vmscan.c revision 268bb0ce3e87872cb9290c322b0d35bce230d88f
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int swappiness;
99
100	int order;
101
102	/*
103	 * Intend to reclaim enough continuous memory rather than reclaim
104	 * enough amount of memory. i.e, mode for high order allocation.
105	 */
106	reclaim_mode_t reclaim_mode;
107
108	/* Which cgroup do we reclaim from */
109	struct mem_cgroup *mem_cgroup;
110
111	/*
112	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113	 * are scanned.
114	 */
115	nodemask_t	*nodemask;
116};
117
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field)			\
122	do {								\
123		if ((_page)->lru.prev != _base) {			\
124			struct page *prev;				\
125									\
126			prev = lru_to_page(&(_page->lru));		\
127			prefetch(&prev->_field);			\
128		}							\
129	} while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field)			\
136	do {								\
137		if ((_page)->lru.prev != _base) {			\
138			struct page *prev;				\
139									\
140			prev = lru_to_page(&(_page->lru));		\
141			prefetchw(&prev->_field);			\
142		}							\
143	} while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100.  Higher means more swappy.
150 */
151int vm_swappiness = 60;
152long vm_total_pages;	/* The total number of pages which the VM controls */
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159#else
160#define scanning_global_lru(sc)	(1)
161#endif
162
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164						  struct scan_control *sc)
165{
166	if (!scanning_global_lru(sc))
167		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169	return &zone->reclaim_stat;
170}
171
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173				struct scan_control *sc, enum lru_list lru)
174{
175	if (!scanning_global_lru(sc))
176		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
177
178	return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
182/*
183 * Add a shrinker callback to be called from the vm
184 */
185void register_shrinker(struct shrinker *shrinker)
186{
187	shrinker->nr = 0;
188	down_write(&shrinker_rwsem);
189	list_add_tail(&shrinker->list, &shrinker_list);
190	up_write(&shrinker_rwsem);
191}
192EXPORT_SYMBOL(register_shrinker);
193
194/*
195 * Remove one
196 */
197void unregister_shrinker(struct shrinker *shrinker)
198{
199	down_write(&shrinker_rwsem);
200	list_del(&shrinker->list);
201	up_write(&shrinker_rwsem);
202}
203EXPORT_SYMBOL(unregister_shrinker);
204
205#define SHRINK_BATCH 128
206/*
207 * Call the shrink functions to age shrinkable caches
208 *
209 * Here we assume it costs one seek to replace a lru page and that it also
210 * takes a seek to recreate a cache object.  With this in mind we age equal
211 * percentages of the lru and ageable caches.  This should balance the seeks
212 * generated by these structures.
213 *
214 * If the vm encountered mapped pages on the LRU it increase the pressure on
215 * slab to avoid swapping.
216 *
217 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
218 *
219 * `lru_pages' represents the number of on-LRU pages in all the zones which
220 * are eligible for the caller's allocation attempt.  It is used for balancing
221 * slab reclaim versus page reclaim.
222 *
223 * Returns the number of slab objects which we shrunk.
224 */
225unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
226			unsigned long lru_pages)
227{
228	struct shrinker *shrinker;
229	unsigned long ret = 0;
230
231	if (scanned == 0)
232		scanned = SWAP_CLUSTER_MAX;
233
234	if (!down_read_trylock(&shrinker_rwsem))
235		return 1;	/* Assume we'll be able to shrink next time */
236
237	list_for_each_entry(shrinker, &shrinker_list, list) {
238		unsigned long long delta;
239		unsigned long total_scan;
240		unsigned long max_pass;
241
242		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
243		delta = (4 * scanned) / shrinker->seeks;
244		delta *= max_pass;
245		do_div(delta, lru_pages + 1);
246		shrinker->nr += delta;
247		if (shrinker->nr < 0) {
248			printk(KERN_ERR "shrink_slab: %pF negative objects to "
249			       "delete nr=%ld\n",
250			       shrinker->shrink, shrinker->nr);
251			shrinker->nr = max_pass;
252		}
253
254		/*
255		 * Avoid risking looping forever due to too large nr value:
256		 * never try to free more than twice the estimate number of
257		 * freeable entries.
258		 */
259		if (shrinker->nr > max_pass * 2)
260			shrinker->nr = max_pass * 2;
261
262		total_scan = shrinker->nr;
263		shrinker->nr = 0;
264
265		while (total_scan >= SHRINK_BATCH) {
266			long this_scan = SHRINK_BATCH;
267			int shrink_ret;
268			int nr_before;
269
270			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
271			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
272								gfp_mask);
273			if (shrink_ret == -1)
274				break;
275			if (shrink_ret < nr_before)
276				ret += nr_before - shrink_ret;
277			count_vm_events(SLABS_SCANNED, this_scan);
278			total_scan -= this_scan;
279
280			cond_resched();
281		}
282
283		shrinker->nr += total_scan;
284	}
285	up_read(&shrinker_rwsem);
286	return ret;
287}
288
289static void set_reclaim_mode(int priority, struct scan_control *sc,
290				   bool sync)
291{
292	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
293
294	/*
295	 * Initially assume we are entering either lumpy reclaim or
296	 * reclaim/compaction.Depending on the order, we will either set the
297	 * sync mode or just reclaim order-0 pages later.
298	 */
299	if (COMPACTION_BUILD)
300		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
301	else
302		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
303
304	/*
305	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
306	 * restricting when its set to either costly allocations or when
307	 * under memory pressure
308	 */
309	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
310		sc->reclaim_mode |= syncmode;
311	else if (sc->order && priority < DEF_PRIORITY - 2)
312		sc->reclaim_mode |= syncmode;
313	else
314		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
315}
316
317static void reset_reclaim_mode(struct scan_control *sc)
318{
319	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
320}
321
322static inline int is_page_cache_freeable(struct page *page)
323{
324	/*
325	 * A freeable page cache page is referenced only by the caller
326	 * that isolated the page, the page cache radix tree and
327	 * optional buffer heads at page->private.
328	 */
329	return page_count(page) - page_has_private(page) == 2;
330}
331
332static int may_write_to_queue(struct backing_dev_info *bdi,
333			      struct scan_control *sc)
334{
335	if (current->flags & PF_SWAPWRITE)
336		return 1;
337	if (!bdi_write_congested(bdi))
338		return 1;
339	if (bdi == current->backing_dev_info)
340		return 1;
341
342	/* lumpy reclaim for hugepage often need a lot of write */
343	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
344		return 1;
345	return 0;
346}
347
348/*
349 * We detected a synchronous write error writing a page out.  Probably
350 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
351 * fsync(), msync() or close().
352 *
353 * The tricky part is that after writepage we cannot touch the mapping: nothing
354 * prevents it from being freed up.  But we have a ref on the page and once
355 * that page is locked, the mapping is pinned.
356 *
357 * We're allowed to run sleeping lock_page() here because we know the caller has
358 * __GFP_FS.
359 */
360static void handle_write_error(struct address_space *mapping,
361				struct page *page, int error)
362{
363	lock_page(page);
364	if (page_mapping(page) == mapping)
365		mapping_set_error(mapping, error);
366	unlock_page(page);
367}
368
369/* possible outcome of pageout() */
370typedef enum {
371	/* failed to write page out, page is locked */
372	PAGE_KEEP,
373	/* move page to the active list, page is locked */
374	PAGE_ACTIVATE,
375	/* page has been sent to the disk successfully, page is unlocked */
376	PAGE_SUCCESS,
377	/* page is clean and locked */
378	PAGE_CLEAN,
379} pageout_t;
380
381/*
382 * pageout is called by shrink_page_list() for each dirty page.
383 * Calls ->writepage().
384 */
385static pageout_t pageout(struct page *page, struct address_space *mapping,
386			 struct scan_control *sc)
387{
388	/*
389	 * If the page is dirty, only perform writeback if that write
390	 * will be non-blocking.  To prevent this allocation from being
391	 * stalled by pagecache activity.  But note that there may be
392	 * stalls if we need to run get_block().  We could test
393	 * PagePrivate for that.
394	 *
395	 * If this process is currently in __generic_file_aio_write() against
396	 * this page's queue, we can perform writeback even if that
397	 * will block.
398	 *
399	 * If the page is swapcache, write it back even if that would
400	 * block, for some throttling. This happens by accident, because
401	 * swap_backing_dev_info is bust: it doesn't reflect the
402	 * congestion state of the swapdevs.  Easy to fix, if needed.
403	 */
404	if (!is_page_cache_freeable(page))
405		return PAGE_KEEP;
406	if (!mapping) {
407		/*
408		 * Some data journaling orphaned pages can have
409		 * page->mapping == NULL while being dirty with clean buffers.
410		 */
411		if (page_has_private(page)) {
412			if (try_to_free_buffers(page)) {
413				ClearPageDirty(page);
414				printk("%s: orphaned page\n", __func__);
415				return PAGE_CLEAN;
416			}
417		}
418		return PAGE_KEEP;
419	}
420	if (mapping->a_ops->writepage == NULL)
421		return PAGE_ACTIVATE;
422	if (!may_write_to_queue(mapping->backing_dev_info, sc))
423		return PAGE_KEEP;
424
425	if (clear_page_dirty_for_io(page)) {
426		int res;
427		struct writeback_control wbc = {
428			.sync_mode = WB_SYNC_NONE,
429			.nr_to_write = SWAP_CLUSTER_MAX,
430			.range_start = 0,
431			.range_end = LLONG_MAX,
432			.for_reclaim = 1,
433		};
434
435		SetPageReclaim(page);
436		res = mapping->a_ops->writepage(page, &wbc);
437		if (res < 0)
438			handle_write_error(mapping, page, res);
439		if (res == AOP_WRITEPAGE_ACTIVATE) {
440			ClearPageReclaim(page);
441			return PAGE_ACTIVATE;
442		}
443
444		/*
445		 * Wait on writeback if requested to. This happens when
446		 * direct reclaiming a large contiguous area and the
447		 * first attempt to free a range of pages fails.
448		 */
449		if (PageWriteback(page) &&
450		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
451			wait_on_page_writeback(page);
452
453		if (!PageWriteback(page)) {
454			/* synchronous write or broken a_ops? */
455			ClearPageReclaim(page);
456		}
457		trace_mm_vmscan_writepage(page,
458			trace_reclaim_flags(page, sc->reclaim_mode));
459		inc_zone_page_state(page, NR_VMSCAN_WRITE);
460		return PAGE_SUCCESS;
461	}
462
463	return PAGE_CLEAN;
464}
465
466/*
467 * Same as remove_mapping, but if the page is removed from the mapping, it
468 * gets returned with a refcount of 0.
469 */
470static int __remove_mapping(struct address_space *mapping, struct page *page)
471{
472	BUG_ON(!PageLocked(page));
473	BUG_ON(mapping != page_mapping(page));
474
475	spin_lock_irq(&mapping->tree_lock);
476	/*
477	 * The non racy check for a busy page.
478	 *
479	 * Must be careful with the order of the tests. When someone has
480	 * a ref to the page, it may be possible that they dirty it then
481	 * drop the reference. So if PageDirty is tested before page_count
482	 * here, then the following race may occur:
483	 *
484	 * get_user_pages(&page);
485	 * [user mapping goes away]
486	 * write_to(page);
487	 *				!PageDirty(page)    [good]
488	 * SetPageDirty(page);
489	 * put_page(page);
490	 *				!page_count(page)   [good, discard it]
491	 *
492	 * [oops, our write_to data is lost]
493	 *
494	 * Reversing the order of the tests ensures such a situation cannot
495	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
496	 * load is not satisfied before that of page->_count.
497	 *
498	 * Note that if SetPageDirty is always performed via set_page_dirty,
499	 * and thus under tree_lock, then this ordering is not required.
