page_mapping(page));
418
419	spin_lock_irq(&mapping->tree_lock);
420	/*
421	 * The non racy check for a busy page.
422	 *
423	 * Must be careful with the order of the tests. When someone has
424	 * a ref to the page, it may be possible that they dirty it then
425	 * drop the reference. So if PageDirty is tested before page_count
426	 * here, then the following race may occur:
427	 *
428	 * get_user_pages(&page);
429	 * [user mapping goes away]
430	 * write_to(page);
431	 *				!PageDirty(page)    [good]
432	 * SetPageDirty(page);
433	 * put_page(page);
434	 *				!page_count(page)   [good, discard it]
435	 *
436	 * [oops, our write_to data is lost]
437	 *
438	 * Reversing the order of the tests ensures such a situation cannot
439	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
440	 * load is not satisfied before that of page->_count.
441	 *
442	 * Note that if SetPageDirty is always performed via set_page_dirty,
443	 * and thus under tree_lock, then this ordering is not required.
444	 */
445	if (!page_freeze_refs(page, 2))
446		goto cannot_free;
447	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
448	if (unlikely(PageDirty(page))) {
449		page_unfreeze_refs(page, 2);
450		goto cannot_free;
451	}
452
453	if (PageSwapCache(page)) {
454		swp_entry_t swap = { .val = page_private(page) };
455		__delete_from_swap_cache(page);
456		spin_unlock_irq(&mapping->tree_lock);
457		swap_free(swap);
458	} else {
459		__remove_from_page_cache(page);
460		spin_unlock_irq(&mapping->tree_lock);
461	}
462
463	return 1;
464
465cannot_free:
466	spin_unlock_irq(&mapping->tree_lock);
467	return 0;
468}
469
470/*
471 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
472 * someone else has a ref on the page, abort and return 0.  If it was
473 * successfully detached, return 1.  Assumes the caller has a single ref on
474 * this page.
475 */
476int remove_mapping(struct address_space *mapping, struct page *page)
477{
478	if (__remove_mapping(mapping, page)) {
479		/*
480		 * Unfreezing the refcount with 1 rather than 2 effectively
481		 * drops the pagecache ref for us without requiring another
482		 * atomic operation.
483		 */
484		page_unfreeze_refs(page, 1);
485		return 1;
486	}
487	return 0;
488}
489
490/**
491 * putback_lru_page - put previously isolated page onto appropriate LRU list
492 * @page: page to be put back to appropriate lru list
493 *
494 * Add previously isolated @page to appropriate LRU list.
495 * Page may still be unevictable for other reasons.
496 *
497 * lru_lock must not be held, interrupts must be enabled.
498 */
499#ifdef CONFIG_UNEVICTABLE_LRU
500void putback_lru_page(struct page *page)
501{
502	int lru;
503	int active = !!TestClearPageActive(page);
504	int was_unevictable = PageUnevictable(page);
505
506	VM_BUG_ON(PageLRU(page));
507
508redo:
509	ClearPageUnevictable(page);
510
511	if (page_evictable(page, NULL)) {
512		/*
513		 * For evictable pages, we can use the cache.
514		 * In event of a race, worst case is we end up with an
515		 * unevictable page on [in]active list.
516		 * We know how to handle that.
517		 */
518		lru = active + page_is_file_cache(page);
519		lru_cache_add_lru(page, lru);
520	} else {
521		/*
522		 * Put unevictable pages directly on zone's unevictable
523		 * list.
524		 */
525		lru = LRU_UNEVICTABLE;
526		add_page_to_unevictable_list(page);
527	}
528
529	/*
530	 * page's status can change while we move it among lru. If an evictable
531	 * page is on unevictable list, it never be freed. To avoid that,
532	 * check after we added it to the list, again.
533	 */
534	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
535		if (!isolate_lru_page(page)) {
536			put_page(page);
537			goto redo;
538		}
539		/* This means someone else dropped this page from LRU
540		 * So, it will be freed or putback to LRU again. There is
541		 * nothing to do here.
542		 */
543	}
544
545	if (was_unevictable && lru != LRU_UNEVICTABLE)
546		count_vm_event(UNEVICTABLE_PGRESCUED);
547	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
548		count_vm_event(UNEVICTABLE_PGCULLED);
549
550	put_page(page);		/* drop ref from isolate */
551}
552
553#else /* CONFIG_UNEVICTABLE_LRU */
554
555void putback_lru_page(struct page *page)
556{
557	int lru;
558	VM_BUG_ON(PageLRU(page));
559
560	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
561	lru_cache_add_lru(page, lru);
562	put_page(page);
563}
564#endif /* CONFIG_UNEVICTABLE_LRU */
565
566
567/*
568 * shrink_page_list() returns the number of reclaimed pages
569 */
570static unsigned long shrink_page_list(struct list_head *page_list,
571					struct scan_control *sc,
572					enum pageout_io sync_writeback)
573{
574	LIST_HEAD(ret_pages);
575	struct pagevec freed_pvec;
576	int pgactivate = 0;
577	unsigned long nr_reclaimed = 0;
578
579	cond_resched();
580
581	pagevec_init(&freed_pvec, 1);
582	while (!list_empty(page_list)) {
583		struct address_space *mapping;
584		struct page *page;
585		int may_enter_fs;
586		int referenced;
587
588		cond_resched();
589
590		page = lru_to_page(page_list);
591		list_del(&page->lru);
592
593		if (!trylock_page(page))
594			goto keep;
595
596		VM_BUG_ON(PageActive(page));
597
598		sc->nr_scanned++;
599
600		if (unlikely(!page_evictable(page, NULL)))
601			goto cull_mlocked;
602
603		if (!sc->may_swap && page_mapped(page))
604			goto keep_locked;
605
606		/* Double the slab pressure for mapped and swapcache pages */
607		if (page_mapped(page) || PageSwapCache(page))
608			sc->nr_scanned++;
609
610		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
611			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
612
613		if (PageWriteback(page)) {
614			/*
615			 * Synchronous reclaim is performed in two passes,
616			 * first an asynchronous pass over the list to
617			 * start parallel writeback, and a second synchronous
618			 * pass to wait for the IO to complete.  Wait here
619			 * for any page for which writeback has already
620			 * started.
621			 */
622			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
623				wait_on_page_writeback(page);
624			else
625				goto keep_locked;
626		}
627
628		referenced = page_referenced(page, 1, sc->mem_cgroup);
629		/* In active use or really unfreeable?  Activate it. */
630		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
631					referenced && page_mapping_inuse(page))
632			goto activate_locked;
633
634		/*
635		 * Anonymous process memory has backing store?
636		 * Try to allocate it some swap space here.
637		 */
638		if (PageAnon(page) && !PageSwapCache(page)) {
639			if (!(sc->gfp_mask & __GFP_IO))
640				goto keep_locked;
641			if (!add_to_swap(page))
642				goto activate_locked;
643			may_enter_fs = 1;
644		}
645
646		mapping = page_mapping(page);
647
648		/*
649		 * The page is mapped into the page tables of one or more
650		 * processes. Try to unmap it here.
651		 */
652		if (page_mapped(page) && mapping) {
653			switch (try_to_unmap(page, 0)) {
654			case SWAP_FAIL:
655				goto activate_locked;
656			case SWAP_AGAIN:
657				goto keep_locked;
658			case SWAP_MLOCK:
659				goto cull_mlocked;
660			case SWAP_SUCCESS:
661				; /* try to free the page below */
662			}
663		}
664
665		if (PageDirty(page)) {
666			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
667				goto keep_locked;
668			if (!may_enter_fs)
669				goto keep_locked;
670			if (!sc->may_writepage)
671				goto keep_locked;
672
673			/* Page is dirty, try to write it out here */
674			switch (pageout(page, mapping, sync_writeback)) {
675			case PAGE_KEEP:
676				goto keep_locked;
677			case PAGE_ACTIVATE:
678				goto activate_locked;
679			case PAGE_SUCCESS:
680				if (PageWriteback(page) || PageDirty(page))
681					goto keep;
682				/*
683				 * A synchronous write - probably a ramdisk.  Go
684				 * ahead and try to reclaim the page.
685				 */
686				if (!trylock_page(page))
687					goto keep;
688				if (PageDirty(page) || PageWriteback(page))
689					goto keep_locked;
690				mapping = page_mapping(page);
691			case PAGE_CLEAN:
692				; /* try to free the page below */
693			}
694		}
695
696		/*
697		 * If the page has buffers, try to free the buffer mappings
698		 * associated with this page. If we succeed we try to free
699		 * the page as well.
700		 *
701		 * We do this even if the page is PageDirty().
702		 * try_to_release_page() does not perform I/O, but it is
703		 * possible for a page to have PageDirty set, but it is actually
704		 * clean (all its buffers are clean).  This happens if the
705		 * buffers were written out directly, with submit_bh(). ext3
706		 * will do this, as well as the blockdev mapping.
