vmscan.c revision 338fde90930eaa02f6f394daa23d35a410af5852
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51struct scan_control {
52	/* Incremented by the number of inactive pages that were scanned */
53	unsigned long nr_scanned;
54
55	/* Number of pages freed so far during a call to shrink_zones() */
56	unsigned long nr_reclaimed;
57
58	/* How many pages shrink_list() should reclaim */
59	unsigned long nr_to_reclaim;
60
61	unsigned long hibernation_mode;
62
63	/* This context's GFP mask */
64	gfp_t gfp_mask;
65
66	int may_writepage;
67
68	/* Can mapped pages be reclaimed? */
69	int may_unmap;
70
71	/* Can pages be swapped as part of reclaim? */
72	int may_swap;
73
74	int swappiness;
75
76	int all_unreclaimable;
77
78	int order;
79
80	/* Which cgroup do we reclaim from */
81	struct mem_cgroup *mem_cgroup;
82
83	/*
84	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85	 * are scanned.
86	 */
87	nodemask_t	*nodemask;
88
89	/* Pluggable isolate pages callback */
90	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91			unsigned long *scanned, int order, int mode,
92			struct zone *z, struct mem_cgroup *mem_cont,
93			int active, int file);
94};
95
96#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98#ifdef ARCH_HAS_PREFETCH
99#define prefetch_prev_lru_page(_page, _base, _field)			\
100	do {								\
101		if ((_page)->lru.prev != _base) {			\
102			struct page *prev;				\
103									\
104			prev = lru_to_page(&(_page->lru));		\
105			prefetch(&prev->_field);			\
106		}							\
107	} while (0)
108#else
109#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110#endif
111
112#ifdef ARCH_HAS_PREFETCHW
113#define prefetchw_prev_lru_page(_page, _base, _field)			\
114	do {								\
115		if ((_page)->lru.prev != _base) {			\
116			struct page *prev;				\
117									\
118			prev = lru_to_page(&(_page->lru));		\
119			prefetchw(&prev->_field);			\
120		}							\
121	} while (0)
122#else
123#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124#endif
125
126/*
127 * From 0 .. 100.  Higher means more swappy.
128 */
129int vm_swappiness = 60;
130long vm_total_pages;	/* The total number of pages which the VM controls */
131
132static LIST_HEAD(shrinker_list);
133static DECLARE_RWSEM(shrinker_rwsem);
134
135#ifdef CONFIG_CGROUP_MEM_RES_CTLR
136#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
137#else
138#define scanning_global_lru(sc)	(1)
139#endif
140
141static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142						  struct scan_control *sc)
143{
144	if (!scanning_global_lru(sc))
145		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
147	return &zone->reclaim_stat;
148}
149
150static unsigned long zone_nr_lru_pages(struct zone *zone,
151				struct scan_control *sc, enum lru_list lru)
152{
153	if (!scanning_global_lru(sc))
154		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
156	return zone_page_state(zone, NR_LRU_BASE + lru);
157}
158
159
160/*
161 * Add a shrinker callback to be called from the vm
162 */
163void register_shrinker(struct shrinker *shrinker)
164{
165	shrinker->nr = 0;
166	down_write(&shrinker_rwsem);
167	list_add_tail(&shrinker->list, &shrinker_list);
168	up_write(&shrinker_rwsem);
169}
170EXPORT_SYMBOL(register_shrinker);
171
172/*
173 * Remove one
174 */
175void unregister_shrinker(struct shrinker *shrinker)
176{
177	down_write(&shrinker_rwsem);
178	list_del(&shrinker->list);
179	up_write(&shrinker_rwsem);
180}
181EXPORT_SYMBOL(unregister_shrinker);
182
183#define SHRINK_BATCH 128
184/*
185 * Call the shrink functions to age shrinkable caches
186 *
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object.  With this in mind we age equal
189 * percentages of the lru and ageable caches.  This should balance the seeks
190 * generated by these structures.
191 *
192 * If the vm encountered mapped pages on the LRU it increase the pressure on
193 * slab to avoid swapping.
194 *
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196 *
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt.  It is used for balancing
199 * slab reclaim versus page reclaim.
200 *
201 * Returns the number of slab objects which we shrunk.
202 */
203unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204			unsigned long lru_pages)
205{
206	struct shrinker *shrinker;
207	unsigned long ret = 0;
208
209	if (scanned == 0)
210		scanned = SWAP_CLUSTER_MAX;
211
212	if (!down_read_trylock(&shrinker_rwsem))
213		return 1;	/* Assume we'll be able to shrink next time */
214
215	list_for_each_entry(shrinker, &shrinker_list, list) {
216		unsigned long long delta;
217		unsigned long total_scan;
218		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
219
220		delta = (4 * scanned) / shrinker->seeks;
221		delta *= max_pass;
222		do_div(delta, lru_pages + 1);
223		shrinker->nr += delta;
224		if (shrinker->nr < 0) {
225			printk(KERN_ERR "shrink_slab: %pF negative objects to "
226			       "delete nr=%ld\n",
227			       shrinker->shrink, shrinker->nr);
228			shrinker->nr = max_pass;
229		}
230
231		/*
232		 * Avoid risking looping forever due to too large nr value:
233		 * never try to free more than twice the estimate number of
234		 * freeable entries.
235		 */
236		if (shrinker->nr > max_pass * 2)
237			shrinker->nr = max_pass * 2;
238
239		total_scan = shrinker->nr;
240		shrinker->nr = 0;
241
242		while (total_scan >= SHRINK_BATCH) {
243			long this_scan = SHRINK_BATCH;
244			int shrink_ret;
245			int nr_before;
246
247			nr_before = (*shrinker->shrink)(0, gfp_mask);
248			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
249			if (shrink_ret == -1)
250				break;
251			if (shrink_ret < nr_before)
252				ret += nr_before - shrink_ret;
253			count_vm_events(SLABS_SCANNED, this_scan);
254			total_scan -= this_scan;
255
256			cond_resched();
257		}
258
259		shrinker->nr += total_scan;
260	}
261	up_read(&shrinker_rwsem);
262	return ret;
263}
264
265/* Called without lock on whether page is mapped, so answer is unstable */
266static inline int page_mapping_inuse(struct page *page)
267{
268	struct address_space *mapping;
269
270	/* Page is in somebody's page tables. */
271	if (page_mapped(page))
272		return 1;
273
274	/* Be more reluctant to reclaim swapcache than pagecache */
275	if (PageSwapCache(page))
276		return 1;
277
278	mapping = page_mapping(page);
279	if (!mapping)
280		return 0;
281
282	/* File is mmap'd by somebody? */
283	return mapping_mapped(mapping);
284}
285
286static inline int is_page_cache_freeable(struct page *page)
287{
288	/*
289	 * A freeable page cache page is referenced only by the caller
290	 * that isolated the page, the page cache radix tree and
291	 * optional buffer heads at page->private.
292	 */
293	return page_count(page) - page_has_private(page) == 2;
294}
295
296static int may_write_to_queue(struct backing_dev_info *bdi)
297{
298	if (current->flags & PF_SWAPWRITE)
299		return 1;
300	if (!bdi_write_congested(bdi))
301		return 1;
302	if (bdi == current->backing_dev_info)
303		return 1;
304	return 0;
305}
306
307/*
308 * We detected a synchronous write error writing a page out.  Probably
309 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
310 * fsync(), msync() or close().
311 *
312 * The tricky part is that after writepage we cannot touch the mapping: nothing
313 * prevents it from being freed up.  But we have a ref on the page and once
314 * that page is locked, the mapping is pinned.
315 *
316 * We're allowed to run sleeping lock_page() here because we know the caller has
317 * __GFP_FS.
318 */
319static void handle_write_error(struct address_space *mapping,
320				struct page *page, int error)
321{
322	lock_page(page);
323	if (page_mapping(page) == mapping)
324		mapping_set_error(mapping, error);
325	unlock_page(page);
326}
327
328/* Request for sync pageout. */
329enum pageout_io {
330	PAGEOUT_IO_ASYNC,
331	PAGEOUT_IO_SYNC,
332};
333
334/* possible outcome of pageout() */
335typedef enum {
336	/* failed to write page out, page is locked */
337	PAGE_KEEP,
338	/* move page to the active list, page is locked */
339	PAGE_ACTIVATE,
340	/* page has been sent to the disk successfully, page is unlocked */
341	PAGE_SUCCESS,
342	/* page is clean and locked */
343	PAGE_CLEAN,
344} pageout_t;
345
346/*
347 * pageout is called by shrink_page_list() for each dirty page.
348 * Calls ->writepage().
349 */
350static pageout_t pageout(struct page *page, struct address_space *mapping,
351						enum pageout_io sync_writeback)
352{
353	/*
354	 * If the page is dirty, only perform writeback if that write
355	 * will be non-blocking.  To prevent this allocation from being
356	 * stalled by pagecache activity.  But note that there may be
357	 * stalls if we need to run get_block().  We could test
358	 * PagePrivate for that.
359	 *
360	 * If this process is currently in __generic_file_aio_write() against
361	 * this page's queue, we can perform writeback even if that
362	 * will block.
363	 *
364	 * If the page is swapcache, write it back even if that would
365	 * block, for some throttling. This happens by accident, because
366	 * swap_backing_dev_info is bust: it doesn't reflect the
367	 * congestion state of the swapdevs.  Easy to fix, if needed.
368	 */
369	if (!is_page_cache_freeable(page))
370		return PAGE_KEEP;
371	if (!mapping) {
372		/*
373		 * Some data journaling orphaned pages can have
374		 * page->mapping == NULL while being dirty with clean buffers.
375		 */
376		if (page_has_private(page)) {
377			if (try_to_free_buffers(page)) {
378				ClearPageDirty(page);
379				printk("%s: orphaned page\n", __func__);
380				return PAGE_CLEAN;
381			}
382		}
383		return PAGE_KEEP;
384	}
385	if (mapping->a_ops->writepage == NULL)
386		return PAGE_ACTIVATE;
387	if (!may_write_to_queue(mapping->backing_dev_info))
388		return PAGE_KEEP;
389
390	if (clear_page_dirty_for_io(page)) {
391		int res;
392		struct writeback_control wbc = {
393			.sync_mode = WB_SYNC_NONE,
394			.nr_to_write = SWAP_CLUSTER_MAX,
395			.range_start = 0,
396			.range_end = LLONG_MAX,
397			.nonblocking = 1,
398			.for_reclaim = 1,
399		};
400
401		SetPageReclaim(page);
402		res = mapping->a_ops->writepage(page, &wbc);
403		if (res < 0)
404			handle_write_error(mapping, page, res);
405		if (res == AOP_WRITEPAGE_ACTIVATE) {
406			ClearPageReclaim(page);
407			return PAGE_ACTIVATE;
408		}
409
410		/*
411		 * Wait on writeback if requested to. This happens when
412		 * direct reclaiming a large contiguous area and the
413		 * first attempt to free a range of pages fails.
