vmscan.c revision 2e2e425989080cc534fc0fca154cae515f971cf5
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51struct scan_control {
52	/* Incremented by the number of inactive pages that were scanned */
53	unsigned long nr_scanned;
54
55	/* Number of pages freed so far during a call to shrink_zones() */
56	unsigned long nr_reclaimed;
57
58	/* This context's GFP mask */
59	gfp_t gfp_mask;
60
61	int may_writepage;
62
63	/* Can mapped pages be reclaimed? */
64	int may_unmap;
65
66	/* Can pages be swapped as part of reclaim? */
67	int may_swap;
68
69	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71	 * In this context, it doesn't matter that we scan the
72	 * whole list at once. */
73	int swap_cluster_max;
74
75	int swappiness;
76
77	int all_unreclaimable;
78
79	int order;
80
81	/* Which cgroup do we reclaim from */
82	struct mem_cgroup *mem_cgroup;
83
84	/*
85	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86	 * are scanned.
87	 */
88	nodemask_t	*nodemask;
89
90	/* Pluggable isolate pages callback */
91	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92			unsigned long *scanned, int order, int mode,
93			struct zone *z, struct mem_cgroup *mem_cont,
94			int active, int file);
95};
96
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field)			\
101	do {								\
102		if ((_page)->lru.prev != _base) {			\
103			struct page *prev;				\
104									\
105			prev = lru_to_page(&(_page->lru));		\
106			prefetch(&prev->_field);			\
107		}							\
108	} while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field)			\
115	do {								\
116		if ((_page)->lru.prev != _base) {			\
117			struct page *prev;				\
118									\
119			prev = lru_to_page(&(_page->lru));		\
120			prefetchw(&prev->_field);			\
121		}							\
122	} while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100.  Higher means more swappy.
129 */
130int vm_swappiness = 60;
131long vm_total_pages;	/* The total number of pages which the VM controls */
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138#else
139#define scanning_global_lru(sc)	(1)
140#endif
141
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143						  struct scan_control *sc)
144{
145	if (!scanning_global_lru(sc))
146		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148	return &zone->reclaim_stat;
149}
150
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152				   enum lru_list lru)
153{
154	if (!scanning_global_lru(sc))
155		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157	return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
161/*
162 * Add a shrinker callback to be called from the vm
163 */
164void register_shrinker(struct shrinker *shrinker)
165{
166	shrinker->nr = 0;
167	down_write(&shrinker_rwsem);
168	list_add_tail(&shrinker->list, &shrinker_list);
169	up_write(&shrinker_rwsem);
170}
171EXPORT_SYMBOL(register_shrinker);
172
173/*
174 * Remove one
175 */
176void unregister_shrinker(struct shrinker *shrinker)
177{
178	down_write(&shrinker_rwsem);
179	list_del(&shrinker->list);
180	up_write(&shrinker_rwsem);
181}
182EXPORT_SYMBOL(unregister_shrinker);
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object.  With this in mind we age equal
190 * percentages of the lru and ageable caches.  This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt.  It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205			unsigned long lru_pages)
206{
207	struct shrinker *shrinker;
208	unsigned long ret = 0;
209
210	if (scanned == 0)
211		scanned = SWAP_CLUSTER_MAX;
212
213	if (!down_read_trylock(&shrinker_rwsem))
214		return 1;	/* Assume we'll be able to shrink next time */
215
216	list_for_each_entry(shrinker, &shrinker_list, list) {
217		unsigned long long delta;
218		unsigned long total_scan;
219		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220
221		delta = (4 * scanned) / shrinker->seeks;
222		delta *= max_pass;
223		do_div(delta, lru_pages + 1);
224		shrinker->nr += delta;
225		if (shrinker->nr < 0) {
226			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227			       "delete nr=%ld\n",
228			       shrinker->shrink, shrinker->nr);
229			shrinker->nr = max_pass;
230		}
231
232		/*
233		 * Avoid risking looping forever due to too large nr value:
234		 * never try to free more than twice the estimate number of
235		 * freeable entries.
236		 */
237		if (shrinker->nr > max_pass * 2)
238			shrinker->nr = max_pass * 2;
239
240		total_scan = shrinker->nr;
241		shrinker->nr = 0;
242
243		while (total_scan >= SHRINK_BATCH) {
244			long this_scan = SHRINK_BATCH;
245			int shrink_ret;
246			int nr_before;
247
248			nr_before = (*shrinker->shrink)(0, gfp_mask);
249			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250			if (shrink_ret == -1)
251				break;
252			if (shrink_ret < nr_before)
253				ret += nr_before - shrink_ret;
254			count_vm_events(SLABS_SCANNED, this_scan);
255			total_scan -= this_scan;
256
257			cond_resched();
258		}
259
260		shrinker->nr += total_scan;
261	}
262	up_read(&shrinker_rwsem);
263	return ret;
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269	struct address_space *mapping;
270
271	/* Page is in somebody's page tables. */
272	if (page_mapped(page))
273		return 1;
274
275	/* Be more reluctant to reclaim swapcache than pagecache */
276	if (PageSwapCache(page))
277		return 1;
278
279	mapping = page_mapping(page);
280	if (!mapping)
281		return 0;
282
283	/* File is mmap'd by somebody? */
284	return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
289	return page_count(page) - !!page_has_private(page) == 2;
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
294	if (current->flags & PF_SWAPWRITE)
295		return 1;
296	if (!bdi_write_congested(bdi))
297		return 1;
298	if (bdi == current->backing_dev_info)
299		return 1;
300	return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out.  Probably
305 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up.  But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316				struct page *page, int error)
317{
318	lock_page(page);
319	if (page_mapping(page) == mapping)
320		mapping_set_error(mapping, error);
321	unlock_page(page);
322}
323
324/* Request for sync pageout. */
325enum pageout_io {
326	PAGEOUT_IO_ASYNC,
327	PAGEOUT_IO_SYNC,
328};
329
330/* possible outcome of pageout() */
331typedef enum {
332	/* failed to write page out, page is locked */
333	PAGE_KEEP,
334	/* move page to the active list, page is locked */
335	PAGE_ACTIVATE,
336	/* page has been sent to the disk successfully, page is unlocked */
337	PAGE_SUCCESS,
338	/* page is clean and locked */
339	PAGE_CLEAN,
340} pageout_t;
341
342/*
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
345 */
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347						enum pageout_io sync_writeback)
348{
349	/*
350	 * If the page is dirty, only perform writeback if that write
351	 * will be non-blocking.  To prevent this allocation from being
352	 * stalled by pagecache activity.  But note that there may be
353	 * stalls if we need to run get_block().  We could test
354	 * PagePrivate for that.
355	 *
356	 * If this process is currently in generic_file_write() against
357	 * this page's queue, we can perform writeback even if that
358	 * will block.
359	 *
360	 * If the page is swapcache, write it back even if that would
361	 * block, for some throttling. This happens by accident, because
362	 * swap_backing_dev_info is bust: it doesn't reflect the
363	 * congestion state of the swapdevs.  Easy to fix, if needed.
364	 * See swapfile.c:page_queue_congested().
365	 */
366	if (!is_page_cache_freeable(page))
367		return PAGE_KEEP;
368	if (!mapping) {
369		/*
370		 * Some data journaling orphaned pages can have
371		 * page->mapping == NULL while being dirty with clean buffers.
372		 */
373		if (page_has_private(page)) {
374			if (try_to_free_buffers(page)) {
375				ClearPageDirty(page);
376				printk("%s: orphaned page\n", __func__);
377				return PAGE_CLEAN;
378			}
379		}
380		return PAGE_KEEP;
381	}
382	if (mapping->a_ops->writepage == NULL)
383		return PAGE_ACTIVATE;
384	if (!may_write_to_queue(mapping->backing_dev_info))
385		return PAGE_KEEP;
386
387	if (clear_page_dirty_for_io(page)) {
388		int res;
389		struct writeback_control wbc = {
390			.sync_mode = WB_SYNC_NONE,
391			.nr_to_write = SWAP_CLUSTER_MAX,
392			.range_start = 0,
393			.range_end = LLONG_MAX,
394			.nonblocking = 1,
395			.for_reclaim = 1,
396		};
397
398		SetPageReclaim(page);
399		res = mapping->a_ops->writepage(page, &wbc);
400		if (res < 0)
401			handle_write_error(mapping, page, res);
402		if (res == AOP_WRITEPAGE_ACTIVATE) {
403			ClearPageReclaim(page);
404			return PAGE_ACTIVATE;
405		}
406
407		/*
408		 * Wait on writeback if requested to. This happens when
409		 * direct reclaiming a large contiguous area and the
410		 * first attempt to free a range of pages fails.
411		 */
412		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413			wait_on_page_writeback(page);
414
415		if (!PageWriteback(page)) {
416			/* synchronous write or broken a_ops? */
417			ClearPageReclaim(page);
418		}
419		inc_zone_page_state(page, NR_VMSCAN_WRITE);
420		return PAGE_SUCCESS;
421	}
422
423	return PAGE_CLEAN;
424}
425
426/*
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
429 */
430static int __remove_mapping(struct address_space *mapping, struct page *page)
431{
432	BUG_ON(!PageLocked(page));
433	BUG_ON(mapping != page_mapping(page));
434
435	spin_lock_irq(&mapping->tree_lock);
436	/*
437	 * The non racy check for a busy page.
438	 *
439	 * Must be careful with the order of the tests. When someone has
440	 * a ref to the page, it may be possible that they dirty it then
441	 * drop the reference. So if PageDirty is tested before page_count
442	 * here, then the following race may occur:
443	 *
444	 * get_user_pages(&page);
445	 * [user mapping goes away]
446	 * write_to(page);
447	 *				!PageDirty(page)    [good]
448	 * SetPageDirty(page);
449	 * put_page(page);
450	 *				!page_count(page)   [good, discard it]
451	 *
452	 * [oops, our write_to data is lost]
453	 *
454	 * Reversing the order of the tests ensures such a situation cannot
455	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456	 * load is not satisfied before that of page->_count.