500	 */
501	if (!page_freeze_refs(page, 2))
502		goto cannot_free;
503	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
504	if (unlikely(PageDirty(page))) {
505		page_unfreeze_refs(page, 2);
506		goto cannot_free;
507	}
508
509	if (PageSwapCache(page)) {
510		swp_entry_t swap = { .val = page_private(page) };
511		__delete_from_swap_cache(page);
512		spin_unlock_irq(&mapping->tree_lock);
513		swapcache_free(swap, page);
514	} else {
515		void (*freepage)(struct page *);
516
517		freepage = mapping->a_ops->freepage;
518
519		__delete_from_page_cache(page);
520		spin_unlock_irq(&mapping->tree_lock);
521		mem_cgroup_uncharge_cache_page(page);
522
523		if (freepage != NULL)
524			freepage(page);
525	}
526
527	return 1;
528
529cannot_free:
530	spin_unlock_irq(&mapping->tree_lock);
531	return 0;
532}
533
534/*
535 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
536 * someone else has a ref on the page, abort and return 0.  If it was
537 * successfully detached, return 1.  Assumes the caller has a single ref on
538 * this page.
539 */
540int remove_mapping(struct address_space *mapping, struct page *page)
541{
542	if (__remove_mapping(mapping, page)) {
543		/*
544		 * Unfreezing the refcount with 1 rather than 2 effectively
545		 * drops the pagecache ref for us without requiring another
546		 * atomic operation.
547		 */
548		page_unfreeze_refs(page, 1);
549		return 1;
550	}
551	return 0;
552}
553
554/**
555 * putback_lru_page - put previously isolated page onto appropriate LRU list
556 * @page: page to be put back to appropriate lru list
557 *
558 * Add previously isolated @page to appropriate LRU list.
559 * Page may still be unevictable for other reasons.
560 *
561 * lru_lock must not be held, interrupts must be enabled.
562 */
563void putback_lru_page(struct page *page)
564{
565	int lru;
566	int active = !!TestClearPageActive(page);
567	int was_unevictable = PageUnevictable(page);
568
569	VM_BUG_ON(PageLRU(page));
570
571redo:
572	ClearPageUnevictable(page);
573
574	if (page_evictable(page, NULL)) {
575		/*
576		 * For evictable pages, we can use the cache.
577		 * In event of a race, worst case is we end up with an
578		 * unevictable page on [in]active list.
579		 * We know how to handle that.
580		 */
581		lru = active + page_lru_base_type(page);
582		lru_cache_add_lru(page, lru);
583	} else {
584		/*
585		 * Put unevictable pages directly on zone's unevictable
586		 * list.
587		 */
588		lru = LRU_UNEVICTABLE;
589		add_page_to_unevictable_list(page);
590		/*
591		 * When racing with an mlock clearing (page is
592		 * unlocked), make sure that if the other thread does
593		 * not observe our setting of PG_lru and fails
594		 * isolation, we see PG_mlocked cleared below and move
595		 * the page back to the evictable list.
596		 *
597		 * The other side is TestClearPageMlocked().
598		 */
599		smp_mb();
600	}
601
602	/*
603	 * page's status can change while we move it among lru. If an evictable
604	 * page is on unevictable list, it never be freed. To avoid that,
605	 * check after we added it to the list, again.
606	 */
607	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
608		if (!isolate_lru_page(page)) {
609			put_page(page);
610			goto redo;
611		}
612		/* This means someone else dropped this page from LRU
613		 * So, it will be freed or putback to LRU again. There is
614		 * nothing to do here.
615		 */
616	}
617
618	if (was_unevictable && lru != LRU_UNEVICTABLE)
619		count_vm_event(UNEVICTABLE_PGRESCUED);
620	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
621		count_vm_event(UNEVICTABLE_PGCULLED);
622
623	put_page(page);		/* drop ref from isolate */
624}
625
626enum page_references {
627	PAGEREF_RECLAIM,
628	PAGEREF_RECLAIM_CLEAN,
629	PAGEREF_KEEP,
630	PAGEREF_ACTIVATE,
631};
632
633static enum page_references page_check_references(struct page *page,
634						  struct scan_control *sc)
635{
636	int referenced_ptes, referenced_page;
637	unsigned long vm_flags;
638
639	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
640	referenced_page = TestClearPageReferenced(page);
641
642	/* Lumpy reclaim - ignore references */
643	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
644		return PAGEREF_RECLAIM;
645
646	/*
647	 * Mlock lost the isolation race with us.  Let try_to_unmap()
648	 * move the page to the unevictable list.
649	 */
650	if (vm_flags & VM_LOCKED)
651		return PAGEREF_RECLAIM;
652
653	if (referenced_ptes) {
654		if (PageAnon(page))
655			return PAGEREF_ACTIVATE;
656		/*
657		 * All mapped pages start out with page table
658		 * references from the instantiating fault, so we need
659		 * to look twice if a mapped file page is used more
660		 * than once.
661		 *
662		 * Mark it and spare it for another trip around the
663		 * inactive list.  Another page table reference will
664		 * lead to its activation.
665		 *
666		 * Note: the mark is set for activated pages as well
667		 * so that recently deactivated but used pages are
668		 * quickly recovered.
669		 */
670		SetPageReferenced(page);
671
672		if (referenced_page)
673			return PAGEREF_ACTIVATE;
674
675		return PAGEREF_KEEP;
676	}
677
678	/* Reclaim if clean, defer dirty pages to writeback */
679	if (referenced_page && !PageSwapBacked(page))
680		return PAGEREF_RECLAIM_CLEAN;
681
682	return PAGEREF_RECLAIM;
683}
684
685static noinline_for_stack void free_page_list(struct list_head *free_pages)
686{
687	struct pagevec freed_pvec;
688	struct page *page, *tmp;
689
690	pagevec_init(&freed_pvec, 1);
691
692	list_for_each_entry_safe(page, tmp, free_pages, lru) {
693		list_del(&page->lru);
694		if (!pagevec_add(&freed_pvec, page)) {
695			__pagevec_free(&freed_pvec);
696			pagevec_reinit(&freed_pvec);
697		}
698	}
699
700	pagevec_free(&freed_pvec);
701}
702
703/*
704 * shrink_page_list() returns the number of reclaimed pages
705 */
706static unsigned long shrink_page_list(struct list_head *page_list,
707				      struct zone *zone,
708				      struct scan_control *sc)
709{
710	LIST_HEAD(ret_pages);
711	LIST_HEAD(free_pages);
712	int pgactivate = 0;
713	unsigned long nr_dirty = 0;
714	unsigned long nr_congested = 0;
715	unsigned long nr_reclaimed = 0;
716
717	cond_resched();
718
719	while (!list_empty(page_list)) {
720		enum page_references references;
721		struct address_space *mapping;
722		struct page *page;
723		int may_enter_fs;
724
725		cond_resched();
726
727		page = lru_to_page(page_list);
728		list_del(&page->lru);
729
730		if (!trylock_page(page))
731			goto keep;
732
733		VM_BUG_ON(PageActive(page));
734		VM_BUG_ON(page_zone(page) != zone);
735
736		sc->nr_scanned++;
737
738		if (unlikely(!page_evictable(page, NULL)))
739			goto cull_mlocked;
740
741		if (!sc->may_unmap && page_mapped(page))
742			goto keep_locked;
743
744		/* Double the slab pressure for mapped and swapcache pages */
745		if (page_mapped(page) || PageSwapCache(page))
746			sc->nr_scanned++;
747
748		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
749			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
750
751		if (PageWriteback(page)) {
752			/*
753			 * Synchronous reclaim is performed in two passes,
754			 * first an asynchronous pass over the list to
755			 * start parallel writeback, and a second synchronous
756			 * pass to wait for the IO to complete.  Wait here
757			 * for any page for which writeback has already
758			 * started.
759			 */
760			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
761			    may_enter_fs)
762				wait_on_page_writeback(page);
763			else {
764				unlock_page(page);
765				goto keep_lumpy;
766			}
767		}
768
769		references = page_check_references(page, sc);
770		switch (references) {
771		case PAGEREF_ACTIVATE:
772			goto activate_locked;
773		case PAGEREF_KEEP:
774			goto keep_locked;
775		case PAGEREF_RECLAIM:
776		case PAGEREF_RECLAIM_CLEAN:
777			; /* try to reclaim the page below */
778		}
779
780		/*
781		 * Anonymous process memory has backing store?
782		 * Try to allocate it some swap space here.
783		 */
784		if (PageAnon(page) && !PageSwapCache(page)) {
785			if (!(sc->gfp_mask & __GFP_IO))
786				goto keep_locked;
787			if (!add_to_swap(page))
788				goto activate_locked;
789			may_enter_fs = 1;
790		}
791
792		mapping = page_mapping(page);
793
794		/*
795		 * The page is mapped into the page tables of one or more
796		 * processes. Try to unmap it here.
797		 */
798		if (page_mapped(page) && mapping) {
799			switch (try_to_unmap(page, TTU_UNMAP)) {
800			case SWAP_FAIL:
801				goto activate_locked;
802			case SWAP_AGAIN:
803				goto keep_locked;
804			case SWAP_MLOCK:
805				goto cull_mlocked;
806			case SWAP_SUCCESS:
807				; /* try to free the page below */
808			}
809		}
810
811		if (PageDirty(page)) {
812			nr_dirty++;
813
814			if (references == PAGEREF_RECLAIM_CLEAN)
815				goto keep_locked;
816			if (!may_enter_fs)
817				goto keep_locked;
818			if (!sc->may_writepage)
819				goto keep_locked;
820
821			/* Page is dirty, try to write it out here */
822			switch (pageout(page, mapping, sc)) {
823			case PAGE_KEEP:
824				nr_congested++;
825				goto keep_locked;
826			case PAGE_ACTIVATE:
827				goto activate_locked;
828			case PAGE_SUCCESS:
829				if (PageWriteback(page))
830					goto keep_lumpy;
831				if (PageDirty(page))
832					goto keep;
833
834				/*
835				 * A synchronous write - probably a ramdisk.  Go
836				 * ahead and try to reclaim the page.
837				 */
838				if (!trylock_page(page))
839					goto keep;
840				if (PageDirty(page) || PageWriteback(page))
841					goto keep_locked;
842				mapping = page_mapping(page);
843			case PAGE_CLEAN:
844				; /* try to free the page below */
845			}
846		}
847
848		/*
849		 * If the page has buffers, try to free the buffer mappings
850		 * associated with this page. If we succeed we try to free
851		 * the page as well.
852		 *
853		 * We do this even if the page is PageDirty().
854		 * try_to_release_page() does not perform I/O, but it is
855		 * possible for a page to have PageDirty set, but it is actually
856		 * clean (all its buffers are clean).  This happens if the
857		 * buffers were written out directly, with submit_bh(). ext3
858		 * will do this, as well as the blockdev mapping.
859		 * try_to_release_page() will discover that cleanness and will
860		 * drop the buffers and mark the page clean - it can be freed.
861		 *
862		 * Rarely, pages can have buffers and no ->mapping.  These are
863		 * the pages which were not successfully invalidated in
864		 * truncate_complete_page().  We try to drop those buffers here
865		 * and if that worked, and the page is no longer mapped into
866		 * process address space (page_count == 1) it can be freed.
867		 * Otherwise, leave the page on the LRU so it is swappable.
868		 */
869		if (page_has_private(page)) {
870			if (!try_to_release_page(page, sc->gfp_mask))
871				goto activate_locked;
872			if (!mapping && page_count(page) == 1) {
873				unlock_page(page);
874				if (put_page_testzero(page))
875					goto free_it;
876				else {
877					/*
878					 * rare race with speculative reference.
879					 * the speculative reference will free
880					 * this page shortly, so we may
881					 * increment nr_reclaimed here (and
882					 * leave it off the LRU).
883					 */
884					nr_reclaimed++;
885					continue;
886				}
887			}
888		}
889
890		if (!mapping || !__remove_mapping(mapping, page))
891			goto keep_locked;
892
893		/*
894		 * At this point, we have no other references and there is
895		 * no way to pick any more up (removed from LRU, removed
896		 * from pagecache). Can use non-atomic bitops now (and
897		 * we obviously don't have to worry about waking up a process
898		 * waiting on the page lock, because there are no references.