707		 * try_to_release_page() will discover that cleanness and will
708		 * drop the buffers and mark the page clean - it can be freed.
709		 *
710		 * Rarely, pages can have buffers and no ->mapping.  These are
711		 * the pages which were not successfully invalidated in
712		 * truncate_complete_page().  We try to drop those buffers here
713		 * and if that worked, and the page is no longer mapped into
714		 * process address space (page_count == 1) it can be freed.
715		 * Otherwise, leave the page on the LRU so it is swappable.
716		 */
717		if (PagePrivate(page)) {
718			if (!try_to_release_page(page, sc->gfp_mask))
719				goto activate_locked;
720			if (!mapping && page_count(page) == 1) {
721				unlock_page(page);
722				if (put_page_testzero(page))
723					goto free_it;
724				else {
725					/*
726					 * rare race with speculative reference.
727					 * the speculative reference will free
728					 * this page shortly, so we may
729					 * increment nr_reclaimed here (and
730					 * leave it off the LRU).
731					 */
732					nr_reclaimed++;
733					continue;
734				}
735			}
736		}
737
738		if (!mapping || !__remove_mapping(mapping, page))
739			goto keep_locked;
740
741		/*
742		 * At this point, we have no other references and there is
743		 * no way to pick any more up (removed from LRU, removed
744		 * from pagecache). Can use non-atomic bitops now (and
745		 * we obviously don't have to worry about waking up a process
746		 * waiting on the page lock, because there are no references.
747		 */
748		__clear_page_locked(page);
749free_it:
750		nr_reclaimed++;
751		if (!pagevec_add(&freed_pvec, page)) {
752			__pagevec_free(&freed_pvec);
753			pagevec_reinit(&freed_pvec);
754		}
755		continue;
756
757cull_mlocked:
758		if (PageSwapCache(page))
759			try_to_free_swap(page);
760		unlock_page(page);
761		putback_lru_page(page);
762		continue;
763
764activate_locked:
765		/* Not a candidate for swapping, so reclaim swap space. */
766		if (PageSwapCache(page) && vm_swap_full())
767			try_to_free_swap(page);
768		VM_BUG_ON(PageActive(page));
769		SetPageActive(page);
770		pgactivate++;
771keep_locked:
772		unlock_page(page);
773keep:
774		list_add(&page->lru, &ret_pages);
775		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
776	}
777	list_splice(&ret_pages, page_list);
778	if (pagevec_count(&freed_pvec))
779		__pagevec_free(&freed_pvec);
780	count_vm_events(PGACTIVATE, pgactivate);
781	return nr_reclaimed;
782}
783
784/* LRU Isolation modes. */
785#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
786#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
787#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
788
789/*
790 * Attempt to remove the specified page from its LRU.  Only take this page
791 * if it is of the appropriate PageActive status.  Pages which are being
792 * freed elsewhere are also ignored.
793 *
794 * page:	page to consider
795 * mode:	one of the LRU isolation modes defined above
796 *
797 * returns 0 on success, -ve errno on failure.
798 */
799int __isolate_lru_page(struct page *page, int mode, int file)
800{
801	int ret = -EINVAL;
802
803	/* Only take pages on the LRU. */
804	if (!PageLRU(page))
805		return ret;
806
807	/*
808	 * When checking the active state, we need to be sure we are
809	 * dealing with comparible boolean values.  Take the logical not
810	 * of each.
811	 */
812	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
813		return ret;
814
815	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
816		return ret;
817
818	/*
819	 * When this function is being called for lumpy reclaim, we
820	 * initially look into all LRU pages, active, inactive and
821	 * unevictable; only give shrink_page_list evictable pages.
822	 */
823	if (PageUnevictable(page))
824		return ret;
825
826	ret = -EBUSY;
827
828	if (likely(get_page_unless_zero(page))) {
829		/*
830		 * Be careful not to clear PageLRU until after we're
831		 * sure the page is not being freed elsewhere -- the
832		 * page release code relies on it.
833		 */
834		ClearPageLRU(page);
835		ret = 0;
836		mem_cgroup_del_lru(page);
837	}
838
839	return ret;
840}
841
842/*
843 * zone->lru_lock is heavily contended.  Some of the functions that
844 * shrink the lists perform better by taking out a batch of pages
845 * and working on them outside the LRU lock.
846 *
847 * For pagecache intensive workloads, this function is the hottest
848 * spot in the kernel (apart from copy_*_user functions).
849 *
850 * Appropriate locks must be held before calling this function.
851 *
852 * @nr_to_scan:	The number of pages to look through on the list.
853 * @src:	The LRU list to pull pages off.
854 * @dst:	The temp list to put pages on to.
855 * @scanned:	The number of pages that were scanned.
856 * @order:	The caller's attempted allocation order
857 * @mode:	One of the LRU isolation modes
858 * @file:	True [1] if isolating file [!anon] pages
859 *
860 * returns how many pages were moved onto *@dst.
861 */
862static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
863		struct list_head *src, struct list_head *dst,
864		unsigned long *scanned, int order, int mode, int file)
865{
866	unsigned long nr_taken = 0;
867	unsigned long scan;
868
869	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
870		struct page *page;
871		unsigned long pfn;
872		unsigned long end_pfn;
873		unsigned long page_pfn;
874		int zone_id;
875
876		page = lru_to_page(src);
877		prefetchw_prev_lru_page(page, src, flags);
878
879		VM_BUG_ON(!PageLRU(page));
880
881		switch (__isolate_lru_page(page, mode, file)) {
882		case 0:
883			list_move(&page->lru, dst);
884			nr_taken++;
885			break;
886
887		case -EBUSY:
888			/* else it is being freed elsewhere */
889			list_move(&page->lru, src);
890			continue;
891
892		default:
893			BUG();
894		}
895
896		if (!order)
897			continue;
898
899		/*
900		 * Attempt to take all pages in the order aligned region
901		 * surrounding the tag page.  Only take those pages of
902		 * the same active state as that tag page.  We may safely
903		 * round the target page pfn down to the requested order
904		 * as the mem_map is guarenteed valid out to MAX_ORDER,
905		 * where that page is in a different zone we will detect
906		 * it from its zone id and abort this block scan.
907		 */
908		zone_id = page_zone_id(page);
909		page_pfn = page_to_pfn(page);
910		pfn = page_pfn & ~((1 << order) - 1);
911		end_pfn = pfn + (1 << order);
912		for (; pfn < end_pfn; pfn++) {
913			struct page *cursor_page;
914
915			/* The target page is in the block, ignore it. */
916			if (unlikely(pfn == page_pfn))
917				continue;
918
919			/* Avoid holes within the zone. */
920			if (unlikely(!pfn_valid_within(pfn)))
921				break;
922
923			cursor_page = pfn_to_page(pfn);
924
925			/* Check that we have not crossed a zone boundary. */
926			if (unlikely(page_zone_id(cursor_page) != zone_id))
927				continue;
928			switch (__isolate_lru_page(cursor_page, mode, file)) {
929			case 0:
930				list_move(&cursor_page->lru, dst);
931				nr_taken++;
932				scan++;
933				break;
934
935			case -EBUSY:
936				/* else it is being freed elsewhere */
937				list_move(&cursor_page->lru, src);
938			default:
939				break;	/* ! on LRU or wrong list */
940			}
941		}
942	}
943
944	*scanned = scan;
945	return nr_taken;
946}
947
948static unsigned long isolate_pages_global(unsigned long nr,
949					struct list_head *dst,
950					unsigned long *scanned, int order,
951					int mode, struct zone *z,
952					struct mem_cgroup *mem_cont,
953					int active, int file)
954{
955	int lru = LRU_BASE;
956	if (active)
957		lru += LRU_ACTIVE;
958	if (file)
959		lru += LRU_FILE;
960	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
961								mode, !!file);
962}
963
964/*
965 * clear_active_flags() is a helper for shrink_active_list(), clearing
966 * any active bits from the pages in the list.
967 */
968static unsigned long clear_active_flags(struct list_head *page_list,
969					unsigned int *count)
970{
971	int nr_active = 0;
972	int lru;
973	struct page *page;
974
975	list_for_each_entry(page, page_list, lru) {
976		lru = page_is_file_cache(page);
977		if (PageActive(page)) {
978			lru += LRU_ACTIVE;
979			ClearPageActive(page);
980			nr_active++;
981		}
982		count[lru]++;
983	}
984
985	return nr_active;
986}
987
988/**
989 * isolate_lru_page - tries to isolate a page from its LRU list
990 * @page: page to isolate from its LRU list
991 *
992 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
993 * vmstat statistic corresponding to whatever LRU list the page was on.
994 *
995 * Returns 0 if the page was removed from an LRU list.
996 * Returns -EBUSY if the page was not on an LRU list.
