vmscan.c revision 2903fb1694dcb08a3c1d9d823cfae7ba30e66cd3
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h>	/* for try_to_release_page(),
26					buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44	/* failed to write page out, page is locked */
45	PAGE_KEEP,
46	/* move page to the active list, page is locked */
47	PAGE_ACTIVATE,
48	/* page has been sent to the disk successfully, page is unlocked */
49	PAGE_SUCCESS,
50	/* page is clean and locked */
51	PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56	unsigned long nr_to_scan;
57
58	/* Incremented by the number of inactive pages that were scanned */
59	unsigned long nr_scanned;
60
61	/* Incremented by the number of pages reclaimed */
62	unsigned long nr_reclaimed;
63
64	unsigned long nr_mapped;	/* From page_state */
65
66	/* Ask shrink_caches, or shrink_zone to scan at this priority */
67	unsigned int priority;
68
69	/* This context's GFP mask */
70	gfp_t gfp_mask;
71
72	int may_writepage;
73
74	/* Can pages be swapped as part of reclaim? */
75	int may_swap;
76
77	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
78	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79	 * In this context, it doesn't matter that we scan the
80	 * whole list at once. */
81	int swap_cluster_max;
82};
83
84/*
85 * The list of shrinker callbacks used by to apply pressure to
86 * ageable caches.
87 */
88struct shrinker {
89	shrinker_t		shrinker;
90	struct list_head	list;
91	int			seeks;	/* seeks to recreate an obj */
92	long			nr;	/* objs pending delete */
93};
94
95#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97#ifdef ARCH_HAS_PREFETCH
98#define prefetch_prev_lru_page(_page, _base, _field)			\
99	do {								\
100		if ((_page)->lru.prev != _base) {			\
101			struct page *prev;				\
102									\
103			prev = lru_to_page(&(_page->lru));		\
104			prefetch(&prev->_field);			\
105		}							\
106	} while (0)
107#else
108#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109#endif
110
111#ifdef ARCH_HAS_PREFETCHW
112#define prefetchw_prev_lru_page(_page, _base, _field)			\
113	do {								\
114		if ((_page)->lru.prev != _base) {			\
115			struct page *prev;				\
116									\
117			prev = lru_to_page(&(_page->lru));		\
118			prefetchw(&prev->_field);			\
119		}							\
120	} while (0)
121#else
122#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125/*
126 * From 0 .. 100.  Higher means more swappy.
127 */
128int vm_swappiness = 60;
129static long total_memory;
130
131static LIST_HEAD(shrinker_list);
132static DECLARE_RWSEM(shrinker_rwsem);
133
134/*
135 * Add a shrinker callback to be called from the vm
136 */
137struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138{
139        struct shrinker *shrinker;
140
141        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142        if (shrinker) {
143	        shrinker->shrinker = theshrinker;
144	        shrinker->seeks = seeks;
145	        shrinker->nr = 0;
146	        down_write(&shrinker_rwsem);
147	        list_add_tail(&shrinker->list, &shrinker_list);
148	        up_write(&shrinker_rwsem);
149	}
150	return shrinker;
151}
152EXPORT_SYMBOL(set_shrinker);
153
154/*
155 * Remove one
156 */
157void remove_shrinker(struct shrinker *shrinker)
158{
159	down_write(&shrinker_rwsem);
160	list_del(&shrinker->list);
161	up_write(&shrinker_rwsem);
162	kfree(shrinker);
163}
164EXPORT_SYMBOL(remove_shrinker);
165
166#define SHRINK_BATCH 128
167/*
168 * Call the shrink functions to age shrinkable caches
169 *
170 * Here we assume it costs one seek to replace a lru page and that it also
171 * takes a seek to recreate a cache object.  With this in mind we age equal
172 * percentages of the lru and ageable caches.  This should balance the seeks
173 * generated by these structures.
174 *
175 * If the vm encounted mapped pages on the LRU it increase the pressure on
176 * slab to avoid swapping.
177 *
178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179 *
180 * `lru_pages' represents the number of on-LRU pages in all the zones which
181 * are eligible for the caller's allocation attempt.  It is used for balancing
182 * slab reclaim versus page reclaim.
183 *
184 * Returns the number of slab objects which we shrunk.
185 */
186int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
187{
188	struct shrinker *shrinker;
189	int ret = 0;
190
191	if (scanned == 0)
192		scanned = SWAP_CLUSTER_MAX;
193
194	if (!down_read_trylock(&shrinker_rwsem))
195		return 1;	/* Assume we'll be able to shrink next time */
196
197	list_for_each_entry(shrinker, &shrinker_list, list) {
198		unsigned long long delta;
199		unsigned long total_scan;
200		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
201
202		delta = (4 * scanned) / shrinker->seeks;
203		delta *= max_pass;
204		do_div(delta, lru_pages + 1);
205		shrinker->nr += delta;
206		if (shrinker->nr < 0) {
207			printk(KERN_ERR "%s: nr=%ld\n",
208					__FUNCTION__, shrinker->nr);
209			shrinker->nr = max_pass;
210		}
211
212		/*
213		 * Avoid risking looping forever due to too large nr value:
214		 * never try to free more than twice the estimate number of
215		 * freeable entries.
216		 */
217		if (shrinker->nr > max_pass * 2)
218			shrinker->nr = max_pass * 2;
219
220		total_scan = shrinker->nr;
221		shrinker->nr = 0;
222
223		while (total_scan >= SHRINK_BATCH) {
224			long this_scan = SHRINK_BATCH;
225			int shrink_ret;
226			int nr_before;
227
228			nr_before = (*shrinker->shrinker)(0, gfp_mask);
229			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230			if (shrink_ret == -1)
231				break;
232			if (shrink_ret < nr_before)
233				ret += nr_before - shrink_ret;
234			mod_page_state(slabs_scanned, this_scan);
235			total_scan -= this_scan;
236
237			cond_resched();
238		}
239
240		shrinker->nr += total_scan;
241	}
242	up_read(&shrinker_rwsem);
243	return ret;
244}
245
246/* Called without lock on whether page is mapped, so answer is unstable */
247static inline int page_mapping_inuse(struct page *page)
248{
249	struct address_space *mapping;
250
251	/* Page is in somebody's page tables. */
252	if (page_mapped(page))
253		return 1;
254
255	/* Be more reluctant to reclaim swapcache than pagecache */
256	if (PageSwapCache(page))
257		return 1;
258
259	mapping = page_mapping(page);
260	if (!mapping)
261		return 0;
262
263	/* File is mmap'd by somebody? */
264	return mapping_mapped(mapping);
265}
266
267static inline int is_page_cache_freeable(struct page *page)
268{
269	return page_count(page) - !!PagePrivate(page) == 2;
270}
271
272static int may_write_to_queue(struct backing_dev_info *bdi)
273{
274	if (current->flags & PF_SWAPWRITE)
275		return 1;
276	if (!bdi_write_congested(bdi))
277		return 1;
278	if (bdi == current->backing_dev_info)
279		return 1;
280	return 0;
281}
282
283/*
284 * We detected a synchronous write error writing a page out.  Probably
285 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286 * fsync(), msync() or close().
287 *
288 * The tricky part is that after writepage we cannot touch the mapping: nothing
289 * prevents it from being freed up.  But we have a ref on the page and once
290 * that page is locked, the mapping is pinned.
291 *
292 * We're allowed to run sleeping lock_page() here because we know the caller has
293 * __GFP_FS.