414		 */
415		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
416			wait_on_page_writeback(page);
417
418		if (!PageWriteback(page)) {
419			/* synchronous write or broken a_ops? */
420			ClearPageReclaim(page);
421		}
422		inc_zone_page_state(page, NR_VMSCAN_WRITE);
423		return PAGE_SUCCESS;
424	}
425
426	return PAGE_CLEAN;
427}
428
429/*
430 * Same as remove_mapping, but if the page is removed from the mapping, it
431 * gets returned with a refcount of 0.
432 */
433static int __remove_mapping(struct address_space *mapping, struct page *page)
434{
435	BUG_ON(!PageLocked(page));
436	BUG_ON(mapping != page_mapping(page));
437
438	spin_lock_irq(&mapping->tree_lock);
439	/*
440	 * The non racy check for a busy page.
441	 *
442	 * Must be careful with the order of the tests. When someone has
443	 * a ref to the page, it may be possible that they dirty it then
444	 * drop the reference. So if PageDirty is tested before page_count
445	 * here, then the following race may occur:
446	 *
447	 * get_user_pages(&page);
448	 * [user mapping goes away]
449	 * write_to(page);
450	 *				!PageDirty(page)    [good]
451	 * SetPageDirty(page);
452	 * put_page(page);
453	 *				!page_count(page)   [good, discard it]
454	 *
455	 * [oops, our write_to data is lost]
456	 *
457	 * Reversing the order of the tests ensures such a situation cannot
458	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
459	 * load is not satisfied before that of page->_count.
460	 *
461	 * Note that if SetPageDirty is always performed via set_page_dirty,
462	 * and thus under tree_lock, then this ordering is not required.
463	 */
464	if (!page_freeze_refs(page, 2))
465		goto cannot_free;
466	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
467	if (unlikely(PageDirty(page))) {
468		page_unfreeze_refs(page, 2);
469		goto cannot_free;
470	}
471
472	if (PageSwapCache(page)) {
473		swp_entry_t swap = { .val = page_private(page) };
474		__delete_from_swap_cache(page);
475		spin_unlock_irq(&mapping->tree_lock);
476		swapcache_free(swap, page);
477	} else {
478		__remove_from_page_cache(page);
479		spin_unlock_irq(&mapping->tree_lock);
480		mem_cgroup_uncharge_cache_page(page);
481	}
482
483	return 1;
484
485cannot_free:
486	spin_unlock_irq(&mapping->tree_lock);
487	return 0;
488}
489
490/*
491 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
492 * someone else has a ref on the page, abort and return 0.  If it was
493 * successfully detached, return 1.  Assumes the caller has a single ref on
494 * this page.
495 */
496int remove_mapping(struct address_space *mapping, struct page *page)
497{
498	if (__remove_mapping(mapping, page)) {
499		/*
500		 * Unfreezing the refcount with 1 rather than 2 effectively
501		 * drops the pagecache ref for us without requiring another
502		 * atomic operation.
503		 */
504		page_unfreeze_refs(page, 1);
505		return 1;
506	}
507	return 0;
508}
509
510/**
511 * putback_lru_page - put previously isolated page onto appropriate LRU list
512 * @page: page to be put back to appropriate lru list
513 *
514 * Add previously isolated @page to appropriate LRU list.
515 * Page may still be unevictable for other reasons.
516 *
517 * lru_lock must not be held, interrupts must be enabled.
518 */
519void putback_lru_page(struct page *page)
520{
521	int lru;
522	int active = !!TestClearPageActive(page);
523	int was_unevictable = PageUnevictable(page);
524
525	VM_BUG_ON(PageLRU(page));
526
527redo:
528	ClearPageUnevictable(page);
529
530	if (page_evictable(page, NULL)) {
531		/*
532		 * For evictable pages, we can use the cache.
533		 * In event of a race, worst case is we end up with an
534		 * unevictable page on [in]active list.
535		 * We know how to handle that.
536		 */
537		lru = active + page_lru_base_type(page);
538		lru_cache_add_lru(page, lru);
539	} else {
540		/*
541		 * Put unevictable pages directly on zone's unevictable
542		 * list.
543		 */
544		lru = LRU_UNEVICTABLE;
545		add_page_to_unevictable_list(page);
546		/*
547		 * When racing with an mlock clearing (page is
548		 * unlocked), make sure that if the other thread does
549		 * not observe our setting of PG_lru and fails
550		 * isolation, we see PG_mlocked cleared below and move
551		 * the page back to the evictable list.
552		 *
553		 * The other side is TestClearPageMlocked().
554		 */
555		smp_mb();
556	}
557
558	/*
559	 * page's status can change while we move it among lru. If an evictable
560	 * page is on unevictable list, it never be freed. To avoid that,
561	 * check after we added it to the list, again.
562	 */
563	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
564		if (!isolate_lru_page(page)) {
565			put_page(page);
566			goto redo;
567		}
568		/* This means someone else dropped this page from LRU
569		 * So, it will be freed or putback to LRU again. There is
570		 * nothing to do here.
571		 */
572	}
573
574	if (was_unevictable && lru != LRU_UNEVICTABLE)
575		count_vm_event(UNEVICTABLE_PGRESCUED);
576	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
577		count_vm_event(UNEVICTABLE_PGCULLED);
578
579	put_page(page);		/* drop ref from isolate */
580}
581
582/*
583 * shrink_page_list() returns the number of reclaimed pages
584 */
585static unsigned long shrink_page_list(struct list_head *page_list,
586					struct scan_control *sc,
587					enum pageout_io sync_writeback)
588{
589	LIST_HEAD(ret_pages);
590	struct pagevec freed_pvec;
591	int pgactivate = 0;
592	unsigned long nr_reclaimed = 0;
593	unsigned long vm_flags;
594
595	cond_resched();
596
597	pagevec_init(&freed_pvec, 1);
598	while (!list_empty(page_list)) {
599		struct address_space *mapping;
600		struct page *page;
601		int may_enter_fs;
602		int referenced;
603
604		cond_resched();
605
606		page = lru_to_page(page_list);
607		list_del(&page->lru);
608
609		if (!trylock_page(page))
610			goto keep;
611
612		VM_BUG_ON(PageActive(page));
613
614		sc->nr_scanned++;
615
616		if (unlikely(!page_evictable(page, NULL)))
617			goto cull_mlocked;
618
619		if (!sc->may_unmap && page_mapped(page))
620			goto keep_locked;
621
622		/* Double the slab pressure for mapped and swapcache pages */
623		if (page_mapped(page) || PageSwapCache(page))
624			sc->nr_scanned++;
625
626		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
627			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
628
629		if (PageWriteback(page)) {
630			/*
631			 * Synchronous reclaim is performed in two passes,
632			 * first an asynchronous pass over the list to
633			 * start parallel writeback, and a second synchronous
634			 * pass to wait for the IO to complete.  Wait here
635			 * for any page for which writeback has already
636			 * started.
637			 */
638			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
639				wait_on_page_writeback(page);
640			else
641				goto keep_locked;
642		}
643
644		referenced = page_referenced(page, 1,
645						sc->mem_cgroup, &vm_flags);
646		/*
647		 * In active use or really unfreeable?  Activate it.
648		 * If page which have PG_mlocked lost isoltation race,
649		 * try_to_unmap moves it to unevictable list
650		 */
651		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
652					referenced && page_mapping_inuse(page)
653					&& !(vm_flags & VM_LOCKED))
654			goto activate_locked;
655
656		/*
657		 * Anonymous process memory has backing store?
658		 * Try to allocate it some swap space here.
659		 */
660		if (PageAnon(page) && !PageSwapCache(page)) {
661			if (!(sc->gfp_mask & __GFP_IO))
662				goto keep_locked;
663			if (!add_to_swap(page))
664				goto activate_locked;
665			may_enter_fs = 1;
666		}
667
668		mapping = page_mapping(page);
669
670		/*
671		 * The page is mapped into the page tables of one or more
672		 * processes. Try to unmap it here.
673		 */
674		if (page_mapped(page) && mapping) {
675			switch (try_to_unmap(page, TTU_UNMAP)) {
676			case SWAP_FAIL:
677				goto activate_locked;
678			case SWAP_AGAIN:
679				goto keep_locked;
680			case SWAP_MLOCK:
681				goto cull_mlocked;
682			case SWAP_SUCCESS:
683				; /* try to free the page below */
684			}
685		}
686
687		if (PageDirty(page)) {
688			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
689				goto keep_locked;
690			if (!may_enter_fs)
691				goto keep_locked;
692			if (!sc->may_writepage)
693				goto keep_locked;
694
695			/* Page is dirty, try to write it out here */
696			switch (pageout(page, mapping, sync_writeback)) {
697			case PAGE_KEEP:
698				goto keep_locked;
699			case PAGE_ACTIVATE:
700				goto activate_locked;
701			case PAGE_SUCCESS:
702				if (PageWriteback(page) || PageDirty(page))
703					goto keep;
704				/*
705				 * A synchronous write - probably a ramdisk.  Go
706				 * ahead and try to reclaim the page.
707				 */
708				if (!trylock_page(page))
709					goto keep;
710				if (PageDirty(page) || PageWriteback(page))
711					goto keep_locked;
712				mapping = page_mapping(page);
713			case PAGE_CLEAN:
714				; /* try to free the page below */
715			}
716		}
717
718		/*
719		 * If the page has buffers, try to free the buffer mappings
720		 * associated with this page. If we succeed we try to free
721		 * the page as well.
722		 *
723		 * We do this even if the page is PageDirty().
724		 * try_to_release_page() does not perform I/O, but it is
725		 * possible for a page to have PageDirty set, but it is actually
726		 * clean (all its buffers are clean).  This happens if the
727		 * buffers were written out directly, with submit_bh(). ext3
728		 * will do this, as well as the blockdev mapping.
729		 * try_to_release_page() will discover that cleanness and will
730		 * drop the buffers and mark the page clean - it can be freed.
731		 *
732		 * Rarely, pages can have buffers and no ->mapping.  These are
733		 * the pages which were not successfully invalidated in
734		 * truncate_complete_page().  We try to drop those buffers here
735		 * and if that worked, and the page is no longer mapped into
736		 * process address space (page_count == 1) it can be freed.
737		 * Otherwise, leave the page on the LRU so it is swappable.
738		 */
739		if (page_has_private(page)) {
740			if (!try_to_release_page(page, sc->gfp_mask))
741				goto activate_locked;
742			if (!mapping && page_count(page) == 1) {
743				unlock_page(page);
744				if (put_page_testzero(page))
745					goto free_it;
746				else {
747					/*
748					 * rare race with speculative reference.
749					 * the speculative reference will free
750					 * this page shortly, so we may
751					 * increment nr_reclaimed here (and
752					 * leave it off the LRU).