997 *
998 * The returned page will have PageLRU() cleared.  If it was found on
999 * the active list, it will have PageActive set.  If it was found on
1000 * the unevictable list, it will have the PageUnevictable bit set. That flag
1001 * may need to be cleared by the caller before letting the page go.
1002 *
1003 * The vmstat statistic corresponding to the list on which the page was
1004 * found will be decremented.
1005 *
1006 * Restrictions:
1007 * (1) Must be called with an elevated refcount on the page. This is a
1008 *     fundamentnal difference from isolate_lru_pages (which is called
1009 *     without a stable reference).
1010 * (2) the lru_lock must not be held.
1011 * (3) interrupts must be enabled.
1012 */
1013int isolate_lru_page(struct page *page)
1014{
1015	int ret = -EBUSY;
1016
1017	if (PageLRU(page)) {
1018		struct zone *zone = page_zone(page);
1019
1020		spin_lock_irq(&zone->lru_lock);
1021		if (PageLRU(page) && get_page_unless_zero(page)) {
1022			int lru = page_lru(page);
1023			ret = 0;
1024			ClearPageLRU(page);
1025
1026			del_page_from_lru_list(zone, page, lru);
1027		}
1028		spin_unlock_irq(&zone->lru_lock);
1029	}
1030	return ret;
1031}
1032
1033/*
1034 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1035 * of reclaimed pages
1036 */
1037static unsigned long shrink_inactive_list(unsigned long max_scan,
1038			struct zone *zone, struct scan_control *sc,
1039			int priority, int file)
1040{
1041	LIST_HEAD(page_list);
1042	struct pagevec pvec;
1043	unsigned long nr_scanned = 0;
1044	unsigned long nr_reclaimed = 0;
1045	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1046
1047	pagevec_init(&pvec, 1);
1048
1049	lru_add_drain();
1050	spin_lock_irq(&zone->lru_lock);
1051	do {
1052		struct page *page;
1053		unsigned long nr_taken;
1054		unsigned long nr_scan;
1055		unsigned long nr_freed;
1056		unsigned long nr_active;
1057		unsigned int count[NR_LRU_LISTS] = { 0, };
1058		int mode = ISOLATE_INACTIVE;
1059
1060		/*
1061		 * If we need a large contiguous chunk of memory, or have
1062		 * trouble getting a small set of contiguous pages, we
1063		 * will reclaim both active and inactive pages.
1064		 *
1065		 * We use the same threshold as pageout congestion_wait below.
1066		 */
1067		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1068			mode = ISOLATE_BOTH;
1069		else if (sc->order && priority < DEF_PRIORITY - 2)
1070			mode = ISOLATE_BOTH;
1071
1072		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1073			     &page_list, &nr_scan, sc->order, mode,
1074				zone, sc->mem_cgroup, 0, file);
1075		nr_active = clear_active_flags(&page_list, count);
1076		__count_vm_events(PGDEACTIVATE, nr_active);
1077
1078		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1079						-count[LRU_ACTIVE_FILE]);
1080		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1081						-count[LRU_INACTIVE_FILE]);
1082		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1083						-count[LRU_ACTIVE_ANON]);
1084		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1085						-count[LRU_INACTIVE_ANON]);
1086
1087		if (scan_global_lru(sc)) {
1088			zone->pages_scanned += nr_scan;
1089			reclaim_stat->recent_scanned[0] +=
1090						      count[LRU_INACTIVE_ANON];
1091			reclaim_stat->recent_scanned[0] +=
1092						      count[LRU_ACTIVE_ANON];
1093			reclaim_stat->recent_scanned[1] +=
1094						      count[LRU_INACTIVE_FILE];
1095			reclaim_stat->recent_scanned[1] +=
1096						      count[LRU_ACTIVE_FILE];
1097		}
1098		spin_unlock_irq(&zone->lru_lock);
1099
1100		nr_scanned += nr_scan;
1101		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1102
1103		/*
1104		 * If we are direct reclaiming for contiguous pages and we do
1105		 * not reclaim everything in the list, try again and wait
1106		 * for IO to complete. This will stall high-order allocations
1107		 * but that should be acceptable to the caller
1108		 */
1109		if (nr_freed < nr_taken && !current_is_kswapd() &&
1110					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1111			congestion_wait(WRITE, HZ/10);
1112
1113			/*
1114			 * The attempt at page out may have made some
1115			 * of the pages active, mark them inactive again.
1116			 */
1117			nr_active = clear_active_flags(&page_list, count);
1118			count_vm_events(PGDEACTIVATE, nr_active);
1119
1120			nr_freed += shrink_page_list(&page_list, sc,
1121							PAGEOUT_IO_SYNC);
1122		}
1123
1124		nr_reclaimed += nr_freed;
1125		local_irq_disable();
1126		if (current_is_kswapd()) {
1127			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1128			__count_vm_events(KSWAPD_STEAL, nr_freed);
1129		} else if (scan_global_lru(sc))
1130			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1131
1132		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1133
1134		if (nr_taken == 0)
1135			goto done;
1136
1137		spin_lock(&zone->lru_lock);
1138		/*
1139		 * Put back any unfreeable pages.
1140		 */
1141		while (!list_empty(&page_list)) {
1142			int lru;
1143			page = lru_to_page(&page_list);
1144			VM_BUG_ON(PageLRU(page));
1145			list_del(&page->lru);
1146			if (unlikely(!page_evictable(page, NULL))) {
1147				spin_unlock_irq(&zone->lru_lock);
1148				putback_lru_page(page);
1149				spin_lock_irq(&zone->lru_lock);
1150				continue;
1151			}
1152			SetPageLRU(page);
1153			lru = page_lru(page);
1154			add_page_to_lru_list(zone, page, lru);
1155			if (PageActive(page) && scan_global_lru(sc)) {
1156				int file = !!page_is_file_cache(page);
1157				reclaim_stat->recent_rotated[file]++;
1158			}
1159			if (!pagevec_add(&pvec, page)) {
1160				spin_unlock_irq(&zone->lru_lock);
1161				__pagevec_release(&pvec);
1162				spin_lock_irq(&zone->lru_lock);
1163			}
1164		}
1165  	} while (nr_scanned < max_scan);
1166	spin_unlock(&zone->lru_lock);
1167done:
1168	local_irq_enable();
1169	pagevec_release(&pvec);
1170	return nr_reclaimed;
1171}
1172
1173/*
1174 * We are about to scan this zone at a certain priority level.  If that priority
1175 * level is smaller (ie: more urgent) than the previous priority, then note
1176 * that priority level within the zone.  This is done so that when the next
1177 * process comes in to scan this zone, it will immediately start out at this
1178 * priority level rather than having to build up its own scanning priority.
1179 * Here, this priority affects only the reclaim-mapped threshold.
1180 */
1181static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1182{
1183	if (priority < zone->prev_priority)
1184		zone->prev_priority = priority;
1185}
1186
1187/*
1188 * This moves pages from the active list to the inactive list.
1189 *
1190 * We move them the other way if the page is referenced by one or more
1191 * processes, from rmap.
1192 *
1193 * If the pages are mostly unmapped, the processing is fast and it is
1194 * appropriate to hold zone->lru_lock across the whole operation.  But if
1195 * the pages are mapped, the processing is slow (page_referenced()) so we
1196 * should drop zone->lru_lock around each page.  It's impossible to balance
1197 * this, so instead we remove the pages from the LRU while processing them.
1198 * It is safe to rely on PG_active against the non-LRU pages in here because
1199 * nobody will play with that bit on a non-LRU page.
1200 *
1201 * The downside is that we have to touch page->_count against each page.
1202 * But we had to alter page->flags anyway.
1203 */
1204
1205
1206static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1207			struct scan_control *sc, int priority, int file)
1208{
1209	unsigned long pgmoved;
1210	int pgdeactivate = 0;
1211	unsigned long pgscanned;
1212	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1213	LIST_HEAD(l_inactive);
1214	struct page *page;
1215	struct pagevec pvec;
1216	enum lru_list lru;
1217	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1218
1219	lru_add_drain();
1220	spin_lock_irq(&zone->lru_lock);
1221	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1222					ISOLATE_ACTIVE, zone,
1223					sc->mem_cgroup, 1, file);
1224	/*
1225	 * zone->pages_scanned is used for detect zone's oom
1226	 * mem_cgroup remembers nr_scan by itself.