294 */
295static void handle_write_error(struct address_space *mapping,
296				struct page *page, int error)
297{
298	lock_page(page);
299	if (page_mapping(page) == mapping) {
300		if (error == -ENOSPC)
301			set_bit(AS_ENOSPC, &mapping->flags);
302		else
303			set_bit(AS_EIO, &mapping->flags);
304	}
305	unlock_page(page);
306}
307
308/*
309 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310 */
311static pageout_t pageout(struct page *page, struct address_space *mapping)
312{
313	/*
314	 * If the page is dirty, only perform writeback if that write
315	 * will be non-blocking.  To prevent this allocation from being
316	 * stalled by pagecache activity.  But note that there may be
317	 * stalls if we need to run get_block().  We could test
318	 * PagePrivate for that.
319	 *
320	 * If this process is currently in generic_file_write() against
321	 * this page's queue, we can perform writeback even if that
322	 * will block.
323	 *
324	 * If the page is swapcache, write it back even if that would
325	 * block, for some throttling. This happens by accident, because
326	 * swap_backing_dev_info is bust: it doesn't reflect the
327	 * congestion state of the swapdevs.  Easy to fix, if needed.
328	 * See swapfile.c:page_queue_congested().
329	 */
330	if (!is_page_cache_freeable(page))
331		return PAGE_KEEP;
332	if (!mapping) {
333		/*
334		 * Some data journaling orphaned pages can have
335		 * page->mapping == NULL while being dirty with clean buffers.
336		 */
337		if (PagePrivate(page)) {
338			if (try_to_free_buffers(page)) {
339				ClearPageDirty(page);
340				printk("%s: orphaned page\n", __FUNCTION__);
341				return PAGE_CLEAN;
342			}
343		}
344		return PAGE_KEEP;
345	}
346	if (mapping->a_ops->writepage == NULL)
347		return PAGE_ACTIVATE;
348	if (!may_write_to_queue(mapping->backing_dev_info))
349		return PAGE_KEEP;
350
351	if (clear_page_dirty_for_io(page)) {
352		int res;
353		struct writeback_control wbc = {
354			.sync_mode = WB_SYNC_NONE,
355			.nr_to_write = SWAP_CLUSTER_MAX,
356			.nonblocking = 1,
357			.for_reclaim = 1,
358		};
359
360		SetPageReclaim(page);
361		res = mapping->a_ops->writepage(page, &wbc);
362		if (res < 0)
363			handle_write_error(mapping, page, res);
364		if (res == AOP_WRITEPAGE_ACTIVATE) {
365			ClearPageReclaim(page);
366			return PAGE_ACTIVATE;
367		}
368		if (!PageWriteback(page)) {
369			/* synchronous write or broken a_ops? */
370			ClearPageReclaim(page);
371		}
372
373		return PAGE_SUCCESS;
374	}
375
376	return PAGE_CLEAN;
377}
378
379static int remove_mapping(struct address_space *mapping, struct page *page)
380{
381	if (!mapping)
382		return 0;		/* truncate got there first */
383
384	write_lock_irq(&mapping->tree_lock);
385
386	/*
387	 * The non-racy check for busy page.  It is critical to check
388	 * PageDirty _after_ making sure that the page is freeable and
389	 * not in use by anybody. 	(pagecache + us == 2)
390	 */
391	if (unlikely(page_count(page) != 2))
392		goto cannot_free;
393	smp_rmb();
394	if (unlikely(PageDirty(page)))
395		goto cannot_free;
396
397	if (PageSwapCache(page)) {
398		swp_entry_t swap = { .val = page_private(page) };
399		__delete_from_swap_cache(page);
400		write_unlock_irq(&mapping->tree_lock);
401		swap_free(swap);
402		__put_page(page);	/* The pagecache ref */
403		return 1;
404	}
405
406	__remove_from_page_cache(page);
407	write_unlock_irq(&mapping->tree_lock);
408	__put_page(page);
409	return 1;
410
411cannot_free:
412	write_unlock_irq(&mapping->tree_lock);
413	return 0;
414}
415
416/*
417 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418 */
419static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420{
421	LIST_HEAD(ret_pages);
422	struct pagevec freed_pvec;
423	int pgactivate = 0;
424	int reclaimed = 0;
425
426	cond_resched();
427
428	pagevec_init(&freed_pvec, 1);
429	while (!list_empty(page_list)) {
430		struct address_space *mapping;
431		struct page *page;
432		int may_enter_fs;
433		int referenced;
434
435		cond_resched();
436
437		page = lru_to_page(page_list);
438		list_del(&page->lru);
439
440		if (TestSetPageLocked(page))
441			goto keep;
442
443		BUG_ON(PageActive(page));
444
445		sc->nr_scanned++;
446
447		if (!sc->may_swap && page_mapped(page))
448			goto keep_locked;
449
450		/* Double the slab pressure for mapped and swapcache pages */
451		if (page_mapped(page) || PageSwapCache(page))
452			sc->nr_scanned++;
453
454		if (PageWriteback(page))
455			goto keep_locked;
456
457		referenced = page_referenced(page, 1);
458		/* In active use or really unfreeable?  Activate it. */
459		if (referenced && page_mapping_inuse(page))
460			goto activate_locked;
461
462#ifdef CONFIG_SWAP
463		/*
464		 * Anonymous process memory has backing store?
465		 * Try to allocate it some swap space here.
466		 */
467		if (PageAnon(page) && !PageSwapCache(page)) {
468			if (!sc->may_swap)
469				goto keep_locked;
470			if (!add_to_swap(page, GFP_ATOMIC))
471				goto activate_locked;
472		}
473#endif /* CONFIG_SWAP */
474
475		mapping = page_mapping(page);
476		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
477			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
478
479		/*
480		 * The page is mapped into the page tables of one or more
481		 * processes. Try to unmap it here.
482		 */
483		if (page_mapped(page) && mapping) {
484			/*
485			 * No unmapping if we do not swap
486			 */
487			if (!sc->may_swap)
488				goto keep_locked;
489
490			switch (try_to_unmap(page, 0)) {
491			case SWAP_FAIL:
492				goto activate_locked;
493			case SWAP_AGAIN:
494				goto keep_locked;
495			case SWAP_SUCCESS:
496				; /* try to free the page below */
497			}
498		}
499
500		if (PageDirty(page)) {
501			if (referenced)
502				goto keep_locked;
503			if (!may_enter_fs)
504				goto keep_locked;
505			if (!sc->may_writepage)
506				goto keep_locked;
507
508			/* Page is dirty, try to write it out here */
509			switch(pageout(page, mapping)) {
510			case PAGE_KEEP:
511				goto keep_locked;
512			case PAGE_ACTIVATE:
513				goto activate_locked;
514			case PAGE_SUCCESS:
515				if (PageWriteback(page) || PageDirty(page))
516					goto keep;
517				/*
518				 * A synchronous write - probably a ramdisk.  Go
519				 * ahead and try to reclaim the page.
520				 */
521				if (TestSetPageLocked(page))
522					goto keep;
523				if (PageDirty(page) || PageWriteback(page))
524					goto keep_locked;
525				mapping = page_mapping(page);
526			case PAGE_CLEAN:
527				; /* try to free the page below */
528			}
529		}
530
531		/*
532		 * If the page has buffers, try to free the buffer mappings
533		 * associated with this page. If we succeed we try to free
534		 * the page as well.
535		 *
536		 * We do this even if the page is PageDirty().