457	 *
458	 * Note that if SetPageDirty is always performed via set_page_dirty,
459	 * and thus under tree_lock, then this ordering is not required.
460	 */
461	if (!page_freeze_refs(page, 2))
462		goto cannot_free;
463	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464	if (unlikely(PageDirty(page))) {
465		page_unfreeze_refs(page, 2);
466		goto cannot_free;
467	}
468
469	if (PageSwapCache(page)) {
470		swp_entry_t swap = { .val = page_private(page) };
471		__delete_from_swap_cache(page);
472		spin_unlock_irq(&mapping->tree_lock);
473		swap_free(swap);
474	} else {
475		__remove_from_page_cache(page);
476		spin_unlock_irq(&mapping->tree_lock);
477	}
478
479	return 1;
480
481cannot_free:
482	spin_unlock_irq(&mapping->tree_lock);
483	return 0;
484}
485
486/*
487 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
488 * someone else has a ref on the page, abort and return 0.  If it was
489 * successfully detached, return 1.  Assumes the caller has a single ref on
490 * this page.
491 */
492int remove_mapping(struct address_space *mapping, struct page *page)
493{
494	if (__remove_mapping(mapping, page)) {
495		/*
496		 * Unfreezing the refcount with 1 rather than 2 effectively
497		 * drops the pagecache ref for us without requiring another
498		 * atomic operation.
499		 */
500		page_unfreeze_refs(page, 1);
501		return 1;
502	}
503	return 0;
504}
505
506/**
507 * putback_lru_page - put previously isolated page onto appropriate LRU list
508 * @page: page to be put back to appropriate lru list
509 *
510 * Add previously isolated @page to appropriate LRU list.
511 * Page may still be unevictable for other reasons.
512 *
513 * lru_lock must not be held, interrupts must be enabled.
514 */
515#ifdef CONFIG_UNEVICTABLE_LRU
516void putback_lru_page(struct page *page)
517{
518	int lru;
519	int active = !!TestClearPageActive(page);
520	int was_unevictable = PageUnevictable(page);
521
522	VM_BUG_ON(PageLRU(page));
523
524redo:
525	ClearPageUnevictable(page);
526
527	if (page_evictable(page, NULL)) {
528		/*
529		 * For evictable pages, we can use the cache.
530		 * In event of a race, worst case is we end up with an
531		 * unevictable page on [in]active list.
532		 * We know how to handle that.
533		 */
534		lru = active + page_is_file_cache(page);
535		lru_cache_add_lru(page, lru);
536	} else {
537		/*
538		 * Put unevictable pages directly on zone's unevictable
539		 * list.
540		 */
541		lru = LRU_UNEVICTABLE;
542		add_page_to_unevictable_list(page);
543	}
544
545	/*
546	 * page's status can change while we move it among lru. If an evictable
547	 * page is on unevictable list, it never be freed. To avoid that,
548	 * check after we added it to the list, again.
549	 */
550	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551		if (!isolate_lru_page(page)) {
552			put_page(page);
553			goto redo;
554		}
555		/* This means someone else dropped this page from LRU
556		 * So, it will be freed or putback to LRU again. There is
557		 * nothing to do here.
558		 */
559	}
560
561	if (was_unevictable && lru != LRU_UNEVICTABLE)
562		count_vm_event(UNEVICTABLE_PGRESCUED);
563	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564		count_vm_event(UNEVICTABLE_PGCULLED);
565
566	put_page(page);		/* drop ref from isolate */
567}
568
569#else /* CONFIG_UNEVICTABLE_LRU */
570
571void putback_lru_page(struct page *page)
572{
573	int lru;
574	VM_BUG_ON(PageLRU(page));
575
576	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
577	lru_cache_add_lru(page, lru);
578	put_page(page);
579}
580#endif /* CONFIG_UNEVICTABLE_LRU */
581
582
583/*
584 * shrink_page_list() returns the number of reclaimed pages
585 */
586static unsigned long shrink_page_list(struct list_head *page_list,
587					struct scan_control *sc,
588					enum pageout_io sync_writeback)
589{
590	LIST_HEAD(ret_pages);
591	struct pagevec freed_pvec;
592	int pgactivate = 0;
593	unsigned long nr_reclaimed = 0;
594
595	cond_resched();
596
597	pagevec_init(&freed_pvec, 1);
598	while (!list_empty(page_list)) {
599		struct address_space *mapping;
600		struct page *page;
601		int may_enter_fs;
602		int referenced;
603
604		cond_resched();
605
606		page = lru_to_page(page_list);
607		list_del(&page->lru);
608
609		if (!trylock_page(page))
610			goto keep;
611
612		VM_BUG_ON(PageActive(page));
613
614		sc->nr_scanned++;
615
616		if (unlikely(!page_evictable(page, NULL)))
617			goto cull_mlocked;
618
619		if (!sc->may_unmap && page_mapped(page))
620			goto keep_locked;
621
622		/* Double the slab pressure for mapped and swapcache pages */
623		if (page_mapped(page) || PageSwapCache(page))
624			sc->nr_scanned++;
625
626		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
627			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
628
629		if (PageWriteback(page)) {
630			/*
631			 * Synchronous reclaim is performed in two passes,
632			 * first an asynchronous pass over the list to
633			 * start parallel writeback, and a second synchronous
634			 * pass to wait for the IO to complete.  Wait here
635			 * for any page for which writeback has already
636			 * started.
637			 */
638			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
639				wait_on_page_writeback(page);
640			else
641				goto keep_locked;
642		}
643
644		referenced = page_referenced(page, 1, sc->mem_cgroup);
645		/* In active use or really unfreeable?  Activate it. */
646		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
647					referenced && page_mapping_inuse(page))
648			goto activate_locked;
649
650		/*
651		 * Anonymous process memory has backing store?
652		 * Try to allocate it some swap space here.
653		 */
654		if (PageAnon(page) && !PageSwapCache(page)) {
655			if (!(sc->gfp_mask & __GFP_IO))
656				goto keep_locked;
657			if (!add_to_swap(page))
658				goto activate_locked;
659			may_enter_fs = 1;
660		}
661
662		mapping = page_mapping(page);
663
664		/*
665		 * The page is mapped into the page tables of one or more
666		 * processes. Try to unmap it here.
667		 */
668		if (page_mapped(page) && mapping) {
669			switch (try_to_unmap(page, 0)) {
670			case SWAP_FAIL:
671				goto activate_locked;
672			case SWAP_AGAIN:
673				goto keep_locked;
674			case SWAP_MLOCK:
675				goto cull_mlocked;
676			case SWAP_SUCCESS:
677				; /* try to free the page below */
678			}
679		}
680
681		if (PageDirty(page)) {
682			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
683				goto keep_locked;
684			if (!may_enter_fs)
685				goto keep_locked;
686			if (!sc->may_writepage)
687				goto keep_locked;
688
689			/* Page is dirty, try to write it out here */
690			switch (pageout(page, mapping, sync_writeback)) {
691			case PAGE_KEEP:
692				goto keep_locked;
693			case PAGE_ACTIVATE:
694				goto activate_locked;
695			case PAGE_SUCCESS:
696				if (PageWriteback(page) || PageDirty(page))
697					goto keep;
698				/*
699				 * A synchronous write - probably a ramdisk.  Go
700				 * ahead and try to reclaim the page.
701				 */
702				if (!trylock_page(page))
703					goto keep;
704				if (PageDirty(page) || PageWriteback(page))
705					goto keep_locked;
706				mapping = page_mapping(page);
707			case PAGE_CLEAN:
708				; /* try to free the page below */
709			}
710		}
711
712		/*
713		 * If the page has buffers, try to free the buffer mappings
714		 * associated with this page. If we succeed we try to free
715		 * the page as well.
716		 *
717		 * We do this even if the page is PageDirty().
718		 * try_to_release_page() does not perform I/O, but it is
719		 * possible for a page to have PageDirty set, but it is actually
720		 * clean (all its buffers are clean).  This happens if the
721		 * buffers were written out directly, with submit_bh(). ext3
722		 * will do this, as well as the blockdev mapping.
723		 * try_to_release_page() will discover that cleanness and will
724		 * drop the buffers and mark the page clean - it can be freed.
725		 *
726		 * Rarely, pages can have buffers and no ->mapping.  These are
727		 * the pages which were not successfully invalidated in
728		 * truncate_complete_page().  We try to drop those buffers here
729		 * and if that worked, and the page is no longer mapped into
730		 * process address space (page_count == 1) it can be freed.
731		 * Otherwise, leave the page on the LRU so it is swappable.
732		 */
733		if (page_has_private(page)) {
734			if (!try_to_release_page(page, sc->gfp_mask))
735				goto activate_locked;
736			if (!mapping && page_count(page) == 1) {
737				unlock_page(page);
738				if (put_page_testzero(page))
739					goto free_it;
740				else {
741					/*
742					 * rare race with speculative reference.
743					 * the speculative reference will free
744					 * this page shortly, so we may
745					 * increment nr_reclaimed here (and
746					 * leave it off the LRU).
747					 */
748					nr_reclaimed++;
749					continue;
750				}
751			}
752		}
753
754		if (!mapping || !__remove_mapping(mapping, page))
755			goto keep_locked;
756
757		/*
758		 * At this point, we have no other references and there is
759		 * no way to pick any more up (removed from LRU, removed
760		 * from pagecache). Can use non-atomic bitops now (and
761		 * we obviously don't have to worry about waking up a process
762		 * waiting on the page lock, because there are no references.