1227	 */
1228	if (scan_global_lru(sc)) {
1229		zone->pages_scanned += pgscanned;
1230		reclaim_stat->recent_scanned[!!file] += pgmoved;
1231	}
1232
1233	if (file)
1234		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1235	else
1236		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1237	spin_unlock_irq(&zone->lru_lock);
1238
1239	pgmoved = 0;
1240	while (!list_empty(&l_hold)) {
1241		cond_resched();
1242		page = lru_to_page(&l_hold);
1243		list_del(&page->lru);
1244
1245		if (unlikely(!page_evictable(page, NULL))) {
1246			putback_lru_page(page);
1247			continue;
1248		}
1249
1250		/* page_referenced clears PageReferenced */
1251		if (page_mapping_inuse(page) &&
1252		    page_referenced(page, 0, sc->mem_cgroup))
1253			pgmoved++;
1254
1255		list_add(&page->lru, &l_inactive);
1256	}
1257
1258	/*
1259	 * Move the pages to the [file or anon] inactive list.
1260	 */
1261	pagevec_init(&pvec, 1);
1262	pgmoved = 0;
1263	lru = LRU_BASE + file * LRU_FILE;
1264
1265	spin_lock_irq(&zone->lru_lock);
1266	/*
1267	 * Count referenced pages from currently used mappings as
1268	 * rotated, even though they are moved to the inactive list.
1269	 * This helps balance scan pressure between file and anonymous
1270	 * pages in get_scan_ratio.
1271	 */
1272	if (scan_global_lru(sc))
1273		reclaim_stat->recent_rotated[!!file] += pgmoved;
1274
1275	while (!list_empty(&l_inactive)) {
1276		page = lru_to_page(&l_inactive);
1277		prefetchw_prev_lru_page(page, &l_inactive, flags);
1278		VM_BUG_ON(PageLRU(page));
1279		SetPageLRU(page);
1280		VM_BUG_ON(!PageActive(page));
1281		ClearPageActive(page);
1282
1283		list_move(&page->lru, &zone->lru[lru].list);
1284		mem_cgroup_add_lru_list(page, lru);
1285		pgmoved++;
1286		if (!pagevec_add(&pvec, page)) {
1287			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1288			spin_unlock_irq(&zone->lru_lock);
1289			pgdeactivate += pgmoved;
1290			pgmoved = 0;
1291			if (buffer_heads_over_limit)
1292				pagevec_strip(&pvec);
1293			__pagevec_release(&pvec);
1294			spin_lock_irq(&zone->lru_lock);
1295		}
1296	}
1297	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1298	pgdeactivate += pgmoved;
1299	if (buffer_heads_over_limit) {
1300		spin_unlock_irq(&zone->lru_lock);
1301		pagevec_strip(&pvec);
1302		spin_lock_irq(&zone->lru_lock);
1303	}
1304	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1305	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1306	spin_unlock_irq(&zone->lru_lock);
1307	if (vm_swap_full())
1308		pagevec_swap_free(&pvec);
1309
1310	pagevec_release(&pvec);
1311}
1312
1313static int inactive_anon_is_low_global(struct zone *zone)
1314{
1315	unsigned long active, inactive;
1316
1317	active = zone_page_state(zone, NR_ACTIVE_ANON);
1318	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1319
1320	if (inactive * zone->inactive_ratio < active)
1321		return 1;
1322
1323	return 0;
1324}
1325
1326/**
1327 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1328 * @zone: zone to check
1329 * @sc:   scan control of this context
1330 *
1331 * Returns true if the zone does not have enough inactive anon pages,
1332 * meaning some active anon pages need to be deactivated.
1333 */
1334static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1335{
1336	int low;
1337
1338	if (scan_global_lru(sc))
1339		low = inactive_anon_is_low_global(zone);
1340	else
1341		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1342	return low;
1343}
1344
1345static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1346	struct zone *zone, struct scan_control *sc, int priority)
1347{
1348	int file = is_file_lru(lru);
1349
1350	if (lru == LRU_ACTIVE_FILE) {
1351		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1352		return 0;
1353	}
1354
1355	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1356		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1357		return 0;
1358	}
1359	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1360}
1361
1362/*
1363 * Determine how aggressively the anon and file LRU lists should be
1364 * scanned.  The relative value of each set of LRU lists is determined
1365 * by looking at the fraction of the pages scanned we did rotate back
1366 * onto the active list instead of evict.
1367 *
1368 * percent[0] specifies how much pressure to put on ram/swap backed
1369 * memory, while percent[1] determines pressure on the file LRUs.
1370 */
1371static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1372					unsigned long *percent)
1373{
1374	unsigned long anon, file, free;
1375	unsigned long anon_prio, file_prio;
1376	unsigned long ap, fp;
1377	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1378
1379	/* If we have no swap space, do not bother scanning anon pages. */
1380	if (nr_swap_pages <= 0) {
1381		percent[0] = 0;
1382		percent[1] = 100;
1383		return;
1384	}
1385
1386	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1387		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1388	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1389		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1390
1391	if (scan_global_lru(sc)) {
1392		free  = zone_page_state(zone, NR_FREE_PAGES);
1393		/* If we have very few page cache pages,
1394		   force-scan anon pages. */
1395		if (unlikely(file + free <= zone->pages_high)) {
1396			percent[0] = 100;
1397			percent[1] = 0;
1398			return;
1399		}
1400	}
1401
1402	/*
1403	 * OK, so we have swap space and a fair amount of page cache
1404	 * pages.  We use the recently rotated / recently scanned
1405	 * ratios to determine how valuable each cache is.
1406	 *
1407	 * Because workloads change over time (and to avoid overflow)
1408	 * we keep these statistics as a floating average, which ends
1409	 * up weighing recent references more than old ones.
1410	 *
1411	 * anon in [0], file in [1]
1412	 */
1413	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1414		spin_lock_irq(&zone->lru_lock);
1415		reclaim_stat->recent_scanned[0] /= 2;
1416		reclaim_stat->recent_rotated[0] /= 2;
1417		spin_unlock_irq(&zone->lru_lock);
1418	}
1419
1420	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1421		spin_lock_irq(&zone->lru_lock);
1422		reclaim_stat->recent_scanned[1] /= 2;
1423		reclaim_stat->recent_rotated[1] /= 2;
1424		spin_unlock_irq(&zone->lru_lock);
1425	}
1426
1427	/*
1428	 * With swappiness at 100, anonymous and file have the same priority.
1429	 * This scanning priority is essentially the inverse of IO cost.
1430	 */
1431	anon_prio = sc->swappiness;
1432	file_prio = 200 - sc->swappiness;
1433
1434	/*
1435	 * The amount of pressure on anon vs file pages is inversely
1436	 * proportional to the fraction of recently scanned pages on
1437	 * each list that were recently referenced and in active use.
1438	 */
1439	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1440	ap /= reclaim_stat->recent_rotated[0] + 1;
1441
1442	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1443	fp /= reclaim_stat->recent_rotated[1] + 1;
1444
1445	/* Normalize to percentages */
1446	percent[0] = 100 * ap / (ap + fp + 1);
1447	percent[1] = 100 - percent[0];
1448}
1449
1450
1451/*
1452 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1453 */
1454static void shrink_zone(int priority, struct zone *zone,
1455				struct scan_control *sc)
1456{
1457	unsigned long nr[NR_LRU_LISTS];
1458	unsigned long nr_to_scan;
1459	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1460	enum lru_list l;
1461	unsigned long nr_reclaimed = sc->nr_reclaimed;
1462	unsigned long swap_cluster_max = sc->swap_cluster_max;
1463
1464	get_scan_ratio(zone, sc, percent);
1465
1466	for_each_evictable_lru(l) {
1467		if (scan_global_lru(sc)) {
1468			int file = is_file_lru(l);
1469			int scan;
1470
1471			scan = zone_page_state(zone, NR_LRU_BASE + l);
1472			if (priority) {
1473				scan >>= priority;
1474				scan = (scan * percent[file]) / 100;
1475			}
1476			zone->lru[l].nr_scan += scan;
1477			nr[l] = zone->lru[l].nr_scan;
1478			if (nr[l] >= swap_cluster_max)
1479				zone->lru[l].nr_scan = 0;
1480			else
1481				nr[l] = 0;
1482		} else {
1483			/*
1484			 * This reclaim occurs not because zone memory shortage
1485			 * but because memory controller hits its limit.
1486			 * Don't modify zone reclaim related data.
1487			 */
1488			nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1489								priority, l);
1490		}
1491	}
1492
1493	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1494					nr[LRU_INACTIVE_FILE]) {
1495		for_each_evictable_lru(l) {
1496			if (nr[l]) {
1497				nr_to_scan = min(nr[l], swap_cluster_max);
1498				nr[l] -= nr_to_scan;
1499
1500				nr_reclaimed += shrink_list(l, nr_to_scan,
1501							    zone, sc, priority);
1502			}
1503		}
1504		/*
1505		 * On large memory systems, scan >> priority can become
1506		 * really large. This is fine for the starting priority;
1507		 * we want to put equal scanning pressure on each zone.
1508		 * However, if the VM has a harder time of freeing pages,
1509		 * with multiple processes reclaiming pages, the total
1510		 * freeing target can get unreasonably large.