537		 * try_to_release_page() does not perform I/O, but it is
538		 * possible for a page to have PageDirty set, but it is actually
539		 * clean (all its buffers are clean).  This happens if the
540		 * buffers were written out directly, with submit_bh(). ext3
541		 * will do this, as well as the blockdev mapping.
542		 * try_to_release_page() will discover that cleanness and will
543		 * drop the buffers and mark the page clean - it can be freed.
544		 *
545		 * Rarely, pages can have buffers and no ->mapping.  These are
546		 * the pages which were not successfully invalidated in
547		 * truncate_complete_page().  We try to drop those buffers here
548		 * and if that worked, and the page is no longer mapped into
549		 * process address space (page_count == 1) it can be freed.
550		 * Otherwise, leave the page on the LRU so it is swappable.
551		 */
552		if (PagePrivate(page)) {
553			if (!try_to_release_page(page, sc->gfp_mask))
554				goto activate_locked;
555			if (!mapping && page_count(page) == 1)
556				goto free_it;
557		}
558
559		if (!remove_mapping(mapping, page))
560			goto keep_locked;
561
562free_it:
563		unlock_page(page);
564		reclaimed++;
565		if (!pagevec_add(&freed_pvec, page))
566			__pagevec_release_nonlru(&freed_pvec);
567		continue;
568
569activate_locked:
570		SetPageActive(page);
571		pgactivate++;
572keep_locked:
573		unlock_page(page);
574keep:
575		list_add(&page->lru, &ret_pages);
576		BUG_ON(PageLRU(page));
577	}
578	list_splice(&ret_pages, page_list);
579	if (pagevec_count(&freed_pvec))
580		__pagevec_release_nonlru(&freed_pvec);
581	mod_page_state(pgactivate, pgactivate);
582	sc->nr_reclaimed += reclaimed;
583	return reclaimed;
584}
585
586#ifdef CONFIG_MIGRATION
587static inline void move_to_lru(struct page *page)
588{
589	list_del(&page->lru);
590	if (PageActive(page)) {
591		/*
592		 * lru_cache_add_active checks that
593		 * the PG_active bit is off.
594		 */
595		ClearPageActive(page);
596		lru_cache_add_active(page);
597	} else {
598		lru_cache_add(page);
599	}
600	put_page(page);
601}
602
603/*
604 * Add isolated pages on the list back to the LRU.
605 *
606 * returns the number of pages put back.
607 */
608int putback_lru_pages(struct list_head *l)
609{
610	struct page *page;
611	struct page *page2;
612	int count = 0;
613
614	list_for_each_entry_safe(page, page2, l, lru) {
615		move_to_lru(page);
616		count++;
617	}
618	return count;
619}
620
621/*
622 * Non migratable page
623 */
624int fail_migrate_page(struct page *newpage, struct page *page)
625{
626	return -EIO;
627}
628EXPORT_SYMBOL(fail_migrate_page);
629
630/*
631 * swapout a single page
632 * page is locked upon entry, unlocked on exit
633 */
634static int swap_page(struct page *page)
635{
636	struct address_space *mapping = page_mapping(page);
637
638	if (page_mapped(page) && mapping)
639		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
640			goto unlock_retry;
641
642	if (PageDirty(page)) {
643		/* Page is dirty, try to write it out here */
644		switch(pageout(page, mapping)) {
645		case PAGE_KEEP:
646		case PAGE_ACTIVATE:
647			goto unlock_retry;
648
649		case PAGE_SUCCESS:
650			goto retry;
651
652		case PAGE_CLEAN:
653			; /* try to free the page below */
654		}
655	}
656
657	if (PagePrivate(page)) {
658		if (!try_to_release_page(page, GFP_KERNEL) ||
659		    (!mapping && page_count(page) == 1))
660			goto unlock_retry;
661	}
662
663	if (remove_mapping(mapping, page)) {
664		/* Success */
665		unlock_page(page);
666		return 0;
667	}
668
669unlock_retry:
670	unlock_page(page);
671
672retry:
673	return -EAGAIN;
674}
675EXPORT_SYMBOL(swap_page);
676
677/*
678 * Page migration was first developed in the context of the memory hotplug
679 * project. The main authors of the migration code are:
680 *
681 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
682 * Hirokazu Takahashi <taka@valinux.co.jp>
683 * Dave Hansen <haveblue@us.ibm.com>
684 * Christoph Lameter <clameter@sgi.com>
685 */
686
687/*
688 * Remove references for a page and establish the new page with the correct
689 * basic settings to be able to stop accesses to the page.
690 */
691int migrate_page_remove_references(struct page *newpage,
692				struct page *page, int nr_refs)
693{
694	struct address_space *mapping = page_mapping(page);
695	struct page **radix_pointer;
696
697	/*
698	 * Avoid doing any of the following work if the page count
699	 * indicates that the page is in use or truncate has removed
700	 * the page.
701	 */
702	if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
703		return 1;
704
705	/*
706	 * Establish swap ptes for anonymous pages or destroy pte
707	 * maps for files.
708	 *
709	 * In order to reestablish file backed mappings the fault handlers
710	 * will take the radix tree_lock which may then be used to stop
711  	 * processses from accessing this page until the new page is ready.
712	 *
713	 * A process accessing via a swap pte (an anonymous page) will take a
714	 * page_lock on the old page which will block the process until the
715	 * migration attempt is complete. At that time the PageSwapCache bit
716	 * will be examined. If the page was migrated then the PageSwapCache
717	 * bit will be clear and the operation to retrieve the page will be
718	 * retried which will find the new page in the radix tree. Then a new
719	 * direct mapping may be generated based on the radix tree contents.
720	 *
721	 * If the page was not migrated then the PageSwapCache bit
722	 * is still set and the operation may continue.
723	 */
724	try_to_unmap(page, 1);
725
726	/*
727	 * Give up if we were unable to remove all mappings.
728	 */
729	if (page_mapcount(page))
730		return 1;
731
732	write_lock_irq(&mapping->tree_lock);
733
734	radix_pointer = (struct page **)radix_tree_lookup_slot(
735						&mapping->page_tree,
736						page_index(page));
737
738	if (!page_mapping(page) || page_count(page) != nr_refs ||
739			*radix_pointer != page) {
740		write_unlock_irq(&mapping->tree_lock);
741		return 1;
742	}
743
744	/*
745	 * Now we know that no one else is looking at the page.
746	 *
747	 * Certain minimal information about a page must be available
748	 * in order for other subsystems to properly handle the page if they
749	 * find it through the radix tree update before we are finished
750	 * copying the page.
751	 */
752	get_page(newpage);
753	newpage->index = page->index;
754	newpage->mapping = page->mapping;
755	if (PageSwapCache(page)) {
756		SetPageSwapCache(newpage);
757		set_page_private(newpage, page_private(page));
758	}
759
760	*radix_pointer = newpage;
761	__put_page(page);
762	write_unlock_irq(&mapping->tree_lock);
763
764	return 0;
765}
766EXPORT_SYMBOL(migrate_page_remove_references);
767
768/*
769 * Copy the page to its new location
770 */
771void migrate_page_copy(struct page *newpage, struct page *page)
772{
773	copy_highpage(newpage, page);
774
775	if (PageError(page))
776		SetPageError(newpage);
777	if (PageReferenced(page))
778		SetPageReferenced(newpage);
779	if (PageUptodate(page))
780		SetPageUptodate(newpage);
781	if (PageActive(page))
782		SetPageActive(newpage);
783	if (PageChecked(page))
784		SetPageChecked(newpage);
785	if (PageMappedToDisk(page))
786		SetPageMappedToDisk(newpage);
787
788	if (PageDirty(page)) {
789		clear_page_dirty_for_io(page);
790		set_page_dirty(newpage);
791 	}
792
793	ClearPageSwapCache(page);
794	ClearPageActive(page);
795	ClearPagePrivate(page);
796	set_page_private(page, 0);
797	page->mapping = NULL;
798
799	/*
800	 * If any waiters have accumulated on the new page then
801	 * wake them up.