763		 */
764		__clear_page_locked(page);
765free_it:
766		nr_reclaimed++;
767		if (!pagevec_add(&freed_pvec, page)) {
768			__pagevec_free(&freed_pvec);
769			pagevec_reinit(&freed_pvec);
770		}
771		continue;
772
773cull_mlocked:
774		if (PageSwapCache(page))
775			try_to_free_swap(page);
776		unlock_page(page);
777		putback_lru_page(page);
778		continue;
779
780activate_locked:
781		/* Not a candidate for swapping, so reclaim swap space. */
782		if (PageSwapCache(page) && vm_swap_full())
783			try_to_free_swap(page);
784		VM_BUG_ON(PageActive(page));
785		SetPageActive(page);
786		pgactivate++;
787keep_locked:
788		unlock_page(page);
789keep:
790		list_add(&page->lru, &ret_pages);
791		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
792	}
793	list_splice(&ret_pages, page_list);
794	if (pagevec_count(&freed_pvec))
795		__pagevec_free(&freed_pvec);
796	count_vm_events(PGACTIVATE, pgactivate);
797	return nr_reclaimed;
798}
799
800/* LRU Isolation modes. */
801#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
802#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
803#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
804
805/*
806 * Attempt to remove the specified page from its LRU.  Only take this page
807 * if it is of the appropriate PageActive status.  Pages which are being
808 * freed elsewhere are also ignored.
809 *
810 * page:	page to consider
811 * mode:	one of the LRU isolation modes defined above
812 *
813 * returns 0 on success, -ve errno on failure.
814 */
815int __isolate_lru_page(struct page *page, int mode, int file)
816{
817	int ret = -EINVAL;
818
819	/* Only take pages on the LRU. */
820	if (!PageLRU(page))
821		return ret;
822
823	/*
824	 * When checking the active state, we need to be sure we are
825	 * dealing with comparible boolean values.  Take the logical not
826	 * of each.
827	 */
828	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
829		return ret;
830
831	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
832		return ret;
833
834	/*
835	 * When this function is being called for lumpy reclaim, we
836	 * initially look into all LRU pages, active, inactive and
837	 * unevictable; only give shrink_page_list evictable pages.
838	 */
839	if (PageUnevictable(page))
840		return ret;
841
842	ret = -EBUSY;
843
844	if (likely(get_page_unless_zero(page))) {
845		/*
846		 * Be careful not to clear PageLRU until after we're
847		 * sure the page is not being freed elsewhere -- the
848		 * page release code relies on it.
849		 */
850		ClearPageLRU(page);
851		ret = 0;
852		mem_cgroup_del_lru(page);
853	}
854
855	return ret;
856}
857
858/*
859 * zone->lru_lock is heavily contended.  Some of the functions that
860 * shrink the lists perform better by taking out a batch of pages
861 * and working on them outside the LRU lock.
862 *
863 * For pagecache intensive workloads, this function is the hottest
864 * spot in the kernel (apart from copy_*_user functions).
865 *
866 * Appropriate locks must be held before calling this function.
867 *
868 * @nr_to_scan:	The number of pages to look through on the list.
869 * @src:	The LRU list to pull pages off.
870 * @dst:	The temp list to put pages on to.
871 * @scanned:	The number of pages that were scanned.
872 * @order:	The caller's attempted allocation order
873 * @mode:	One of the LRU isolation modes
874 * @file:	True [1] if isolating file [!anon] pages
875 *
876 * returns how many pages were moved onto *@dst.
877 */
878static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
879		struct list_head *src, struct list_head *dst,
880		unsigned long *scanned, int order, int mode, int file)
881{
882	unsigned long nr_taken = 0;
883	unsigned long scan;
884
885	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
886		struct page *page;
887		unsigned long pfn;
888		unsigned long end_pfn;
889		unsigned long page_pfn;
890		int zone_id;
891
892		page = lru_to_page(src);
893		prefetchw_prev_lru_page(page, src, flags);
894
895		VM_BUG_ON(!PageLRU(page));
896
897		switch (__isolate_lru_page(page, mode, file)) {
898		case 0:
899			list_move(&page->lru, dst);
900			nr_taken++;
901			break;
902
903		case -EBUSY:
904			/* else it is being freed elsewhere */
905			list_move(&page->lru, src);
906			continue;
907
908		default:
909			BUG();
910		}
911
912		if (!order)
913			continue;
914
915		/*
916		 * Attempt to take all pages in the order aligned region
917		 * surrounding the tag page.  Only take those pages of
918		 * the same active state as that tag page.  We may safely
919		 * round the target page pfn down to the requested order
920		 * as the mem_map is guarenteed valid out to MAX_ORDER,
921		 * where that page is in a different zone we will detect
922		 * it from its zone id and abort this block scan.
923		 */
924		zone_id = page_zone_id(page);
925		page_pfn = page_to_pfn(page);
926		pfn = page_pfn & ~((1 << order) - 1);
927		end_pfn = pfn + (1 << order);
928		for (; pfn < end_pfn; pfn++) {
929			struct page *cursor_page;
930
931			/* The target page is in the block, ignore it. */
932			if (unlikely(pfn == page_pfn))
933				continue;
934
935			/* Avoid holes within the zone. */
936			if (unlikely(!pfn_valid_within(pfn)))
937				break;
938
939			cursor_page = pfn_to_page(pfn);
940
941			/* Check that we have not crossed a zone boundary. */
942			if (unlikely(page_zone_id(cursor_page) != zone_id))
943				continue;
944			switch (__isolate_lru_page(cursor_page, mode, file)) {
945			case 0:
946				list_move(&cursor_page->lru, dst);
947				nr_taken++;
948				scan++;
949				break;
950
951			case -EBUSY:
952				/* else it is being freed elsewhere */
953				list_move(&cursor_page->lru, src);
954			default:
955				break;	/* ! on LRU or wrong list */
956			}
957		}
958	}
959
960	*scanned = scan;
961	return nr_taken;
962}
963
964static unsigned long isolate_pages_global(unsigned long nr,
965					struct list_head *dst,
966					unsigned long *scanned, int order,
967					int mode, struct zone *z,
968					struct mem_cgroup *mem_cont,
969					int active, int file)
970{
971	int lru = LRU_BASE;
972	if (active)
973		lru += LRU_ACTIVE;
974	if (file)
975		lru += LRU_FILE;
976	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
977								mode, !!file);
978}
979
980/*
981 * clear_active_flags() is a helper for shrink_active_list(), clearing
982 * any active bits from the pages in the list.
983 */
984static unsigned long clear_active_flags(struct list_head *page_list,
985					unsigned int *count)
986{
987	int nr_active = 0;
988	int lru;
989	struct page *page;
990
991	list_for_each_entry(page, page_list, lru) {
992		lru = page_is_file_cache(page);
993		if (PageActive(page)) {
994			lru += LRU_ACTIVE;
995			ClearPageActive(page);
996			nr_active++;
997		}
998		count[lru]++;
999	}
1000
1001	return nr_active;
1002}
1003
1004/**
1005 * isolate_lru_page - tries to isolate a page from its LRU list
1006 * @page: page to isolate from its LRU list
1007 *
1008 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1009 * vmstat statistic corresponding to whatever LRU list the page was on.
1010 *
1011 * Returns 0 if the page was removed from an LRU list.
1012 * Returns -EBUSY if the page was not on an LRU list.
1013 *
1014 * The returned page will have PageLRU() cleared.  If it was found on
1015 * the active list, it will have PageActive set.  If it was found on
1016 * the unevictable list, it will have the PageUnevictable bit set. That flag
1017 * may need to be cleared by the caller before letting the page go.
1018 *
1019 * The vmstat statistic corresponding to the list on which the page was
1020 * found will be decremented.
1021 *
1022 * Restrictions:
1023 * (1) Must be called with an elevated refcount on the page. This is a
1024 *     fundamentnal difference from isolate_lru_pages (which is called
1025 *     without a stable reference).
1026 * (2) the lru_lock must not be held.
1027 * (3) interrupts must be enabled.
1028 */
1029int isolate_lru_page(struct page *page)
1030{
1031	int ret = -EBUSY;
1032
1033	if (PageLRU(page)) {
1034		struct zone *zone = page_zone(page);
1035
1036		spin_lock_irq(&zone->lru_lock);
1037		if (PageLRU(page) && get_page_unless_zero(page)) {
1038			int lru = page_lru(page);
1039			ret = 0;
1040			ClearPageLRU(page);
1041
1042			del_page_from_lru_list(zone, page, lru);
1043		}
1044		spin_unlock_irq(&zone->lru_lock);
1045	}
1046	return ret;
1047}
1048
1049/*
1050 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1051 * of reclaimed pages
1052 */
1053static unsigned long shrink_inactive_list(unsigned long max_scan,
1054			struct zone *zone, struct scan_control *sc,
1055			int priority, int file)
1056{
1057	LIST_HEAD(page_list);
1058	struct pagevec pvec;
1059	unsigned long nr_scanned = 0;
1060	unsigned long nr_reclaimed = 0;
1061	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1062
1063	pagevec_init(&pvec, 1);
1064
1065	lru_add_drain();
1066	spin_lock_irq(&zone->lru_lock);
1067	do {
1068		struct page *page;
1069		unsigned long nr_taken;
1070		unsigned long nr_scan;
1071		unsigned long nr_freed;
1072		unsigned long nr_active;
1073		unsigned int count[NR_LRU_LISTS] = { 0, };
1074		int mode = ISOLATE_INACTIVE;
1075
1076		/*
1077		 * If we need a large contiguous chunk of memory, or have
1078		 * trouble getting a small set of contiguous pages, we
1079		 * will reclaim both active and inactive pages.
1080		 *
1081		 * We use the same threshold as pageout congestion_wait below.