1511		 */
1512		if (nr_reclaimed > swap_cluster_max &&
1513			priority < DEF_PRIORITY && !current_is_kswapd())
1514			break;
1515	}
1516
1517	sc->nr_reclaimed = nr_reclaimed;
1518
1519	/*
1520	 * Even if we did not try to evict anon pages at all, we want to
1521	 * rebalance the anon lru active/inactive ratio.
1522	 */
1523	if (inactive_anon_is_low(zone, sc))
1524		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1525
1526	throttle_vm_writeout(sc->gfp_mask);
1527}
1528
1529/*
1530 * This is the direct reclaim path, for page-allocating processes.  We only
1531 * try to reclaim pages from zones which will satisfy the caller's allocation
1532 * request.
1533 *
1534 * We reclaim from a zone even if that zone is over pages_high.  Because:
1535 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1536 *    allocation or
1537 * b) The zones may be over pages_high but they must go *over* pages_high to
1538 *    satisfy the `incremental min' zone defense algorithm.
1539 *
1540 * If a zone is deemed to be full of pinned pages then just give it a light
1541 * scan then give up on it.
1542 */
1543static void shrink_zones(int priority, struct zonelist *zonelist,
1544					struct scan_control *sc)
1545{
1546	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1547	struct zoneref *z;
1548	struct zone *zone;
1549
1550	sc->all_unreclaimable = 1;
1551	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1552		if (!populated_zone(zone))
1553			continue;
1554		/*
1555		 * Take care memory controller reclaiming has small influence
1556		 * to global LRU.
1557		 */
1558		if (scan_global_lru(sc)) {
1559			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1560				continue;
1561			note_zone_scanning_priority(zone, priority);
1562
1563			if (zone_is_all_unreclaimable(zone) &&
1564						priority != DEF_PRIORITY)
1565				continue;	/* Let kswapd poll it */
1566			sc->all_unreclaimable = 0;
1567		} else {
1568			/*
1569			 * Ignore cpuset limitation here. We just want to reduce
1570			 * # of used pages by us regardless of memory shortage.
1571			 */
1572			sc->all_unreclaimable = 0;
1573			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1574							priority);
1575		}
1576
1577		shrink_zone(priority, zone, sc);
1578	}
1579}
1580
1581/*
1582 * This is the main entry point to direct page reclaim.
1583 *
1584 * If a full scan of the inactive list fails to free enough memory then we
1585 * are "out of memory" and something needs to be killed.
1586 *
1587 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1588 * high - the zone may be full of dirty or under-writeback pages, which this
1589 * caller can't do much about.  We kick pdflush and take explicit naps in the
1590 * hope that some of these pages can be written.  But if the allocating task
1591 * holds filesystem locks which prevent writeout this might not work, and the
1592 * allocation attempt will fail.
1593 *
1594 * returns:	0, if no pages reclaimed
1595 * 		else, the number of pages reclaimed
1596 */
1597static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1598					struct scan_control *sc)
1599{
1600	int priority;
1601	unsigned long ret = 0;
1602	unsigned long total_scanned = 0;
1603	struct reclaim_state *reclaim_state = current->reclaim_state;
1604	unsigned long lru_pages = 0;
1605	struct zoneref *z;
1606	struct zone *zone;
1607	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1608
1609	delayacct_freepages_start();
1610
1611	if (scan_global_lru(sc))
1612		count_vm_event(ALLOCSTALL);
1613	/*
1614	 * mem_cgroup will not do shrink_slab.
1615	 */
1616	if (scan_global_lru(sc)) {
1617		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1618
1619			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1620				continue;
1621
1622			lru_pages += zone_lru_pages(zone);
1623		}
1624	}
1625
1626	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1627		sc->nr_scanned = 0;
1628		if (!priority)
1629			disable_swap_token();
1630		shrink_zones(priority, zonelist, sc);
1631		/*
1632		 * Don't shrink slabs when reclaiming memory from
1633		 * over limit cgroups
1634		 */
1635		if (scan_global_lru(sc)) {
1636			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1637			if (reclaim_state) {
1638				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1639				reclaim_state->reclaimed_slab = 0;
1640			}
1641		}
1642		total_scanned += sc->nr_scanned;
1643		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1644			ret = sc->nr_reclaimed;
1645			goto out;
1646		}
1647
1648		/*
1649		 * Try to write back as many pages as we just scanned.  This
1650		 * tends to cause slow streaming writers to write data to the
1651		 * disk smoothly, at the dirtying rate, which is nice.   But
1652		 * that's undesirable in laptop mode, where we *want* lumpy
1653		 * writeout.  So in laptop mode, write out the whole world.
1654		 */
1655		if (total_scanned > sc->swap_cluster_max +
1656					sc->swap_cluster_max / 2) {
1657			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1658			sc->may_writepage = 1;
1659		}
1660
1661		/* Take a nap, wait for some writeback to complete */
1662		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1663			congestion_wait(WRITE, HZ/10);
1664	}
1665	/* top priority shrink_zones still had more to do? don't OOM, then */
1666	if (!sc->all_unreclaimable && scan_global_lru(sc))
1667		ret = sc->nr_reclaimed;
1668out:
1669	/*
1670	 * Now that we've scanned all the zones at this priority level, note
1671	 * that level within the zone so that the next thread which performs
1672	 * scanning of this zone will immediately start out at this priority
1673	 * level.  This affects only the decision whether or not to bring
1674	 * mapped pages onto the inactive list.
1675	 */
1676	if (priority < 0)
1677		priority = 0;
1678
1679	if (scan_global_lru(sc)) {
1680		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1681
1682			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1683				continue;
1684
1685			zone->prev_priority = priority;
1686		}
1687	} else
1688		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1689
1690	delayacct_freepages_end();
1691
1692	return ret;
1693}
1694
1695unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1696								gfp_t gfp_mask)
1697{
1698	struct scan_control sc = {
1699		.gfp_mask = gfp_mask,
1700		.may_writepage = !laptop_mode,
1701		.swap_cluster_max = SWAP_CLUSTER_MAX,
1702		.may_swap = 1,
1703		.swappiness = vm_swappiness,
1704		.order = order,
1705		.mem_cgroup = NULL,
1706		.isolate_pages = isolate_pages_global,
1707	};
1708
1709	return do_try_to_free_pages(zonelist, &sc);
1710}
1711
1712#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1713
1714unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1715						gfp_t gfp_mask,
1716					   bool noswap)
1717{
1718	struct scan_control sc = {
1719		.may_writepage = !laptop_mode,
1720		.may_swap = 1,
1721		.swap_cluster_max = SWAP_CLUSTER_MAX,
1722		.swappiness = vm_swappiness,
1723		.order = 0,
1724		.mem_cgroup = mem_cont,
1725		.isolate_pages = mem_cgroup_isolate_pages,
1726	};
1727	struct zonelist *zonelist;
1728
1729	if (noswap)
1730		sc.may_swap = 0;
1731
1732	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1733			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1734	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1735	return do_try_to_free_pages(zonelist, &sc);
1736}
1737#endif
1738
1739/*
1740 * For kswapd, balance_pgdat() will work across all this node's zones until
1741 * they are all at pages_high.
1742 *
1743 * Returns the number of pages which were actually freed.
1744 *
1745 * There is special handling here for zones which are full of pinned pages.
1746 * This can happen if the pages are all mlocked, or if they are all used by
1747 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1748 * What we do is to detect the case where all pages in the zone have been
1749 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1750 * dead and from now on, only perform a short scan.  Basically we're polling
1751 * the zone for when the problem goes away.
1752 *
1753 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1754 * zones which have free_pages > pages_high, but once a zone is found to have
1755 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1756 * of the number of free pages in the lower zones.  This interoperates with
1757 * the page allocator fallback scheme to ensure that aging of pages is balanced
1758 * across the zones.
1759 */
1760static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1761{
1762	int all_zones_ok;
1763	int priority;
1764	int i;
1765	unsigned long total_scanned;
1766	struct reclaim_state *reclaim_state = current->reclaim_state;
1767	struct scan_control sc = {
1768		.gfp_mask = GFP_KERNEL,
1769		.may_swap = 1,
1770		.swap_cluster_max = SWAP_CLUSTER_MAX,
1771		.swappiness = vm_swappiness,
1772		.order = order,
1773		.mem_cgroup = NULL,
1774		.isolate_pages = isolate_pages_global,
1775	};
1776	/*
1777	 * temp_priority is used to remember the scanning priority at which
1778	 * this zone was successfully refilled to free_pages == pages_high.
