vmscan.c revision 3d80636a0d5f056ffc26472d05b6027a7a9f6e1c
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h>	/* for try_to_release_page(),
26					buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44	/* failed to write page out, page is locked */
45	PAGE_KEEP,
46	/* move page to the active list, page is locked */
47	PAGE_ACTIVATE,
48	/* page has been sent to the disk successfully, page is unlocked */
49	PAGE_SUCCESS,
50	/* page is clean and locked */
51	PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56	unsigned long nr_to_scan;
57
58	/* Incremented by the number of inactive pages that were scanned */
59	unsigned long nr_scanned;
60
61	/* Incremented by the number of pages reclaimed */
62	unsigned long nr_reclaimed;
63
64	unsigned long nr_mapped;	/* From page_state */
65
66	/* How many pages shrink_cache() should reclaim */
67	int nr_to_reclaim;
68
69	/* Ask shrink_caches, or shrink_zone to scan at this priority */
70	unsigned int priority;
71
72	/* This context's GFP mask */
73	unsigned int gfp_mask;
74
75	int may_writepage;
76
77	/* Can pages be swapped as part of reclaim? */
78	int may_swap;
79
80	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
81	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
82	 * In this context, it doesn't matter that we scan the
83	 * whole list at once. */
84	int swap_cluster_max;
85};
86
87/*
88 * The list of shrinker callbacks used by to apply pressure to
89 * ageable caches.
90 */
91struct shrinker {
92	shrinker_t		shrinker;
93	struct list_head	list;
94	int			seeks;	/* seeks to recreate an obj */
95	long			nr;	/* objs pending delete */
96};
97
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field)			\
102	do {								\
103		if ((_page)->lru.prev != _base) {			\
104			struct page *prev;				\
105									\
106			prev = lru_to_page(&(_page->lru));		\
107			prefetch(&prev->_field);			\
108		}							\
109	} while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field)			\
116	do {								\
117		if ((_page)->lru.prev != _base) {			\
118			struct page *prev;				\
119									\
120			prev = lru_to_page(&(_page->lru));		\
121			prefetchw(&prev->_field);			\
122		}							\
123	} while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100.  Higher means more swappy.
130 */
131int vm_swappiness = 60;
132static long total_memory;
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
137/*
138 * Add a shrinker callback to be called from the vm
139 */
140struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
141{
142        struct shrinker *shrinker;
143
144        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
145        if (shrinker) {
146	        shrinker->shrinker = theshrinker;
147	        shrinker->seeks = seeks;
148	        shrinker->nr = 0;
149	        down_write(&shrinker_rwsem);
150	        list_add_tail(&shrinker->list, &shrinker_list);
151	        up_write(&shrinker_rwsem);
152	}
153	return shrinker;
154}
155EXPORT_SYMBOL(set_shrinker);
156
157/*
158 * Remove one
159 */
160void remove_shrinker(struct shrinker *shrinker)
161{
162	down_write(&shrinker_rwsem);
163	list_del(&shrinker->list);
164	up_write(&shrinker_rwsem);
165	kfree(shrinker);
166}
167EXPORT_SYMBOL(remove_shrinker);
168
169#define SHRINK_BATCH 128
170/*
171 * Call the shrink functions to age shrinkable caches
172 *
173 * Here we assume it costs one seek to replace a lru page and that it also
174 * takes a seek to recreate a cache object.  With this in mind we age equal
175 * percentages of the lru and ageable caches.  This should balance the seeks
176 * generated by these structures.
177 *
178 * If the vm encounted mapped pages on the LRU it increase the pressure on
179 * slab to avoid swapping.
180 *
181 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
182 *
183 * `lru_pages' represents the number of on-LRU pages in all the zones which
184 * are eligible for the caller's allocation attempt.  It is used for balancing
185 * slab reclaim versus page reclaim.
186 *
187 * Returns the number of slab objects which we shrunk.