753					 */
754					nr_reclaimed++;
755					continue;
756				}
757			}
758		}
759
760		if (!mapping || !__remove_mapping(mapping, page))
761			goto keep_locked;
762
763		/*
764		 * At this point, we have no other references and there is
765		 * no way to pick any more up (removed from LRU, removed
766		 * from pagecache). Can use non-atomic bitops now (and
767		 * we obviously don't have to worry about waking up a process
768		 * waiting on the page lock, because there are no references.
769		 */
770		__clear_page_locked(page);
771free_it:
772		nr_reclaimed++;
773		if (!pagevec_add(&freed_pvec, page)) {
774			__pagevec_free(&freed_pvec);
775			pagevec_reinit(&freed_pvec);
776		}
777		continue;
778
779cull_mlocked:
780		if (PageSwapCache(page))
781			try_to_free_swap(page);
782		unlock_page(page);
783		putback_lru_page(page);
784		continue;
785
786activate_locked:
787		/* Not a candidate for swapping, so reclaim swap space. */
788		if (PageSwapCache(page) && vm_swap_full())
789			try_to_free_swap(page);
790		VM_BUG_ON(PageActive(page));
791		SetPageActive(page);
792		pgactivate++;
793keep_locked:
794		unlock_page(page);
795keep:
796		list_add(&page->lru, &ret_pages);
797		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
798	}
799	list_splice(&ret_pages, page_list);
800	if (pagevec_count(&freed_pvec))
801		__pagevec_free(&freed_pvec);
802	count_vm_events(PGACTIVATE, pgactivate);
803	return nr_reclaimed;
804}
805
806/* LRU Isolation modes. */
807#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
808#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
809#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
810
811/*
812 * Attempt to remove the specified page from its LRU.  Only take this page
813 * if it is of the appropriate PageActive status.  Pages which are being
814 * freed elsewhere are also ignored.
815 *
816 * page:	page to consider
817 * mode:	one of the LRU isolation modes defined above
818 *
819 * returns 0 on success, -ve errno on failure.
820 */
821int __isolate_lru_page(struct page *page, int mode, int file)
822{
823	int ret = -EINVAL;
824
825	/* Only take pages on the LRU. */
826	if (!PageLRU(page))
827		return ret;
828
829	/*
830	 * When checking the active state, we need to be sure we are
831	 * dealing with comparible boolean values.  Take the logical not
832	 * of each.
833	 */
834	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
835		return ret;
836
837	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
838		return ret;
839
840	/*
841	 * When this function is being called for lumpy reclaim, we
842	 * initially look into all LRU pages, active, inactive and
843	 * unevictable; only give shrink_page_list evictable pages.
844	 */
845	if (PageUnevictable(page))
846		return ret;
847
848	ret = -EBUSY;
849
850	if (likely(get_page_unless_zero(page))) {
851		/*
852		 * Be careful not to clear PageLRU until after we're
853		 * sure the page is not being freed elsewhere -- the
854		 * page release code relies on it.
855		 */
856		ClearPageLRU(page);
857		ret = 0;
858	}
859
860	return ret;
861}
862
863/*
864 * zone->lru_lock is heavily contended.  Some of the functions that
865 * shrink the lists perform better by taking out a batch of pages
866 * and working on them outside the LRU lock.
867 *
868 * For pagecache intensive workloads, this function is the hottest
869 * spot in the kernel (apart from copy_*_user functions).
870 *
871 * Appropriate locks must be held before calling this function.
872 *
873 * @nr_to_scan:	The number of pages to look through on the list.
874 * @src:	The LRU list to pull pages off.
875 * @dst:	The temp list to put pages on to.
876 * @scanned:	The number of pages that were scanned.
877 * @order:	The caller's attempted allocation order
878 * @mode:	One of the LRU isolation modes
879 * @file:	True [1] if isolating file [!anon] pages
880 *
881 * returns how many pages were moved onto *@dst.
882 */
883static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
884		struct list_head *src, struct list_head *dst,
885		unsigned long *scanned, int order, int mode, int file)
886{
887	unsigned long nr_taken = 0;
888	unsigned long scan;
889
890	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
891		struct page *page;
892		unsigned long pfn;
893		unsigned long end_pfn;
894		unsigned long page_pfn;
895		int zone_id;
896
897		page = lru_to_page(src);
898		prefetchw_prev_lru_page(page, src, flags);
899
900		VM_BUG_ON(!PageLRU(page));
901
902		switch (__isolate_lru_page(page, mode, file)) {
903		case 0:
904			list_move(&page->lru, dst);
905			mem_cgroup_del_lru(page);
906			nr_taken++;
907			break;
908
909		case -EBUSY:
910			/* else it is being freed elsewhere */
911			list_move(&page->lru, src);
912			mem_cgroup_rotate_lru_list(page, page_lru(page));
913			continue;
914
915		default:
916			BUG();
917		}
918
919		if (!order)
920			continue;
921
922		/*
923		 * Attempt to take all pages in the order aligned region
924		 * surrounding the tag page.  Only take those pages of
925		 * the same active state as that tag page.  We may safely
926		 * round the target page pfn down to the requested order
927		 * as the mem_map is guarenteed valid out to MAX_ORDER,
928		 * where that page is in a different zone we will detect
929		 * it from its zone id and abort this block scan.
930		 */
931		zone_id = page_zone_id(page);
932		page_pfn = page_to_pfn(page);
933		pfn = page_pfn & ~((1 << order) - 1);
934		end_pfn = pfn + (1 << order);
935		for (; pfn < end_pfn; pfn++) {
936			struct page *cursor_page;
937
938			/* The target page is in the block, ignore it. */
939			if (unlikely(pfn == page_pfn))
940				continue;
941
942			/* Avoid holes within the zone. */
943			if (unlikely(!pfn_valid_within(pfn)))
944				break;
945
946			cursor_page = pfn_to_page(pfn);
947
948			/* Check that we have not crossed a zone boundary. */
949			if (unlikely(page_zone_id(cursor_page) != zone_id))
950				continue;
951
952			/*
953			 * If we don't have enough swap space, reclaiming of
954			 * anon page which don't already have a swap slot is
955			 * pointless.
956			 */
957			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
958					!PageSwapCache(cursor_page))
959				continue;
960
961			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
962				list_move(&cursor_page->lru, dst);
963				mem_cgroup_del_lru(cursor_page);
964				nr_taken++;
965				scan++;
966			}
967		}
968	}
969
970	*scanned = scan;
971	return nr_taken;
972}
973
974static unsigned long isolate_pages_global(unsigned long nr,
975					struct list_head *dst,
976					unsigned long *scanned, int order,
977					int mode, struct zone *z,
978					struct mem_cgroup *mem_cont,
979					int active, int file)
980{
981	int lru = LRU_BASE;
982	if (active)
983		lru += LRU_ACTIVE;
984	if (file)
985		lru += LRU_FILE;
986	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
987								mode, file);
988}
989
990/*
991 * clear_active_flags() is a helper for shrink_active_list(), clearing
992 * any active bits from the pages in the list.
993 */
994static unsigned long clear_active_flags(struct list_head *page_list,
995					unsigned int *count)
996{
997	int nr_active = 0;
998	int lru;
999	struct page *page;
1000
1001	list_for_each_entry(page, page_list, lru) {
1002		lru = page_lru_base_type(page);
1003		if (PageActive(page)) {
1004			lru += LRU_ACTIVE;
1005			ClearPageActive(page);
1006			nr_active++;
1007		}
1008		count[lru]++;
1009	}
1010
1011	return nr_active;
1012}
1013
1014/**
1015 * isolate_lru_page - tries to isolate a page from its LRU list
1016 * @page: page to isolate from its LRU list
1017 *
1018 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1019 * vmstat statistic corresponding to whatever LRU list the page was on.
1020 *
1021 * Returns 0 if the page was removed from an LRU list.
1022 * Returns -EBUSY if the page was not on an LRU list.
1023 *
1024 * The returned page will have PageLRU() cleared.  If it was found on
1025 * the active list, it will have PageActive set.  If it was found on
1026 * the unevictable list, it will have the PageUnevictable bit set. That flag
1027 * may need to be cleared by the caller before letting the page go.
1028 *
1029 * The vmstat statistic corresponding to the list on which the page was
1030 * found will be decremented.
1031 *
1032 * Restrictions:
1033 * (1) Must be called with an elevated refcount on the page. This is a
1034 *     fundamentnal difference from isolate_lru_pages (which is called
1035 *     without a stable reference).
1036 * (2) the lru_lock must not be held.
1037 * (3) interrupts must be enabled.
1038 */
1039int isolate_lru_page(struct page *page)
1040{
1041	int ret = -EBUSY;
1042
1043	if (PageLRU(page)) {
1044		struct zone *zone = page_zone(page);
1045
1046		spin_lock_irq(&zone->lru_lock);
1047		if (PageLRU(page) && get_page_unless_zero(page)) {
1048			int lru = page_lru(page);
1049			ret = 0;
1050			ClearPageLRU(page);
1051
1052			del_page_from_lru_list(zone, page, lru);
1053		}
1054		spin_unlock_irq(&zone->lru_lock);
1055	}
1056	return ret;
1057}
1058
1059/*
1060 * Are there way too many processes in the direct reclaim path already?
1061 */
1062static int too_many_isolated(struct zone *zone, int file,
1063		struct scan_control *sc)
1064{
1065	unsigned long inactive, isolated;
1066
1067	if (current_is_kswapd())
1068		return 0;
1069
1070	if (!scanning_global_lru(sc))
1071		return 0;
1072
1073	if (file) {
1074		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1075		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1076	} else {
1077		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1078		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1079	}
1080
1081	return isolated > inactive;
1082}
1083
1084/*
1085 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1086 * of reclaimed pages
1087 */
1088static unsigned long shrink_inactive_list(unsigned long max_scan,
1089			struct zone *zone, struct scan_control *sc,
1090			int priority, int file)
1091{
1092	LIST_HEAD(page_list);
1093	struct pagevec pvec;
1094	unsigned long nr_scanned = 0;
1095	unsigned long nr_reclaimed = 0;
1096	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1097	int lumpy_reclaim = 0;
1098
1099	while (unlikely(too_many_isolated(zone, file, sc))) {
1100		congestion_wait(BLK_RW_ASYNC, HZ/10);
1101
1102		/* We are about to die and free our memory. Return now. */
1103		if (fatal_signal_pending(current))
1104			return SWAP_CLUSTER_MAX;
1105	}
1106
1107	/*
1108	 * If we need a large contiguous chunk of memory, or have
1109	 * trouble getting a small set of contiguous pages, we
1110	 * will reclaim both active and inactive pages.
1111	 *
1112	 * We use the same threshold as pageout congestion_wait below.