1082		 */
1083		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1084			mode = ISOLATE_BOTH;
1085		else if (sc->order && priority < DEF_PRIORITY - 2)
1086			mode = ISOLATE_BOTH;
1087
1088		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1089			     &page_list, &nr_scan, sc->order, mode,
1090				zone, sc->mem_cgroup, 0, file);
1091		nr_active = clear_active_flags(&page_list, count);
1092		__count_vm_events(PGDEACTIVATE, nr_active);
1093
1094		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1095						-count[LRU_ACTIVE_FILE]);
1096		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1097						-count[LRU_INACTIVE_FILE]);
1098		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1099						-count[LRU_ACTIVE_ANON]);
1100		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1101						-count[LRU_INACTIVE_ANON]);
1102
1103		if (scanning_global_lru(sc))
1104			zone->pages_scanned += nr_scan;
1105
1106		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1107		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1108		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1109		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1110
1111		spin_unlock_irq(&zone->lru_lock);
1112
1113		nr_scanned += nr_scan;
1114		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1115
1116		/*
1117		 * If we are direct reclaiming for contiguous pages and we do
1118		 * not reclaim everything in the list, try again and wait
1119		 * for IO to complete. This will stall high-order allocations
1120		 * but that should be acceptable to the caller
1121		 */
1122		if (nr_freed < nr_taken && !current_is_kswapd() &&
1123					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1124			congestion_wait(WRITE, HZ/10);
1125
1126			/*
1127			 * The attempt at page out may have made some
1128			 * of the pages active, mark them inactive again.
1129			 */
1130			nr_active = clear_active_flags(&page_list, count);
1131			count_vm_events(PGDEACTIVATE, nr_active);
1132
1133			nr_freed += shrink_page_list(&page_list, sc,
1134							PAGEOUT_IO_SYNC);
1135		}
1136
1137		nr_reclaimed += nr_freed;
1138		local_irq_disable();
1139		if (current_is_kswapd()) {
1140			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1141			__count_vm_events(KSWAPD_STEAL, nr_freed);
1142		} else if (scanning_global_lru(sc))
1143			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1144
1145		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1146
1147		if (nr_taken == 0)
1148			goto done;
1149
1150		spin_lock(&zone->lru_lock);
1151		/*
1152		 * Put back any unfreeable pages.
1153		 */
1154		while (!list_empty(&page_list)) {
1155			int lru;
1156			page = lru_to_page(&page_list);
1157			VM_BUG_ON(PageLRU(page));
1158			list_del(&page->lru);
1159			if (unlikely(!page_evictable(page, NULL))) {
1160				spin_unlock_irq(&zone->lru_lock);
1161				putback_lru_page(page);
1162				spin_lock_irq(&zone->lru_lock);
1163				continue;
1164			}
1165			SetPageLRU(page);
1166			lru = page_lru(page);
1167			add_page_to_lru_list(zone, page, lru);
1168			if (PageActive(page)) {
1169				int file = !!page_is_file_cache(page);
1170				reclaim_stat->recent_rotated[file]++;
1171			}
1172			if (!pagevec_add(&pvec, page)) {
1173				spin_unlock_irq(&zone->lru_lock);
1174				__pagevec_release(&pvec);
1175				spin_lock_irq(&zone->lru_lock);
1176			}
1177		}
1178  	} while (nr_scanned < max_scan);
1179	spin_unlock(&zone->lru_lock);
1180done:
1181	local_irq_enable();
1182	pagevec_release(&pvec);
1183	return nr_reclaimed;
1184}
1185
1186/*
1187 * We are about to scan this zone at a certain priority level.  If that priority
1188 * level is smaller (ie: more urgent) than the previous priority, then note
1189 * that priority level within the zone.  This is done so that when the next
1190 * process comes in to scan this zone, it will immediately start out at this
1191 * priority level rather than having to build up its own scanning priority.
1192 * Here, this priority affects only the reclaim-mapped threshold.
1193 */
1194static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1195{
1196	if (priority < zone->prev_priority)
1197		zone->prev_priority = priority;
1198}
1199
1200/*
1201 * This moves pages from the active list to the inactive list.
1202 *
1203 * We move them the other way if the page is referenced by one or more
1204 * processes, from rmap.
1205 *
1206 * If the pages are mostly unmapped, the processing is fast and it is
1207 * appropriate to hold zone->lru_lock across the whole operation.  But if
1208 * the pages are mapped, the processing is slow (page_referenced()) so we
1209 * should drop zone->lru_lock around each page.  It's impossible to balance
1210 * this, so instead we remove the pages from the LRU while processing them.
1211 * It is safe to rely on PG_active against the non-LRU pages in here because
1212 * nobody will play with that bit on a non-LRU page.
1213 *
1214 * The downside is that we have to touch page->_count against each page.
1215 * But we had to alter page->flags anyway.
1216 */
1217
1218
1219static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1220			struct scan_control *sc, int priority, int file)
1221{
1222	unsigned long pgmoved;
1223	int pgdeactivate = 0;
1224	unsigned long pgscanned;
1225	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1226	LIST_HEAD(l_inactive);
1227	struct page *page;
1228	struct pagevec pvec;
1229	enum lru_list lru;
1230	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1231
1232	lru_add_drain();
1233	spin_lock_irq(&zone->lru_lock);
1234	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1235					ISOLATE_ACTIVE, zone,
1236					sc->mem_cgroup, 1, file);
1237	/*
1238	 * zone->pages_scanned is used for detect zone's oom
1239	 * mem_cgroup remembers nr_scan by itself.
1240	 */
1241	if (scanning_global_lru(sc)) {
1242		zone->pages_scanned += pgscanned;
1243	}
1244	reclaim_stat->recent_scanned[!!file] += pgmoved;
1245
1246	if (file)
1247		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1248	else
1249		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1250	spin_unlock_irq(&zone->lru_lock);
1251
1252	pgmoved = 0;
1253	while (!list_empty(&l_hold)) {
1254		cond_resched();
1255		page = lru_to_page(&l_hold);
1256		list_del(&page->lru);
1257
1258		if (unlikely(!page_evictable(page, NULL))) {
1259			putback_lru_page(page);
1260			continue;
1261		}
1262
1263		/* page_referenced clears PageReferenced */
1264		if (page_mapping_inuse(page) &&
1265		    page_referenced(page, 0, sc->mem_cgroup))
1266			pgmoved++;
1267
1268		list_add(&page->lru, &l_inactive);
1269	}
1270
1271	/*
1272	 * Move the pages to the [file or anon] inactive list.
1273	 */
1274	pagevec_init(&pvec, 1);
1275	lru = LRU_BASE + file * LRU_FILE;
1276
1277	spin_lock_irq(&zone->lru_lock);
1278	/*
1279	 * Count referenced pages from currently used mappings as
1280	 * rotated, even though they are moved to the inactive list.
1281	 * This helps balance scan pressure between file and anonymous
1282	 * pages in get_scan_ratio.
1283	 */
1284	reclaim_stat->recent_rotated[!!file] += pgmoved;
1285
1286	pgmoved = 0;
1287	while (!list_empty(&l_inactive)) {
1288		page = lru_to_page(&l_inactive);
1289		prefetchw_prev_lru_page(page, &l_inactive, flags);
1290		VM_BUG_ON(PageLRU(page));
1291		SetPageLRU(page);
1292		VM_BUG_ON(!PageActive(page));
1293		ClearPageActive(page);
1294
1295		list_move(&page->lru, &zone->lru[lru].list);
1296		mem_cgroup_add_lru_list(page, lru);
1297		pgmoved++;
1298		if (!pagevec_add(&pvec, page)) {
1299			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1300			spin_unlock_irq(&zone->lru_lock);
1301			pgdeactivate += pgmoved;
1302			pgmoved = 0;
1303			if (buffer_heads_over_limit)
1304				pagevec_strip(&pvec);
1305			__pagevec_release(&pvec);
1306			spin_lock_irq(&zone->lru_lock);
1307		}
1308	}
1309	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1310	pgdeactivate += pgmoved;
1311	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1312	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1313	spin_unlock_irq(&zone->lru_lock);
1314	if (buffer_heads_over_limit)
1315		pagevec_strip(&pvec);
1316	pagevec_release(&pvec);
1317}
1318
1319static int inactive_anon_is_low_global(struct zone *zone)
1320{
1321	unsigned long active, inactive;
1322
1323	active = zone_page_state(zone, NR_ACTIVE_ANON);
1324	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1325
1326	if (inactive * zone->inactive_ratio < active)
1327		return 1;
1328
1329	return 0;
1330}
1331
1332/**
1333 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1334 * @zone: zone to check
1335 * @sc:   scan control of this context
1336 *
1337 * Returns true if the zone does not have enough inactive anon pages,
1338 * meaning some active anon pages need to be deactivated.
1339 */
1340static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1341{
1342	int low;
1343
1344	if (scanning_global_lru(sc))
1345		low = inactive_anon_is_low_global(zone);
1346	else
1347		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1348	return low;
1349}
1350
1351static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1352	struct zone *zone, struct scan_control *sc, int priority)
1353{
1354	int file = is_file_lru(lru);
1355
1356	if (lru == LRU_ACTIVE_FILE) {
1357		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1358		return 0;
1359	}
1360
1361	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1362		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1363		return 0;
1364	}
1365	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1366}
1367
1368/*
1369 * Determine how aggressively the anon and file LRU lists should be
1370 * scanned.  The relative value of each set of LRU lists is determined
1371 * by looking at the fraction of the pages scanned we did rotate back
1372 * onto the active list instead of evict.
1373 *
1374 * percent[0] specifies how much pressure to put on ram/swap backed
1375 * memory, while percent[1] determines pressure on the file LRUs.
1376 */
1377static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1378					unsigned long *percent)
1379{
1380	unsigned long anon, file, free;
1381	unsigned long anon_prio, file_prio;
1382	unsigned long ap, fp;
1383	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1384
1385	/* If we have no swap space, do not bother scanning anon pages. */
1386	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1387		percent[0] = 0;
1388		percent[1] = 100;
1389		return;
1390	}
1391
1392	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1393		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1394	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1395		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1396
1397	if (scanning_global_lru(sc)) {
1398		free  = zone_page_state(zone, NR_FREE_PAGES);
1399		/* If we have very few page cache pages,
1400		   force-scan anon pages. */
1401		if (unlikely(file + free <= zone->pages_high)) {
1402			percent[0] = 100;
1403			percent[1] = 0;
1404			return;
1405		}
1406	}
1407
1408	/*
1409	 * OK, so we have swap space and a fair amount of page cache
1410	 * pages.  We use the recently rotated / recently scanned
1411	 * ratios to determine how valuable each cache is.