1779	 */
1780	int temp_priority[MAX_NR_ZONES];
1781
1782loop_again:
1783	total_scanned = 0;
1784	sc.nr_reclaimed = 0;
1785	sc.may_writepage = !laptop_mode;
1786	count_vm_event(PAGEOUTRUN);
1787
1788	for (i = 0; i < pgdat->nr_zones; i++)
1789		temp_priority[i] = DEF_PRIORITY;
1790
1791	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1792		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1793		unsigned long lru_pages = 0;
1794
1795		/* The swap token gets in the way of swapout... */
1796		if (!priority)
1797			disable_swap_token();
1798
1799		all_zones_ok = 1;
1800
1801		/*
1802		 * Scan in the highmem->dma direction for the highest
1803		 * zone which needs scanning
1804		 */
1805		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1806			struct zone *zone = pgdat->node_zones + i;
1807
1808			if (!populated_zone(zone))
1809				continue;
1810
1811			if (zone_is_all_unreclaimable(zone) &&
1812			    priority != DEF_PRIORITY)
1813				continue;
1814
1815			/*
1816			 * Do some background aging of the anon list, to give
1817			 * pages a chance to be referenced before reclaiming.
1818			 */
1819			if (inactive_anon_is_low(zone, &sc))
1820				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1821							&sc, priority, 0);
1822
1823			if (!zone_watermark_ok(zone, order, zone->pages_high,
1824					       0, 0)) {
1825				end_zone = i;
1826				break;
1827			}
1828		}
1829		if (i < 0)
1830			goto out;
1831
1832		for (i = 0; i <= end_zone; i++) {
1833			struct zone *zone = pgdat->node_zones + i;
1834
1835			lru_pages += zone_lru_pages(zone);
1836		}
1837
1838		/*
1839		 * Now scan the zone in the dma->highmem direction, stopping
1840		 * at the last zone which needs scanning.
1841		 *
1842		 * We do this because the page allocator works in the opposite
1843		 * direction.  This prevents the page allocator from allocating
1844		 * pages behind kswapd's direction of progress, which would
1845		 * cause too much scanning of the lower zones.
1846		 */
1847		for (i = 0; i <= end_zone; i++) {
1848			struct zone *zone = pgdat->node_zones + i;
1849			int nr_slab;
1850
1851			if (!populated_zone(zone))
1852				continue;
1853
1854			if (zone_is_all_unreclaimable(zone) &&
1855					priority != DEF_PRIORITY)
1856				continue;
1857
1858			if (!zone_watermark_ok(zone, order, zone->pages_high,
1859					       end_zone, 0))
1860				all_zones_ok = 0;
1861			temp_priority[i] = priority;
1862			sc.nr_scanned = 0;
1863			note_zone_scanning_priority(zone, priority);
1864			/*
1865			 * We put equal pressure on every zone, unless one
1866			 * zone has way too many pages free already.
1867			 */
1868			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1869						end_zone, 0))
1870				shrink_zone(priority, zone, &sc);
1871			reclaim_state->reclaimed_slab = 0;
1872			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1873						lru_pages);
1874			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1875			total_scanned += sc.nr_scanned;
1876			if (zone_is_all_unreclaimable(zone))
1877				continue;
1878			if (nr_slab == 0 && zone->pages_scanned >=
1879						(zone_lru_pages(zone) * 6))
1880					zone_set_flag(zone,
1881						      ZONE_ALL_UNRECLAIMABLE);
1882			/*
1883			 * If we've done a decent amount of scanning and
1884			 * the reclaim ratio is low, start doing writepage
1885			 * even in laptop mode
1886			 */
1887			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1888			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1889				sc.may_writepage = 1;
1890		}
1891		if (all_zones_ok)
1892			break;		/* kswapd: all done */
1893		/*
1894		 * OK, kswapd is getting into trouble.  Take a nap, then take
1895		 * another pass across the zones.
1896		 */
1897		if (total_scanned && priority < DEF_PRIORITY - 2)
1898			congestion_wait(WRITE, HZ/10);
1899
1900		/*
1901		 * We do this so kswapd doesn't build up large priorities for
1902		 * example when it is freeing in parallel with allocators. It
1903		 * matches the direct reclaim path behaviour in terms of impact
1904		 * on zone->*_priority.
1905		 */
1906		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1907			break;
1908	}
1909out:
1910	/*
1911	 * Note within each zone the priority level at which this zone was
1912	 * brought into a happy state.  So that the next thread which scans this
1913	 * zone will start out at that priority level.
1914	 */
1915	for (i = 0; i < pgdat->nr_zones; i++) {
1916		struct zone *zone = pgdat->node_zones + i;
1917
1918		zone->prev_priority = temp_priority[i];
1919	}
1920	if (!all_zones_ok) {
1921		cond_resched();
1922
1923		try_to_freeze();
1924
1925		/*
1926		 * Fragmentation may mean that the system cannot be
1927		 * rebalanced for high-order allocations in all zones.
1928		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1929		 * it means the zones have been fully scanned and are still
1930		 * not balanced. For high-order allocations, there is
1931		 * little point trying all over again as kswapd may
1932		 * infinite loop.
1933		 *
1934		 * Instead, recheck all watermarks at order-0 as they
1935		 * are the most important. If watermarks are ok, kswapd will go
1936		 * back to sleep. High-order users can still perform direct
1937		 * reclaim if they wish.
1938		 */
1939		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1940			order = sc.order = 0;
1941
1942		goto loop_again;
1943	}
1944
1945	return sc.nr_reclaimed;
1946}
1947
1948/*
1949 * The background pageout daemon, started as a kernel thread
1950 * from the init process.
1951 *
1952 * This basically trickles out pages so that we have _some_
1953 * free memory available even if there is no other activity
1954 * that frees anything up. This is needed for things like routing
1955 * etc, where we otherwise might have all activity going on in
1956 * asynchronous contexts that cannot page things out.
1957 *
1958 * If there are applications that are active memory-allocators
1959 * (most normal use), this basically shouldn't matter.
1960 */
1961static int kswapd(void *p)
1962{
1963	unsigned long order;
1964	pg_data_t *pgdat = (pg_data_t*)p;
1965	struct task_struct *tsk = current;
1966	DEFINE_WAIT(wait);
1967	struct reclaim_state reclaim_state = {
1968		.reclaimed_slab = 0,
1969	};
1970	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1971
1972	if (!cpumask_empty(cpumask))
1973		set_cpus_allowed_ptr(tsk, cpumask);
1974	current->reclaim_state = &reclaim_state;
1975
1976	/*
1977	 * Tell the memory management that we're a "memory allocator",
1978	 * and that if we need more memory we should get access to it
1979	 * regardless (see "__alloc_pages()"). "kswapd" should
1980	 * never get caught in the normal page freeing logic.
1981	 *
1982	 * (Kswapd normally doesn't need memory anyway, but sometimes
1983	 * you need a small amount of memory in order to be able to
1984	 * page out something else, and this flag essentially protects
1985	 * us from recursively trying to free more memory as we're
1986	 * trying to free the first piece of memory in the first place).
1987	 */
1988	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1989	set_freezable();
1990
1991	order = 0;
1992	for ( ; ; ) {
1993		unsigned long new_order;
1994
1995		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1996		new_order = pgdat->kswapd_max_order;
1997		pgdat->kswapd_max_order = 0;
1998		if (order < new_order) {
1999			/*
2000			 * Don't sleep if someone wants a larger 'order'
2001			 * allocation
2002			 */
2003			order = new_order;
2004		} else {
2005			if (!freezing(current))
2006				schedule();
2007
2008			order = pgdat->kswapd_max_order;
2009		}
2010		finish_wait(&pgdat->kswapd_wait, &wait);
2011
2012		if (!try_to_freeze()) {
2013			/* We can speed up thawing tasks if we don't call
2014			 * balance_pgdat after returning from the refrigerator
2015			 */
2016			balance_pgdat(pgdat, order);
2017		}
2018	}
2019	return 0;
2020}
2021
2022/*
2023 * A zone is low on free memory, so wake its kswapd task to service it.