1113	 */
1114	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1115		lumpy_reclaim = 1;
1116	else if (sc->order && priority < DEF_PRIORITY - 2)
1117		lumpy_reclaim = 1;
1118
1119	pagevec_init(&pvec, 1);
1120
1121	lru_add_drain();
1122	spin_lock_irq(&zone->lru_lock);
1123	do {
1124		struct page *page;
1125		unsigned long nr_taken;
1126		unsigned long nr_scan;
1127		unsigned long nr_freed;
1128		unsigned long nr_active;
1129		unsigned int count[NR_LRU_LISTS] = { 0, };
1130		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1131		unsigned long nr_anon;
1132		unsigned long nr_file;
1133
1134		nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1135			     &page_list, &nr_scan, sc->order, mode,
1136				zone, sc->mem_cgroup, 0, file);
1137
1138		if (scanning_global_lru(sc)) {
1139			zone->pages_scanned += nr_scan;
1140			if (current_is_kswapd())
1141				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1142						       nr_scan);
1143			else
1144				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1145						       nr_scan);
1146		}
1147
1148		if (nr_taken == 0)
1149			goto done;
1150
1151		nr_active = clear_active_flags(&page_list, count);
1152		__count_vm_events(PGDEACTIVATE, nr_active);
1153
1154		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1155						-count[LRU_ACTIVE_FILE]);
1156		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1157						-count[LRU_INACTIVE_FILE]);
1158		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1159						-count[LRU_ACTIVE_ANON]);
1160		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1161						-count[LRU_INACTIVE_ANON]);
1162
1163		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1164		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1165		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1166		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1167
1168		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1169		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1170		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1171		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1172
1173		spin_unlock_irq(&zone->lru_lock);
1174
1175		nr_scanned += nr_scan;
1176		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1177
1178		/*
1179		 * If we are direct reclaiming for contiguous pages and we do
1180		 * not reclaim everything in the list, try again and wait
1181		 * for IO to complete. This will stall high-order allocations
1182		 * but that should be acceptable to the caller
1183		 */
1184		if (nr_freed < nr_taken && !current_is_kswapd() &&
1185		    lumpy_reclaim) {
1186			congestion_wait(BLK_RW_ASYNC, HZ/10);
1187
1188			/*
1189			 * The attempt at page out may have made some
1190			 * of the pages active, mark them inactive again.
1191			 */
1192			nr_active = clear_active_flags(&page_list, count);
1193			count_vm_events(PGDEACTIVATE, nr_active);
1194
1195			nr_freed += shrink_page_list(&page_list, sc,
1196							PAGEOUT_IO_SYNC);
1197		}
1198
1199		nr_reclaimed += nr_freed;
1200
1201		local_irq_disable();
1202		if (current_is_kswapd())
1203			__count_vm_events(KSWAPD_STEAL, nr_freed);
1204		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1205
1206		spin_lock(&zone->lru_lock);
1207		/*
1208		 * Put back any unfreeable pages.
1209		 */
1210		while (!list_empty(&page_list)) {
1211			int lru;
1212			page = lru_to_page(&page_list);
1213			VM_BUG_ON(PageLRU(page));
1214			list_del(&page->lru);
1215			if (unlikely(!page_evictable(page, NULL))) {
1216				spin_unlock_irq(&zone->lru_lock);
1217				putback_lru_page(page);
1218				spin_lock_irq(&zone->lru_lock);
1219				continue;
1220			}
1221			SetPageLRU(page);
1222			lru = page_lru(page);
1223			add_page_to_lru_list(zone, page, lru);
1224			if (is_active_lru(lru)) {
1225				int file = is_file_lru(lru);
1226				reclaim_stat->recent_rotated[file]++;
1227			}
1228			if (!pagevec_add(&pvec, page)) {
1229				spin_unlock_irq(&zone->lru_lock);
1230				__pagevec_release(&pvec);
1231				spin_lock_irq(&zone->lru_lock);
1232			}
1233		}
1234		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1235		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1236
1237  	} while (nr_scanned < max_scan);
1238
1239done:
1240	spin_unlock_irq(&zone->lru_lock);
1241	pagevec_release(&pvec);
1242	return nr_reclaimed;
1243}
1244
1245/*
1246 * We are about to scan this zone at a certain priority level.  If that priority
1247 * level is smaller (ie: more urgent) than the previous priority, then note
1248 * that priority level within the zone.  This is done so that when the next
1249 * process comes in to scan this zone, it will immediately start out at this
1250 * priority level rather than having to build up its own scanning priority.
1251 * Here, this priority affects only the reclaim-mapped threshold.
1252 */
1253static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1254{
1255	if (priority < zone->prev_priority)
1256		zone->prev_priority = priority;
1257}
1258
1259/*
1260 * This moves pages from the active list to the inactive list.
1261 *
1262 * We move them the other way if the page is referenced by one or more
1263 * processes, from rmap.
1264 *
1265 * If the pages are mostly unmapped, the processing is fast and it is
1266 * appropriate to hold zone->lru_lock across the whole operation.  But if
1267 * the pages are mapped, the processing is slow (page_referenced()) so we
1268 * should drop zone->lru_lock around each page.  It's impossible to balance
1269 * this, so instead we remove the pages from the LRU while processing them.
1270 * It is safe to rely on PG_active against the non-LRU pages in here because
1271 * nobody will play with that bit on a non-LRU page.
1272 *
1273 * The downside is that we have to touch page->_count against each page.
1274 * But we had to alter page->flags anyway.
1275 */
1276
1277static void move_active_pages_to_lru(struct zone *zone,
1278				     struct list_head *list,
1279				     enum lru_list lru)
1280{
1281	unsigned long pgmoved = 0;
1282	struct pagevec pvec;
1283	struct page *page;
1284
1285	pagevec_init(&pvec, 1);
1286
1287	while (!list_empty(list)) {
1288		page = lru_to_page(list);
1289
1290		VM_BUG_ON(PageLRU(page));
1291		SetPageLRU(page);
1292
1293		list_move(&page->lru, &zone->lru[lru].list);
1294		mem_cgroup_add_lru_list(page, lru);
1295		pgmoved++;
1296
1297		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1298			spin_unlock_irq(&zone->lru_lock);
1299			if (buffer_heads_over_limit)
1300				pagevec_strip(&pvec);
1301			__pagevec_release(&pvec);
1302			spin_lock_irq(&zone->lru_lock);
1303		}
1304	}
1305	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1306	if (!is_active_lru(lru))
1307		__count_vm_events(PGDEACTIVATE, pgmoved);
1308}
1309
1310static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1311			struct scan_control *sc, int priority, int file)
1312{
1313	unsigned long nr_taken;
1314	unsigned long pgscanned;
1315	unsigned long vm_flags;
1316	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1317	LIST_HEAD(l_active);
1318	LIST_HEAD(l_inactive);
1319	struct page *page;
1320	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1321	unsigned long nr_rotated = 0;
1322
1323	lru_add_drain();
1324	spin_lock_irq(&zone->lru_lock);
1325	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1326					ISOLATE_ACTIVE, zone,
1327					sc->mem_cgroup, 1, file);
1328	/*
1329	 * zone->pages_scanned is used for detect zone's oom
1330	 * mem_cgroup remembers nr_scan by itself.
1331	 */
1332	if (scanning_global_lru(sc)) {
1333		zone->pages_scanned += pgscanned;
1334	}
1335	reclaim_stat->recent_scanned[file] += nr_taken;
1336
1337	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1338	if (file)
1339		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1340	else
1341		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1342	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1343	spin_unlock_irq(&zone->lru_lock);
1344
1345	while (!list_empty(&l_hold)) {
1346		cond_resched();
1347		page = lru_to_page(&l_hold);
1348		list_del(&page->lru);
1349
1350		if (unlikely(!page_evictable(page, NULL))) {
1351			putback_lru_page(page);
1352			continue;
1353		}
1354
1355		/* page_referenced clears PageReferenced */
1356		if (page_mapping_inuse(page) &&
1357		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1358			nr_rotated++;
1359			/*
1360			 * Identify referenced, file-backed active pages and
1361			 * give them one more trip around the active list. So
1362			 * that executable code get better chances to stay in
1363			 * memory under moderate memory pressure.  Anon pages
1364			 * are not likely to be evicted by use-once streaming
1365			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1366			 * so we ignore them here.
1367			 */
1368			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1369				list_add(&page->lru, &l_active);
1370				continue;
1371			}
1372		}
1373
1374		ClearPageActive(page);	/* we are de-activating */
1375		list_add(&page->lru, &l_inactive);
1376	}
1377
1378	/*
1379	 * Move pages back to the lru list.
1380	 */
1381	spin_lock_irq(&zone->lru_lock);
1382	/*
1383	 * Count referenced pages from currently used mappings as rotated,
1384	 * even though only some of them are actually re-activated.  This
1385	 * helps balance scan pressure between file and anonymous pages in
1386	 * get_scan_ratio.
1387	 */
1388	reclaim_stat->recent_rotated[file] += nr_rotated;
1389
1390	move_active_pages_to_lru(zone, &l_active,
1391						LRU_ACTIVE + file * LRU_FILE);
1392	move_active_pages_to_lru(zone, &l_inactive,
1393						LRU_BASE   + file * LRU_FILE);
1394	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1395	spin_unlock_irq(&zone->lru_lock);
1396}
1397
1398static int inactive_anon_is_low_global(struct zone *zone)
1399{
1400	unsigned long active, inactive;
1401
1402	active = zone_page_state(zone, NR_ACTIVE_ANON);
1403	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1404
1405	if (inactive * zone->inactive_ratio < active)
1406		return 1;
1407
1408	return 0;
1409}
1410
1411/**
1412 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1413 * @zone: zone to check
1414 * @sc:   scan control of this context
1415 *
1416 * Returns true if the zone does not have enough inactive anon pages,
1417 * meaning some active anon pages need to be deactivated.
1418 */
1419static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1420{
1421	int low;
1422
1423	if (scanning_global_lru(sc))
1424		low = inactive_anon_is_low_global(zone);
1425	else
1426		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1427	return low;
1428}
1429
1430static int inactive_file_is_low_global(struct zone *zone)
1431{
1432	unsigned long active, inactive;
1433
1434	active = zone_page_state(zone, NR_ACTIVE_FILE);
1435	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1436
1437	return (active > inactive);
1438}
1439
1440/**
1441 * inactive_file_is_low - check if file pages need to be deactivated
1442 * @zone: zone to check
1443 * @sc:   scan control of this context
1444 *
1445 * When the system is doing streaming IO, memory pressure here
1446 * ensures that active file pages get deactivated, until more
1447 * than half of the file pages are on the inactive list.
1448 *
1449 * Once we get to that situation, protect the system's working
1450 * set from being evicted by disabling active file page aging.
1451 *
1452 * This uses a different ratio than the anonymous pages, because
1453 * the page cache uses a use-once replacement algorithm.