1412	 *
1413	 * Because workloads change over time (and to avoid overflow)
1414	 * we keep these statistics as a floating average, which ends
1415	 * up weighing recent references more than old ones.
1416	 *
1417	 * anon in [0], file in [1]
1418	 */
1419	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1420		spin_lock_irq(&zone->lru_lock);
1421		reclaim_stat->recent_scanned[0] /= 2;
1422		reclaim_stat->recent_rotated[0] /= 2;
1423		spin_unlock_irq(&zone->lru_lock);
1424	}
1425
1426	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1427		spin_lock_irq(&zone->lru_lock);
1428		reclaim_stat->recent_scanned[1] /= 2;
1429		reclaim_stat->recent_rotated[1] /= 2;
1430		spin_unlock_irq(&zone->lru_lock);
1431	}
1432
1433	/*
1434	 * With swappiness at 100, anonymous and file have the same priority.
1435	 * This scanning priority is essentially the inverse of IO cost.
1436	 */
1437	anon_prio = sc->swappiness;
1438	file_prio = 200 - sc->swappiness;
1439
1440	/*
1441	 * The amount of pressure on anon vs file pages is inversely
1442	 * proportional to the fraction of recently scanned pages on
1443	 * each list that were recently referenced and in active use.
1444	 */
1445	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1446	ap /= reclaim_stat->recent_rotated[0] + 1;
1447
1448	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1449	fp /= reclaim_stat->recent_rotated[1] + 1;
1450
1451	/* Normalize to percentages */
1452	percent[0] = 100 * ap / (ap + fp + 1);
1453	percent[1] = 100 - percent[0];
1454}
1455
1456
1457/*
1458 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1459 */
1460static void shrink_zone(int priority, struct zone *zone,
1461				struct scan_control *sc)
1462{
1463	unsigned long nr[NR_LRU_LISTS];
1464	unsigned long nr_to_scan;
1465	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1466	enum lru_list l;
1467	unsigned long nr_reclaimed = sc->nr_reclaimed;
1468	unsigned long swap_cluster_max = sc->swap_cluster_max;
1469
1470	get_scan_ratio(zone, sc, percent);
1471
1472	for_each_evictable_lru(l) {
1473		int file = is_file_lru(l);
1474		int scan;
1475
1476		scan = zone_nr_pages(zone, sc, l);
1477		if (priority) {
1478			scan >>= priority;
1479			scan = (scan * percent[file]) / 100;
1480		}
1481		if (scanning_global_lru(sc)) {
1482			zone->lru[l].nr_scan += scan;
1483			nr[l] = zone->lru[l].nr_scan;
1484			if (nr[l] >= swap_cluster_max)
1485				zone->lru[l].nr_scan = 0;
1486			else
1487				nr[l] = 0;
1488		} else
1489			nr[l] = scan;
1490	}
1491
1492	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1493					nr[LRU_INACTIVE_FILE]) {
1494		for_each_evictable_lru(l) {
1495			if (nr[l]) {
1496				nr_to_scan = min(nr[l], swap_cluster_max);
1497				nr[l] -= nr_to_scan;
1498
1499				nr_reclaimed += shrink_list(l, nr_to_scan,
1500							    zone, sc, priority);
1501			}
1502		}
1503		/*
1504		 * On large memory systems, scan >> priority can become
1505		 * really large. This is fine for the starting priority;
1506		 * we want to put equal scanning pressure on each zone.
1507		 * However, if the VM has a harder time of freeing pages,
1508		 * with multiple processes reclaiming pages, the total
1509		 * freeing target can get unreasonably large.
1510		 */
1511		if (nr_reclaimed > swap_cluster_max &&
1512			priority < DEF_PRIORITY && !current_is_kswapd())
1513			break;
1514	}
1515
1516	sc->nr_reclaimed = nr_reclaimed;
1517
1518	/*
1519	 * Even if we did not try to evict anon pages at all, we want to
1520	 * rebalance the anon lru active/inactive ratio.
1521	 */
1522	if (inactive_anon_is_low(zone, sc))
1523		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1524
1525	throttle_vm_writeout(sc->gfp_mask);
1526}
1527
1528/*
1529 * This is the direct reclaim path, for page-allocating processes.  We only
1530 * try to reclaim pages from zones which will satisfy the caller's allocation
1531 * request.
1532 *
1533 * We reclaim from a zone even if that zone is over pages_high.  Because:
1534 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1535 *    allocation or
1536 * b) The zones may be over pages_high but they must go *over* pages_high to
1537 *    satisfy the `incremental min' zone defense algorithm.
1538 *
1539 * If a zone is deemed to be full of pinned pages then just give it a light
1540 * scan then give up on it.
1541 */
1542static void shrink_zones(int priority, struct zonelist *zonelist,
1543					struct scan_control *sc)
1544{
1545	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1546	struct zoneref *z;
1547	struct zone *zone;
1548
1549	sc->all_unreclaimable = 1;
1550	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1551					sc->nodemask) {
1552		if (!populated_zone(zone))
1553			continue;
1554		/*
1555		 * Take care memory controller reclaiming has small influence
1556		 * to global LRU.
1557		 */
1558		if (scanning_global_lru(sc)) {
1559			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1560				continue;
1561			note_zone_scanning_priority(zone, priority);
1562
1563			if (zone_is_all_unreclaimable(zone) &&
1564						priority != DEF_PRIORITY)
1565				continue;	/* Let kswapd poll it */
1566			sc->all_unreclaimable = 0;
1567		} else {
1568			/*
1569			 * Ignore cpuset limitation here. We just want to reduce
1570			 * # of used pages by us regardless of memory shortage.
1571			 */
1572			sc->all_unreclaimable = 0;
1573			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1574							priority);
1575		}
1576
1577		shrink_zone(priority, zone, sc);
1578	}
1579}
1580
1581/*
1582 * This is the main entry point to direct page reclaim.
1583 *
1584 * If a full scan of the inactive list fails to free enough memory then we
1585 * are "out of memory" and something needs to be killed.
1586 *
1587 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1588 * high - the zone may be full of dirty or under-writeback pages, which this
1589 * caller can't do much about.  We kick pdflush and take explicit naps in the
1590 * hope that some of these pages can be written.  But if the allocating task
1591 * holds filesystem locks which prevent writeout this might not work, and the
1592 * allocation attempt will fail.
1593 *
1594 * returns:	0, if no pages reclaimed
1595 * 		else, the number of pages reclaimed
1596 */
1597static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1598					struct scan_control *sc)
1599{
1600	int priority;
1601	unsigned long ret = 0;
1602	unsigned long total_scanned = 0;
1603	struct reclaim_state *reclaim_state = current->reclaim_state;
1604	unsigned long lru_pages = 0;
1605	struct zoneref *z;
1606	struct zone *zone;
1607	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1608
1609	delayacct_freepages_start();
1610
1611	if (scanning_global_lru(sc))
1612		count_vm_event(ALLOCSTALL);
1613	/*
1614	 * mem_cgroup will not do shrink_slab.
1615	 */
1616	if (scanning_global_lru(sc)) {
1617		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1618
1619			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1620				continue;
1621
1622			lru_pages += zone_lru_pages(zone);
1623		}
1624	}
1625
1626	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1627		sc->nr_scanned = 0;
1628		if (!priority)
1629			disable_swap_token();
1630		shrink_zones(priority, zonelist, sc);
1631		/*
1632		 * Don't shrink slabs when reclaiming memory from
1633		 * over limit cgroups
1634		 */
1635		if (scanning_global_lru(sc)) {
1636			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1637			if (reclaim_state) {
1638				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1639				reclaim_state->reclaimed_slab = 0;
1640			}
1641		}
1642		total_scanned += sc->nr_scanned;
1643		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1644			ret = sc->nr_reclaimed;
1645			goto out;
1646		}
1647
1648		/*
1649		 * Try to write back as many pages as we just scanned.  This
1650		 * tends to cause slow streaming writers to write data to the
1651		 * disk smoothly, at the dirtying rate, which is nice.   But
1652		 * that's undesirable in laptop mode, where we *want* lumpy
1653		 * writeout.  So in laptop mode, write out the whole world.
1654		 */
1655		if (total_scanned > sc->swap_cluster_max +
1656					sc->swap_cluster_max / 2) {
1657			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1658			sc->may_writepage = 1;
1659		}
1660
1661		/* Take a nap, wait for some writeback to complete */
1662		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1663			congestion_wait(WRITE, HZ/10);
1664	}
1665	/* top priority shrink_zones still had more to do? don't OOM, then */
1666	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1667		ret = sc->nr_reclaimed;
1668out:
1669	/*
1670	 * Now that we've scanned all the zones at this priority level, note
1671	 * that level within the zone so that the next thread which performs
1672	 * scanning of this zone will immediately start out at this priority
1673	 * level.  This affects only the decision whether or not to bring
1674	 * mapped pages onto the inactive list.