802	 */
803	if (PageWriteback(newpage))
804		end_page_writeback(newpage);
805}
806EXPORT_SYMBOL(migrate_page_copy);
807
808/*
809 * Common logic to directly migrate a single page suitable for
810 * pages that do not use PagePrivate.
811 *
812 * Pages are locked upon entry and exit.
813 */
814int migrate_page(struct page *newpage, struct page *page)
815{
816	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
817
818	if (migrate_page_remove_references(newpage, page, 2))
819		return -EAGAIN;
820
821	migrate_page_copy(newpage, page);
822
823	/*
824	 * Remove auxiliary swap entries and replace
825	 * them with real ptes.
826	 *
827	 * Note that a real pte entry will allow processes that are not
828	 * waiting on the page lock to use the new page via the page tables
829	 * before the new page is unlocked.
830	 */
831	remove_from_swap(newpage);
832	return 0;
833}
834EXPORT_SYMBOL(migrate_page);
835
836/*
837 * migrate_pages
838 *
839 * Two lists are passed to this function. The first list
840 * contains the pages isolated from the LRU to be migrated.
841 * The second list contains new pages that the pages isolated
842 * can be moved to. If the second list is NULL then all
843 * pages are swapped out.
844 *
845 * The function returns after 10 attempts or if no pages
846 * are movable anymore because to has become empty
847 * or no retryable pages exist anymore.
848 *
849 * Return: Number of pages not migrated when "to" ran empty.
850 */
851int migrate_pages(struct list_head *from, struct list_head *to,
852		  struct list_head *moved, struct list_head *failed)
853{
854	int retry;
855	int nr_failed = 0;
856	int pass = 0;
857	struct page *page;
858	struct page *page2;
859	int swapwrite = current->flags & PF_SWAPWRITE;
860	int rc;
861
862	if (!swapwrite)
863		current->flags |= PF_SWAPWRITE;
864
865redo:
866	retry = 0;
867
868	list_for_each_entry_safe(page, page2, from, lru) {
869		struct page *newpage = NULL;
870		struct address_space *mapping;
871
872		cond_resched();
873
874		rc = 0;
875		if (page_count(page) == 1)
876			/* page was freed from under us. So we are done. */
877			goto next;
878
879		if (to && list_empty(to))
880			break;
881
882		/*
883		 * Skip locked pages during the first two passes to give the
884		 * functions holding the lock time to release the page. Later we
885		 * use lock_page() to have a higher chance of acquiring the
886		 * lock.
887		 */
888		rc = -EAGAIN;
889		if (pass > 2)
890			lock_page(page);
891		else
892			if (TestSetPageLocked(page))
893				goto next;
894
895		/*
896		 * Only wait on writeback if we have already done a pass where
897		 * we we may have triggered writeouts for lots of pages.
898		 */
899		if (pass > 0) {
900			wait_on_page_writeback(page);
901		} else {
902			if (PageWriteback(page))
903				goto unlock_page;
904		}
905
906		/*
907		 * Anonymous pages must have swap cache references otherwise
908		 * the information contained in the page maps cannot be
909		 * preserved.
910		 */
911		if (PageAnon(page) && !PageSwapCache(page)) {
912			if (!add_to_swap(page, GFP_KERNEL)) {
913				rc = -ENOMEM;
914				goto unlock_page;
915			}
916		}
917
918		if (!to) {
919			rc = swap_page(page);
920			goto next;
921		}
922
923		newpage = lru_to_page(to);
924		lock_page(newpage);
925
926		/*
927		 * Pages are properly locked and writeback is complete.
928		 * Try to migrate the page.
929		 */
930		mapping = page_mapping(page);
931		if (!mapping)
932			goto unlock_both;
933
934		if (mapping->a_ops->migratepage) {
935			/*
936			 * Most pages have a mapping and most filesystems
937			 * should provide a migration function. Anonymous
938			 * pages are part of swap space which also has its
939			 * own migration function. This is the most common
940			 * path for page migration.
941			 */
942			rc = mapping->a_ops->migratepage(newpage, page);
943			goto unlock_both;
944                }
945
946		/*
947		 * Default handling if a filesystem does not provide
948		 * a migration function. We can only migrate clean
949		 * pages so try to write out any dirty pages first.
950		 */
951		if (PageDirty(page)) {
952			switch (pageout(page, mapping)) {
953			case PAGE_KEEP:
954			case PAGE_ACTIVATE:
955				goto unlock_both;
956
957			case PAGE_SUCCESS:
958				unlock_page(newpage);
959				goto next;
960
961			case PAGE_CLEAN:
962				; /* try to migrate the page below */
963			}
964                }
965
966		/*
967		 * Buffers are managed in a filesystem specific way.
968		 * We must have no buffers or drop them.
969		 */
970		if (!page_has_buffers(page) ||
971		    try_to_release_page(page, GFP_KERNEL)) {
972			rc = migrate_page(newpage, page);
973			goto unlock_both;
974		}
975
976		/*
977		 * On early passes with mapped pages simply
978		 * retry. There may be a lock held for some
979		 * buffers that may go away. Later
980		 * swap them out.
981		 */
982		if (pass > 4) {
983			/*
984			 * Persistently unable to drop buffers..... As a
985			 * measure of last resort we fall back to
986			 * swap_page().
987			 */
988			unlock_page(newpage);
989			newpage = NULL;
990			rc = swap_page(page);
991			goto next;
992		}
993
994unlock_both:
995		unlock_page(newpage);
996
997unlock_page:
998		unlock_page(page);
999
1000next:
1001		if (rc == -EAGAIN) {
1002			retry++;
1003		} else if (rc) {
1004			/* Permanent failure */
1005			list_move(&page->lru, failed);
1006			nr_failed++;
1007		} else {
1008			if (newpage) {
1009				/* Successful migration. Return page to LRU */
1010				move_to_lru(newpage);
1011			}
1012			list_move(&page->lru, moved);
1013		}
1014	}
1015	if (retry && pass++ < 10)
1016		goto redo;
1017
1018	if (!swapwrite)
1019		current->flags &= ~PF_SWAPWRITE;
1020
1021	return nr_failed + retry;
1022}
1023
1024/*
1025 * Isolate one page from the LRU lists and put it on the
1026 * indicated list with elevated refcount.
1027 *
1028 * Result:
1029 *  0 = page not on LRU list
1030 *  1 = page removed from LRU list and added to the specified list.
1031 */
1032int isolate_lru_page(struct page *page)
1033{
1034	int ret = 0;
1035
1036	if (PageLRU(page)) {
1037		struct zone *zone = page_zone(page);
1038		spin_lock_irq(&zone->lru_lock);
1039		if (TestClearPageLRU(page)) {
1040			ret = 1;
1041			get_page(page);
1042			if (PageActive(page))
1043				del_page_from_active_list(zone, page);
1044			else
1045				del_page_from_inactive_list(zone, page);
1046		}
1047		spin_unlock_irq(&zone->lru_lock);
1048	}
1049
1050	return ret;
1051}
1052#endif
1053
1054/*
1055 * zone->lru_lock is heavily contended.  Some of the functions that
1056 * shrink the lists perform better by taking out a batch of pages
1057 * and working on them outside the LRU lock.