899		 */
900		__clear_page_locked(page);
901free_it:
902		nr_reclaimed++;
903
904		/*
905		 * Is there need to periodically free_page_list? It would
906		 * appear not as the counts should be low
907		 */
908		list_add(&page->lru, &free_pages);
909		continue;
910
911cull_mlocked:
912		if (PageSwapCache(page))
913			try_to_free_swap(page);
914		unlock_page(page);
915		putback_lru_page(page);
916		reset_reclaim_mode(sc);
917		continue;
918
919activate_locked:
920		/* Not a candidate for swapping, so reclaim swap space. */
921		if (PageSwapCache(page) && vm_swap_full())
922			try_to_free_swap(page);
923		VM_BUG_ON(PageActive(page));
924		SetPageActive(page);
925		pgactivate++;
926keep_locked:
927		unlock_page(page);
928keep:
929		reset_reclaim_mode(sc);
930keep_lumpy:
931		list_add(&page->lru, &ret_pages);
932		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
933	}
934
935	/*
936	 * Tag a zone as congested if all the dirty pages encountered were
937	 * backed by a congested BDI. In this case, reclaimers should just
938	 * back off and wait for congestion to clear because further reclaim
939	 * will encounter the same problem
940	 */
941	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
942		zone_set_flag(zone, ZONE_CONGESTED);
943
944	free_page_list(&free_pages);
945
946	list_splice(&ret_pages, page_list);
947	count_vm_events(PGACTIVATE, pgactivate);
948	return nr_reclaimed;
949}
950
951/*
952 * Attempt to remove the specified page from its LRU.  Only take this page
953 * if it is of the appropriate PageActive status.  Pages which are being
954 * freed elsewhere are also ignored.
955 *
956 * page:	page to consider
957 * mode:	one of the LRU isolation modes defined above
958 *
959 * returns 0 on success, -ve errno on failure.
960 */
961int __isolate_lru_page(struct page *page, int mode, int file)
962{
963	int ret = -EINVAL;
964
965	/* Only take pages on the LRU. */
966	if (!PageLRU(page))
967		return ret;
968
969	/*
970	 * When checking the active state, we need to be sure we are
971	 * dealing with comparible boolean values.  Take the logical not
972	 * of each.
973	 */
974	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
975		return ret;
976
977	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
978		return ret;
979
980	/*
981	 * When this function is being called for lumpy reclaim, we
982	 * initially look into all LRU pages, active, inactive and
983	 * unevictable; only give shrink_page_list evictable pages.
984	 */
985	if (PageUnevictable(page))
986		return ret;
987
988	ret = -EBUSY;
989
990	if (likely(get_page_unless_zero(page))) {
991		/*
992		 * Be careful not to clear PageLRU until after we're
993		 * sure the page is not being freed elsewhere -- the
994		 * page release code relies on it.
995		 */
996		ClearPageLRU(page);
997		ret = 0;
998	}
999
1000	return ret;
1001}
1002
1003/*
1004 * zone->lru_lock is heavily contended.  Some of the functions that
1005 * shrink the lists perform better by taking out a batch of pages
1006 * and working on them outside the LRU lock.
1007 *
1008 * For pagecache intensive workloads, this function is the hottest
1009 * spot in the kernel (apart from copy_*_user functions).
1010 *
1011 * Appropriate locks must be held before calling this function.
1012 *
1013 * @nr_to_scan:	The number of pages to look through on the list.
1014 * @src:	The LRU list to pull pages off.
1015 * @dst:	The temp list to put pages on to.
1016 * @scanned:	The number of pages that were scanned.
1017 * @order:	The caller's attempted allocation order
1018 * @mode:	One of the LRU isolation modes
1019 * @file:	True [1] if isolating file [!anon] pages
1020 *
1021 * returns how many pages were moved onto *@dst.
1022 */
1023static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1024		struct list_head *src, struct list_head *dst,
1025		unsigned long *scanned, int order, int mode, int file)
1026{
1027	unsigned long nr_taken = 0;
1028	unsigned long nr_lumpy_taken = 0;
1029	unsigned long nr_lumpy_dirty = 0;
1030	unsigned long nr_lumpy_failed = 0;
1031	unsigned long scan;
1032
1033	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1034		struct page *page;
1035		unsigned long pfn;
1036		unsigned long end_pfn;
1037		unsigned long page_pfn;
1038		int zone_id;
1039
1040		page = lru_to_page(src);
1041		prefetchw_prev_lru_page(page, src, flags);
1042
1043		VM_BUG_ON(!PageLRU(page));
1044
1045		switch (__isolate_lru_page(page, mode, file)) {
1046		case 0:
1047			list_move(&page->lru, dst);
1048			mem_cgroup_del_lru(page);
1049			nr_taken += hpage_nr_pages(page);
1050			break;
1051
1052		case -EBUSY:
1053			/* else it is being freed elsewhere */
1054			list_move(&page->lru, src);
1055			mem_cgroup_rotate_lru_list(page, page_lru(page));
1056			continue;
1057
1058		default:
1059			BUG();
1060		}
1061
1062		if (!order)
1063			continue;
1064
1065		/*
1066		 * Attempt to take all pages in the order aligned region
1067		 * surrounding the tag page.  Only take those pages of
1068		 * the same active state as that tag page.  We may safely
1069		 * round the target page pfn down to the requested order
1070		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1071		 * where that page is in a different zone we will detect
1072		 * it from its zone id and abort this block scan.
1073		 */
1074		zone_id = page_zone_id(page);
1075		page_pfn = page_to_pfn(page);
1076		pfn = page_pfn & ~((1 << order) - 1);
1077		end_pfn = pfn + (1 << order);
1078		for (; pfn < end_pfn; pfn++) {
1079			struct page *cursor_page;
1080
1081			/* The target page is in the block, ignore it. */
1082			if (unlikely(pfn == page_pfn))
1083				continue;
1084
1085			/* Avoid holes within the zone. */
1086			if (unlikely(!pfn_valid_within(pfn)))
1087				break;
1088
1089			cursor_page = pfn_to_page(pfn);
1090
1091			/* Check that we have not crossed a zone boundary. */
1092			if (unlikely(page_zone_id(cursor_page) != zone_id))
1093				break;
1094
1095			/*
1096			 * If we don't have enough swap space, reclaiming of
1097			 * anon page which don't already have a swap slot is
1098			 * pointless.
1099			 */
1100			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1101			    !PageSwapCache(cursor_page))
1102				break;
1103
1104			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1105				list_move(&cursor_page->lru, dst);
1106				mem_cgroup_del_lru(cursor_page);
1107				nr_taken += hpage_nr_pages(page);
1108				nr_lumpy_taken++;
1109				if (PageDirty(cursor_page))
1110					nr_lumpy_dirty++;
1111				scan++;
1112			} else {
1113				/* the page is freed already. */
1114				if (!page_count(cursor_page))
1115					continue;
1116				break;
1117			}
1118		}
1119
1120		/* If we break out of the loop above, lumpy reclaim failed */
1121		if (pfn < end_pfn)
1122			nr_lumpy_failed++;
1123	}
1124
1125	*scanned = scan;
1126
1127	trace_mm_vmscan_lru_isolate(order,
1128			nr_to_scan, scan,
1129			nr_taken,
1130			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1131			mode);
1132	return nr_taken;
1133}
1134
1135static unsigned long isolate_pages_global(unsigned long nr,
1136					struct list_head *dst,
1137					unsigned long *scanned, int order,
1138					int mode, struct zone *z,
1139					int active, int file)
1140{
1141	int lru = LRU_BASE;
1142	if (active)
1143		lru += LRU_ACTIVE;
1144	if (file)
1145		lru += LRU_FILE;
1146	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1147								mode, file);
1148}
1149
1150/*
1151 * clear_active_flags() is a helper for shrink_active_list(), clearing
1152 * any active bits from the pages in the list.
1153 */
1154static unsigned long clear_active_flags(struct list_head *page_list,
1155					unsigned int *count)
1156{
1157	int nr_active = 0;
1158	int lru;
1159	struct page *page;
1160
1161	list_for_each_entry(page, page_list, lru) {
1162		int numpages = hpage_nr_pages(page);
1163		lru = page_lru_base_type(page);
1164		if (PageActive(page)) {
1165			lru += LRU_ACTIVE;
1166			ClearPageActive(page);
1167			nr_active += numpages;
1168		}
1169		if (count)
1170			count[lru] += numpages;
1171	}
1172
1173	return nr_active;
1174}
1175
1176/**
1177 * isolate_lru_page - tries to isolate a page from its LRU list
1178 * @page: page to isolate from its LRU list
1179 *
1180 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1181 * vmstat statistic corresponding to whatever LRU list the page was on.
1182 *
1183 * Returns 0 if the page was removed from an LRU list.
1184 * Returns -EBUSY if the page was not on an LRU list.
1185 *
1186 * The returned page will have PageLRU() cleared.  If it was found on
1187 * the active list, it will have PageActive set.  If it was found on
1188 * the unevictable list, it will have the PageUnevictable bit set. That flag
1189 * may need to be cleared by the caller before letting the page go.
1190 *
1191 * The vmstat statistic corresponding to the list on which the page was
1192 * found will be decremented.
1193 *
1194 * Restrictions:
1195 * (1) Must be called with an elevated refcount on the page. This is a
1196 *     fundamentnal difference from isolate_lru_pages (which is called
1197 *     without a stable reference).
1198 * (2) the lru_lock must not be held.
1199 * (3) interrupts must be enabled.
1200 */
1201int isolate_lru_page(struct page *page)
1202{
1203	int ret = -EBUSY;
1204
1205	if (PageLRU(page)) {
1206		struct zone *zone = page_zone(page);
1207
1208		spin_lock_irq(&zone->lru_lock);
1209		if (PageLRU(page) && get_page_unless_zero(page)) {
1210			int lru = page_lru(page);
1211			ret = 0;
1212			ClearPageLRU(page);
1213
1214			del_page_from_lru_list(zone, page, lru);
1215		}
1216		spin_unlock_irq(&zone->lru_lock);
1217	}
1218	return ret;
1219}
1220
1221/*
1222 * Are there way too many processes in the direct reclaim path already?
1223 */
1224static int too_many_isolated(struct zone *zone, int file,
1225		struct scan_control *sc)
1226{
1227	unsigned long inactive, isolated;
1228
1229	if (current_is_kswapd())
1230		return 0;
1231
1232	if (!scanning_global_lru(sc))
1233		return 0;
1234
1235	if (file) {
1236		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1237		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1238	} else {
1239		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1240		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1241	}
1242
1243	return isolated > inactive;
1244}
1245
1246/*
1247 * TODO: Try merging with migrations version of putback_lru_pages
1248 */
1249static noinline_for_stack void
1250putback_lru_pages(struct zone *zone, struct scan_control *sc,
1251				unsigned long nr_anon, unsigned long nr_file,
1252				struct list_head *page_list)
1253{
1254	struct page *page;
1255	struct pagevec pvec;
1256	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1257
1258	pagevec_init(&pvec, 1);
1259
1260	/*
1261	 * Put back any unfreeable pages.
1262	 */
1263	spin_lock(&zone->lru_lock);
1264	while (!list_empty(page_list)) {
1265		int lru;
1266		page = lru_to_page(page_list);
1267		VM_BUG_ON(PageLRU(page));
1268		list_del(&page->lru);
1269		if (unlikely(!page_evictable(page, NULL))) {
1270			spin_unlock_irq(&zone->lru_lock);
1271			putback_lru_page(page);
1272			spin_lock_irq(&zone->lru_lock);
1273			continue;
1274		}
1275		SetPageLRU(page);
1276		lru = page_lru(page);
1277		add_page_to_lru_list(zone, page, lru);
1278		if (is_active_lru(lru)) {
1279			int file = is_file_lru(lru);
1280			int numpages = hpage_nr_pages(page);
1281			reclaim_stat->recent_rotated[file] += numpages;
1282		}
1283		if (!pagevec_add(&pvec, page)) {
1284			spin_unlock_irq(&zone->lru_lock);
1285			__pagevec_release(&pvec);
1286			spin_lock_irq(&zone->lru_lock);
1287		}
1288	}
1289	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1290	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1291
1292	spin_unlock_irq(&zone->lru_lock);
1293	pagevec_release(&pvec);
1294}
1295
1296static noinline_for_stack void update_isolated_counts(struct zone *zone,
1297					struct scan_control *sc,
1298					unsigned long *nr_anon,
1299					unsigned long *nr_file,
1300					struct list_head *isolated_list)
1301{
1302	unsigned long nr_active;
1303	unsigned int count[NR_LRU_LISTS] = { 0, };
1304	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1305
1306	nr_active = clear_active_flags(isolated_list, count);
1307	__count_vm_events(PGDEACTIVATE, nr_active);
1308
1309	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1310			      -count[LRU_ACTIVE_FILE]);
1311	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1312			      -count[LRU_INACTIVE_FILE]);
1313	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1314			      -count[LRU_ACTIVE_ANON]);
1315	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1316			      -count[LRU_INACTIVE_ANON]);
1317
1318	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1319	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1320	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1321	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1322
1323	reclaim_stat->recent_scanned[0] += *nr_anon;
1324	reclaim_stat->recent_scanned[1] += *nr_file;
1325}
1326
1327/*
1328 * Returns true if the caller should wait to clean dirty/writeback pages.