188 */
189static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
190			unsigned long lru_pages)
191{
192	struct shrinker *shrinker;
193	int ret = 0;
194
195	if (scanned == 0)
196		scanned = SWAP_CLUSTER_MAX;
197
198	if (!down_read_trylock(&shrinker_rwsem))
199		return 1;	/* Assume we'll be able to shrink next time */
200
201	list_for_each_entry(shrinker, &shrinker_list, list) {
202		unsigned long long delta;
203		unsigned long total_scan;
204
205		delta = (4 * scanned) / shrinker->seeks;
206		delta *= (*shrinker->shrinker)(0, gfp_mask);
207		do_div(delta, lru_pages + 1);
208		shrinker->nr += delta;
209		if (shrinker->nr < 0)
210			shrinker->nr = LONG_MAX;	/* It wrapped! */
211
212		total_scan = shrinker->nr;
213		shrinker->nr = 0;
214
215		while (total_scan >= SHRINK_BATCH) {
216			long this_scan = SHRINK_BATCH;
217			int shrink_ret;
218			int nr_before;
219
220			nr_before = (*shrinker->shrinker)(0, gfp_mask);
221			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
222			if (shrink_ret == -1)
223				break;
224			if (shrink_ret < nr_before)
225				ret += nr_before - shrink_ret;
226			mod_page_state(slabs_scanned, this_scan);
227			total_scan -= this_scan;
228
229			cond_resched();
230		}
231
232		shrinker->nr += total_scan;
233	}
234	up_read(&shrinker_rwsem);
235	return ret;
236}
237
238/* Called without lock on whether page is mapped, so answer is unstable */
239static inline int page_mapping_inuse(struct page *page)
240{
241	struct address_space *mapping;
242
243	/* Page is in somebody's page tables. */
244	if (page_mapped(page))
245		return 1;
246
247	/* Be more reluctant to reclaim swapcache than pagecache */
248	if (PageSwapCache(page))
249		return 1;
250
251	mapping = page_mapping(page);
252	if (!mapping)
253		return 0;
254
255	/* File is mmap'd by somebody? */
256	return mapping_mapped(mapping);
257}
258
259static inline int is_page_cache_freeable(struct page *page)
260{
261	return page_count(page) - !!PagePrivate(page) == 2;
262}
263
264static int may_write_to_queue(struct backing_dev_info *bdi)
265{
266	if (current_is_kswapd())
267		return 1;
268	if (current_is_pdflush())	/* This is unlikely, but why not... */
269		return 1;
270	if (!bdi_write_congested(bdi))
271		return 1;
272	if (bdi == current->backing_dev_info)
273		return 1;
274	return 0;
275}
276
277/*
278 * We detected a synchronous write error writing a page out.  Probably
279 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
280 * fsync(), msync() or close().
281 *
282 * The tricky part is that after writepage we cannot touch the mapping: nothing
283 * prevents it from being freed up.  But we have a ref on the page and once
284 * that page is locked, the mapping is pinned.
285 *
286 * We're allowed to run sleeping lock_page() here because we know the caller has
287 * __GFP_FS.
288 */
289static void handle_write_error(struct address_space *mapping,
290				struct page *page, int error)
291{
292	lock_page(page);
293	if (page_mapping(page) == mapping) {
294		if (error == -ENOSPC)
295			set_bit(AS_ENOSPC, &mapping->flags);
296		else
297			set_bit(AS_EIO, &mapping->flags);
298	}
299	unlock_page(page);
300}
301
302/*
303 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
304 */
305static pageout_t pageout(struct page *page, struct address_space *mapping)
306{
307	/*
308	 * If the page is dirty, only perform writeback if that write
309	 * will be non-blocking.  To prevent this allocation from being
310	 * stalled by pagecache activity.  But note that there may be
311	 * stalls if we need to run get_block().  We could test
312	 * PagePrivate for that.
313	 *
314	 * If this process is currently in generic_file_write() against
315	 * this page's queue, we can perform writeback even if that
316	 * will block.
317	 *
318	 * If the page is swapcache, write it back even if that would
319	 * block, for some throttling. This happens by accident, because
320	 * swap_backing_dev_info is bust: it doesn't reflect the
321	 * congestion state of the swapdevs.  Easy to fix, if needed.
322	 * See swapfile.c:page_queue_congested().
323	 */
324	if (!is_page_cache_freeable(page))
325		return PAGE_KEEP;
326	if (!mapping) {
327		/*
328		 * Some data journaling orphaned pages can have
329		 * page->mapping == NULL while being dirty with clean buffers.