1058 *
1059 * For pagecache intensive workloads, this function is the hottest
1060 * spot in the kernel (apart from copy_*_user functions).
1061 *
1062 * Appropriate locks must be held before calling this function.
1063 *
1064 * @nr_to_scan:	The number of pages to look through on the list.
1065 * @src:	The LRU list to pull pages off.
1066 * @dst:	The temp list to put pages on to.
1067 * @scanned:	The number of pages that were scanned.
1068 *
1069 * returns how many pages were moved onto *@dst.
1070 */
1071static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
1072			     struct list_head *dst, int *scanned)
1073{
1074	int nr_taken = 0;
1075	struct page *page;
1076	int scan = 0;
1077
1078	while (scan++ < nr_to_scan && !list_empty(src)) {
1079		page = lru_to_page(src);
1080		prefetchw_prev_lru_page(page, src, flags);
1081
1082		if (!TestClearPageLRU(page))
1083			BUG();
1084		list_del(&page->lru);
1085		if (get_page_testone(page)) {
1086			/*
1087			 * It is being freed elsewhere
1088			 */
1089			__put_page(page);
1090			SetPageLRU(page);
1091			list_add(&page->lru, src);
1092			continue;
1093		} else {
1094			list_add(&page->lru, dst);
1095			nr_taken++;
1096		}
1097	}
1098
1099	*scanned = scan;
1100	return nr_taken;
1101}
1102
1103/*
1104 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1105 */
1106static void shrink_cache(struct zone *zone, struct scan_control *sc)
1107{
1108	LIST_HEAD(page_list);
1109	struct pagevec pvec;
1110	int max_scan = sc->nr_to_scan;
1111
1112	pagevec_init(&pvec, 1);
1113
1114	lru_add_drain();
1115	spin_lock_irq(&zone->lru_lock);
1116	while (max_scan > 0) {
1117		struct page *page;
1118		int nr_taken;
1119		int nr_scan;
1120		int nr_freed;
1121
1122		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1123					     &zone->inactive_list,
1124					     &page_list, &nr_scan);
1125		zone->nr_inactive -= nr_taken;
1126		zone->pages_scanned += nr_scan;
1127		spin_unlock_irq(&zone->lru_lock);
1128
1129		if (nr_taken == 0)
1130			goto done;
1131
1132		max_scan -= nr_scan;
1133		nr_freed = shrink_list(&page_list, sc);
1134
1135		local_irq_disable();
1136		if (current_is_kswapd()) {
1137			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1138			__mod_page_state(kswapd_steal, nr_freed);
1139		} else
1140			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
1141		__mod_page_state_zone(zone, pgsteal, nr_freed);
1142
1143		spin_lock(&zone->lru_lock);
1144		/*
1145		 * Put back any unfreeable pages.
1146		 */
1147		while (!list_empty(&page_list)) {
1148			page = lru_to_page(&page_list);
1149			if (TestSetPageLRU(page))
1150				BUG();
1151			list_del(&page->lru);
1152			if (PageActive(page))
1153				add_page_to_active_list(zone, page);
1154			else
1155				add_page_to_inactive_list(zone, page);
1156			if (!pagevec_add(&pvec, page)) {
1157				spin_unlock_irq(&zone->lru_lock);
1158				__pagevec_release(&pvec);
1159				spin_lock_irq(&zone->lru_lock);
1160			}
1161		}
1162  	}
1163	spin_unlock_irq(&zone->lru_lock);
1164done:
1165	pagevec_release(&pvec);
1166}
1167
1168/*
1169 * This moves pages from the active list to the inactive list.
1170 *
1171 * We move them the other way if the page is referenced by one or more
1172 * processes, from rmap.
1173 *
1174 * If the pages are mostly unmapped, the processing is fast and it is
1175 * appropriate to hold zone->lru_lock across the whole operation.  But if
1176 * the pages are mapped, the processing is slow (page_referenced()) so we
1177 * should drop zone->lru_lock around each page.  It's impossible to balance
1178 * this, so instead we remove the pages from the LRU while processing them.
1179 * It is safe to rely on PG_active against the non-LRU pages in here because
1180 * nobody will play with that bit on a non-LRU page.
1181 *
1182 * The downside is that we have to touch page->_count against each page.
1183 * But we had to alter page->flags anyway.
1184 */
1185static void
1186refill_inactive_zone(struct zone *zone, struct scan_control *sc)
1187{
1188	int pgmoved;
1189	int pgdeactivate = 0;
1190	int pgscanned;
1191	int nr_pages = sc->nr_to_scan;
1192	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1193	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
1194	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
1195	struct page *page;
1196	struct pagevec pvec;
1197	int reclaim_mapped = 0;
1198
1199	if (unlikely(sc->may_swap)) {
1200		long mapped_ratio;
1201		long distress;
1202		long swap_tendency;
1203
1204		/*
1205		 * `distress' is a measure of how much trouble we're having
1206		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
1207		 */
1208		distress = 100 >> zone->prev_priority;
1209
1210		/*
1211		 * The point of this algorithm is to decide when to start
1212		 * reclaiming mapped memory instead of just pagecache.  Work out
1213		 * how much memory
1214		 * is mapped.
1215		 */
1216		mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1217
1218		/*
1219		 * Now decide how much we really want to unmap some pages.  The
1220		 * mapped ratio is downgraded - just because there's a lot of
1221		 * mapped memory doesn't necessarily mean that page reclaim
1222		 * isn't succeeding.
1223		 *
1224		 * The distress ratio is important - we don't want to start
1225		 * going oom.
1226		 *
1227		 * A 100% value of vm_swappiness overrides this algorithm
1228		 * altogether.
1229		 */
1230		swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1231
1232		/*
1233		 * Now use this metric to decide whether to start moving mapped
1234		 * memory onto the inactive list.