1329 *
1330 * If we are direct reclaiming for contiguous pages and we do not reclaim
1331 * everything in the list, try again and wait for writeback IO to complete.
1332 * This will stall high-order allocations noticeably. Only do that when really
1333 * need to free the pages under high memory pressure.
1334 */
1335static inline bool should_reclaim_stall(unsigned long nr_taken,
1336					unsigned long nr_freed,
1337					int priority,
1338					struct scan_control *sc)
1339{
1340	int lumpy_stall_priority;
1341
1342	/* kswapd should not stall on sync IO */
1343	if (current_is_kswapd())
1344		return false;
1345
1346	/* Only stall on lumpy reclaim */
1347	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1348		return false;
1349
1350	/* If we have relaimed everything on the isolated list, no stall */
1351	if (nr_freed == nr_taken)
1352		return false;
1353
1354	/*
1355	 * For high-order allocations, there are two stall thresholds.
1356	 * High-cost allocations stall immediately where as lower
1357	 * order allocations such as stacks require the scanning
1358	 * priority to be much higher before stalling.
1359	 */
1360	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1361		lumpy_stall_priority = DEF_PRIORITY;
1362	else
1363		lumpy_stall_priority = DEF_PRIORITY / 3;
1364
1365	return priority <= lumpy_stall_priority;
1366}
1367
1368/*
1369 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1370 * of reclaimed pages
1371 */
1372static noinline_for_stack unsigned long
1373shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1374			struct scan_control *sc, int priority, int file)
1375{
1376	LIST_HEAD(page_list);
1377	unsigned long nr_scanned;
1378	unsigned long nr_reclaimed = 0;
1379	unsigned long nr_taken;
1380	unsigned long nr_anon;
1381	unsigned long nr_file;
1382
1383	while (unlikely(too_many_isolated(zone, file, sc))) {
1384		congestion_wait(BLK_RW_ASYNC, HZ/10);
1385
1386		/* We are about to die and free our memory. Return now. */
1387		if (fatal_signal_pending(current))
1388			return SWAP_CLUSTER_MAX;
1389	}
1390
1391	set_reclaim_mode(priority, sc, false);
1392	lru_add_drain();
1393	spin_lock_irq(&zone->lru_lock);
1394
1395	if (scanning_global_lru(sc)) {
1396		nr_taken = isolate_pages_global(nr_to_scan,
1397			&page_list, &nr_scanned, sc->order,
1398			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1399					ISOLATE_BOTH : ISOLATE_INACTIVE,
1400			zone, 0, file);
1401		zone->pages_scanned += nr_scanned;
1402		if (current_is_kswapd())
1403			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1404					       nr_scanned);
1405		else
1406			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1407					       nr_scanned);
1408	} else {
1409		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1410			&page_list, &nr_scanned, sc->order,
1411			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1412					ISOLATE_BOTH : ISOLATE_INACTIVE,
1413			zone, sc->mem_cgroup,
1414			0, file);
1415		/*
1416		 * mem_cgroup_isolate_pages() keeps track of
1417		 * scanned pages on its own.
1418		 */
1419	}
1420
1421	if (nr_taken == 0) {
1422		spin_unlock_irq(&zone->lru_lock);
1423		return 0;
1424	}
1425
1426	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1427
1428	spin_unlock_irq(&zone->lru_lock);
1429
1430	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1431
1432	/* Check if we should syncronously wait for writeback */
1433	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1434		set_reclaim_mode(priority, sc, true);
1435		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1436	}
1437
1438	local_irq_disable();
1439	if (current_is_kswapd())
1440		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1441	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1442
1443	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1444
1445	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1446		zone_idx(zone),
1447		nr_scanned, nr_reclaimed,
1448		priority,
1449		trace_shrink_flags(file, sc->reclaim_mode));
1450	return nr_reclaimed;
1451}
1452
1453/*
1454 * This moves pages from the active list to the inactive list.
1455 *
1456 * We move them the other way if the page is referenced by one or more
1457 * processes, from rmap.
1458 *
1459 * If the pages are mostly unmapped, the processing is fast and it is
1460 * appropriate to hold zone->lru_lock across the whole operation.  But if
1461 * the pages are mapped, the processing is slow (page_referenced()) so we
1462 * should drop zone->lru_lock around each page.  It's impossible to balance
1463 * this, so instead we remove the pages from the LRU while processing them.
1464 * It is safe to rely on PG_active against the non-LRU pages in here because
1465 * nobody will play with that bit on a non-LRU page.
1466 *
1467 * The downside is that we have to touch page->_count against each page.
1468 * But we had to alter page->flags anyway.
1469 */
1470
1471static void move_active_pages_to_lru(struct zone *zone,
1472				     struct list_head *list,
1473				     enum lru_list lru)
1474{
1475	unsigned long pgmoved = 0;
1476	struct pagevec pvec;
1477	struct page *page;
1478
1479	pagevec_init(&pvec, 1);
1480
1481	while (!list_empty(list)) {
1482		page = lru_to_page(list);
1483
1484		VM_BUG_ON(PageLRU(page));
1485		SetPageLRU(page);
1486
1487		list_move(&page->lru, &zone->lru[lru].list);
1488		mem_cgroup_add_lru_list(page, lru);
1489		pgmoved += hpage_nr_pages(page);
1490
1491		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1492			spin_unlock_irq(&zone->lru_lock);
1493			if (buffer_heads_over_limit)
1494				pagevec_strip(&pvec);
1495			__pagevec_release(&pvec);
1496			spin_lock_irq(&zone->lru_lock);
1497		}
1498	}
1499	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1500	if (!is_active_lru(lru))
1501		__count_vm_events(PGDEACTIVATE, pgmoved);
1502}
1503
1504static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1505			struct scan_control *sc, int priority, int file)
1506{
1507	unsigned long nr_taken;
1508	unsigned long pgscanned;
1509	unsigned long vm_flags;
1510	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1511	LIST_HEAD(l_active);
1512	LIST_HEAD(l_inactive);
1513	struct page *page;
1514	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1515	unsigned long nr_rotated = 0;
1516
1517	lru_add_drain();
1518	spin_lock_irq(&zone->lru_lock);
1519	if (scanning_global_lru(sc)) {
1520		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1521						&pgscanned, sc->order,
1522						ISOLATE_ACTIVE, zone,
1523						1, file);
1524		zone->pages_scanned += pgscanned;
1525	} else {
1526		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1527						&pgscanned, sc->order,
1528						ISOLATE_ACTIVE, zone,
1529						sc->mem_cgroup, 1, file);
1530		/*
1531		 * mem_cgroup_isolate_pages() keeps track of
1532		 * scanned pages on its own.
1533		 */
1534	}
1535
1536	reclaim_stat->recent_scanned[file] += nr_taken;
1537
1538	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1539	if (file)
1540		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1541	else
1542		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1543	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1544	spin_unlock_irq(&zone->lru_lock);
1545
1546	while (!list_empty(&l_hold)) {
1547		cond_resched();
1548		page = lru_to_page(&l_hold);
1549		list_del(&page->lru);
1550
1551		if (unlikely(!page_evictable(page, NULL))) {
1552			putback_lru_page(page);
1553			continue;
1554		}
1555
1556		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1557			nr_rotated += hpage_nr_pages(page);
1558			/*
1559			 * Identify referenced, file-backed active pages and
1560			 * give them one more trip around the active list. So
1561			 * that executable code get better chances to stay in
1562			 * memory under moderate memory pressure.  Anon pages
1563			 * are not likely to be evicted by use-once streaming
1564			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1565			 * so we ignore them here.
1566			 */
1567			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1568				list_add(&page->lru, &l_active);
1569				continue;
1570			}
1571		}
1572
1573		ClearPageActive(page);	/* we are de-activating */
1574		list_add(&page->lru, &l_inactive);
1575	}
1576
1577	/*
1578	 * Move pages back to the lru list.
1579	 */
1580	spin_lock_irq(&zone->lru_lock);
1581	/*
1582	 * Count referenced pages from currently used mappings as rotated,
1583	 * even though only some of them are actually re-activated.  This
1584	 * helps balance scan pressure between file and anonymous pages in
1585	 * get_scan_ratio.
1586	 */
1587	reclaim_stat->recent_rotated[file] += nr_rotated;
1588
1589	move_active_pages_to_lru(zone, &l_active,
1590						LRU_ACTIVE + file * LRU_FILE);
1591	move_active_pages_to_lru(zone, &l_inactive,
1592						LRU_BASE   + file * LRU_FILE);
1593	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1594	spin_unlock_irq(&zone->lru_lock);
1595}
1596
1597#ifdef CONFIG_SWAP
1598static int inactive_anon_is_low_global(struct zone *zone)
1599{
1600	unsigned long active, inactive;
1601
1602	active = zone_page_state(zone, NR_ACTIVE_ANON);
1603	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1604
1605	if (inactive * zone->inactive_ratio < active)
1606		return 1;
1607
1608	return 0;
1609}
1610
1611/**
1612 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1613 * @zone: zone to check
1614 * @sc:   scan control of this context
1615 *
1616 * Returns true if the zone does not have enough inactive anon pages,
1617 * meaning some active anon pages need to be deactivated.
1618 */
1619static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1620{
1621	int low;
1622
1623	/*
1624	 * If we don't have swap space, anonymous page deactivation
1625	 * is pointless.
1626	 */
1627	if (!total_swap_pages)
1628		return 0;
1629
1630	if (scanning_global_lru(sc))
1631		low = inactive_anon_is_low_global(zone);
1632	else
1633		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1634	return low;
1635}
1636#else
1637static inline int inactive_anon_is_low(struct zone *zone,
1638					struct scan_control *sc)
1639{
1640	return 0;
1641}
1642#endif
1643
1644static int inactive_file_is_low_global(struct zone *zone)
1645{
1646	unsigned long active, inactive;
1647
1648	active = zone_page_state(zone, NR_ACTIVE_FILE);
1649	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1650
1651	return (active > inactive);
1652}
1653
1654/**
1655 * inactive_file_is_low - check if file pages need to be deactivated
1656 * @zone: zone to check
1657 * @sc:   scan control of this context
1658 *
1659 * When the system is doing streaming IO, memory pressure here
1660 * ensures that active file pages get deactivated, until more
1661 * than half of the file pages are on the inactive list.
1662 *
1663 * Once we get to that situation, protect the system's working
1664 * set from being evicted by disabling active file page aging.
1665 *
1666 * This uses a different ratio than the anonymous pages, because
1667 * the page cache uses a use-once replacement algorithm.
1668 */
1669static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1670{
1671	int low;
1672
1673	if (scanning_global_lru(sc))
1674		low = inactive_file_is_low_global(zone);
1675	else
1676		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1677	return low;
1678}
1679
1680static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1681				int file)
1682{
1683	if (file)
1684		return inactive_file_is_low(zone, sc);
1685	else
1686		return inactive_anon_is_low(zone, sc);
1687}
1688
1689static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1690	struct zone *zone, struct scan_control *sc, int priority)
1691{
1692	int file = is_file_lru(lru);
1693
1694	if (is_active_lru(lru)) {
1695		if (inactive_list_is_low(zone, sc, file))
1696		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1697		return 0;
1698	}
1699
1700	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1701}
1702
1703/*
1704 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1705 * until we collected @swap_cluster_max pages to scan.
1706 */
1707static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1708				       unsigned long *nr_saved_scan)
1709{
1710	unsigned long nr;
1711
1712	*nr_saved_scan += nr_to_scan;
1713	nr = *nr_saved_scan;
1714
1715	if (nr >= SWAP_CLUSTER_MAX)
1716		*nr_saved_scan = 0;
1717	else
1718		nr = 0;
1719
1720	return nr;
1721}
1722
1723/*
1724 * Determine how aggressively the anon and file LRU lists should be
1725 * scanned.  The relative value of each set of LRU lists is determined
1726 * by looking at the fraction of the pages scanned we did rotate back
1727 * onto the active list instead of evict.