1454 */
1455static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1456{
1457	int low;
1458
1459	if (scanning_global_lru(sc))
1460		low = inactive_file_is_low_global(zone);
1461	else
1462		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1463	return low;
1464}
1465
1466static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1467	struct zone *zone, struct scan_control *sc, int priority)
1468{
1469	int file = is_file_lru(lru);
1470
1471	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1472		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1473		return 0;
1474	}
1475
1476	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1477		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1478		return 0;
1479	}
1480	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1481}
1482
1483/*
1484 * Determine how aggressively the anon and file LRU lists should be
1485 * scanned.  The relative value of each set of LRU lists is determined
1486 * by looking at the fraction of the pages scanned we did rotate back
1487 * onto the active list instead of evict.
1488 *
1489 * percent[0] specifies how much pressure to put on ram/swap backed
1490 * memory, while percent[1] determines pressure on the file LRUs.
1491 */
1492static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1493					unsigned long *percent)
1494{
1495	unsigned long anon, file, free;
1496	unsigned long anon_prio, file_prio;
1497	unsigned long ap, fp;
1498	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1499
1500	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1501		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1502	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1503		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1504
1505	if (scanning_global_lru(sc)) {
1506		free  = zone_page_state(zone, NR_FREE_PAGES);
1507		/* If we have very few page cache pages,
1508		   force-scan anon pages. */
1509		if (unlikely(file + free <= high_wmark_pages(zone))) {
1510			percent[0] = 100;
1511			percent[1] = 0;
1512			return;
1513		}
1514	}
1515
1516	/*
1517	 * OK, so we have swap space and a fair amount of page cache
1518	 * pages.  We use the recently rotated / recently scanned
1519	 * ratios to determine how valuable each cache is.
1520	 *
1521	 * Because workloads change over time (and to avoid overflow)
1522	 * we keep these statistics as a floating average, which ends
1523	 * up weighing recent references more than old ones.
1524	 *
1525	 * anon in [0], file in [1]
1526	 */
1527	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1528		spin_lock_irq(&zone->lru_lock);
1529		reclaim_stat->recent_scanned[0] /= 2;
1530		reclaim_stat->recent_rotated[0] /= 2;
1531		spin_unlock_irq(&zone->lru_lock);
1532	}
1533
1534	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1535		spin_lock_irq(&zone->lru_lock);
1536		reclaim_stat->recent_scanned[1] /= 2;
1537		reclaim_stat->recent_rotated[1] /= 2;
1538		spin_unlock_irq(&zone->lru_lock);
1539	}
1540
1541	/*
1542	 * With swappiness at 100, anonymous and file have the same priority.
1543	 * This scanning priority is essentially the inverse of IO cost.
1544	 */
1545	anon_prio = sc->swappiness;
1546	file_prio = 200 - sc->swappiness;
1547
1548	/*
1549	 * The amount of pressure on anon vs file pages is inversely
1550	 * proportional to the fraction of recently scanned pages on
1551	 * each list that were recently referenced and in active use.
1552	 */
1553	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1554	ap /= reclaim_stat->recent_rotated[0] + 1;
1555
1556	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1557	fp /= reclaim_stat->recent_rotated[1] + 1;
1558
1559	/* Normalize to percentages */
1560	percent[0] = 100 * ap / (ap + fp + 1);
1561	percent[1] = 100 - percent[0];
1562}
1563
1564/*
1565 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1566 * until we collected @swap_cluster_max pages to scan.
1567 */
1568static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1569				       unsigned long *nr_saved_scan)
1570{
1571	unsigned long nr;
1572
1573	*nr_saved_scan += nr_to_scan;
1574	nr = *nr_saved_scan;
1575
1576	if (nr >= SWAP_CLUSTER_MAX)
1577		*nr_saved_scan = 0;
1578	else
1579		nr = 0;
1580
1581	return nr;
1582}
1583
1584/*
1585 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1586 */
1587static void shrink_zone(int priority, struct zone *zone,
1588				struct scan_control *sc)
1589{
1590	unsigned long nr[NR_LRU_LISTS];
1591	unsigned long nr_to_scan;
1592	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1593	enum lru_list l;
1594	unsigned long nr_reclaimed = sc->nr_reclaimed;
1595	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1596	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1597	int noswap = 0;
1598
1599	/* If we have no swap space, do not bother scanning anon pages. */
1600	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1601		noswap = 1;
1602		percent[0] = 0;
1603		percent[1] = 100;
1604	} else
1605		get_scan_ratio(zone, sc, percent);
1606
1607	for_each_evictable_lru(l) {
1608		int file = is_file_lru(l);
1609		unsigned long scan;
1610
1611		scan = zone_nr_lru_pages(zone, sc, l);
1612		if (priority || noswap) {
1613			scan >>= priority;
1614			scan = (scan * percent[file]) / 100;
1615		}
1616		nr[l] = nr_scan_try_batch(scan,
1617					  &reclaim_stat->nr_saved_scan[l]);
1618	}
1619
1620	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1621					nr[LRU_INACTIVE_FILE]) {
1622		for_each_evictable_lru(l) {
1623			if (nr[l]) {
1624				nr_to_scan = min_t(unsigned long,
1625						   nr[l], SWAP_CLUSTER_MAX);
1626				nr[l] -= nr_to_scan;
1627
1628				nr_reclaimed += shrink_list(l, nr_to_scan,
1629							    zone, sc, priority);
1630			}
1631		}
1632		/*
1633		 * On large memory systems, scan >> priority can become
1634		 * really large. This is fine for the starting priority;
1635		 * we want to put equal scanning pressure on each zone.
1636		 * However, if the VM has a harder time of freeing pages,
1637		 * with multiple processes reclaiming pages, the total
1638		 * freeing target can get unreasonably large.
1639		 */
1640		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1641			break;
1642	}
1643
1644	sc->nr_reclaimed = nr_reclaimed;
1645
1646	/*
1647	 * Even if we did not try to evict anon pages at all, we want to
1648	 * rebalance the anon lru active/inactive ratio.
1649	 */
1650	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1651		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1652
1653	throttle_vm_writeout(sc->gfp_mask);
1654}
1655
1656/*
1657 * This is the direct reclaim path, for page-allocating processes.  We only
1658 * try to reclaim pages from zones which will satisfy the caller's allocation
1659 * request.
1660 *
1661 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1662 * Because:
1663 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1664 *    allocation or
1665 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1666 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1667 *    zone defense algorithm.
1668 *
1669 * If a zone is deemed to be full of pinned pages then just give it a light
1670 * scan then give up on it.
1671 */
1672static void shrink_zones(int priority, struct zonelist *zonelist,
1673					struct scan_control *sc)
1674{
1675	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1676	struct zoneref *z;
1677	struct zone *zone;
1678
1679	sc->all_unreclaimable = 1;
1680	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1681					sc->nodemask) {
1682		if (!populated_zone(zone))
1683			continue;
1684		/*
1685		 * Take care memory controller reclaiming has small influence
1686		 * to global LRU.
1687		 */
1688		if (scanning_global_lru(sc)) {
1689			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1690				continue;
1691			note_zone_scanning_priority(zone, priority);
1692
1693			if (zone_is_all_unreclaimable(zone) &&
1694						priority != DEF_PRIORITY)
1695				continue;	/* Let kswapd poll it */
1696			sc->all_unreclaimable = 0;
1697		} else {
1698			/*
1699			 * Ignore cpuset limitation here. We just want to reduce
1700			 * # of used pages by us regardless of memory shortage.
1701			 */
1702			sc->all_unreclaimable = 0;
1703			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1704							priority);
1705		}
1706
1707		shrink_zone(priority, zone, sc);
1708	}
1709}
1710
1711/*
1712 * This is the main entry point to direct page reclaim.
1713 *
1714 * If a full scan of the inactive list fails to free enough memory then we
1715 * are "out of memory" and something needs to be killed.
1716 *
1717 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1718 * high - the zone may be full of dirty or under-writeback pages, which this
1719 * caller can't do much about.  We kick the writeback threads and take explicit
1720 * naps in the hope that some of these pages can be written.  But if the
1721 * allocating task holds filesystem locks which prevent writeout this might not
1722 * work, and the allocation attempt will fail.
1723 *
1724 * returns:	0, if no pages reclaimed
1725 * 		else, the number of pages reclaimed
1726 */
1727static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1728					struct scan_control *sc)
1729{
1730	int priority;
1731	unsigned long ret = 0;
1732	unsigned long total_scanned = 0;
1733	struct reclaim_state *reclaim_state = current->reclaim_state;
1734	unsigned long lru_pages = 0;
1735	struct zoneref *z;
1736	struct zone *zone;
1737	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1738	unsigned long writeback_threshold;
1739
1740	delayacct_freepages_start();
1741
1742	if (scanning_global_lru(sc))
1743		count_vm_event(ALLOCSTALL);
1744	/*
1745	 * mem_cgroup will not do shrink_slab.
1746	 */
1747	if (scanning_global_lru(sc)) {
1748		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1749
1750			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1751				continue;
1752
1753			lru_pages += zone_reclaimable_pages(zone);
1754		}
1755	}
1756
1757	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1758		sc->nr_scanned = 0;
1759		if (!priority)
1760			disable_swap_token();
1761		shrink_zones(priority, zonelist, sc);
1762		/*
1763		 * Don't shrink slabs when reclaiming memory from
1764		 * over limit cgroups
1765		 */
1766		if (scanning_global_lru(sc)) {
1767			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1768			if (reclaim_state) {
1769				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1770				reclaim_state->reclaimed_slab = 0;
1771			}
1772		}
1773		total_scanned += sc->nr_scanned;
1774		if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1775			ret = sc->nr_reclaimed;
1776			goto out;
1777		}
1778
1779		/*
1780		 * Try to write back as many pages as we just scanned.  This
1781		 * tends to cause slow streaming writers to write data to the
1782		 * disk smoothly, at the dirtying rate, which is nice.   But
1783		 * that's undesirable in laptop mode, where we *want* lumpy
1784		 * writeout.  So in laptop mode, write out the whole world.
1785		 */
1786		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1787		if (total_scanned > writeback_threshold) {
1788			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1789			sc->may_writepage = 1;
1790		}
1791
1792		/* Take a nap, wait for some writeback to complete */
1793		if (!sc->hibernation_mode && sc->nr_scanned &&
1794		    priority < DEF_PRIORITY - 2)
1795			congestion_wait(BLK_RW_ASYNC, HZ/10);
1796	}
1797	/* top priority shrink_zones still had more to do? don't OOM, then */
1798	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1799		ret = sc->nr_reclaimed;
1800out:
1801	/*
1802	 * Now that we've scanned all the zones at this priority level, note
1803	 * that level within the zone so that the next thread which performs
1804	 * scanning of this zone will immediately start out at this priority
1805	 * level.  This affects only the decision whether or not to bring
1806	 * mapped pages onto the inactive list.