1235		 */
1236		if (swap_tendency >= 100)
1237			reclaim_mapped = 1;
1238	}
1239
1240	lru_add_drain();
1241	spin_lock_irq(&zone->lru_lock);
1242	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1243				    &l_hold, &pgscanned);
1244	zone->pages_scanned += pgscanned;
1245	zone->nr_active -= pgmoved;
1246	spin_unlock_irq(&zone->lru_lock);
1247
1248	while (!list_empty(&l_hold)) {
1249		cond_resched();
1250		page = lru_to_page(&l_hold);
1251		list_del(&page->lru);
1252		if (page_mapped(page)) {
1253			if (!reclaim_mapped ||
1254			    (total_swap_pages == 0 && PageAnon(page)) ||
1255			    page_referenced(page, 0)) {
1256				list_add(&page->lru, &l_active);
1257				continue;
1258			}
1259		}
1260		list_add(&page->lru, &l_inactive);
1261	}
1262
1263	pagevec_init(&pvec, 1);
1264	pgmoved = 0;
1265	spin_lock_irq(&zone->lru_lock);
1266	while (!list_empty(&l_inactive)) {
1267		page = lru_to_page(&l_inactive);
1268		prefetchw_prev_lru_page(page, &l_inactive, flags);
1269		if (TestSetPageLRU(page))
1270			BUG();
1271		if (!TestClearPageActive(page))
1272			BUG();
1273		list_move(&page->lru, &zone->inactive_list);
1274		pgmoved++;
1275		if (!pagevec_add(&pvec, page)) {
1276			zone->nr_inactive += pgmoved;
1277			spin_unlock_irq(&zone->lru_lock);
1278			pgdeactivate += pgmoved;
1279			pgmoved = 0;
1280			if (buffer_heads_over_limit)
1281				pagevec_strip(&pvec);
1282			__pagevec_release(&pvec);
1283			spin_lock_irq(&zone->lru_lock);
1284		}
1285	}
1286	zone->nr_inactive += pgmoved;
1287	pgdeactivate += pgmoved;
1288	if (buffer_heads_over_limit) {
1289		spin_unlock_irq(&zone->lru_lock);
1290		pagevec_strip(&pvec);
1291		spin_lock_irq(&zone->lru_lock);
1292	}
1293
1294	pgmoved = 0;
1295	while (!list_empty(&l_active)) {
1296		page = lru_to_page(&l_active);
1297		prefetchw_prev_lru_page(page, &l_active, flags);
1298		if (TestSetPageLRU(page))
1299			BUG();
1300		BUG_ON(!PageActive(page));
1301		list_move(&page->lru, &zone->active_list);
1302		pgmoved++;
1303		if (!pagevec_add(&pvec, page)) {
1304			zone->nr_active += pgmoved;
1305			pgmoved = 0;
1306			spin_unlock_irq(&zone->lru_lock);
1307			__pagevec_release(&pvec);
1308			spin_lock_irq(&zone->lru_lock);
1309		}
1310	}
1311	zone->nr_active += pgmoved;
1312	spin_unlock(&zone->lru_lock);
1313
1314	__mod_page_state_zone(zone, pgrefill, pgscanned);
1315	__mod_page_state(pgdeactivate, pgdeactivate);
1316	local_irq_enable();
1317
1318	pagevec_release(&pvec);
1319}
1320
1321/*
1322 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1323 */
1324static void
1325shrink_zone(struct zone *zone, struct scan_control *sc)
1326{
1327	unsigned long nr_active;
1328	unsigned long nr_inactive;
1329
1330	atomic_inc(&zone->reclaim_in_progress);
1331
1332	/*
1333	 * Add one to `nr_to_scan' just to make sure that the kernel will
1334	 * slowly sift through the active list.
1335	 */
1336	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1337	nr_active = zone->nr_scan_active;
1338	if (nr_active >= sc->swap_cluster_max)
1339		zone->nr_scan_active = 0;
1340	else
1341		nr_active = 0;
1342
1343	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1344	nr_inactive = zone->nr_scan_inactive;
1345	if (nr_inactive >= sc->swap_cluster_max)
1346		zone->nr_scan_inactive = 0;
1347	else
1348		nr_inactive = 0;
1349
1350	while (nr_active || nr_inactive) {
1351		if (nr_active) {
1352			sc->nr_to_scan = min(nr_active,
1353					(unsigned long)sc->swap_cluster_max);
1354			nr_active -= sc->nr_to_scan;
1355			refill_inactive_zone(zone, sc);
1356		}
1357
1358		if (nr_inactive) {
1359			sc->nr_to_scan = min(nr_inactive,
1360					(unsigned long)sc->swap_cluster_max);
1361			nr_inactive -= sc->nr_to_scan;
1362			shrink_cache(zone, sc);
1363		}
1364	}
1365
1366	throttle_vm_writeout();
1367
1368	atomic_dec(&zone->reclaim_in_progress);
1369}
1370
1371/*
1372 * This is the direct reclaim path, for page-allocating processes.  We only
1373 * try to reclaim pages from zones which will satisfy the caller's allocation
1374 * request.
1375 *
1376 * We reclaim from a zone even if that zone is over pages_high.  Because:
1377 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1378 *    allocation or
1379 * b) The zones may be over pages_high but they must go *over* pages_high to
1380 *    satisfy the `incremental min' zone defense algorithm.
1381 *
1382 * Returns the number of reclaimed pages.
1383 *
1384 * If a zone is deemed to be full of pinned pages then just give it a light
1385 * scan then give up on it.
1386 */
1387static void
1388shrink_caches(struct zone **zones, struct scan_control *sc)
1389{
1390	int i;
1391
1392	for (i = 0; zones[i] != NULL; i++) {
1393		struct zone *zone = zones[i];
1394
1395		if (!populated_zone(zone))
1396			continue;
1397
1398		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1399			continue;
1400
1401		zone->temp_priority = sc->priority;
1402		if (zone->prev_priority > sc->priority)
1403			zone->prev_priority = sc->priority;
1404
1405		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1406			continue;	/* Let kswapd poll it */
1407
1408		shrink_zone(zone, sc);
1409	}
1410}
1411
1412/*
1413 * This is the main entry point to direct page reclaim.
1414 *
1415 * If a full scan of the inactive list fails to free enough memory then we
1416 * are "out of memory" and something needs to be killed.
1417 *
1418 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1419 * high - the zone may be full of dirty or under-writeback pages, which this
1420 * caller can't do much about.  We kick pdflush and take explicit naps in the
1421 * hope that some of these pages can be written.  But if the allocating task
1422 * holds filesystem locks which prevent writeout this might not work, and the
1423 * allocation attempt will fail.
1424 */
1425int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1426{
1427	int priority;
1428	int ret = 0;
1429	int total_scanned = 0, total_reclaimed = 0;
1430	struct reclaim_state *reclaim_state = current->reclaim_state;
1431	struct scan_control sc;
1432	unsigned long lru_pages = 0;
1433	int i;
1434
1435	sc.gfp_mask = gfp_mask;
1436	sc.may_writepage = !laptop_mode;
1437	sc.may_swap = 1;
1438
1439	inc_page_state(allocstall);
1440
1441	for (i = 0; zones[i] != NULL; i++) {
1442		struct zone *zone = zones[i];
1443
1444		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1445			continue;
1446
1447		zone->temp_priority = DEF_PRIORITY;
1448		lru_pages += zone->nr_active + zone->nr_inactive;
1449	}
1450
1451	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1452		sc.nr_mapped = read_page_state(nr_mapped);
1453		sc.nr_scanned = 0;
1454		sc.nr_reclaimed = 0;
1455		sc.priority = priority;
1456		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1457		if (!priority)
1458			disable_swap_token();
1459		shrink_caches(zones, &sc);
1460		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1461		if (reclaim_state) {
1462			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1463			reclaim_state->reclaimed_slab = 0;
1464		}
1465		total_scanned += sc.nr_scanned;
1466		total_reclaimed += sc.nr_reclaimed;
1467		if (total_reclaimed >= sc.swap_cluster_max) {
1468			ret = 1;
1469			goto out;
1470		}
1471
1472		/*
1473		 * Try to write back as many pages as we just scanned.  This
1474		 * tends to cause slow streaming writers to write data to the
1475		 * disk smoothly, at the dirtying rate, which is nice.   But
1476		 * that's undesirable in laptop mode, where we *want* lumpy
1477		 * writeout.  So in laptop mode, write out the whole world.
1478		 */
1479		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1480			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1481			sc.may_writepage = 1;
1482		}
1483
1484		/* Take a nap, wait for some writeback to complete */
1485		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1486			blk_congestion_wait(WRITE, HZ/10);
1487	}
1488out:
1489	for (i = 0; zones[i] != 0; i++) {
1490		struct zone *zone = zones[i];
1491
1492		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1493			continue;
1494
1495		zone->prev_priority = zone->temp_priority;
1496	}
1497	return ret;
1498}
1499
1500/*
1501 * For kswapd, balance_pgdat() will work across all this node's zones until
1502 * they are all at pages_high.