1728 *
1729 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1730 */
1731static void get_scan_count(struct zone *zone, struct scan_control *sc,
1732					unsigned long *nr, int priority)
1733{
1734	unsigned long anon, file, free;
1735	unsigned long anon_prio, file_prio;
1736	unsigned long ap, fp;
1737	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1738	u64 fraction[2], denominator;
1739	enum lru_list l;
1740	int noswap = 0;
1741
1742	/* If we have no swap space, do not bother scanning anon pages. */
1743	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1744		noswap = 1;
1745		fraction[0] = 0;
1746		fraction[1] = 1;
1747		denominator = 1;
1748		goto out;
1749	}
1750
1751	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1752		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1753	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1754		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1755
1756	if (scanning_global_lru(sc)) {
1757		free  = zone_page_state(zone, NR_FREE_PAGES);
1758		/* If we have very few page cache pages,
1759		   force-scan anon pages. */
1760		if (unlikely(file + free <= high_wmark_pages(zone))) {
1761			fraction[0] = 1;
1762			fraction[1] = 0;
1763			denominator = 1;
1764			goto out;
1765		}
1766	}
1767
1768	/*
1769	 * With swappiness at 100, anonymous and file have the same priority.
1770	 * This scanning priority is essentially the inverse of IO cost.
1771	 */
1772	anon_prio = sc->swappiness;
1773	file_prio = 200 - sc->swappiness;
1774
1775	/*
1776	 * OK, so we have swap space and a fair amount of page cache
1777	 * pages.  We use the recently rotated / recently scanned
1778	 * ratios to determine how valuable each cache is.
1779	 *
1780	 * Because workloads change over time (and to avoid overflow)
1781	 * we keep these statistics as a floating average, which ends
1782	 * up weighing recent references more than old ones.
1783	 *
1784	 * anon in [0], file in [1]
1785	 */
1786	spin_lock_irq(&zone->lru_lock);
1787	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1788		reclaim_stat->recent_scanned[0] /= 2;
1789		reclaim_stat->recent_rotated[0] /= 2;
1790	}
1791
1792	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1793		reclaim_stat->recent_scanned[1] /= 2;
1794		reclaim_stat->recent_rotated[1] /= 2;
1795	}
1796
1797	/*
1798	 * The amount of pressure on anon vs file pages is inversely
1799	 * proportional to the fraction of recently scanned pages on
1800	 * each list that were recently referenced and in active use.
1801	 */
1802	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1803	ap /= reclaim_stat->recent_rotated[0] + 1;
1804
1805	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1806	fp /= reclaim_stat->recent_rotated[1] + 1;
1807	spin_unlock_irq(&zone->lru_lock);
1808
1809	fraction[0] = ap;
1810	fraction[1] = fp;
1811	denominator = ap + fp + 1;
1812out:
1813	for_each_evictable_lru(l) {
1814		int file = is_file_lru(l);
1815		unsigned long scan;
1816
1817		scan = zone_nr_lru_pages(zone, sc, l);
1818		if (priority || noswap) {
1819			scan >>= priority;
1820			scan = div64_u64(scan * fraction[file], denominator);
1821		}
1822		nr[l] = nr_scan_try_batch(scan,
1823					  &reclaim_stat->nr_saved_scan[l]);
1824	}
1825}
1826
1827/*
1828 * Reclaim/compaction depends on a number of pages being freed. To avoid
1829 * disruption to the system, a small number of order-0 pages continue to be
1830 * rotated and reclaimed in the normal fashion. However, by the time we get
1831 * back to the allocator and call try_to_compact_zone(), we ensure that
1832 * there are enough free pages for it to be likely successful
1833 */
1834static inline bool should_continue_reclaim(struct zone *zone,
1835					unsigned long nr_reclaimed,
1836					unsigned long nr_scanned,
1837					struct scan_control *sc)
1838{
1839	unsigned long pages_for_compaction;
1840	unsigned long inactive_lru_pages;
1841
1842	/* If not in reclaim/compaction mode, stop */
1843	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1844		return false;
1845
1846	/* Consider stopping depending on scan and reclaim activity */
1847	if (sc->gfp_mask & __GFP_REPEAT) {
1848		/*
1849		 * For __GFP_REPEAT allocations, stop reclaiming if the
1850		 * full LRU list has been scanned and we are still failing
1851		 * to reclaim pages. This full LRU scan is potentially
1852		 * expensive but a __GFP_REPEAT caller really wants to succeed
1853		 */
1854		if (!nr_reclaimed && !nr_scanned)
1855			return false;
1856	} else {
1857		/*
1858		 * For non-__GFP_REPEAT allocations which can presumably
1859		 * fail without consequence, stop if we failed to reclaim
1860		 * any pages from the last SWAP_CLUSTER_MAX number of
1861		 * pages that were scanned. This will return to the
1862		 * caller faster at the risk reclaim/compaction and
1863		 * the resulting allocation attempt fails
1864		 */
1865		if (!nr_reclaimed)
1866			return false;
1867	}
1868
1869	/*
1870	 * If we have not reclaimed enough pages for compaction and the
1871	 * inactive lists are large enough, continue reclaiming
1872	 */
1873	pages_for_compaction = (2UL << sc->order);
1874	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1875				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1876	if (sc->nr_reclaimed < pages_for_compaction &&
1877			inactive_lru_pages > pages_for_compaction)
1878		return true;
1879
1880	/* If compaction would go ahead or the allocation would succeed, stop */
1881	switch (compaction_suitable(zone, sc->order)) {
1882	case COMPACT_PARTIAL:
1883	case COMPACT_CONTINUE:
1884		return false;
1885	default:
1886		return true;
1887	}
1888}
1889
1890/*
1891 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1892 */
1893static void shrink_zone(int priority, struct zone *zone,
1894				struct scan_control *sc)
1895{
1896	unsigned long nr[NR_LRU_LISTS];
1897	unsigned long nr_to_scan;
1898	enum lru_list l;
1899	unsigned long nr_reclaimed, nr_scanned;
1900	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1901
1902restart:
1903	nr_reclaimed = 0;
1904	nr_scanned = sc->nr_scanned;
1905	get_scan_count(zone, sc, nr, priority);
1906
1907	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1908					nr[LRU_INACTIVE_FILE]) {
1909		for_each_evictable_lru(l) {
1910			if (nr[l]) {
1911				nr_to_scan = min_t(unsigned long,
1912						   nr[l], SWAP_CLUSTER_MAX);
1913				nr[l] -= nr_to_scan;
1914
1915				nr_reclaimed += shrink_list(l, nr_to_scan,
1916							    zone, sc, priority);
1917			}
1918		}
1919		/*
1920		 * On large memory systems, scan >> priority can become
1921		 * really large. This is fine for the starting priority;
1922		 * we want to put equal scanning pressure on each zone.
1923		 * However, if the VM has a harder time of freeing pages,
1924		 * with multiple processes reclaiming pages, the total
1925		 * freeing target can get unreasonably large.
1926		 */
1927		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1928			break;
1929	}
1930	sc->nr_reclaimed += nr_reclaimed;
1931
1932	/*
1933	 * Even if we did not try to evict anon pages at all, we want to
1934	 * rebalance the anon lru active/inactive ratio.
1935	 */
1936	if (inactive_anon_is_low(zone, sc))
1937		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1938
1939	/* reclaim/compaction might need reclaim to continue */
1940	if (should_continue_reclaim(zone, nr_reclaimed,
1941					sc->nr_scanned - nr_scanned, sc))
1942		goto restart;
1943
1944	throttle_vm_writeout(sc->gfp_mask);
1945}
1946
1947/*
1948 * This is the direct reclaim path, for page-allocating processes.  We only
1949 * try to reclaim pages from zones which will satisfy the caller's allocation
1950 * request.
1951 *
1952 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1953 * Because:
1954 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1955 *    allocation or
1956 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1957 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1958 *    zone defense algorithm.
1959 *
1960 * If a zone is deemed to be full of pinned pages then just give it a light
1961 * scan then give up on it.
1962 */
1963static void shrink_zones(int priority, struct zonelist *zonelist,
1964					struct scan_control *sc)
1965{
1966	struct zoneref *z;
1967	struct zone *zone;
1968
1969	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1970					gfp_zone(sc->gfp_mask), sc->nodemask) {
1971		if (!populated_zone(zone))
1972			continue;
1973		/*
1974		 * Take care memory controller reclaiming has small influence
1975		 * to global LRU.
1976		 */
1977		if (scanning_global_lru(sc)) {
1978			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1979				continue;
1980			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1981				continue;	/* Let kswapd poll it */
1982		}
1983
1984		shrink_zone(priority, zone, sc);
1985	}
1986}
1987
1988static bool zone_reclaimable(struct zone *zone)
1989{
1990	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1991}
1992
1993/* All zones in zonelist are unreclaimable? */
1994static bool all_unreclaimable(struct zonelist *zonelist,
1995		struct scan_control *sc)
1996{
1997	struct zoneref *z;
1998	struct zone *zone;
1999
2000	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2001			gfp_zone(sc->gfp_mask), sc->nodemask) {
2002		if (!populated_zone(zone))
2003			continue;
2004		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2005			continue;
2006		if (!zone->all_unreclaimable)
2007			return false;
2008	}
2009
2010	return true;
2011}
2012
2013/*
2014 * This is the main entry point to direct page reclaim.
2015 *
2016 * If a full scan of the inactive list fails to free enough memory then we
2017 * are "out of memory" and something needs to be killed.
2018 *
2019 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2020 * high - the zone may be full of dirty or under-writeback pages, which this
2021 * caller can't do much about.  We kick the writeback threads and take explicit
2022 * naps in the hope that some of these pages can be written.  But if the
2023 * allocating task holds filesystem locks which prevent writeout this might not
2024 * work, and the allocation attempt will fail.
2025 *
2026 * returns:	0, if no pages reclaimed
2027 * 		else, the number of pages reclaimed
2028 */
2029static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2030					struct scan_control *sc)
2031{
2032	int priority;
2033	unsigned long total_scanned = 0;
2034	struct reclaim_state *reclaim_state = current->reclaim_state;
2035	struct zoneref *z;
2036	struct zone *zone;
2037	unsigned long writeback_threshold;
2038
2039	get_mems_allowed();
2040	delayacct_freepages_start();
2041
2042	if (scanning_global_lru(sc))
2043		count_vm_event(ALLOCSTALL);
2044
2045	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2046		sc->nr_scanned = 0;
2047		if (!priority)
2048			disable_swap_token();
2049		shrink_zones(priority, zonelist, sc);
2050		/*
2051		 * Don't shrink slabs when reclaiming memory from
2052		 * over limit cgroups
2053		 */
2054		if (scanning_global_lru(sc)) {
2055			unsigned long lru_pages = 0;
2056			for_each_zone_zonelist(zone, z, zonelist,
2057					gfp_zone(sc->gfp_mask)) {
2058				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2059					continue;
2060
2061				lru_pages += zone_reclaimable_pages(zone);
2062			}
2063
2064			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2065			if (reclaim_state) {
2066				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2067				reclaim_state->reclaimed_slab = 0;
2068			}
2069		}
2070		total_scanned += sc->nr_scanned;
2071		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2072			goto out;
2073
2074		/*
2075		 * Try to write back as many pages as we just scanned.  This
2076		 * tends to cause slow streaming writers to write data to the
2077		 * disk smoothly, at the dirtying rate, which is nice.   But
2078		 * that's undesirable in laptop mode, where we *want* lumpy
2079		 * writeout.  So in laptop mode, write out the whole world.
2080		 */
2081		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2082		if (total_scanned > writeback_threshold) {
2083			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2084			sc->may_writepage = 1;
2085		}
2086
2087		/* Take a nap, wait for some writeback to complete */
2088		if (!sc->hibernation_mode && sc->nr_scanned &&
2089		    priority < DEF_PRIORITY - 2) {
2090			struct zone *preferred_zone;
2091
2092			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2093						&cpuset_current_mems_allowed,
2094						&preferred_zone);
2095			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2096		}
2097	}
2098
2099out:
2100	delayacct_freepages_end();
2101	put_mems_allowed();
2102
2103	if (sc->nr_reclaimed)
2104		return sc->nr_reclaimed;
2105
2106	/*
2107	 * As hibernation is going on, kswapd is freezed so that it can't mark
2108	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2109	 * check.