1807	 */
1808	if (priority < 0)
1809		priority = 0;
1810
1811	if (scanning_global_lru(sc)) {
1812		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1813
1814			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1815				continue;
1816
1817			zone->prev_priority = priority;
1818		}
1819	} else
1820		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1821
1822	delayacct_freepages_end();
1823
1824	return ret;
1825}
1826
1827unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1828				gfp_t gfp_mask, nodemask_t *nodemask)
1829{
1830	struct scan_control sc = {
1831		.gfp_mask = gfp_mask,
1832		.may_writepage = !laptop_mode,
1833		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1834		.may_unmap = 1,
1835		.may_swap = 1,
1836		.swappiness = vm_swappiness,
1837		.order = order,
1838		.mem_cgroup = NULL,
1839		.isolate_pages = isolate_pages_global,
1840		.nodemask = nodemask,
1841	};
1842
1843	return do_try_to_free_pages(zonelist, &sc);
1844}
1845
1846#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1847
1848unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1849						gfp_t gfp_mask, bool noswap,
1850						unsigned int swappiness,
1851						struct zone *zone, int nid)
1852{
1853	struct scan_control sc = {
1854		.may_writepage = !laptop_mode,
1855		.may_unmap = 1,
1856		.may_swap = !noswap,
1857		.swappiness = swappiness,
1858		.order = 0,
1859		.mem_cgroup = mem,
1860		.isolate_pages = mem_cgroup_isolate_pages,
1861	};
1862	nodemask_t nm  = nodemask_of_node(nid);
1863
1864	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1865			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1866	sc.nodemask = &nm;
1867	sc.nr_reclaimed = 0;
1868	sc.nr_scanned = 0;
1869	/*
1870	 * NOTE: Although we can get the priority field, using it
1871	 * here is not a good idea, since it limits the pages we can scan.
1872	 * if we don't reclaim here, the shrink_zone from balance_pgdat
1873	 * will pick up pages from other mem cgroup's as well. We hack
1874	 * the priority and make it zero.
1875	 */
1876	shrink_zone(0, zone, &sc);
1877	return sc.nr_reclaimed;
1878}
1879
1880unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1881					   gfp_t gfp_mask,
1882					   bool noswap,
1883					   unsigned int swappiness)
1884{
1885	struct zonelist *zonelist;
1886	struct scan_control sc = {
1887		.may_writepage = !laptop_mode,
1888		.may_unmap = 1,
1889		.may_swap = !noswap,
1890		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1891		.swappiness = swappiness,
1892		.order = 0,
1893		.mem_cgroup = mem_cont,
1894		.isolate_pages = mem_cgroup_isolate_pages,
1895		.nodemask = NULL, /* we don't care the placement */
1896	};
1897
1898	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1899			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1900	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1901	return do_try_to_free_pages(zonelist, &sc);
1902}
1903#endif
1904
1905/* is kswapd sleeping prematurely? */
1906static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1907{
1908	int i;
1909
1910	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1911	if (remaining)
1912		return 1;
1913
1914	/* If after HZ/10, a zone is below the high mark, it's premature */
1915	for (i = 0; i < pgdat->nr_zones; i++) {
1916		struct zone *zone = pgdat->node_zones + i;
1917
1918		if (!populated_zone(zone))
1919			continue;
1920
1921		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1922								0, 0))
1923			return 1;
1924	}
1925
1926	return 0;
1927}
1928
1929/*
1930 * For kswapd, balance_pgdat() will work across all this node's zones until
1931 * they are all at high_wmark_pages(zone).
1932 *
1933 * Returns the number of pages which were actually freed.
1934 *
1935 * There is special handling here for zones which are full of pinned pages.
1936 * This can happen if the pages are all mlocked, or if they are all used by
1937 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1938 * What we do is to detect the case where all pages in the zone have been
1939 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1940 * dead and from now on, only perform a short scan.  Basically we're polling
1941 * the zone for when the problem goes away.
1942 *
1943 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1944 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1945 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1946 * lower zones regardless of the number of free pages in the lower zones. This
1947 * interoperates with the page allocator fallback scheme to ensure that aging
1948 * of pages is balanced across the zones.
1949 */
1950static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1951{
1952	int all_zones_ok;
1953	int priority;
1954	int i;
1955	unsigned long total_scanned;
1956	struct reclaim_state *reclaim_state = current->reclaim_state;
1957	struct scan_control sc = {
1958		.gfp_mask = GFP_KERNEL,
1959		.may_unmap = 1,
1960		.may_swap = 1,
1961		/*
1962		 * kswapd doesn't want to be bailed out while reclaim. because
1963		 * we want to put equal scanning pressure on each zone.
1964		 */
1965		.nr_to_reclaim = ULONG_MAX,
1966		.swappiness = vm_swappiness,
1967		.order = order,
1968		.mem_cgroup = NULL,
1969		.isolate_pages = isolate_pages_global,
1970	};
1971	/*
1972	 * temp_priority is used to remember the scanning priority at which
1973	 * this zone was successfully refilled to
1974	 * free_pages == high_wmark_pages(zone).
1975	 */
1976	int temp_priority[MAX_NR_ZONES];
1977
1978loop_again:
1979	total_scanned = 0;
1980	sc.nr_reclaimed = 0;
1981	sc.may_writepage = !laptop_mode;
1982	count_vm_event(PAGEOUTRUN);
1983
1984	for (i = 0; i < pgdat->nr_zones; i++)
1985		temp_priority[i] = DEF_PRIORITY;
1986
1987	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1988		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1989		unsigned long lru_pages = 0;
1990		int has_under_min_watermark_zone = 0;
1991
1992		/* The swap token gets in the way of swapout... */
1993		if (!priority)
1994			disable_swap_token();
1995
1996		all_zones_ok = 1;
1997
1998		/*
1999		 * Scan in the highmem->dma direction for the highest
2000		 * zone which needs scanning
2001		 */
2002		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2003			struct zone *zone = pgdat->node_zones + i;
2004
2005			if (!populated_zone(zone))
2006				continue;
2007
2008			if (zone_is_all_unreclaimable(zone) &&
2009			    priority != DEF_PRIORITY)
2010				continue;
2011
2012			/*
2013			 * Do some background aging of the anon list, to give
2014			 * pages a chance to be referenced before reclaiming.
2015			 */
2016			if (inactive_anon_is_low(zone, &sc))
2017				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2018							&sc, priority, 0);
2019
2020			if (!zone_watermark_ok(zone, order,
2021					high_wmark_pages(zone), 0, 0)) {
2022				end_zone = i;
2023				break;
2024			}
2025		}
2026		if (i < 0)
2027			goto out;
2028
2029		for (i = 0; i <= end_zone; i++) {
2030			struct zone *zone = pgdat->node_zones + i;
2031
2032			lru_pages += zone_reclaimable_pages(zone);
2033		}
2034
2035		/*
2036		 * Now scan the zone in the dma->highmem direction, stopping
2037		 * at the last zone which needs scanning.
2038		 *
2039		 * We do this because the page allocator works in the opposite
2040		 * direction.  This prevents the page allocator from allocating
2041		 * pages behind kswapd's direction of progress, which would
2042		 * cause too much scanning of the lower zones.
2043		 */
2044		for (i = 0; i <= end_zone; i++) {
2045			struct zone *zone = pgdat->node_zones + i;
2046			int nr_slab;
2047			int nid, zid;
2048
2049			if (!populated_zone(zone))
2050				continue;
2051
2052			if (zone_is_all_unreclaimable(zone) &&
2053					priority != DEF_PRIORITY)
2054				continue;
2055
2056			if (!zone_watermark_ok(zone, order,
2057					high_wmark_pages(zone), end_zone, 0))
2058				all_zones_ok = 0;
2059			temp_priority[i] = priority;
2060			sc.nr_scanned = 0;
2061			note_zone_scanning_priority(zone, priority);
2062
2063			nid = pgdat->node_id;
2064			zid = zone_idx(zone);
2065			/*
2066			 * Call soft limit reclaim before calling shrink_zone.
2067			 * For now we ignore the return value
2068			 */
2069			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2070							nid, zid);
2071			/*
2072			 * We put equal pressure on every zone, unless one
2073			 * zone has way too many pages free already.
2074			 */
2075			if (!zone_watermark_ok(zone, order,
2076					8*high_wmark_pages(zone), end_zone, 0))
2077				shrink_zone(priority, zone, &sc);
2078			reclaim_state->reclaimed_slab = 0;
2079			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2080						lru_pages);
2081			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2082			total_scanned += sc.nr_scanned;
2083			if (zone_is_all_unreclaimable(zone))
2084				continue;
2085			if (nr_slab == 0 && zone->pages_scanned >=
2086					(zone_reclaimable_pages(zone) * 6))
2087					zone_set_flag(zone,
2088						      ZONE_ALL_UNRECLAIMABLE);
2089			/*
2090			 * If we've done a decent amount of scanning and
2091			 * the reclaim ratio is low, start doing writepage
2092			 * even in laptop mode
2093			 */
2094			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2095			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2096				sc.may_writepage = 1;
2097
2098			/*
2099			 * We are still under min water mark. it mean we have
2100			 * GFP_ATOMIC allocation failure risk. Hurry up!
2101			 */
2102			if (!zone_watermark_ok(zone, order, min_wmark_pages(zone),
2103					      end_zone, 0))
2104				has_under_min_watermark_zone = 1;
2105
2106		}
2107		if (all_zones_ok)
2108			break;		/* kswapd: all done */
2109		/*
2110		 * OK, kswapd is getting into trouble.  Take a nap, then take
2111		 * another pass across the zones.
2112		 */
2113		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2114			if (has_under_min_watermark_zone)
2115				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2116			else
2117				congestion_wait(BLK_RW_ASYNC, HZ/10);
2118		}
2119
2120		/*
2121		 * We do this so kswapd doesn't build up large priorities for
2122		 * example when it is freeing in parallel with allocators. It
2123		 * matches the direct reclaim path behaviour in terms of impact
2124		 * on zone->*_priority.
2125		 */
2126		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2127			break;
2128	}
2129out:
2130	/*
2131	 * Note within each zone the priority level at which this zone was
2132	 * brought into a happy state.  So that the next thread which scans this
2133	 * zone will start out at that priority level.
2134	 */
2135	for (i = 0; i < pgdat->nr_zones; i++) {
2136		struct zone *zone = pgdat->node_zones + i;
2137
2138		zone->prev_priority = temp_priority[i];
2139	}
2140	if (!all_zones_ok) {
2141		cond_resched();
2142
2143		try_to_freeze();
2144
2145		/*
2146		 * Fragmentation may mean that the system cannot be
2147		 * rebalanced for high-order allocations in all zones.
2148		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2149		 * it means the zones have been fully scanned and are still
2150		 * not balanced. For high-order allocations, there is
2151		 * little point trying all over again as kswapd may
2152		 * infinite loop.