2024 */
2025void wakeup_kswapd(struct zone *zone, int order)
2026{
2027	pg_data_t *pgdat;
2028
2029	if (!populated_zone(zone))
2030		return;
2031
2032	pgdat = zone->zone_pgdat;
2033	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2034		return;
2035	if (pgdat->kswapd_max_order < order)
2036		pgdat->kswapd_max_order = order;
2037	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2038		return;
2039	if (!waitqueue_active(&pgdat->kswapd_wait))
2040		return;
2041	wake_up_interruptible(&pgdat->kswapd_wait);
2042}
2043
2044unsigned long global_lru_pages(void)
2045{
2046	return global_page_state(NR_ACTIVE_ANON)
2047		+ global_page_state(NR_ACTIVE_FILE)
2048		+ global_page_state(NR_INACTIVE_ANON)
2049		+ global_page_state(NR_INACTIVE_FILE);
2050}
2051
2052#ifdef CONFIG_PM
2053/*
2054 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2055 * from LRU lists system-wide, for given pass and priority, and returns the
2056 * number of reclaimed pages
2057 *
2058 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2059 */
2060static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2061				      int pass, struct scan_control *sc)
2062{
2063	struct zone *zone;
2064	unsigned long nr_to_scan, ret = 0;
2065	enum lru_list l;
2066
2067	for_each_zone(zone) {
2068
2069		if (!populated_zone(zone))
2070			continue;
2071
2072		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2073			continue;
2074
2075		for_each_evictable_lru(l) {
2076			/* For pass = 0, we don't shrink the active list */
2077			if (pass == 0 &&
2078				(l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2079				continue;
2080
2081			zone->lru[l].nr_scan +=
2082				(zone_page_state(zone, NR_LRU_BASE + l)
2083								>> prio) + 1;
2084			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2085				zone->lru[l].nr_scan = 0;
2086				nr_to_scan = min(nr_pages,
2087					zone_page_state(zone,
2088							NR_LRU_BASE + l));
2089				ret += shrink_list(l, nr_to_scan, zone,
2090								sc, prio);
2091				if (ret >= nr_pages)
2092					return ret;
2093			}
2094		}
2095	}
2096
2097	return ret;
2098}
2099
2100/*
2101 * Try to free `nr_pages' of memory, system-wide, and return the number of
2102 * freed pages.
2103 *
2104 * Rather than trying to age LRUs the aim is to preserve the overall
2105 * LRU order by reclaiming preferentially
2106 * inactive > active > active referenced > active mapped
2107 */
2108unsigned long shrink_all_memory(unsigned long nr_pages)
2109{
2110	unsigned long lru_pages, nr_slab;
2111	unsigned long ret = 0;
2112	int pass;
2113	struct reclaim_state reclaim_state;
2114	struct scan_control sc = {
2115		.gfp_mask = GFP_KERNEL,
2116		.may_swap = 0,
2117		.swap_cluster_max = nr_pages,
2118		.may_writepage = 1,
2119		.swappiness = vm_swappiness,
2120		.isolate_pages = isolate_pages_global,
2121	};
2122
2123	current->reclaim_state = &reclaim_state;
2124
2125	lru_pages = global_lru_pages();
2126	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2127	/* If slab caches are huge, it's better to hit them first */
2128	while (nr_slab >= lru_pages) {
2129		reclaim_state.reclaimed_slab = 0;
2130		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2131		if (!reclaim_state.reclaimed_slab)
2132			break;
2133
2134		ret += reclaim_state.reclaimed_slab;
2135		if (ret >= nr_pages)
2136			goto out;
2137
2138		nr_slab -= reclaim_state.reclaimed_slab;
2139	}
2140
2141	/*
2142	 * We try to shrink LRUs in 5 passes:
2143	 * 0 = Reclaim from inactive_list only
2144	 * 1 = Reclaim from active list but don't reclaim mapped
2145	 * 2 = 2nd pass of type 1
2146	 * 3 = Reclaim mapped (normal reclaim)
2147	 * 4 = 2nd pass of type 3
2148	 */
2149	for (pass = 0; pass < 5; pass++) {
2150		int prio;
2151
2152		/* Force reclaiming mapped pages in the passes #3 and #4 */
2153		if (pass > 2) {
2154			sc.may_swap = 1;
2155			sc.swappiness = 100;
2156		}
2157
2158		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2159			unsigned long nr_to_scan = nr_pages - ret;
2160
2161			sc.nr_scanned = 0;
2162			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2163			if (ret >= nr_pages)
2164				goto out;
2165
2166			reclaim_state.reclaimed_slab = 0;
2167			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2168					global_lru_pages());
2169			ret += reclaim_state.reclaimed_slab;
2170			if (ret >= nr_pages)
2171				goto out;
2172
2173			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2174				congestion_wait(WRITE, HZ / 10);
2175		}
2176	}
2177
2178	/*
2179	 * If ret = 0, we could not shrink LRUs, but there may be something
2180	 * in slab caches
2181	 */
2182	if (!ret) {
2183		do {
2184			reclaim_state.reclaimed_slab = 0;
2185			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2186			ret += reclaim_state.reclaimed_slab;
2187		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2188	}
2189
2190out:
2191	current->reclaim_state = NULL;
2192
2193	return ret;
2194}
2195#endif
2196
2197/* It's optimal to keep kswapds on the same CPUs as their memory, but
2198   not required for correctness.  So if the last cpu in a node goes
2199   away, we get changed to run anywhere: as the first one comes back,
2200   restore their cpu bindings. */
2201static int __devinit cpu_callback(struct notifier_block *nfb,
2202				  unsigned long action, void *hcpu)
2203{
2204	int nid;
2205
2206	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2207		for_each_node_state(nid, N_HIGH_MEMORY) {
2208			pg_data_t *pgdat = NODE_DATA(nid);
2209			node_to_cpumask_ptr(mask, pgdat->node_id);
2210
2211			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2212				/* One of our CPUs online: restore mask */
2213				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2214		}
2215	}
2216	return NOTIFY_OK;
2217}
2218
2219/*
2220 * This kswapd start function will be called by init and node-hot-add.
2221 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2222 */
2223int kswapd_run(int nid)
2224{
2225	pg_data_t *pgdat = NODE_DATA(nid);
2226	int ret = 0;
2227
2228	if (pgdat->kswapd)
2229		return 0;
2230
2231	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2232	if (IS_ERR(pgdat->kswapd)) {
2233		/* failure at boot is fatal */
2234		BUG_ON(system_state == SYSTEM_BOOTING);
2235		printk("Failed to start kswapd on node %d\n",nid);
2236		ret = -1;
2237	}
2238	return ret;
2239}
2240
2241static int __init kswapd_init(void)
2242{
2243	int nid;
2244
2245	swap_setup();
2246	for_each_node_state(nid, N_HIGH_MEMORY)
2247 		kswapd_run(nid);
2248	hotcpu_notifier(cpu_callback, 0);
2249	return 0;
2250}
2251
2252module_init(kswapd_init)
2253
2254#ifdef CONFIG_NUMA
2255/*
2256 * Zone reclaim mode
2257 *
2258 * If non-zero call zone_reclaim when the number of free pages falls below
2259 * the watermarks.
2260 */
2261int zone_reclaim_mode __read_mostly;
2262
2263#define RECLAIM_OFF 0
2264#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2265#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2266#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2267
2268/*
2269 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2270 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2271 * a zone.
2272 */
2273#define ZONE_RECLAIM_PRIORITY 4
2274
2275/*
2276 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2277 * occur.
2278 */
2279int sysctl_min_unmapped_ratio = 1;
2280
2281/*
2282 * If the number of slab pages in a zone grows beyond this percentage then
2283 * slab reclaim needs to occur.
2284 */
2285int sysctl_min_slab_ratio = 5;
2286
2287/*
2288 * Try to free up some pages from this zone through reclaim.
2289 */
2290static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2291{
2292	/* Minimum pages needed in order to stay on node */
2293	const unsigned long nr_pages = 1 << order;
2294	struct task_struct *p = current;
2295	struct reclaim_state reclaim_state;
2296	int priority;
2297	struct scan_control sc = {
2298		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2299		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2300		.swap_cluster_max = max_t(unsigned long, nr_pages,
2301					SWAP_CLUSTER_MAX),
2302		.gfp_mask = gfp_mask,
2303		.swappiness = vm_swappiness,
2304		.isolate_pages = isolate_pages_global,
2305	};
2306	unsigned long slab_reclaimable;
2307
2308	disable_swap_token();
2309	cond_resched();
2310	/*
2311	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2312	 * and we also need to be able to write out pages for RECLAIM_WRITE
2313	 * and RECLAIM_SWAP.
2314	 */
2315	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2316	reclaim_state.reclaimed_slab = 0;
2317	p->reclaim_state = &reclaim_state;
2318
2319	if (zone_page_state(zone, NR_FILE_PAGES) -
2320		zone_page_state(zone, NR_FILE_MAPPED) >
2321		zone->min_unmapped_pages) {
2322		/*
2323		 * Free memory by calling shrink zone with increasing
2324		 * priorities until we have enough memory freed.
2325		 */
2326		priority = ZONE_RECLAIM_PRIORITY;
2327		do {
2328			note_zone_scanning_priority(zone, priority);
2329			shrink_zone(priority, zone, &sc);
2330			priority--;
2331		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2332	}
2333
2334	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2335	if (slab_reclaimable > zone->min_slab_pages) {
2336		/*
2337		 * shrink_slab() does not currently allow us to determine how
2338		 * many pages were freed in this zone. So we take the current
2339		 * number of slab pages and shake the slab until it is reduced
2340		 * by the same nr_pages that we used for reclaiming unmapped
2341		 * pages.
2342		 *
2343		 * Note that shrink_slab will free memory on all zones and may
2344		 * take a long time.