2110	 */
2111	if (oom_killer_disabled)
2112		return 0;
2113
2114	/* top priority shrink_zones still had more to do? don't OOM, then */
2115	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2116		return 1;
2117
2118	return 0;
2119}
2120
2121unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2122				gfp_t gfp_mask, nodemask_t *nodemask)
2123{
2124	unsigned long nr_reclaimed;
2125	struct scan_control sc = {
2126		.gfp_mask = gfp_mask,
2127		.may_writepage = !laptop_mode,
2128		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2129		.may_unmap = 1,
2130		.may_swap = 1,
2131		.swappiness = vm_swappiness,
2132		.order = order,
2133		.mem_cgroup = NULL,
2134		.nodemask = nodemask,
2135	};
2136
2137	trace_mm_vmscan_direct_reclaim_begin(order,
2138				sc.may_writepage,
2139				gfp_mask);
2140
2141	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2142
2143	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2144
2145	return nr_reclaimed;
2146}
2147
2148#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2149
2150unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2151						gfp_t gfp_mask, bool noswap,
2152						unsigned int swappiness,
2153						struct zone *zone)
2154{
2155	struct scan_control sc = {
2156		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2157		.may_writepage = !laptop_mode,
2158		.may_unmap = 1,
2159		.may_swap = !noswap,
2160		.swappiness = swappiness,
2161		.order = 0,
2162		.mem_cgroup = mem,
2163	};
2164	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2165			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2166
2167	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2168						      sc.may_writepage,
2169						      sc.gfp_mask);
2170
2171	/*
2172	 * NOTE: Although we can get the priority field, using it
2173	 * here is not a good idea, since it limits the pages we can scan.
2174	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2175	 * will pick up pages from other mem cgroup's as well. We hack
2176	 * the priority and make it zero.
2177	 */
2178	shrink_zone(0, zone, &sc);
2179
2180	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2181
2182	return sc.nr_reclaimed;
2183}
2184
2185unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2186					   gfp_t gfp_mask,
2187					   bool noswap,
2188					   unsigned int swappiness)
2189{
2190	struct zonelist *zonelist;
2191	unsigned long nr_reclaimed;
2192	struct scan_control sc = {
2193		.may_writepage = !laptop_mode,
2194		.may_unmap = 1,
2195		.may_swap = !noswap,
2196		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2197		.swappiness = swappiness,
2198		.order = 0,
2199		.mem_cgroup = mem_cont,
2200		.nodemask = NULL, /* we don't care the placement */
2201	};
2202
2203	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2204			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2205	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2206
2207	trace_mm_vmscan_memcg_reclaim_begin(0,
2208					    sc.may_writepage,
2209					    sc.gfp_mask);
2210
2211	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2212
2213	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2214
2215	return nr_reclaimed;
2216}
2217#endif
2218
2219/*
2220 * pgdat_balanced is used when checking if a node is balanced for high-order
2221 * allocations. Only zones that meet watermarks and are in a zone allowed
2222 * by the callers classzone_idx are added to balanced_pages. The total of
2223 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2224 * for the node to be considered balanced. Forcing all zones to be balanced
2225 * for high orders can cause excessive reclaim when there are imbalanced zones.
2226 * The choice of 25% is due to
2227 *   o a 16M DMA zone that is balanced will not balance a zone on any
2228 *     reasonable sized machine
2229 *   o On all other machines, the top zone must be at least a reasonable
2230 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2231 *     would need to be at least 256M for it to be balance a whole node.
2232 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2233 *     to balance a node on its own. These seemed like reasonable ratios.
2234 */
2235static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2236						int classzone_idx)
2237{
2238	unsigned long present_pages = 0;
2239	int i;
2240
2241	for (i = 0; i <= classzone_idx; i++)
2242		present_pages += pgdat->node_zones[i].present_pages;
2243
2244	return balanced_pages > (present_pages >> 2);
2245}
2246
2247/* is kswapd sleeping prematurely? */
2248static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2249					int classzone_idx)
2250{
2251	int i;
2252	unsigned long balanced = 0;
2253	bool all_zones_ok = true;
2254
2255	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2256	if (remaining)
2257		return true;
2258
2259	/* Check the watermark levels */
2260	for (i = 0; i < pgdat->nr_zones; i++) {
2261		struct zone *zone = pgdat->node_zones + i;
2262
2263		if (!populated_zone(zone))
2264			continue;
2265
2266		/*
2267		 * balance_pgdat() skips over all_unreclaimable after
2268		 * DEF_PRIORITY. Effectively, it considers them balanced so
2269		 * they must be considered balanced here as well if kswapd
2270		 * is to sleep
2271		 */
2272		if (zone->all_unreclaimable) {
2273			balanced += zone->present_pages;
2274			continue;
2275		}
2276
2277		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2278							classzone_idx, 0))
2279			all_zones_ok = false;
2280		else
2281			balanced += zone->present_pages;
2282	}
2283
2284	/*
2285	 * For high-order requests, the balanced zones must contain at least
2286	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2287	 * must be balanced
2288	 */
2289	if (order)
2290		return pgdat_balanced(pgdat, balanced, classzone_idx);
2291	else
2292		return !all_zones_ok;
2293}
2294
2295/*
2296 * For kswapd, balance_pgdat() will work across all this node's zones until
2297 * they are all at high_wmark_pages(zone).
2298 *
2299 * Returns the final order kswapd was reclaiming at
2300 *
2301 * There is special handling here for zones which are full of pinned pages.
2302 * This can happen if the pages are all mlocked, or if they are all used by
2303 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2304 * What we do is to detect the case where all pages in the zone have been
2305 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2306 * dead and from now on, only perform a short scan.  Basically we're polling
2307 * the zone for when the problem goes away.
2308 *
2309 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2310 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2311 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2312 * lower zones regardless of the number of free pages in the lower zones. This
2313 * interoperates with the page allocator fallback scheme to ensure that aging
2314 * of pages is balanced across the zones.
2315 */
2316static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2317							int *classzone_idx)
2318{
2319	int all_zones_ok;
2320	unsigned long balanced;
2321	int priority;
2322	int i;
2323	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2324	unsigned long total_scanned;
2325	struct reclaim_state *reclaim_state = current->reclaim_state;
2326	struct scan_control sc = {
2327		.gfp_mask = GFP_KERNEL,
2328		.may_unmap = 1,
2329		.may_swap = 1,
2330		/*
2331		 * kswapd doesn't want to be bailed out while reclaim. because
2332		 * we want to put equal scanning pressure on each zone.
2333		 */
2334		.nr_to_reclaim = ULONG_MAX,
2335		.swappiness = vm_swappiness,
2336		.order = order,
2337		.mem_cgroup = NULL,
2338	};
2339loop_again:
2340	total_scanned = 0;
2341	sc.nr_reclaimed = 0;
2342	sc.may_writepage = !laptop_mode;
2343	count_vm_event(PAGEOUTRUN);
2344
2345	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2346		unsigned long lru_pages = 0;
2347		int has_under_min_watermark_zone = 0;
2348
2349		/* The swap token gets in the way of swapout... */
2350		if (!priority)
2351			disable_swap_token();
2352
2353		all_zones_ok = 1;
2354		balanced = 0;
2355
2356		/*
2357		 * Scan in the highmem->dma direction for the highest
2358		 * zone which needs scanning
2359		 */
2360		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2361			struct zone *zone = pgdat->node_zones + i;
2362
2363			if (!populated_zone(zone))
2364				continue;
2365
2366			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2367				continue;
2368
2369			/*
2370			 * Do some background aging of the anon list, to give
2371			 * pages a chance to be referenced before reclaiming.
2372			 */
2373			if (inactive_anon_is_low(zone, &sc))
2374				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2375							&sc, priority, 0);
2376
2377			if (!zone_watermark_ok_safe(zone, order,
2378					high_wmark_pages(zone), 0, 0)) {
2379				end_zone = i;
2380				*classzone_idx = i;
2381				break;
2382			}
2383		}
2384		if (i < 0)
2385			goto out;
2386
2387		for (i = 0; i <= end_zone; i++) {
2388			struct zone *zone = pgdat->node_zones + i;
2389
2390			lru_pages += zone_reclaimable_pages(zone);
2391		}
2392
2393		/*
2394		 * Now scan the zone in the dma->highmem direction, stopping
2395		 * at the last zone which needs scanning.
2396		 *
2397		 * We do this because the page allocator works in the opposite
2398		 * direction.  This prevents the page allocator from allocating
2399		 * pages behind kswapd's direction of progress, which would
2400		 * cause too much scanning of the lower zones.
2401		 */
2402		for (i = 0; i <= end_zone; i++) {
2403			struct zone *zone = pgdat->node_zones + i;
2404			int nr_slab;
2405			unsigned long balance_gap;
2406
2407			if (!populated_zone(zone))
2408				continue;
2409
2410			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2411				continue;
2412
2413			sc.nr_scanned = 0;
2414
2415			/*
2416			 * Call soft limit reclaim before calling shrink_zone.
2417			 * For now we ignore the return value
2418			 */
2419			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2420
2421			/*
2422			 * We put equal pressure on every zone, unless
2423			 * one zone has way too many pages free
2424			 * already. The "too many pages" is defined
2425			 * as the high wmark plus a "gap" where the
2426			 * gap is either the low watermark or 1%
2427			 * of the zone, whichever is smaller.
2428			 */
2429			balance_gap = min(low_wmark_pages(zone),
2430				(zone->present_pages +
2431					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2432				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2433			if (!zone_watermark_ok_safe(zone, order,
2434					high_wmark_pages(zone) + balance_gap,
2435					end_zone, 0))
2436				shrink_zone(priority, zone, &sc);
2437			reclaim_state->reclaimed_slab = 0;
2438			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2439						lru_pages);
2440			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2441			total_scanned += sc.nr_scanned;
2442
2443			if (zone->all_unreclaimable)
2444				continue;
2445			if (nr_slab == 0 &&
2446			    !zone_reclaimable(zone))
2447				zone->all_unreclaimable = 1;
2448			/*
2449			 * If we've done a decent amount of scanning and
2450			 * the reclaim ratio is low, start doing writepage
2451			 * even in laptop mode
2452			 */
2453			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2454			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2455				sc.may_writepage = 1;
2456
2457			if (!zone_watermark_ok_safe(zone, order,
2458					high_wmark_pages(zone), end_zone, 0)) {
2459				all_zones_ok = 0;
2460				/*
2461				 * We are still under min water mark.  This
2462				 * means that we have a GFP_ATOMIC allocation
2463				 * failure risk. Hurry up!
2464				 */
2465				if (!zone_watermark_ok_safe(zone, order,
2466					    min_wmark_pages(zone), end_zone, 0))
2467					has_under_min_watermark_zone = 1;
2468			} else {
2469				/*
2470				 * If a zone reaches its high watermark,
2471				 * consider it to be no longer congested. It's
2472				 * possible there are dirty pages backed by
2473				 * congested BDIs but as pressure is relieved,
2474				 * spectulatively avoid congestion waits
2475				 */
2476				zone_clear_flag(zone, ZONE_CONGESTED);
2477				if (i <= *classzone_idx)
2478					balanced += zone->present_pages;
2479			}
2480
2481		}
2482		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2483			break;		/* kswapd: all done */
2484		/*
2485		 * OK, kswapd is getting into trouble.  Take a nap, then take
2486		 * another pass across the zones.
2487		 */
2488		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2489			if (has_under_min_watermark_zone)
2490				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2491			else
2492				congestion_wait(BLK_RW_ASYNC, HZ/10);
2493		}
2494
2495		/*
2496		 * We do this so kswapd doesn't build up large priorities for
2497		 * example when it is freeing in parallel with allocators. It
2498		 * matches the direct reclaim path behaviour in terms of impact
2499		 * on zone->*_priority.