2153		 *
2154		 * Instead, recheck all watermarks at order-0 as they
2155		 * are the most important. If watermarks are ok, kswapd will go
2156		 * back to sleep. High-order users can still perform direct
2157		 * reclaim if they wish.
2158		 */
2159		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2160			order = sc.order = 0;
2161
2162		goto loop_again;
2163	}
2164
2165	return sc.nr_reclaimed;
2166}
2167
2168/*
2169 * The background pageout daemon, started as a kernel thread
2170 * from the init process.
2171 *
2172 * This basically trickles out pages so that we have _some_
2173 * free memory available even if there is no other activity
2174 * that frees anything up. This is needed for things like routing
2175 * etc, where we otherwise might have all activity going on in
2176 * asynchronous contexts that cannot page things out.
2177 *
2178 * If there are applications that are active memory-allocators
2179 * (most normal use), this basically shouldn't matter.
2180 */
2181static int kswapd(void *p)
2182{
2183	unsigned long order;
2184	pg_data_t *pgdat = (pg_data_t*)p;
2185	struct task_struct *tsk = current;
2186	DEFINE_WAIT(wait);
2187	struct reclaim_state reclaim_state = {
2188		.reclaimed_slab = 0,
2189	};
2190	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2191
2192	lockdep_set_current_reclaim_state(GFP_KERNEL);
2193
2194	if (!cpumask_empty(cpumask))
2195		set_cpus_allowed_ptr(tsk, cpumask);
2196	current->reclaim_state = &reclaim_state;
2197
2198	/*
2199	 * Tell the memory management that we're a "memory allocator",
2200	 * and that if we need more memory we should get access to it
2201	 * regardless (see "__alloc_pages()"). "kswapd" should
2202	 * never get caught in the normal page freeing logic.
2203	 *
2204	 * (Kswapd normally doesn't need memory anyway, but sometimes
2205	 * you need a small amount of memory in order to be able to
2206	 * page out something else, and this flag essentially protects
2207	 * us from recursively trying to free more memory as we're
2208	 * trying to free the first piece of memory in the first place).
2209	 */
2210	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2211	set_freezable();
2212
2213	order = 0;
2214	for ( ; ; ) {
2215		unsigned long new_order;
2216		int ret;
2217
2218		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2219		new_order = pgdat->kswapd_max_order;
2220		pgdat->kswapd_max_order = 0;
2221		if (order < new_order) {
2222			/*
2223			 * Don't sleep if someone wants a larger 'order'
2224			 * allocation
2225			 */
2226			order = new_order;
2227		} else {
2228			if (!freezing(current) && !kthread_should_stop()) {
2229				long remaining = 0;
2230
2231				/* Try to sleep for a short interval */
2232				if (!sleeping_prematurely(pgdat, order, remaining)) {
2233					remaining = schedule_timeout(HZ/10);
2234					finish_wait(&pgdat->kswapd_wait, &wait);
2235					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2236				}
2237
2238				/*
2239				 * After a short sleep, check if it was a
2240				 * premature sleep. If not, then go fully
2241				 * to sleep until explicitly woken up
2242				 */
2243				if (!sleeping_prematurely(pgdat, order, remaining))
2244					schedule();
2245				else {
2246					if (remaining)
2247						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2248					else
2249						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2250				}
2251			}
2252
2253			order = pgdat->kswapd_max_order;
2254		}
2255		finish_wait(&pgdat->kswapd_wait, &wait);
2256
2257		ret = try_to_freeze();
2258		if (kthread_should_stop())
2259			break;
2260
2261		/*
2262		 * We can speed up thawing tasks if we don't call balance_pgdat
2263		 * after returning from the refrigerator
2264		 */
2265		if (!ret)
2266			balance_pgdat(pgdat, order);
2267	}
2268	return 0;
2269}
2270
2271/*
2272 * A zone is low on free memory, so wake its kswapd task to service it.
2273 */
2274void wakeup_kswapd(struct zone *zone, int order)
2275{
2276	pg_data_t *pgdat;
2277
2278	if (!populated_zone(zone))
2279		return;
2280
2281	pgdat = zone->zone_pgdat;
2282	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2283		return;
2284	if (pgdat->kswapd_max_order < order)
2285		pgdat->kswapd_max_order = order;
2286	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2287		return;
2288	if (!waitqueue_active(&pgdat->kswapd_wait))
2289		return;
2290	wake_up_interruptible(&pgdat->kswapd_wait);
2291}
2292
2293/*
2294 * The reclaimable count would be mostly accurate.
2295 * The less reclaimable pages may be
2296 * - mlocked pages, which will be moved to unevictable list when encountered
2297 * - mapped pages, which may require several travels to be reclaimed
2298 * - dirty pages, which is not "instantly" reclaimable
2299 */
2300unsigned long global_reclaimable_pages(void)
2301{
2302	int nr;
2303
2304	nr = global_page_state(NR_ACTIVE_FILE) +
2305	     global_page_state(NR_INACTIVE_FILE);
2306
2307	if (nr_swap_pages > 0)
2308		nr += global_page_state(NR_ACTIVE_ANON) +
2309		      global_page_state(NR_INACTIVE_ANON);
2310
2311	return nr;
2312}
2313
2314unsigned long zone_reclaimable_pages(struct zone *zone)
2315{
2316	int nr;
2317
2318	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2319	     zone_page_state(zone, NR_INACTIVE_FILE);
2320
2321	if (nr_swap_pages > 0)
2322		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2323		      zone_page_state(zone, NR_INACTIVE_ANON);
2324
2325	return nr;
2326}
2327
2328#ifdef CONFIG_HIBERNATION
2329/*
2330 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2331 * freed pages.
2332 *
2333 * Rather than trying to age LRUs the aim is to preserve the overall
2334 * LRU order by reclaiming preferentially
2335 * inactive > active > active referenced > active mapped
2336 */
2337unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2338{
2339	struct reclaim_state reclaim_state;
2340	struct scan_control sc = {
2341		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2342		.may_swap = 1,
2343		.may_unmap = 1,
2344		.may_writepage = 1,
2345		.nr_to_reclaim = nr_to_reclaim,
2346		.hibernation_mode = 1,
2347		.swappiness = vm_swappiness,
2348		.order = 0,
2349		.isolate_pages = isolate_pages_global,
2350	};
2351	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2352	struct task_struct *p = current;
2353	unsigned long nr_reclaimed;
2354
2355	p->flags |= PF_MEMALLOC;
2356	lockdep_set_current_reclaim_state(sc.gfp_mask);
2357	reclaim_state.reclaimed_slab = 0;
2358	p->reclaim_state = &reclaim_state;
2359
2360	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2361
2362	p->reclaim_state = NULL;
2363	lockdep_clear_current_reclaim_state();
2364	p->flags &= ~PF_MEMALLOC;
2365
2366	return nr_reclaimed;
2367}
2368#endif /* CONFIG_HIBERNATION */
2369
2370/* It's optimal to keep kswapds on the same CPUs as their memory, but
2371   not required for correctness.  So if the last cpu in a node goes
2372   away, we get changed to run anywhere: as the first one comes back,
2373   restore their cpu bindings. */
2374static int __devinit cpu_callback(struct notifier_block *nfb,
2375				  unsigned long action, void *hcpu)
2376{
2377	int nid;
2378
2379	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2380		for_each_node_state(nid, N_HIGH_MEMORY) {
2381			pg_data_t *pgdat = NODE_DATA(nid);
2382			const struct cpumask *mask;
2383
2384			mask = cpumask_of_node(pgdat->node_id);
2385
2386			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2387				/* One of our CPUs online: restore mask */
2388				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2389		}
2390	}
2391	return NOTIFY_OK;
2392}
2393
2394/*
2395 * This kswapd start function will be called by init and node-hot-add.
2396 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2397 */
2398int kswapd_run(int nid)
2399{
2400	pg_data_t *pgdat = NODE_DATA(nid);
2401	int ret = 0;
2402
2403	if (pgdat->kswapd)
2404		return 0;
2405
2406	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2407	if (IS_ERR(pgdat->kswapd)) {
2408		/* failure at boot is fatal */
2409		BUG_ON(system_state == SYSTEM_BOOTING);
2410		printk("Failed to start kswapd on node %d\n",nid);
2411		ret = -1;
2412	}
2413	return ret;
2414}
2415
2416/*
2417 * Called by memory hotplug when all memory in a node is offlined.
2418 */
2419void kswapd_stop(int nid)
2420{
2421	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2422
2423	if (kswapd)
2424		kthread_stop(kswapd);
2425}
2426
2427static int __init kswapd_init(void)
2428{
2429	int nid;
2430
2431	swap_setup();
2432	for_each_node_state(nid, N_HIGH_MEMORY)
2433 		kswapd_run(nid);
2434	hotcpu_notifier(cpu_callback, 0);
2435	return 0;
2436}
2437
2438module_init(kswapd_init)
2439
2440#ifdef CONFIG_NUMA
2441/*
2442 * Zone reclaim mode
2443 *
2444 * If non-zero call zone_reclaim when the number of free pages falls below
2445 * the watermarks.
2446 */
2447int zone_reclaim_mode __read_mostly;
2448
2449#define RECLAIM_OFF 0
2450#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2451#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2452#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2453
2454/*
2455 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2456 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2457 * a zone.
2458 */
2459#define ZONE_RECLAIM_PRIORITY 4
2460
2461/*
2462 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2463 * occur.
2464 */
2465int sysctl_min_unmapped_ratio = 1;
2466
2467/*
2468 * If the number of slab pages in a zone grows beyond this percentage then
2469 * slab reclaim needs to occur.
2470 */
2471int sysctl_min_slab_ratio = 5;
2472
2473static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2474{
2475	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2476	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2477		zone_page_state(zone, NR_ACTIVE_FILE);
2478
2479	/*
2480	 * It's possible for there to be more file mapped pages than
2481	 * accounted for by the pages on the file LRU lists because
2482	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2483	 */
2484	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2485}
2486
2487/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2488static long zone_pagecache_reclaimable(struct zone *zone)
2489{
2490	long nr_pagecache_reclaimable;
2491	long delta = 0;
2492
2493	/*
2494	 * If RECLAIM_SWAP is set, then all file pages are considered
2495	 * potentially reclaimable. Otherwise, we have to worry about
2496	 * pages like swapcache and zone_unmapped_file_pages() provides
2497	 * a better estimate
2498	 */
2499	if (zone_reclaim_mode & RECLAIM_SWAP)
2500		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2501	else
2502		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2503
2504	/* If we can't clean pages, remove dirty pages from consideration */
2505	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2506		delta += zone_page_state(zone, NR_FILE_DIRTY);
2507
2508	/* Watch for any possible underflows due to delta */
2509	if (unlikely(delta > nr_pagecache_reclaimable))
2510		delta = nr_pagecache_reclaimable;
2511
2512	return nr_pagecache_reclaimable - delta;
2513}
2514
2515/*
2516 * Try to free up some pages from this zone through reclaim.