2345		 */
2346		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2347			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2348				slab_reclaimable - nr_pages)
2349			;
2350
2351		/*
2352		 * Update nr_reclaimed by the number of slab pages we
2353		 * reclaimed from this zone.
2354		 */
2355		sc.nr_reclaimed += slab_reclaimable -
2356			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2357	}
2358
2359	p->reclaim_state = NULL;
2360	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2361	return sc.nr_reclaimed >= nr_pages;
2362}
2363
2364int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2365{
2366	int node_id;
2367	int ret;
2368
2369	/*
2370	 * Zone reclaim reclaims unmapped file backed pages and
2371	 * slab pages if we are over the defined limits.
2372	 *
2373	 * A small portion of unmapped file backed pages is needed for
2374	 * file I/O otherwise pages read by file I/O will be immediately
2375	 * thrown out if the zone is overallocated. So we do not reclaim
2376	 * if less than a specified percentage of the zone is used by
2377	 * unmapped file backed pages.
2378	 */
2379	if (zone_page_state(zone, NR_FILE_PAGES) -
2380	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2381	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2382			<= zone->min_slab_pages)
2383		return 0;
2384
2385	if (zone_is_all_unreclaimable(zone))
2386		return 0;
2387
2388	/*
2389	 * Do not scan if the allocation should not be delayed.
2390	 */
2391	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2392			return 0;
2393
2394	/*
2395	 * Only run zone reclaim on the local zone or on zones that do not
2396	 * have associated processors. This will favor the local processor
2397	 * over remote processors and spread off node memory allocations
2398	 * as wide as possible.
2399	 */
2400	node_id = zone_to_nid(zone);
2401	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2402		return 0;
2403
2404	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2405		return 0;
2406	ret = __zone_reclaim(zone, gfp_mask, order);
2407	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2408
2409	return ret;
2410}
2411#endif
2412
2413#ifdef CONFIG_UNEVICTABLE_LRU
2414/*
2415 * page_evictable - test whether a page is evictable
2416 * @page: the page to test
2417 * @vma: the VMA in which the page is or will be mapped, may be NULL
2418 *
2419 * Test whether page is evictable--i.e., should be placed on active/inactive
2420 * lists vs unevictable list.  The vma argument is !NULL when called from the
2421 * fault path to determine how to instantate a new page.
2422 *
2423 * Reasons page might not be evictable:
2424 * (1) page's mapping marked unevictable
2425 * (2) page is part of an mlocked VMA
2426 *
2427 */
2428int page_evictable(struct page *page, struct vm_area_struct *vma)
2429{
2430
2431	if (mapping_unevictable(page_mapping(page)))
2432		return 0;
2433
2434	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2435		return 0;
2436
2437	return 1;
2438}
2439
2440/**
2441 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2442 * @page: page to check evictability and move to appropriate lru list
2443 * @zone: zone page is in
2444 *
2445 * Checks a page for evictability and moves the page to the appropriate
2446 * zone lru list.
2447 *
2448 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2449 * have PageUnevictable set.
2450 */
2451static void check_move_unevictable_page(struct page *page, struct zone *zone)
2452{
2453	VM_BUG_ON(PageActive(page));
2454
2455retry:
2456	ClearPageUnevictable(page);
2457	if (page_evictable(page, NULL)) {
2458		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2459
2460		__dec_zone_state(zone, NR_UNEVICTABLE);
2461		list_move(&page->lru, &zone->lru[l].list);
2462		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2463		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2464		__count_vm_event(UNEVICTABLE_PGRESCUED);
2465	} else {
2466		/*
2467		 * rotate unevictable list
2468		 */
2469		SetPageUnevictable(page);
2470		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2471		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2472		if (page_evictable(page, NULL))
2473			goto retry;
2474	}
2475}
2476
2477/**
2478 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2479 * @mapping: struct address_space to scan for evictable pages
2480 *
2481 * Scan all pages in mapping.  Check unevictable pages for
2482 * evictability and move them to the appropriate zone lru list.
2483 */
2484void scan_mapping_unevictable_pages(struct address_space *mapping)
2485{
2486	pgoff_t next = 0;
2487	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2488			 PAGE_CACHE_SHIFT;
2489	struct zone *zone;
2490	struct pagevec pvec;
2491
2492	if (mapping->nrpages == 0)
2493		return;
2494
2495	pagevec_init(&pvec, 0);
2496	while (next < end &&
2497		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2498		int i;
2499		int pg_scanned = 0;
2500
2501		zone = NULL;
2502
2503		for (i = 0; i < pagevec_count(&pvec); i++) {
2504			struct page *page = pvec.pages[i];
2505			pgoff_t page_index = page->index;
2506			struct zone *pagezone = page_zone(page);
2507
2508			pg_scanned++;
2509			if (page_index > next)
2510				next = page_index;
2511			next++;
2512
2513			if (pagezone != zone) {
2514				if (zone)
2515					spin_unlock_irq(&zone->lru_lock);
2516				zone = pagezone;
2517				spin_lock_irq(&zone->lru_lock);
2518			}
2519
2520			if (PageLRU(page) && PageUnevictable(page))
2521				check_move_unevictable_page(page, zone);
2522		}
2523		if (zone)
2524			spin_unlock_irq(&zone->lru_lock);
2525		pagevec_release(&pvec);
2526
2527		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2528	}
2529
2530}
2531
2532/**
2533 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2534 * @zone - zone of which to scan the unevictable list
2535 *
2536 * Scan @zone's unevictable LRU lists to check for pages that have become
2537 * evictable.  Move those that have to @zone's inactive list where they
2538 * become candidates for reclaim, unless shrink_inactive_zone() decides
2539 * to reactivate them.  Pages that are still unevictable are rotated
2540 * back onto @zone's unevictable list.
2541 */
2542#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2543static void scan_zone_unevictable_pages(struct zone *zone)
2544{
2545	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2546	unsigned long scan;
2547	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2548
2549	while (nr_to_scan > 0) {
2550		unsigned long batch_size = min(nr_to_scan,
2551						SCAN_UNEVICTABLE_BATCH_SIZE);
2552
2553		spin_lock_irq(&zone->lru_lock);
2554		for (scan = 0;  scan < batch_size; scan++) {
2555			struct page *page = lru_to_page(l_unevictable);
2556
2557			if (!trylock_page(page))
2558				continue;
2559
2560			prefetchw_prev_lru_page(page, l_unevictable, flags);
2561
2562			if (likely(PageLRU(page) && PageUnevictable(page)))
2563				check_move_unevictable_page(page, zone);
2564
2565			unlock_page(page);
2566		}
2567		spin_unlock_irq(&zone->lru_lock);
2568
2569		nr_to_scan -= batch_size;
2570	}
2571}
2572
2573
2574/**
2575 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2576 *
2577 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2578 * pages that have become evictable.  Move those back to the zones'
2579 * inactive list where they become candidates for reclaim.
2580 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2581 * and we add swap to the system.  As such, it runs in the context of a task
2582 * that has possibly/probably made some previously unevictable pages
2583 * evictable.
2584 */
2585static void scan_all_zones_unevictable_pages(void)
2586{
2587	struct zone *zone;
2588
2589	for_each_zone(zone) {
2590		scan_zone_unevictable_pages(zone);
2591	}
2592}
2593
2594/*
2595 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2596 * all nodes' unevictable lists for evictable pages
2597 */
2598unsigned long scan_unevictable_pages;
2599
2600int scan_unevictable_handler(struct ctl_table *table, int write,
2601			   struct file *file, void __user *buffer,
2602			   size_t *length, loff_t *ppos)
2603{
2604	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2605
2606	if (write && *(unsigned long *)table->data)
2607		scan_all_zones_unevictable_pages();
2608
2609	scan_unevictable_pages = 0;
2610	return 0;
2611}
2612
2613/*
2614 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2615 * a specified node's per zone unevictable lists for evictable pages.
2616 */
2617
2618static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2619					  struct sysdev_attribute *attr,
2620					  char *buf)
2621{
2622	return sprintf(buf, "0\n");	/* always zero; should fit... */
2623}
2624
2625static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2626					   struct sysdev_attribute *attr,
2627					const char *buf, size_t count)
2628{
2629	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2630	struct zone *zone;
2631	unsigned long res;
2632	unsigned long req = strict_strtoul(buf, 10, &res);
2633
2634	if (!req)
2635		return 1;	/* zero is no-op */
2636
2637	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2638		if (!populated_zone(zone))
2639			continue;
2640		scan_zone_unevictable_pages(zone);
2641	}
2642	return 1;
2643}
2644
2645
2646static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2647			read_scan_unevictable_node,
2648			write_scan_unevictable_node);
2649
2650int scan_unevictable_register_node(struct node *node)
2651{
2652	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2653}
2654
2655void scan_unevictable_unregister_node(struct node *node)
2656{
2657	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2658}
2659
2660#endif
2661