1675	 */
1676	if (priority < 0)
1677		priority = 0;
1678
1679	if (scanning_global_lru(sc)) {
1680		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1681
1682			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1683				continue;
1684
1685			zone->prev_priority = priority;
1686		}
1687	} else
1688		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1689
1690	delayacct_freepages_end();
1691
1692	return ret;
1693}
1694
1695unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1696				gfp_t gfp_mask, nodemask_t *nodemask)
1697{
1698	struct scan_control sc = {
1699		.gfp_mask = gfp_mask,
1700		.may_writepage = !laptop_mode,
1701		.swap_cluster_max = SWAP_CLUSTER_MAX,
1702		.may_unmap = 1,
1703		.may_swap = 1,
1704		.swappiness = vm_swappiness,
1705		.order = order,
1706		.mem_cgroup = NULL,
1707		.isolate_pages = isolate_pages_global,
1708		.nodemask = nodemask,
1709	};
1710
1711	return do_try_to_free_pages(zonelist, &sc);
1712}
1713
1714#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1715
1716unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1717					   gfp_t gfp_mask,
1718					   bool noswap,
1719					   unsigned int swappiness)
1720{
1721	struct scan_control sc = {
1722		.may_writepage = !laptop_mode,
1723		.may_unmap = 1,
1724		.may_swap = !noswap,
1725		.swap_cluster_max = SWAP_CLUSTER_MAX,
1726		.swappiness = swappiness,
1727		.order = 0,
1728		.mem_cgroup = mem_cont,
1729		.isolate_pages = mem_cgroup_isolate_pages,
1730		.nodemask = NULL, /* we don't care the placement */
1731	};
1732	struct zonelist *zonelist;
1733
1734	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1735			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1736	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1737	return do_try_to_free_pages(zonelist, &sc);
1738}
1739#endif
1740
1741/*
1742 * For kswapd, balance_pgdat() will work across all this node's zones until
1743 * they are all at pages_high.
1744 *
1745 * Returns the number of pages which were actually freed.
1746 *
1747 * There is special handling here for zones which are full of pinned pages.
1748 * This can happen if the pages are all mlocked, or if they are all used by
1749 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1750 * What we do is to detect the case where all pages in the zone have been
1751 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1752 * dead and from now on, only perform a short scan.  Basically we're polling
1753 * the zone for when the problem goes away.
1754 *
1755 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1756 * zones which have free_pages > pages_high, but once a zone is found to have
1757 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1758 * of the number of free pages in the lower zones.  This interoperates with
1759 * the page allocator fallback scheme to ensure that aging of pages is balanced
1760 * across the zones.
1761 */
1762static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1763{
1764	int all_zones_ok;
1765	int priority;
1766	int i;
1767	unsigned long total_scanned;
1768	struct reclaim_state *reclaim_state = current->reclaim_state;
1769	struct scan_control sc = {
1770		.gfp_mask = GFP_KERNEL,
1771		.may_unmap = 1,
1772		.may_swap = 1,
1773		.swap_cluster_max = SWAP_CLUSTER_MAX,
1774		.swappiness = vm_swappiness,
1775		.order = order,
1776		.mem_cgroup = NULL,
1777		.isolate_pages = isolate_pages_global,
1778	};
1779	/*
1780	 * temp_priority is used to remember the scanning priority at which
1781	 * this zone was successfully refilled to free_pages == pages_high.
1782	 */
1783	int temp_priority[MAX_NR_ZONES];
1784
1785loop_again:
1786	total_scanned = 0;
1787	sc.nr_reclaimed = 0;
1788	sc.may_writepage = !laptop_mode;
1789	count_vm_event(PAGEOUTRUN);
1790
1791	for (i = 0; i < pgdat->nr_zones; i++)
1792		temp_priority[i] = DEF_PRIORITY;
1793
1794	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1795		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1796		unsigned long lru_pages = 0;
1797
1798		/* The swap token gets in the way of swapout... */
1799		if (!priority)
1800			disable_swap_token();
1801
1802		all_zones_ok = 1;
1803
1804		/*
1805		 * Scan in the highmem->dma direction for the highest
1806		 * zone which needs scanning
1807		 */
1808		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1809			struct zone *zone = pgdat->node_zones + i;
1810
1811			if (!populated_zone(zone))
1812				continue;
1813
1814			if (zone_is_all_unreclaimable(zone) &&
1815			    priority != DEF_PRIORITY)
1816				continue;
1817
1818			/*
1819			 * Do some background aging of the anon list, to give
1820			 * pages a chance to be referenced before reclaiming.
1821			 */
1822			if (inactive_anon_is_low(zone, &sc))
1823				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1824							&sc, priority, 0);
1825
1826			if (!zone_watermark_ok(zone, order, zone->pages_high,
1827					       0, 0)) {
1828				end_zone = i;
1829				break;
1830			}
1831		}
1832		if (i < 0)
1833			goto out;
1834
1835		for (i = 0; i <= end_zone; i++) {
1836			struct zone *zone = pgdat->node_zones + i;
1837
1838			lru_pages += zone_lru_pages(zone);
1839		}
1840
1841		/*
1842		 * Now scan the zone in the dma->highmem direction, stopping
1843		 * at the last zone which needs scanning.
1844		 *
1845		 * We do this because the page allocator works in the opposite
1846		 * direction.  This prevents the page allocator from allocating
1847		 * pages behind kswapd's direction of progress, which would
1848		 * cause too much scanning of the lower zones.
1849		 */
1850		for (i = 0; i <= end_zone; i++) {
1851			struct zone *zone = pgdat->node_zones + i;
1852			int nr_slab;
1853
1854			if (!populated_zone(zone))
1855				continue;
1856
1857			if (zone_is_all_unreclaimable(zone) &&
1858					priority != DEF_PRIORITY)
1859				continue;
1860
1861			if (!zone_watermark_ok(zone, order, zone->pages_high,
1862					       end_zone, 0))
1863				all_zones_ok = 0;
1864			temp_priority[i] = priority;
1865			sc.nr_scanned = 0;
1866			note_zone_scanning_priority(zone, priority);
1867			/*
1868			 * We put equal pressure on every zone, unless one
1869			 * zone has way too many pages free already.
1870			 */
1871			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1872						end_zone, 0))
1873				shrink_zone(priority, zone, &sc);
1874			reclaim_state->reclaimed_slab = 0;
1875			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1876						lru_pages);
1877			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1878			total_scanned += sc.nr_scanned;
1879			if (zone_is_all_unreclaimable(zone))
1880				continue;
1881			if (nr_slab == 0 && zone->pages_scanned >=
1882						(zone_lru_pages(zone) * 6))
1883					zone_set_flag(zone,
1884						      ZONE_ALL_UNRECLAIMABLE);
1885			/*
1886			 * If we've done a decent amount of scanning and
1887			 * the reclaim ratio is low, start doing writepage
1888			 * even in laptop mode
1889			 */
1890			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1891			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1892				sc.may_writepage = 1;
1893		}
1894		if (all_zones_ok)
1895			break;		/* kswapd: all done */
1896		/*
1897		 * OK, kswapd is getting into trouble.  Take a nap, then take
1898		 * another pass across the zones.
1899		 */
1900		if (total_scanned && priority < DEF_PRIORITY - 2)
1901			congestion_wait(WRITE, HZ/10);
1902
1903		/*
1904		 * We do this so kswapd doesn't build up large priorities for
1905		 * example when it is freeing in parallel with allocators. It
1906		 * matches the direct reclaim path behaviour in terms of impact
1907		 * on zone->*_priority.
1908		 */
1909		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1910			break;
1911	}
1912out:
1913	/*
1914	 * Note within each zone the priority level at which this zone was
1915	 * brought into a happy state.  So that the next thread which scans this
1916	 * zone will start out at that priority level.
1917	 */
1918	for (i = 0; i < pgdat->nr_zones; i++) {
1919		struct zone *zone = pgdat->node_zones + i;
1920
1921		zone->prev_priority = temp_priority[i];
1922	}
1923	if (!all_zones_ok) {
1924		cond_resched();
1925
1926		try_to_freeze();
1927
1928		/*
1929		 * Fragmentation may mean that the system cannot be
1930		 * rebalanced for high-order allocations in all zones.
1931		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1932		 * it means the zones have been fully scanned and are still
1933		 * not balanced. For high-order allocations, there is
1934		 * little point trying all over again as kswapd may
1935		 * infinite loop.
1936		 *
1937		 * Instead, recheck all watermarks at order-0 as they
1938		 * are the most important. If watermarks are ok, kswapd will go
1939		 * back to sleep. High-order users can still perform direct
1940		 * reclaim if they wish.
1941		 */
1942		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1943			order = sc.order = 0;
1944
1945		goto loop_again;
1946	}
1947
1948	return sc.nr_reclaimed;
1949}
1950
1951/*
1952 * The background pageout daemon, started as a kernel thread
1953 * from the init process.
1954 *
1955 * This basically trickles out pages so that we have _some_
1956 * free memory available even if there is no other activity
1957 * that frees anything up. This is needed for things like routing
1958 * etc, where we otherwise might have all activity going on in
1959 * asynchronous contexts that cannot page things out.
1960 *
1961 * If there are applications that are active memory-allocators
1962 * (most normal use), this basically shouldn't matter.
1963 */
1964static int kswapd(void *p)
1965{
1966	unsigned long order;
1967	pg_data_t *pgdat = (pg_data_t*)p;
1968	struct task_struct *tsk = current;
1969	DEFINE_WAIT(wait);
1970	struct reclaim_state reclaim_state = {
1971		.reclaimed_slab = 0,
1972	};
1973	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1974
1975	lockdep_set_current_reclaim_state(GFP_KERNEL);
1976
1977	if (!cpumask_empty(cpumask))
1978		set_cpus_allowed_ptr(tsk, cpumask);
1979	current->reclaim_state = &reclaim_state;
1980
1981	/*
1982	 * Tell the memory management that we're a "memory allocator",
1983	 * and that if we need more memory we should get access to it
1984	 * regardless (see "__alloc_pages()"). "kswapd" should
1985	 * never get caught in the normal page freeing logic.
1986	 *
1987	 * (Kswapd normally doesn't need memory anyway, but sometimes
1988	 * you need a small amount of memory in order to be able to
1989	 * page out something else, and this flag essentially protects
1990	 * us from recursively trying to free more memory as we're
1991	 * trying to free the first piece of memory in the first place).