2517 */
2518static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2519{
2520	/* Minimum pages needed in order to stay on node */
2521	const unsigned long nr_pages = 1 << order;
2522	struct task_struct *p = current;
2523	struct reclaim_state reclaim_state;
2524	int priority;
2525	struct scan_control sc = {
2526		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2527		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2528		.may_swap = 1,
2529		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2530				       SWAP_CLUSTER_MAX),
2531		.gfp_mask = gfp_mask,
2532		.swappiness = vm_swappiness,
2533		.order = order,
2534		.isolate_pages = isolate_pages_global,
2535	};
2536	unsigned long slab_reclaimable;
2537
2538	disable_swap_token();
2539	cond_resched();
2540	/*
2541	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2542	 * and we also need to be able to write out pages for RECLAIM_WRITE
2543	 * and RECLAIM_SWAP.
2544	 */
2545	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2546	reclaim_state.reclaimed_slab = 0;
2547	p->reclaim_state = &reclaim_state;
2548
2549	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2550		/*
2551		 * Free memory by calling shrink zone with increasing
2552		 * priorities until we have enough memory freed.
2553		 */
2554		priority = ZONE_RECLAIM_PRIORITY;
2555		do {
2556			note_zone_scanning_priority(zone, priority);
2557			shrink_zone(priority, zone, &sc);
2558			priority--;
2559		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2560	}
2561
2562	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2563	if (slab_reclaimable > zone->min_slab_pages) {
2564		/*
2565		 * shrink_slab() does not currently allow us to determine how
2566		 * many pages were freed in this zone. So we take the current
2567		 * number of slab pages and shake the slab until it is reduced
2568		 * by the same nr_pages that we used for reclaiming unmapped
2569		 * pages.
2570		 *
2571		 * Note that shrink_slab will free memory on all zones and may
2572		 * take a long time.
2573		 */
2574		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2575			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2576				slab_reclaimable - nr_pages)
2577			;
2578
2579		/*
2580		 * Update nr_reclaimed by the number of slab pages we
2581		 * reclaimed from this zone.
2582		 */
2583		sc.nr_reclaimed += slab_reclaimable -
2584			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2585	}
2586
2587	p->reclaim_state = NULL;
2588	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2589	return sc.nr_reclaimed >= nr_pages;
2590}
2591
2592int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2593{
2594	int node_id;
2595	int ret;
2596
2597	/*
2598	 * Zone reclaim reclaims unmapped file backed pages and
2599	 * slab pages if we are over the defined limits.
2600	 *
2601	 * A small portion of unmapped file backed pages is needed for
2602	 * file I/O otherwise pages read by file I/O will be immediately
2603	 * thrown out if the zone is overallocated. So we do not reclaim
2604	 * if less than a specified percentage of the zone is used by
2605	 * unmapped file backed pages.
2606	 */
2607	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2608	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2609		return ZONE_RECLAIM_FULL;
2610
2611	if (zone_is_all_unreclaimable(zone))
2612		return ZONE_RECLAIM_FULL;
2613
2614	/*
2615	 * Do not scan if the allocation should not be delayed.
2616	 */
2617	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2618		return ZONE_RECLAIM_NOSCAN;
2619
2620	/*
2621	 * Only run zone reclaim on the local zone or on zones that do not
2622	 * have associated processors. This will favor the local processor
2623	 * over remote processors and spread off node memory allocations
2624	 * as wide as possible.
2625	 */
2626	node_id = zone_to_nid(zone);
2627	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2628		return ZONE_RECLAIM_NOSCAN;
2629
2630	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2631		return ZONE_RECLAIM_NOSCAN;
2632
2633	ret = __zone_reclaim(zone, gfp_mask, order);
2634	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2635
2636	if (!ret)
2637		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2638
2639	return ret;
2640}
2641#endif
2642
2643/*
2644 * page_evictable - test whether a page is evictable
2645 * @page: the page to test
2646 * @vma: the VMA in which the page is or will be mapped, may be NULL
2647 *
2648 * Test whether page is evictable--i.e., should be placed on active/inactive
2649 * lists vs unevictable list.  The vma argument is !NULL when called from the
2650 * fault path to determine how to instantate a new page.
2651 *
2652 * Reasons page might not be evictable:
2653 * (1) page's mapping marked unevictable
2654 * (2) page is part of an mlocked VMA
2655 *
2656 */
2657int page_evictable(struct page *page, struct vm_area_struct *vma)
2658{
2659
2660	if (mapping_unevictable(page_mapping(page)))
2661		return 0;
2662
2663	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2664		return 0;
2665
2666	return 1;
2667}
2668
2669/**
2670 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2671 * @page: page to check evictability and move to appropriate lru list
2672 * @zone: zone page is in
2673 *
2674 * Checks a page for evictability and moves the page to the appropriate
2675 * zone lru list.
2676 *
2677 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2678 * have PageUnevictable set.
2679 */
2680static void check_move_unevictable_page(struct page *page, struct zone *zone)
2681{
2682	VM_BUG_ON(PageActive(page));
2683
2684retry:
2685	ClearPageUnevictable(page);
2686	if (page_evictable(page, NULL)) {
2687		enum lru_list l = page_lru_base_type(page);
2688
2689		__dec_zone_state(zone, NR_UNEVICTABLE);
2690		list_move(&page->lru, &zone->lru[l].list);
2691		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2692		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2693		__count_vm_event(UNEVICTABLE_PGRESCUED);
2694	} else {
2695		/*
2696		 * rotate unevictable list
2697		 */
2698		SetPageUnevictable(page);
2699		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2700		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2701		if (page_evictable(page, NULL))
2702			goto retry;
2703	}
2704}
2705
2706/**
2707 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2708 * @mapping: struct address_space to scan for evictable pages
2709 *
2710 * Scan all pages in mapping.  Check unevictable pages for
2711 * evictability and move them to the appropriate zone lru list.
2712 */
2713void scan_mapping_unevictable_pages(struct address_space *mapping)
2714{
2715	pgoff_t next = 0;
2716	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2717			 PAGE_CACHE_SHIFT;
2718	struct zone *zone;
2719	struct pagevec pvec;
2720
2721	if (mapping->nrpages == 0)
2722		return;
2723
2724	pagevec_init(&pvec, 0);
2725	while (next < end &&
2726		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2727		int i;
2728		int pg_scanned = 0;
2729
2730		zone = NULL;
2731
2732		for (i = 0; i < pagevec_count(&pvec); i++) {
2733			struct page *page = pvec.pages[i];
2734			pgoff_t page_index = page->index;
2735			struct zone *pagezone = page_zone(page);
2736
2737			pg_scanned++;
2738			if (page_index > next)
2739				next = page_index;
2740			next++;
2741
2742			if (pagezone != zone) {
2743				if (zone)
2744					spin_unlock_irq(&zone->lru_lock);
2745				zone = pagezone;
2746				spin_lock_irq(&zone->lru_lock);
2747			}
2748
2749			if (PageLRU(page) && PageUnevictable(page))
2750				check_move_unevictable_page(page, zone);
2751		}
2752		if (zone)
2753			spin_unlock_irq(&zone->lru_lock);
2754		pagevec_release(&pvec);
2755
2756		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2757	}
2758
2759}
2760
2761/**
2762 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2763 * @zone - zone of which to scan the unevictable list
2764 *
2765 * Scan @zone's unevictable LRU lists to check for pages that have become
2766 * evictable.  Move those that have to @zone's inactive list where they
2767 * become candidates for reclaim, unless shrink_inactive_zone() decides
2768 * to reactivate them.  Pages that are still unevictable are rotated
2769 * back onto @zone's unevictable list.
2770 */
2771#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2772static void scan_zone_unevictable_pages(struct zone *zone)
2773{
2774	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2775	unsigned long scan;
2776	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2777
2778	while (nr_to_scan > 0) {
2779		unsigned long batch_size = min(nr_to_scan,
2780						SCAN_UNEVICTABLE_BATCH_SIZE);
2781
2782		spin_lock_irq(&zone->lru_lock);
2783		for (scan = 0;  scan < batch_size; scan++) {
2784			struct page *page = lru_to_page(l_unevictable);
2785
2786			if (!trylock_page(page))
2787				continue;
2788
2789			prefetchw_prev_lru_page(page, l_unevictable, flags);
2790
2791			if (likely(PageLRU(page) && PageUnevictable(page)))
2792				check_move_unevictable_page(page, zone);
2793
2794			unlock_page(page);
2795		}
2796		spin_unlock_irq(&zone->lru_lock);
2797
2798		nr_to_scan -= batch_size;
2799	}
2800}
2801
2802
2803/**
2804 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2805 *
2806 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2807 * pages that have become evictable.  Move those back to the zones'
2808 * inactive list where they become candidates for reclaim.
2809 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2810 * and we add swap to the system.  As such, it runs in the context of a task
2811 * that has possibly/probably made some previously unevictable pages
2812 * evictable.
2813 */
2814static void scan_all_zones_unevictable_pages(void)
2815{
2816	struct zone *zone;
2817
2818	for_each_zone(zone) {
2819		scan_zone_unevictable_pages(zone);
2820	}
2821}
2822
2823/*
2824 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2825 * all nodes' unevictable lists for evictable pages
2826 */
2827unsigned long scan_unevictable_pages;
2828
2829int scan_unevictable_handler(struct ctl_table *table, int write,
2830			   void __user *buffer,
2831			   size_t *length, loff_t *ppos)
2832{
2833	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2834
2835	if (write && *(unsigned long *)table->data)
2836		scan_all_zones_unevictable_pages();
2837
2838	scan_unevictable_pages = 0;
2839	return 0;
2840}
2841
2842/*
2843 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2844 * a specified node's per zone unevictable lists for evictable pages.
2845 */
2846
2847static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2848					  struct sysdev_attribute *attr,
2849					  char *buf)
2850{
2851	return sprintf(buf, "0\n");	/* always zero; should fit... */
2852}
2853
2854static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2855					   struct sysdev_attribute *attr,
2856					const char *buf, size_t count)
2857{
2858	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2859	struct zone *zone;
2860	unsigned long res;
2861	unsigned long req = strict_strtoul(buf, 10, &res);
2862
2863	if (!req)
2864		return 1;	/* zero is no-op */
2865
2866	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2867		if (!populated_zone(zone))
2868			continue;
2869		scan_zone_unevictable_pages(zone);
2870	}
2871	return 1;
2872}
2873
2874
2875static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2876			read_scan_unevictable_node,
2877			write_scan_unevictable_node);
2878
2879int scan_unevictable_register_node(struct node *node)
2880{
2881	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2882}
2883
2884void scan_unevictable_unregister_node(struct node *node)
2885{
2886	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2887}
2888
2889