1503 *
1504 * If `nr_pages' is non-zero then it is the number of pages which are to be
1505 * reclaimed, regardless of the zone occupancies.  This is a software suspend
1506 * special.
1507 *
1508 * Returns the number of pages which were actually freed.
1509 *
1510 * There is special handling here for zones which are full of pinned pages.
1511 * This can happen if the pages are all mlocked, or if they are all used by
1512 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1513 * What we do is to detect the case where all pages in the zone have been
1514 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1515 * dead and from now on, only perform a short scan.  Basically we're polling
1516 * the zone for when the problem goes away.
1517 *
1518 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1519 * zones which have free_pages > pages_high, but once a zone is found to have
1520 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1521 * of the number of free pages in the lower zones.  This interoperates with
1522 * the page allocator fallback scheme to ensure that aging of pages is balanced
1523 * across the zones.
1524 */
1525static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1526{
1527	int to_free = nr_pages;
1528	int all_zones_ok;
1529	int priority;
1530	int i;
1531	int total_scanned, total_reclaimed;
1532	struct reclaim_state *reclaim_state = current->reclaim_state;
1533	struct scan_control sc;
1534
1535loop_again:
1536	total_scanned = 0;
1537	total_reclaimed = 0;
1538	sc.gfp_mask = GFP_KERNEL;
1539	sc.may_writepage = !laptop_mode;
1540	sc.may_swap = 1;
1541	sc.nr_mapped = read_page_state(nr_mapped);
1542
1543	inc_page_state(pageoutrun);
1544
1545	for (i = 0; i < pgdat->nr_zones; i++) {
1546		struct zone *zone = pgdat->node_zones + i;
1547
1548		zone->temp_priority = DEF_PRIORITY;
1549	}
1550
1551	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1552		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1553		unsigned long lru_pages = 0;
1554
1555		/* The swap token gets in the way of swapout... */
1556		if (!priority)
1557			disable_swap_token();
1558
1559		all_zones_ok = 1;
1560
1561		if (nr_pages == 0) {
1562			/*
1563			 * Scan in the highmem->dma direction for the highest
1564			 * zone which needs scanning
1565			 */
1566			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1567				struct zone *zone = pgdat->node_zones + i;
1568
1569				if (!populated_zone(zone))
1570					continue;
1571
1572				if (zone->all_unreclaimable &&
1573						priority != DEF_PRIORITY)
1574					continue;
1575
1576				if (!zone_watermark_ok(zone, order,
1577						zone->pages_high, 0, 0)) {
1578					end_zone = i;
1579					goto scan;
1580				}
1581			}
1582			goto out;
1583		} else {
1584			end_zone = pgdat->nr_zones - 1;
1585		}
1586scan:
1587		for (i = 0; i <= end_zone; i++) {
1588			struct zone *zone = pgdat->node_zones + i;
1589
1590			lru_pages += zone->nr_active + zone->nr_inactive;
1591		}
1592
1593		/*
1594		 * Now scan the zone in the dma->highmem direction, stopping
1595		 * at the last zone which needs scanning.
1596		 *
1597		 * We do this because the page allocator works in the opposite
1598		 * direction.  This prevents the page allocator from allocating
1599		 * pages behind kswapd's direction of progress, which would
1600		 * cause too much scanning of the lower zones.
1601		 */
1602		for (i = 0; i <= end_zone; i++) {
1603			struct zone *zone = pgdat->node_zones + i;
1604			int nr_slab;
1605
1606			if (!populated_zone(zone))
1607				continue;
1608
1609			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1610				continue;
1611
1612			if (nr_pages == 0) {	/* Not software suspend */
1613				if (!zone_watermark_ok(zone, order,
1614						zone->pages_high, end_zone, 0))
1615					all_zones_ok = 0;
1616			}
1617			zone->temp_priority = priority;
1618			if (zone->prev_priority > priority)
1619				zone->prev_priority = priority;
1620			sc.nr_scanned = 0;
1621			sc.nr_reclaimed = 0;
1622			sc.priority = priority;
1623			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1624			shrink_zone(zone, &sc);
1625			reclaim_state->reclaimed_slab = 0;
1626			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1627						lru_pages);
1628			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1629			total_reclaimed += sc.nr_reclaimed;
1630			total_scanned += sc.nr_scanned;
1631			if (zone->all_unreclaimable)
1632				continue;
1633			if (nr_slab == 0 && zone->pages_scanned >=
1634				    (zone->nr_active + zone->nr_inactive) * 4)
1635				zone->all_unreclaimable = 1;
1636			/*
1637			 * If we've done a decent amount of scanning and
1638			 * the reclaim ratio is low, start doing writepage
1639			 * even in laptop mode
1640			 */
1641			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1642			    total_scanned > total_reclaimed+total_reclaimed/2)
1643				sc.may_writepage = 1;
1644		}
1645		if (nr_pages && to_free > total_reclaimed)
1646			continue;	/* swsusp: need to do more work */
1647		if (all_zones_ok)
1648			break;		/* kswapd: all done */
1649		/*
1650		 * OK, kswapd is getting into trouble.  Take a nap, then take
1651		 * another pass across the zones.
1652		 */
1653		if (total_scanned && priority < DEF_PRIORITY - 2)
1654			blk_congestion_wait(WRITE, HZ/10);
1655
1656		/*
1657		 * We do this so kswapd doesn't build up large priorities for
1658		 * example when it is freeing in parallel with allocators. It
1659		 * matches the direct reclaim path behaviour in terms of impact
1660		 * on zone->*_priority.
1661		 */
1662		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1663			break;
1664	}
1665out:
1666	for (i = 0; i < pgdat->nr_zones; i++) {
1667		struct zone *zone = pgdat->node_zones + i;
1668
1669		zone->prev_priority = zone->temp_priority;
1670	}
1671	if (!all_zones_ok) {
1672		cond_resched();
1673		goto loop_again;
1674	}
1675
1676	return total_reclaimed;
1677}
1678
1679/*
1680 * The background pageout daemon, started as a kernel thread
1681 * from the init process.
1682 *
1683 * This basically trickles out pages so that we have _some_
1684 * free memory available even if there is no other activity
1685 * that frees anything up. This is needed for things like routing
1686 * etc, where we otherwise might have all activity going on in
1687 * asynchronous contexts that cannot page things out.
1688 *
1689 * If there are applications that are active memory-allocators
1690 * (most normal use), this basically shouldn't matter.
1691 */
1692static int kswapd(void *p)
1693{
1694	unsigned long order;
1695	pg_data_t *pgdat = (pg_data_t*)p;
1696	struct task_struct *tsk = current;
1697	DEFINE_WAIT(wait);
1698	struct reclaim_state reclaim_state = {
1699		.reclaimed_slab = 0,
1700	};
1701	cpumask_t cpumask;
1702
1703	daemonize("kswapd%d", pgdat->node_id);
1704	cpumask = node_to_cpumask(pgdat->node_id);
1705	if (!cpus_empty(cpumask))
1706		set_cpus_allowed(tsk, cpumask);
1707	current->reclaim_state = &reclaim_state;
1708
1709	/*
1710	 * Tell the memory management that we're a "memory allocator",
1711	 * and that if we need more memory we should get access to it
1712	 * regardless (see "__alloc_pages()"). "kswapd" should
1713	 * never get caught in the normal page freeing logic.