2500		 */
2501		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2502			break;
2503	}
2504out:
2505
2506	/*
2507	 * order-0: All zones must meet high watermark for a balanced node
2508	 * high-order: Balanced zones must make up at least 25% of the node
2509	 *             for the node to be balanced
2510	 */
2511	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2512		cond_resched();
2513
2514		try_to_freeze();
2515
2516		/*
2517		 * Fragmentation may mean that the system cannot be
2518		 * rebalanced for high-order allocations in all zones.
2519		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2520		 * it means the zones have been fully scanned and are still
2521		 * not balanced. For high-order allocations, there is
2522		 * little point trying all over again as kswapd may
2523		 * infinite loop.
2524		 *
2525		 * Instead, recheck all watermarks at order-0 as they
2526		 * are the most important. If watermarks are ok, kswapd will go
2527		 * back to sleep. High-order users can still perform direct
2528		 * reclaim if they wish.
2529		 */
2530		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2531			order = sc.order = 0;
2532
2533		goto loop_again;
2534	}
2535
2536	/*
2537	 * If kswapd was reclaiming at a higher order, it has the option of
2538	 * sleeping without all zones being balanced. Before it does, it must
2539	 * ensure that the watermarks for order-0 on *all* zones are met and
2540	 * that the congestion flags are cleared. The congestion flag must
2541	 * be cleared as kswapd is the only mechanism that clears the flag
2542	 * and it is potentially going to sleep here.
2543	 */
2544	if (order) {
2545		for (i = 0; i <= end_zone; i++) {
2546			struct zone *zone = pgdat->node_zones + i;
2547
2548			if (!populated_zone(zone))
2549				continue;
2550
2551			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2552				continue;
2553
2554			/* Confirm the zone is balanced for order-0 */
2555			if (!zone_watermark_ok(zone, 0,
2556					high_wmark_pages(zone), 0, 0)) {
2557				order = sc.order = 0;
2558				goto loop_again;
2559			}
2560
2561			/* If balanced, clear the congested flag */
2562			zone_clear_flag(zone, ZONE_CONGESTED);
2563		}
2564	}
2565
2566	/*
2567	 * Return the order we were reclaiming at so sleeping_prematurely()
2568	 * makes a decision on the order we were last reclaiming at. However,
2569	 * if another caller entered the allocator slow path while kswapd
2570	 * was awake, order will remain at the higher level
2571	 */
2572	*classzone_idx = end_zone;
2573	return order;
2574}
2575
2576static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2577{
2578	long remaining = 0;
2579	DEFINE_WAIT(wait);
2580
2581	if (freezing(current) || kthread_should_stop())
2582		return;
2583
2584	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2585
2586	/* Try to sleep for a short interval */
2587	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2588		remaining = schedule_timeout(HZ/10);
2589		finish_wait(&pgdat->kswapd_wait, &wait);
2590		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2591	}
2592
2593	/*
2594	 * After a short sleep, check if it was a premature sleep. If not, then
2595	 * go fully to sleep until explicitly woken up.
2596	 */
2597	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2598		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2599
2600		/*
2601		 * vmstat counters are not perfectly accurate and the estimated
2602		 * value for counters such as NR_FREE_PAGES can deviate from the
2603		 * true value by nr_online_cpus * threshold. To avoid the zone
2604		 * watermarks being breached while under pressure, we reduce the
2605		 * per-cpu vmstat threshold while kswapd is awake and restore
2606		 * them before going back to sleep.
2607		 */
2608		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2609		schedule();
2610		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2611	} else {
2612		if (remaining)
2613			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2614		else
2615			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2616	}
2617	finish_wait(&pgdat->kswapd_wait, &wait);
2618}
2619
2620/*
2621 * The background pageout daemon, started as a kernel thread
2622 * from the init process.
2623 *
2624 * This basically trickles out pages so that we have _some_
2625 * free memory available even if there is no other activity
2626 * that frees anything up. This is needed for things like routing
2627 * etc, where we otherwise might have all activity going on in
2628 * asynchronous contexts that cannot page things out.
2629 *
2630 * If there are applications that are active memory-allocators
2631 * (most normal use), this basically shouldn't matter.
2632 */
2633static int kswapd(void *p)
2634{
2635	unsigned long order;
2636	int classzone_idx;
2637	pg_data_t *pgdat = (pg_data_t*)p;
2638	struct task_struct *tsk = current;
2639
2640	struct reclaim_state reclaim_state = {
2641		.reclaimed_slab = 0,
2642	};
2643	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2644
2645	lockdep_set_current_reclaim_state(GFP_KERNEL);
2646
2647	if (!cpumask_empty(cpumask))
2648		set_cpus_allowed_ptr(tsk, cpumask);
2649	current->reclaim_state = &reclaim_state;
2650
2651	/*
2652	 * Tell the memory management that we're a "memory allocator",
2653	 * and that if we need more memory we should get access to it
2654	 * regardless (see "__alloc_pages()"). "kswapd" should
2655	 * never get caught in the normal page freeing logic.
2656	 *
2657	 * (Kswapd normally doesn't need memory anyway, but sometimes
2658	 * you need a small amount of memory in order to be able to
2659	 * page out something else, and this flag essentially protects
2660	 * us from recursively trying to free more memory as we're
2661	 * trying to free the first piece of memory in the first place).
2662	 */
2663	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2664	set_freezable();
2665
2666	order = 0;
2667	classzone_idx = MAX_NR_ZONES - 1;
2668	for ( ; ; ) {
2669		unsigned long new_order;
2670		int new_classzone_idx;
2671		int ret;
2672
2673		new_order = pgdat->kswapd_max_order;
2674		new_classzone_idx = pgdat->classzone_idx;
2675		pgdat->kswapd_max_order = 0;
2676		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2677		if (order < new_order || classzone_idx > new_classzone_idx) {
2678			/*
2679			 * Don't sleep if someone wants a larger 'order'
2680			 * allocation or has tigher zone constraints
2681			 */
2682			order = new_order;
2683			classzone_idx = new_classzone_idx;
2684		} else {
2685			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2686			order = pgdat->kswapd_max_order;
2687			classzone_idx = pgdat->classzone_idx;
2688			pgdat->kswapd_max_order = 0;
2689			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2690		}
2691
2692		ret = try_to_freeze();
2693		if (kthread_should_stop())
2694			break;
2695
2696		/*
2697		 * We can speed up thawing tasks if we don't call balance_pgdat
2698		 * after returning from the refrigerator
2699		 */
2700		if (!ret) {
2701			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2702			order = balance_pgdat(pgdat, order, &classzone_idx);
2703		}
2704	}
2705	return 0;
2706}
2707
2708/*
2709 * A zone is low on free memory, so wake its kswapd task to service it.
2710 */
2711void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2712{
2713	pg_data_t *pgdat;
2714
2715	if (!populated_zone(zone))
2716		return;
2717
2718	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2719		return;
2720	pgdat = zone->zone_pgdat;
2721	if (pgdat->kswapd_max_order < order) {
2722		pgdat->kswapd_max_order = order;
2723		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2724	}
2725	if (!waitqueue_active(&pgdat->kswapd_wait))
2726		return;
2727	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2728		return;
2729
2730	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2731	wake_up_interruptible(&pgdat->kswapd_wait);
2732}
2733
2734/*
2735 * The reclaimable count would be mostly accurate.
2736 * The less reclaimable pages may be
2737 * - mlocked pages, which will be moved to unevictable list when encountered
2738 * - mapped pages, which may require several travels to be reclaimed
2739 * - dirty pages, which is not "instantly" reclaimable
2740 */
2741unsigned long global_reclaimable_pages(void)
2742{
2743	int nr;
2744
2745	nr = global_page_state(NR_ACTIVE_FILE) +
2746	     global_page_state(NR_INACTIVE_FILE);
2747
2748	if (nr_swap_pages > 0)
2749		nr += global_page_state(NR_ACTIVE_ANON) +
2750		      global_page_state(NR_INACTIVE_ANON);
2751
2752	return nr;
2753}
2754
2755unsigned long zone_reclaimable_pages(struct zone *zone)
2756{
2757	int nr;
2758
2759	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2760	     zone_page_state(zone, NR_INACTIVE_FILE);
2761
2762	if (nr_swap_pages > 0)
2763		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2764		      zone_page_state(zone, NR_INACTIVE_ANON);
2765
2766	return nr;
2767}
2768
2769#ifdef CONFIG_HIBERNATION
2770/*
2771 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2772 * freed pages.
2773 *
2774 * Rather than trying to age LRUs the aim is to preserve the overall
2775 * LRU order by reclaiming preferentially
2776 * inactive > active > active referenced > active mapped
2777 */
2778unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2779{
2780	struct reclaim_state reclaim_state;
2781	struct scan_control sc = {
2782		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2783		.may_swap = 1,
2784		.may_unmap = 1,
2785		.may_writepage = 1,
2786		.nr_to_reclaim = nr_to_reclaim,
2787		.hibernation_mode = 1,
2788		.swappiness = vm_swappiness,
2789		.order = 0,
2790	};
2791	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2792	struct task_struct *p = current;
2793	unsigned long nr_reclaimed;
2794
2795	p->flags |= PF_MEMALLOC;
2796	lockdep_set_current_reclaim_state(sc.gfp_mask);
2797	reclaim_state.reclaimed_slab = 0;
2798	p->reclaim_state = &reclaim_state;
2799
2800	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2801
2802	p->reclaim_state = NULL;
2803	lockdep_clear_current_reclaim_state();
2804	p->flags &= ~PF_MEMALLOC;
2805
2806	return nr_reclaimed;
2807}
2808#endif /* CONFIG_HIBERNATION */
2809
2810/* It's optimal to keep kswapds on the same CPUs as their memory, but
2811   not required for correctness.  So if the last cpu in a node goes
2812   away, we get changed to run anywhere: as the first one comes back,
2813   restore their cpu bindings. */
2814static int __devinit cpu_callback(struct notifier_block *nfb,
2815				  unsigned long action, void *hcpu)
2816{
2817	int nid;
2818
2819	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2820		for_each_node_state(nid, N_HIGH_MEMORY) {
2821			pg_data_t *pgdat = NODE_DATA(nid);
2822			const struct cpumask *mask;
2823
2824			mask = cpumask_of_node(pgdat->node_id);
2825
2826			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2827				/* One of our CPUs online: restore mask */
2828				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2829		}
2830	}
2831	return NOTIFY_OK;
2832}
2833
2834/*
2835 * This kswapd start function will be called by init and node-hot-add.
2836 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2837 */
2838int kswapd_run(int nid)
2839{
2840	pg_data_t *pgdat = NODE_DATA(nid);
2841	int ret = 0;
2842
2843	if (pgdat->kswapd)
2844		return 0;
2845
2846	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2847	if (IS_ERR(pgdat->kswapd)) {
2848		/* failure at boot is fatal */
2849		BUG_ON(system_state == SYSTEM_BOOTING);
2850		printk("Failed to start kswapd on node %d\n",nid);
2851		ret = -1;
2852	}
2853	return ret;
2854}
2855
2856/*
2857 * Called by memory hotplug when all memory in a node is offlined.
2858 */
2859void kswapd_stop(int nid)
2860{
2861	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2862
2863	if (kswapd)
2864		kthread_stop(kswapd);
2865}
2866
2867static int __init kswapd_init(void)
2868{
2869	int nid;
2870
2871	swap_setup();
2872	for_each_node_state(nid, N_HIGH_MEMORY)
2873 		kswapd_run(nid);
2874	hotcpu_notifier(cpu_callback, 0);
2875	return 0;
2876}
2877
2878module_init(kswapd_init)
2879
2880#ifdef CONFIG_NUMA
2881/*
2882 * Zone reclaim mode
2883 *
2884 * If non-zero call zone_reclaim when the number of free pages falls below
2885 * the watermarks.
2886 */
2887int zone_reclaim_mode __read_mostly;
2888
2889#define RECLAIM_OFF 0
2890#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2891#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2892#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2893
2894/*
2895 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2896 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2897 * a zone.
2898 */
2899#define ZONE_RECLAIM_PRIORITY 4
2900
2901/*
2902 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2903 * occur.
2904 */
2905int sysctl_min_unmapped_ratio = 1;
2906
2907/*
2908 * If the number of slab pages in a zone grows beyond this percentage then
2909 * slab reclaim needs to occur.