1992	 */
1993	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1994	set_freezable();
1995
1996	order = 0;
1997	for ( ; ; ) {
1998		unsigned long new_order;
1999
2000		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2001		new_order = pgdat->kswapd_max_order;
2002		pgdat->kswapd_max_order = 0;
2003		if (order < new_order) {
2004			/*
2005			 * Don't sleep if someone wants a larger 'order'
2006			 * allocation
2007			 */
2008			order = new_order;
2009		} else {
2010			if (!freezing(current))
2011				schedule();
2012
2013			order = pgdat->kswapd_max_order;
2014		}
2015		finish_wait(&pgdat->kswapd_wait, &wait);
2016
2017		if (!try_to_freeze()) {
2018			/* We can speed up thawing tasks if we don't call
2019			 * balance_pgdat after returning from the refrigerator
2020			 */
2021			balance_pgdat(pgdat, order);
2022		}
2023	}
2024	return 0;
2025}
2026
2027/*
2028 * A zone is low on free memory, so wake its kswapd task to service it.
2029 */
2030void wakeup_kswapd(struct zone *zone, int order)
2031{
2032	pg_data_t *pgdat;
2033
2034	if (!populated_zone(zone))
2035		return;
2036
2037	pgdat = zone->zone_pgdat;
2038	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2039		return;
2040	if (pgdat->kswapd_max_order < order)
2041		pgdat->kswapd_max_order = order;
2042	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2043		return;
2044	if (!waitqueue_active(&pgdat->kswapd_wait))
2045		return;
2046	wake_up_interruptible(&pgdat->kswapd_wait);
2047}
2048
2049unsigned long global_lru_pages(void)
2050{
2051	return global_page_state(NR_ACTIVE_ANON)
2052		+ global_page_state(NR_ACTIVE_FILE)
2053		+ global_page_state(NR_INACTIVE_ANON)
2054		+ global_page_state(NR_INACTIVE_FILE);
2055}
2056
2057#ifdef CONFIG_PM
2058/*
2059 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2060 * from LRU lists system-wide, for given pass and priority.
2061 *
2062 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2063 */
2064static void shrink_all_zones(unsigned long nr_pages, int prio,
2065				      int pass, struct scan_control *sc)
2066{
2067	struct zone *zone;
2068	unsigned long nr_reclaimed = 0;
2069
2070	for_each_populated_zone(zone) {
2071		enum lru_list l;
2072
2073		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2074			continue;
2075
2076		for_each_evictable_lru(l) {
2077			enum zone_stat_item ls = NR_LRU_BASE + l;
2078			unsigned long lru_pages = zone_page_state(zone, ls);
2079
2080			/* For pass = 0, we don't shrink the active list */
2081			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2082						l == LRU_ACTIVE_FILE))
2083				continue;
2084
2085			zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2086			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2087				unsigned long nr_to_scan;
2088
2089				zone->lru[l].nr_scan = 0;
2090				nr_to_scan = min(nr_pages, lru_pages);
2091				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2092								sc, prio);
2093				if (nr_reclaimed >= nr_pages) {
2094					sc->nr_reclaimed += nr_reclaimed;
2095					return;
2096				}
2097			}
2098		}
2099	}
2100	sc->nr_reclaimed += nr_reclaimed;
2101}
2102
2103/*
2104 * Try to free `nr_pages' of memory, system-wide, and return the number of
2105 * freed pages.
2106 *
2107 * Rather than trying to age LRUs the aim is to preserve the overall
2108 * LRU order by reclaiming preferentially
2109 * inactive > active > active referenced > active mapped
2110 */
2111unsigned long shrink_all_memory(unsigned long nr_pages)
2112{
2113	unsigned long lru_pages, nr_slab;
2114	int pass;
2115	struct reclaim_state reclaim_state;
2116	struct scan_control sc = {
2117		.gfp_mask = GFP_KERNEL,
2118		.may_unmap = 0,
2119		.may_writepage = 1,
2120		.isolate_pages = isolate_pages_global,
2121		.nr_reclaimed = 0,
2122	};
2123
2124	current->reclaim_state = &reclaim_state;
2125
2126	lru_pages = global_lru_pages();
2127	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2128	/* If slab caches are huge, it's better to hit them first */
2129	while (nr_slab >= lru_pages) {
2130		reclaim_state.reclaimed_slab = 0;
2131		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2132		if (!reclaim_state.reclaimed_slab)
2133			break;
2134
2135		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2136		if (sc.nr_reclaimed >= nr_pages)
2137			goto out;
2138
2139		nr_slab -= reclaim_state.reclaimed_slab;
2140	}
2141
2142	/*
2143	 * We try to shrink LRUs in 5 passes:
2144	 * 0 = Reclaim from inactive_list only
2145	 * 1 = Reclaim from active list but don't reclaim mapped
2146	 * 2 = 2nd pass of type 1
2147	 * 3 = Reclaim mapped (normal reclaim)
2148	 * 4 = 2nd pass of type 3
2149	 */
2150	for (pass = 0; pass < 5; pass++) {
2151		int prio;
2152
2153		/* Force reclaiming mapped pages in the passes #3 and #4 */
2154		if (pass > 2)
2155			sc.may_unmap = 1;
2156
2157		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2158			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2159
2160			sc.nr_scanned = 0;
2161			sc.swap_cluster_max = nr_to_scan;
2162			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2163			if (sc.nr_reclaimed >= nr_pages)
2164				goto out;
2165
2166			reclaim_state.reclaimed_slab = 0;
2167			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2168					global_lru_pages());
2169			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2170			if (sc.nr_reclaimed >= nr_pages)
2171				goto out;
2172
2173			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2174				congestion_wait(WRITE, HZ / 10);
2175		}
2176	}
2177
2178	/*
2179	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2180	 * something in slab caches
2181	 */
2182	if (!sc.nr_reclaimed) {
2183		do {
2184			reclaim_state.reclaimed_slab = 0;
2185			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2186			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2187		} while (sc.nr_reclaimed < nr_pages &&
2188				reclaim_state.reclaimed_slab > 0);
2189	}
2190
2191
2192out:
2193	current->reclaim_state = NULL;
2194
2195	return sc.nr_reclaimed;
2196}
2197#endif
2198
2199/* It's optimal to keep kswapds on the same CPUs as their memory, but
2200   not required for correctness.  So if the last cpu in a node goes
2201   away, we get changed to run anywhere: as the first one comes back,
2202   restore their cpu bindings. */
2203static int __devinit cpu_callback(struct notifier_block *nfb,
2204				  unsigned long action, void *hcpu)
2205{
2206	int nid;
2207
2208	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2209		for_each_node_state(nid, N_HIGH_MEMORY) {
2210			pg_data_t *pgdat = NODE_DATA(nid);
2211			const struct cpumask *mask;
2212
2213			mask = cpumask_of_node(pgdat->node_id);
2214
2215			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2216				/* One of our CPUs online: restore mask */
2217				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2218		}
2219	}
2220	return NOTIFY_OK;
2221}
2222
2223/*
2224 * This kswapd start function will be called by init and node-hot-add.
2225 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2226 */
2227int kswapd_run(int nid)
2228{
2229	pg_data_t *pgdat = NODE_DATA(nid);
2230	int ret = 0;
2231
2232	if (pgdat->kswapd)
2233		return 0;
2234
2235	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2236	if (IS_ERR(pgdat->kswapd)) {
2237		/* failure at boot is fatal */
2238		BUG_ON(system_state == SYSTEM_BOOTING);
2239		printk("Failed to start kswapd on node %d\n",nid);
2240		ret = -1;
2241	}
2242	return ret;
2243}
2244
2245static int __init kswapd_init(void)
2246{
2247	int nid;
2248
2249	swap_setup();
2250	for_each_node_state(nid, N_HIGH_MEMORY)
2251 		kswapd_run(nid);
2252	hotcpu_notifier(cpu_callback, 0);
2253	return 0;
2254}
2255
2256module_init(kswapd_init)
2257
2258#ifdef CONFIG_NUMA
2259/*
2260 * Zone reclaim mode
2261 *
2262 * If non-zero call zone_reclaim when the number of free pages falls below
2263 * the watermarks.
2264 */
2265int zone_reclaim_mode __read_mostly;
2266
2267#define RECLAIM_OFF 0
2268#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2269#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2270#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2271
2272/*
2273 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2274 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2275 * a zone.
2276 */
2277#define ZONE_RECLAIM_PRIORITY 4
2278
2279/*
2280 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2281 * occur.
2282 */
2283int sysctl_min_unmapped_ratio = 1;
2284
2285/*
2286 * If the number of slab pages in a zone grows beyond this percentage then
2287 * slab reclaim needs to occur.
2288 */
2289int sysctl_min_slab_ratio = 5;
2290
2291/*
2292 * Try to free up some pages from this zone through reclaim.
2293 */
2294static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2295{
2296	/* Minimum pages needed in order to stay on node */
2297	const unsigned long nr_pages = 1 << order;
2298	struct task_struct *p = current;
2299	struct reclaim_state reclaim_state;
2300	int priority;
2301	struct scan_control sc = {
2302		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2303		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2304		.may_swap = 1,
2305		.swap_cluster_max = max_t(unsigned long, nr_pages,
2306					SWAP_CLUSTER_MAX),
2307		.gfp_mask = gfp_mask,
2308		.swappiness = vm_swappiness,
2309		.order = order,
2310		.isolate_pages = isolate_pages_global,
2311	};
2312	unsigned long slab_reclaimable;
2313
2314	disable_swap_token();
2315	cond_resched();
2316	/*
2317	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2318	 * and we also need to be able to write out pages for RECLAIM_WRITE
2319	 * and RECLAIM_SWAP.