1714	 *
1715	 * (Kswapd normally doesn't need memory anyway, but sometimes
1716	 * you need a small amount of memory in order to be able to
1717	 * page out something else, and this flag essentially protects
1718	 * us from recursively trying to free more memory as we're
1719	 * trying to free the first piece of memory in the first place).
1720	 */
1721	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1722
1723	order = 0;
1724	for ( ; ; ) {
1725		unsigned long new_order;
1726
1727		try_to_freeze();
1728
1729		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1730		new_order = pgdat->kswapd_max_order;
1731		pgdat->kswapd_max_order = 0;
1732		if (order < new_order) {
1733			/*
1734			 * Don't sleep if someone wants a larger 'order'
1735			 * allocation
1736			 */
1737			order = new_order;
1738		} else {
1739			schedule();
1740			order = pgdat->kswapd_max_order;
1741		}
1742		finish_wait(&pgdat->kswapd_wait, &wait);
1743
1744		balance_pgdat(pgdat, 0, order);
1745	}
1746	return 0;
1747}
1748
1749/*
1750 * A zone is low on free memory, so wake its kswapd task to service it.
1751 */
1752void wakeup_kswapd(struct zone *zone, int order)
1753{
1754	pg_data_t *pgdat;
1755
1756	if (!populated_zone(zone))
1757		return;
1758
1759	pgdat = zone->zone_pgdat;
1760	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1761		return;
1762	if (pgdat->kswapd_max_order < order)
1763		pgdat->kswapd_max_order = order;
1764	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1765		return;
1766	if (!waitqueue_active(&pgdat->kswapd_wait))
1767		return;
1768	wake_up_interruptible(&pgdat->kswapd_wait);
1769}
1770
1771#ifdef CONFIG_PM
1772/*
1773 * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1774 * pages.
1775 */
1776int shrink_all_memory(int nr_pages)
1777{
1778	pg_data_t *pgdat;
1779	int nr_to_free = nr_pages;
1780	int ret = 0;
1781	struct reclaim_state reclaim_state = {
1782		.reclaimed_slab = 0,
1783	};
1784
1785	current->reclaim_state = &reclaim_state;
1786	for_each_pgdat(pgdat) {
1787		int freed;
1788		freed = balance_pgdat(pgdat, nr_to_free, 0);
1789		ret += freed;
1790		nr_to_free -= freed;
1791		if (nr_to_free <= 0)
1792			break;
1793	}
1794	current->reclaim_state = NULL;
1795	return ret;
1796}
1797#endif
1798
1799#ifdef CONFIG_HOTPLUG_CPU
1800/* It's optimal to keep kswapds on the same CPUs as their memory, but
1801   not required for correctness.  So if the last cpu in a node goes
1802   away, we get changed to run anywhere: as the first one comes back,
1803   restore their cpu bindings. */
1804static int __devinit cpu_callback(struct notifier_block *nfb,
1805				  unsigned long action,
1806				  void *hcpu)
1807{
1808	pg_data_t *pgdat;
1809	cpumask_t mask;
1810
1811	if (action == CPU_ONLINE) {
1812		for_each_pgdat(pgdat) {
1813			mask = node_to_cpumask(pgdat->node_id);
1814			if (any_online_cpu(mask) != NR_CPUS)
1815				/* One of our CPUs online: restore mask */
1816				set_cpus_allowed(pgdat->kswapd, mask);
1817		}
1818	}
1819	return NOTIFY_OK;
1820}
1821#endif /* CONFIG_HOTPLUG_CPU */
1822
1823static int __init kswapd_init(void)
1824{
1825	pg_data_t *pgdat;
1826	swap_setup();
1827	for_each_pgdat(pgdat)
1828		pgdat->kswapd
1829		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1830	total_memory = nr_free_pagecache_pages();
1831	hotcpu_notifier(cpu_callback, 0);
1832	return 0;
1833}
1834
1835module_init(kswapd_init)
1836
1837#ifdef CONFIG_NUMA
1838/*
1839 * Zone reclaim mode
1840 *
1841 * If non-zero call zone_reclaim when the number of free pages falls below
1842 * the watermarks.
1843 *
1844 * In the future we may add flags to the mode. However, the page allocator
1845 * should only have to check that zone_reclaim_mode != 0 before calling
1846 * zone_reclaim().
1847 */
1848int zone_reclaim_mode __read_mostly;
1849
1850#define RECLAIM_OFF 0
1851#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1852#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1853#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1854#define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1855
1856/*
1857 * Mininum time between zone reclaim scans
1858 */
1859int zone_reclaim_interval __read_mostly = 30*HZ;
1860
1861/*
1862 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1863 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1864 * a zone.
1865 */
1866#define ZONE_RECLAIM_PRIORITY 4
1867
1868/*
1869 * Try to free up some pages from this zone through reclaim.
1870 */
1871int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1872{
1873	int nr_pages;
1874	struct task_struct *p = current;
1875	struct reclaim_state reclaim_state;
1876	struct scan_control sc;
1877	cpumask_t mask;
1878	int node_id;
1879
1880	if (time_before(jiffies,
1881		zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1882			return 0;
1883
1884	if (!(gfp_mask & __GFP_WAIT) ||
1885		zone->all_unreclaimable ||
1886		atomic_read(&zone->reclaim_in_progress) > 0)
1887			return 0;
1888
1889	node_id = zone->zone_pgdat->node_id;
1890	mask = node_to_cpumask(node_id);
1891	if (!cpus_empty(mask) && node_id != numa_node_id())
1892		return 0;
1893
1894	sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
1895	sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
1896	sc.nr_scanned = 0;
1897	sc.nr_reclaimed = 0;
1898	sc.priority = ZONE_RECLAIM_PRIORITY + 1;
1899	sc.nr_mapped = read_page_state(nr_mapped);
1900	sc.gfp_mask = gfp_mask;
1901
1902	disable_swap_token();
1903
1904	nr_pages = 1 << order;
1905	if (nr_pages > SWAP_CLUSTER_MAX)
1906		sc.swap_cluster_max = nr_pages;
1907	else
1908		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1909
1910	cond_resched();
1911	p->flags |= PF_MEMALLOC;
1912	reclaim_state.reclaimed_slab = 0;
1913	p->reclaim_state = &reclaim_state;
1914
1915	/*
1916	 * Free memory by calling shrink zone with increasing priorities
1917	 * until we have enough memory freed.
1918	 */
1919	do {
1920		sc.priority--;
1921		shrink_zone(zone, &sc);
1922
1923	} while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
1924
1925	if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1926		/*
1927		 * shrink_slab does not currently allow us to determine
1928		 * how many pages were freed in the zone. So we just
1929		 * shake the slab and then go offnode for a single allocation.
1930		 *
1931		 * shrink_slab will free memory on all zones and may take
1932		 * a long time.
1933		 */
1934		shrink_slab(sc.nr_scanned, gfp_mask, order);
1935		sc.nr_reclaimed = 1;    /* Avoid getting the off node timeout */
1936	}
1937
1938	p->reclaim_state = NULL;
1939	current->flags &= ~PF_MEMALLOC;
1940
1941	if (sc.nr_reclaimed == 0)
1942		zone->last_unsuccessful_zone_reclaim = jiffies;
1943
1944	return sc.nr_reclaimed >= nr_pages;
1945}
1946#endif
1947
1948