2910 */
2911int sysctl_min_slab_ratio = 5;
2912
2913static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2914{
2915	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2916	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2917		zone_page_state(zone, NR_ACTIVE_FILE);
2918
2919	/*
2920	 * It's possible for there to be more file mapped pages than
2921	 * accounted for by the pages on the file LRU lists because
2922	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2923	 */
2924	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2925}
2926
2927/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2928static long zone_pagecache_reclaimable(struct zone *zone)
2929{
2930	long nr_pagecache_reclaimable;
2931	long delta = 0;
2932
2933	/*
2934	 * If RECLAIM_SWAP is set, then all file pages are considered
2935	 * potentially reclaimable. Otherwise, we have to worry about
2936	 * pages like swapcache and zone_unmapped_file_pages() provides
2937	 * a better estimate
2938	 */
2939	if (zone_reclaim_mode & RECLAIM_SWAP)
2940		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2941	else
2942		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2943
2944	/* If we can't clean pages, remove dirty pages from consideration */
2945	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2946		delta += zone_page_state(zone, NR_FILE_DIRTY);
2947
2948	/* Watch for any possible underflows due to delta */
2949	if (unlikely(delta > nr_pagecache_reclaimable))
2950		delta = nr_pagecache_reclaimable;
2951
2952	return nr_pagecache_reclaimable - delta;
2953}
2954
2955/*
2956 * Try to free up some pages from this zone through reclaim.
2957 */
2958static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2959{
2960	/* Minimum pages needed in order to stay on node */
2961	const unsigned long nr_pages = 1 << order;
2962	struct task_struct *p = current;
2963	struct reclaim_state reclaim_state;
2964	int priority;
2965	struct scan_control sc = {
2966		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2967		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2968		.may_swap = 1,
2969		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2970				       SWAP_CLUSTER_MAX),
2971		.gfp_mask = gfp_mask,
2972		.swappiness = vm_swappiness,
2973		.order = order,
2974	};
2975	unsigned long nr_slab_pages0, nr_slab_pages1;
2976
2977	cond_resched();
2978	/*
2979	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2980	 * and we also need to be able to write out pages for RECLAIM_WRITE
2981	 * and RECLAIM_SWAP.
2982	 */
2983	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2984	lockdep_set_current_reclaim_state(gfp_mask);
2985	reclaim_state.reclaimed_slab = 0;
2986	p->reclaim_state = &reclaim_state;
2987
2988	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2989		/*
2990		 * Free memory by calling shrink zone with increasing
2991		 * priorities until we have enough memory freed.
2992		 */
2993		priority = ZONE_RECLAIM_PRIORITY;
2994		do {
2995			shrink_zone(priority, zone, &sc);
2996			priority--;
2997		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2998	}
2999
3000	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3001	if (nr_slab_pages0 > zone->min_slab_pages) {
3002		/*
3003		 * shrink_slab() does not currently allow us to determine how
3004		 * many pages were freed in this zone. So we take the current
3005		 * number of slab pages and shake the slab until it is reduced
3006		 * by the same nr_pages that we used for reclaiming unmapped
3007		 * pages.
3008		 *
3009		 * Note that shrink_slab will free memory on all zones and may
3010		 * take a long time.
3011		 */
3012		for (;;) {
3013			unsigned long lru_pages = zone_reclaimable_pages(zone);
3014
3015			/* No reclaimable slab or very low memory pressure */
3016			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3017				break;
3018
3019			/* Freed enough memory */
3020			nr_slab_pages1 = zone_page_state(zone,
3021							NR_SLAB_RECLAIMABLE);
3022			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3023				break;
3024		}
3025
3026		/*
3027		 * Update nr_reclaimed by the number of slab pages we
3028		 * reclaimed from this zone.
3029		 */
3030		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3031		if (nr_slab_pages1 < nr_slab_pages0)
3032			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3033	}
3034
3035	p->reclaim_state = NULL;
3036	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3037	lockdep_clear_current_reclaim_state();
3038	return sc.nr_reclaimed >= nr_pages;
3039}
3040
3041int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3042{
3043	int node_id;
3044	int ret;
3045
3046	/*
3047	 * Zone reclaim reclaims unmapped file backed pages and
3048	 * slab pages if we are over the defined limits.
3049	 *
3050	 * A small portion of unmapped file backed pages is needed for
3051	 * file I/O otherwise pages read by file I/O will be immediately
3052	 * thrown out if the zone is overallocated. So we do not reclaim
3053	 * if less than a specified percentage of the zone is used by
3054	 * unmapped file backed pages.
3055	 */
3056	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3057	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3058		return ZONE_RECLAIM_FULL;
3059
3060	if (zone->all_unreclaimable)
3061		return ZONE_RECLAIM_FULL;
3062
3063	/*
3064	 * Do not scan if the allocation should not be delayed.
3065	 */
3066	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3067		return ZONE_RECLAIM_NOSCAN;
3068
3069	/*
3070	 * Only run zone reclaim on the local zone or on zones that do not
3071	 * have associated processors. This will favor the local processor
3072	 * over remote processors and spread off node memory allocations
3073	 * as wide as possible.
3074	 */
3075	node_id = zone_to_nid(zone);
3076	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3077		return ZONE_RECLAIM_NOSCAN;
3078
3079	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3080		return ZONE_RECLAIM_NOSCAN;
3081
3082	ret = __zone_reclaim(zone, gfp_mask, order);
3083	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3084
3085	if (!ret)
3086		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3087
3088	return ret;
3089}
3090#endif
3091
3092/*
3093 * page_evictable - test whether a page is evictable
3094 * @page: the page to test
3095 * @vma: the VMA in which the page is or will be mapped, may be NULL
3096 *
3097 * Test whether page is evictable--i.e., should be placed on active/inactive
3098 * lists vs unevictable list.  The vma argument is !NULL when called from the
3099 * fault path to determine how to instantate a new page.
3100 *
3101 * Reasons page might not be evictable:
3102 * (1) page's mapping marked unevictable
3103 * (2) page is part of an mlocked VMA
3104 *
3105 */
3106int page_evictable(struct page *page, struct vm_area_struct *vma)
3107{
3108
3109	if (mapping_unevictable(page_mapping(page)))
3110		return 0;
3111
3112	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3113		return 0;
3114
3115	return 1;
3116}
3117
3118/**
3119 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3120 * @page: page to check evictability and move to appropriate lru list
3121 * @zone: zone page is in
3122 *
3123 * Checks a page for evictability and moves the page to the appropriate
3124 * zone lru list.
3125 *
3126 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3127 * have PageUnevictable set.
3128 */
3129static void check_move_unevictable_page(struct page *page, struct zone *zone)
3130{
3131	VM_BUG_ON(PageActive(page));
3132
3133retry:
3134	ClearPageUnevictable(page);
3135	if (page_evictable(page, NULL)) {
3136		enum lru_list l = page_lru_base_type(page);
3137
3138		__dec_zone_state(zone, NR_UNEVICTABLE);
3139		list_move(&page->lru, &zone->lru[l].list);
3140		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3141		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3142		__count_vm_event(UNEVICTABLE_PGRESCUED);
3143	} else {
3144		/*
3145		 * rotate unevictable list
3146		 */
3147		SetPageUnevictable(page);
3148		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3149		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3150		if (page_evictable(page, NULL))
3151			goto retry;
3152	}
3153}
3154
3155/**
3156 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3157 * @mapping: struct address_space to scan for evictable pages
3158 *
3159 * Scan all pages in mapping.  Check unevictable pages for
3160 * evictability and move them to the appropriate zone lru list.
3161 */
3162void scan_mapping_unevictable_pages(struct address_space *mapping)
3163{
3164	pgoff_t next = 0;
3165	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3166			 PAGE_CACHE_SHIFT;
3167	struct zone *zone;
3168	struct pagevec pvec;
3169
3170	if (mapping->nrpages == 0)
3171		return;
3172
3173	pagevec_init(&pvec, 0);
3174	while (next < end &&
3175		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3176		int i;
3177		int pg_scanned = 0;
3178
3179		zone = NULL;
3180
3181		for (i = 0; i < pagevec_count(&pvec); i++) {
3182			struct page *page = pvec.pages[i];
3183			pgoff_t page_index = page->index;
3184			struct zone *pagezone = page_zone(page);
3185
3186			pg_scanned++;
3187			if (page_index > next)
3188				next = page_index;
3189			next++;
3190
3191			if (pagezone != zone) {
3192				if (zone)
3193					spin_unlock_irq(&zone->lru_lock);
3194				zone = pagezone;
3195				spin_lock_irq(&zone->lru_lock);
3196			}
3197
3198			if (PageLRU(page) && PageUnevictable(page))
3199				check_move_unevictable_page(page, zone);
3200		}
3201		if (zone)
3202			spin_unlock_irq(&zone->lru_lock);
3203		pagevec_release(&pvec);
3204
3205		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3206	}
3207
3208}
3209
3210/**
3211 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3212 * @zone - zone of which to scan the unevictable list
3213 *
3214 * Scan @zone's unevictable LRU lists to check for pages that have become
3215 * evictable.  Move those that have to @zone's inactive list where they
3216 * become candidates for reclaim, unless shrink_inactive_zone() decides
3217 * to reactivate them.  Pages that are still unevictable are rotated
3218 * back onto @zone's unevictable list.
3219 */
3220#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3221static void scan_zone_unevictable_pages(struct zone *zone)
3222{
3223	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3224	unsigned long scan;
3225	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3226
3227	while (nr_to_scan > 0) {
3228		unsigned long batch_size = min(nr_to_scan,
3229						SCAN_UNEVICTABLE_BATCH_SIZE);
3230
3231		spin_lock_irq(&zone->lru_lock);
3232		for (scan = 0;  scan < batch_size; scan++) {
3233			struct page *page = lru_to_page(l_unevictable);
3234
3235			if (!trylock_page(page))
3236				continue;
3237
3238			prefetchw_prev_lru_page(page, l_unevictable, flags);
3239
3240			if (likely(PageLRU(page) && PageUnevictable(page)))
3241				check_move_unevictable_page(page, zone);
3242
3243			unlock_page(page);
3244		}
3245		spin_unlock_irq(&zone->lru_lock);
3246
3247		nr_to_scan -= batch_size;
3248	}
3249}
3250
3251
3252/**
3253 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3254 *
3255 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3256 * pages that have become evictable.  Move those back to the zones'
3257 * inactive list where they become candidates for reclaim.
3258 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3259 * and we add swap to the system.  As such, it runs in the context of a task
3260 * that has possibly/probably made some previously unevictable pages
3261 * evictable.
3262 */
3263static void scan_all_zones_unevictable_pages(void)
3264{
3265	struct zone *zone;
3266
3267	for_each_zone(zone) {
3268		scan_zone_unevictable_pages(zone);
3269	}
3270}
3271
3272/*
3273 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3274 * all nodes' unevictable lists for evictable pages
3275 */
3276unsigned long scan_unevictable_pages;
3277
3278int scan_unevictable_handler(struct ctl_table *table, int write,
3279			   void __user *buffer,
3280			   size_t *length, loff_t *ppos)
3281{
3282	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3283
3284	if (write && *(unsigned long *)table->data)
3285		scan_all_zones_unevictable_pages();
3286
3287	scan_unevictable_pages = 0;
3288	return 0;
3289}
3290
3291#ifdef CONFIG_NUMA
3292/*
3293 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3294 * a specified node's per zone unevictable lists for evictable pages.
3295 */
3296
3297static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3298					  struct sysdev_attribute *attr,
3299					  char *buf)
3300{
3301	return sprintf(buf, "0\n");	/* always zero; should fit... */
3302}
3303
3304static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3305					   struct sysdev_attribute *attr,
3306					const char *buf, size_t count)
3307{
3308	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3309	struct zone *zone;
3310	unsigned long res;
3311	unsigned long req = strict_strtoul(buf, 10, &res);
3312
3313	if (!req)
3314		return 1;	/* zero is no-op */
3315
3316	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3317		if (!populated_zone(zone))
3318			continue;
3319		scan_zone_unevictable_pages(zone);
3320	}
3321	return 1;
3322}
3323
3324
3325static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3326			read_scan_unevictable_node,
3327			write_scan_unevictable_node);
3328
3329int scan_unevictable_register_node(struct node *node)
3330{
3331	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3332}
3333
3334void scan_unevictable_unregister_node(struct node *node)
3335{
3336	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3337}
3338#endif
3339