2320	 */
2321	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2322	reclaim_state.reclaimed_slab = 0;
2323	p->reclaim_state = &reclaim_state;
2324
2325	if (zone_page_state(zone, NR_FILE_PAGES) -
2326		zone_page_state(zone, NR_FILE_MAPPED) >
2327		zone->min_unmapped_pages) {
2328		/*
2329		 * Free memory by calling shrink zone with increasing
2330		 * priorities until we have enough memory freed.
2331		 */
2332		priority = ZONE_RECLAIM_PRIORITY;
2333		do {
2334			note_zone_scanning_priority(zone, priority);
2335			shrink_zone(priority, zone, &sc);
2336			priority--;
2337		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2338	}
2339
2340	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2341	if (slab_reclaimable > zone->min_slab_pages) {
2342		/*
2343		 * shrink_slab() does not currently allow us to determine how
2344		 * many pages were freed in this zone. So we take the current
2345		 * number of slab pages and shake the slab until it is reduced
2346		 * by the same nr_pages that we used for reclaiming unmapped
2347		 * pages.
2348		 *
2349		 * Note that shrink_slab will free memory on all zones and may
2350		 * take a long time.
2351		 */
2352		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2353			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2354				slab_reclaimable - nr_pages)
2355			;
2356
2357		/*
2358		 * Update nr_reclaimed by the number of slab pages we
2359		 * reclaimed from this zone.
2360		 */
2361		sc.nr_reclaimed += slab_reclaimable -
2362			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2363	}
2364
2365	p->reclaim_state = NULL;
2366	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2367	return sc.nr_reclaimed >= nr_pages;
2368}
2369
2370int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2371{
2372	int node_id;
2373	int ret;
2374
2375	/*
2376	 * Zone reclaim reclaims unmapped file backed pages and
2377	 * slab pages if we are over the defined limits.
2378	 *
2379	 * A small portion of unmapped file backed pages is needed for
2380	 * file I/O otherwise pages read by file I/O will be immediately
2381	 * thrown out if the zone is overallocated. So we do not reclaim
2382	 * if less than a specified percentage of the zone is used by
2383	 * unmapped file backed pages.
2384	 */
2385	if (zone_page_state(zone, NR_FILE_PAGES) -
2386	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2387	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2388			<= zone->min_slab_pages)
2389		return 0;
2390
2391	if (zone_is_all_unreclaimable(zone))
2392		return 0;
2393
2394	/*
2395	 * Do not scan if the allocation should not be delayed.
2396	 */
2397	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2398			return 0;
2399
2400	/*
2401	 * Only run zone reclaim on the local zone or on zones that do not
2402	 * have associated processors. This will favor the local processor
2403	 * over remote processors and spread off node memory allocations
2404	 * as wide as possible.
2405	 */
2406	node_id = zone_to_nid(zone);
2407	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2408		return 0;
2409
2410	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2411		return 0;
2412	ret = __zone_reclaim(zone, gfp_mask, order);
2413	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2414
2415	return ret;
2416}
2417#endif
2418
2419#ifdef CONFIG_UNEVICTABLE_LRU
2420/*
2421 * page_evictable - test whether a page is evictable
2422 * @page: the page to test
2423 * @vma: the VMA in which the page is or will be mapped, may be NULL
2424 *
2425 * Test whether page is evictable--i.e., should be placed on active/inactive
2426 * lists vs unevictable list.  The vma argument is !NULL when called from the
2427 * fault path to determine how to instantate a new page.
2428 *
2429 * Reasons page might not be evictable:
2430 * (1) page's mapping marked unevictable
2431 * (2) page is part of an mlocked VMA
2432 *
2433 */
2434int page_evictable(struct page *page, struct vm_area_struct *vma)
2435{
2436
2437	if (mapping_unevictable(page_mapping(page)))
2438		return 0;
2439
2440	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2441		return 0;
2442
2443	return 1;
2444}
2445
2446/**
2447 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2448 * @page: page to check evictability and move to appropriate lru list
2449 * @zone: zone page is in
2450 *
2451 * Checks a page for evictability and moves the page to the appropriate
2452 * zone lru list.
2453 *
2454 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2455 * have PageUnevictable set.
2456 */
2457static void check_move_unevictable_page(struct page *page, struct zone *zone)
2458{
2459	VM_BUG_ON(PageActive(page));
2460
2461retry:
2462	ClearPageUnevictable(page);
2463	if (page_evictable(page, NULL)) {
2464		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2465
2466		__dec_zone_state(zone, NR_UNEVICTABLE);
2467		list_move(&page->lru, &zone->lru[l].list);
2468		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2469		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2470		__count_vm_event(UNEVICTABLE_PGRESCUED);
2471	} else {
2472		/*
2473		 * rotate unevictable list
2474		 */
2475		SetPageUnevictable(page);
2476		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2477		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2478		if (page_evictable(page, NULL))
2479			goto retry;
2480	}
2481}
2482
2483/**
2484 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2485 * @mapping: struct address_space to scan for evictable pages
2486 *
2487 * Scan all pages in mapping.  Check unevictable pages for
2488 * evictability and move them to the appropriate zone lru list.
2489 */
2490void scan_mapping_unevictable_pages(struct address_space *mapping)
2491{
2492	pgoff_t next = 0;
2493	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2494			 PAGE_CACHE_SHIFT;
2495	struct zone *zone;
2496	struct pagevec pvec;
2497
2498	if (mapping->nrpages == 0)
2499		return;
2500
2501	pagevec_init(&pvec, 0);
2502	while (next < end &&
2503		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2504		int i;
2505		int pg_scanned = 0;
2506
2507		zone = NULL;
2508
2509		for (i = 0; i < pagevec_count(&pvec); i++) {
2510			struct page *page = pvec.pages[i];
2511			pgoff_t page_index = page->index;
2512			struct zone *pagezone = page_zone(page);
2513
2514			pg_scanned++;
2515			if (page_index > next)
2516				next = page_index;
2517			next++;
2518
2519			if (pagezone != zone) {
2520				if (zone)
2521					spin_unlock_irq(&zone->lru_lock);
2522				zone = pagezone;
2523				spin_lock_irq(&zone->lru_lock);
2524			}
2525
2526			if (PageLRU(page) && PageUnevictable(page))
2527				check_move_unevictable_page(page, zone);
2528		}
2529		if (zone)
2530			spin_unlock_irq(&zone->lru_lock);
2531		pagevec_release(&pvec);
2532
2533		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2534	}
2535
2536}
2537
2538/**
2539 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2540 * @zone - zone of which to scan the unevictable list
2541 *
2542 * Scan @zone's unevictable LRU lists to check for pages that have become
2543 * evictable.  Move those that have to @zone's inactive list where they
2544 * become candidates for reclaim, unless shrink_inactive_zone() decides
2545 * to reactivate them.  Pages that are still unevictable are rotated
2546 * back onto @zone's unevictable list.
2547 */
2548#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2549static void scan_zone_unevictable_pages(struct zone *zone)
2550{
2551	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2552	unsigned long scan;
2553	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2554
2555	while (nr_to_scan > 0) {
2556		unsigned long batch_size = min(nr_to_scan,
2557						SCAN_UNEVICTABLE_BATCH_SIZE);
2558
2559		spin_lock_irq(&zone->lru_lock);
2560		for (scan = 0;  scan < batch_size; scan++) {
2561			struct page *page = lru_to_page(l_unevictable);
2562
2563			if (!trylock_page(page))
2564				continue;
2565
2566			prefetchw_prev_lru_page(page, l_unevictable, flags);
2567
2568			if (likely(PageLRU(page) && PageUnevictable(page)))
2569				check_move_unevictable_page(page, zone);
2570
2571			unlock_page(page);
2572		}
2573		spin_unlock_irq(&zone->lru_lock);
2574
2575		nr_to_scan -= batch_size;
2576	}
2577}
2578
2579
2580/**
2581 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2582 *
2583 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2584 * pages that have become evictable.  Move those back to the zones'
2585 * inactive list where they become candidates for reclaim.
2586 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2587 * and we add swap to the system.  As such, it runs in the context of a task
2588 * that has possibly/probably made some previously unevictable pages
2589 * evictable.
2590 */
2591static void scan_all_zones_unevictable_pages(void)
2592{
2593	struct zone *zone;
2594
2595	for_each_zone(zone) {
2596		scan_zone_unevictable_pages(zone);
2597	}
2598}
2599
2600/*
2601 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2602 * all nodes' unevictable lists for evictable pages
2603 */
2604unsigned long scan_unevictable_pages;
2605
2606int scan_unevictable_handler(struct ctl_table *table, int write,
2607			   struct file *file, void __user *buffer,
2608			   size_t *length, loff_t *ppos)
2609{
2610	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2611
2612	if (write && *(unsigned long *)table->data)
2613		scan_all_zones_unevictable_pages();
2614
2615	scan_unevictable_pages = 0;
2616	return 0;
2617}
2618
2619/*
2620 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2621 * a specified node's per zone unevictable lists for evictable pages.
2622 */
2623
2624static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2625					  struct sysdev_attribute *attr,
2626					  char *buf)
2627{
2628	return sprintf(buf, "0\n");	/* always zero; should fit... */
2629}
2630
2631static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2632					   struct sysdev_attribute *attr,
2633					const char *buf, size_t count)
2634{
2635	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2636	struct zone *zone;
2637	unsigned long res;
2638	unsigned long req = strict_strtoul(buf, 10, &res);
2639
2640	if (!req)
2641		return 1;	/* zero is no-op */
2642
2643	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2644		if (!populated_zone(zone))
2645			continue;
2646		scan_zone_unevictable_pages(zone);
2647	}
2648	return 1;
2649}
2650
2651
2652static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2653			read_scan_unevictable_node,
2654			write_scan_unevictable_node);
2655
2656int scan_unevictable_register_node(struct node *node)
2657{
2658	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2659}
2660
2661void scan_unevictable_unregister_node(struct node *node)
2662{
2663	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2664}
2665
2666#endif
2667