330		 */
331		if (PagePrivate(page)) {
332			if (try_to_free_buffers(page)) {
333				ClearPageDirty(page);
334				printk("%s: orphaned page\n", __FUNCTION__);
335				return PAGE_CLEAN;
336			}
337		}
338		return PAGE_KEEP;
339	}
340	if (mapping->a_ops->writepage == NULL)
341		return PAGE_ACTIVATE;
342	if (!may_write_to_queue(mapping->backing_dev_info))
343		return PAGE_KEEP;
344
345	if (clear_page_dirty_for_io(page)) {
346		int res;
347		struct writeback_control wbc = {
348			.sync_mode = WB_SYNC_NONE,
349			.nr_to_write = SWAP_CLUSTER_MAX,
350			.nonblocking = 1,
351			.for_reclaim = 1,
352		};
353
354		SetPageReclaim(page);
355		res = mapping->a_ops->writepage(page, &wbc);
356		if (res < 0)
357			handle_write_error(mapping, page, res);
358		if (res == WRITEPAGE_ACTIVATE) {
359			ClearPageReclaim(page);
360			return PAGE_ACTIVATE;
361		}
362		if (!PageWriteback(page)) {
363			/* synchronous write or broken a_ops? */
364			ClearPageReclaim(page);
365		}
366
367		return PAGE_SUCCESS;
368	}
369
370	return PAGE_CLEAN;
371}
372
373/*
374 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
375 */
376static int shrink_list(struct list_head *page_list, struct scan_control *sc)
377{
378	LIST_HEAD(ret_pages);
379	struct pagevec freed_pvec;
380	int pgactivate = 0;
381	int reclaimed = 0;
382
383	cond_resched();
384
385	pagevec_init(&freed_pvec, 1);
386	while (!list_empty(page_list)) {
387		struct address_space *mapping;
388		struct page *page;
389		int may_enter_fs;
390		int referenced;
391
392		cond_resched();
393
394		page = lru_to_page(page_list);
395		list_del(&page->lru);
396
397		if (TestSetPageLocked(page))
398			goto keep;
399
400		BUG_ON(PageActive(page));
401
402		sc->nr_scanned++;
403		/* Double the slab pressure for mapped and swapcache pages */
404		if (page_mapped(page) || PageSwapCache(page))
405			sc->nr_scanned++;
406
407		if (PageWriteback(page))
408			goto keep_locked;
409
410		referenced = page_referenced(page, 1, sc->priority <= 0);
411		/* In active use or really unfreeable?  Activate it. */
412		if (referenced && page_mapping_inuse(page))
413			goto activate_locked;
414
415#ifdef CONFIG_SWAP
416		/*
417		 * Anonymous process memory has backing store?
418		 * Try to allocate it some swap space here.
419		 */
420		if (PageAnon(page) && !PageSwapCache(page) && sc->may_swap) {
421			if (!add_to_swap(page))
422				goto activate_locked;
423		}
424#endif /* CONFIG_SWAP */
425
426		mapping = page_mapping(page);
427		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
428			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
429
430		/*
431		 * The page is mapped into the page tables of one or more
432		 * processes. Try to unmap it here.
433		 */
434		if (page_mapped(page) && mapping) {
435			switch (try_to_unmap(page)) {
436			case SWAP_FAIL:
437				goto activate_locked;
438			case SWAP_AGAIN:
439				goto keep_locked;
440			case SWAP_SUCCESS:
441				; /* try to free the page below */
442			}
443		}
444
445		if (PageDirty(page)) {
446			if (referenced)
447				goto keep_locked;
448			if (!may_enter_fs)
449				goto keep_locked;
450			if (laptop_mode && !sc->may_writepage)
451				goto keep_locked;
452
453			/* Page is dirty, try to write it out here */
454			switch(pageout(page, mapping)) {
455			case PAGE_KEEP:
456				goto keep_locked;
457			case PAGE_ACTIVATE:
458				goto activate_locked;
459			case PAGE_SUCCESS:
460				if (PageWriteback(page) || PageDirty(page))
461					goto keep;
462				/*
463				 * A synchronous write - probably a ramdisk.  Go
464				 * ahead and try to reclaim the page.
465				 */
466				if (TestSetPageLocked(page))
467					goto keep;
468				if (PageDirty(page) || PageWriteback(page))
469					goto keep_locked;
470				mapping = page_mapping(page);
471			case PAGE_CLEAN:
472				; /* try to free the page below */
473			}
474		}
475
476		/*
477		 * If the page has buffers, try to free the buffer mappings
478		 * associated with this page. If we succeed we try to free
479		 * the page as well.
480		 *
481		 * We do this even if the page is PageDirty().
482		 * try_to_release_page() does not perform I/O, but it is
483		 * possible for a page to have PageDirty set, but it is actually
484		 * clean (all its buffers are clean).  This happens if the
485		 * buffers were written out directly, with submit_bh(). ext3
486		 * will do this, as well as the blockdev mapping.
487		 * try_to_release_page() will discover that cleanness and will
488		 * drop the buffers and mark the page clean - it can be freed.
489		 *
490		 * Rarely, pages can have buffers and no ->mapping.  These are
491		 * the pages which were not successfully invalidated in
492		 * truncate_complete_page().  We try to drop those buffers here
493		 * and if that worked, and the page is no longer mapped into
494		 * process address space (page_count == 1) it can be freed.
495		 * Otherwise, leave the page on the LRU so it is swappable.
496		 */
497		if (PagePrivate(page)) {
498			if (!try_to_release_page(page, sc->gfp_mask))
499				goto activate_locked;
500			if (!mapping && page_count(page) == 1)
501				goto free_it;
502		}
503
504		if (!mapping)
505			goto keep_locked;	/* truncate got there first */
506
507		write_lock_irq(&mapping->tree_lock);
508
509		/*
510		 * The non-racy check for busy page.  It is critical to check
511		 * PageDirty _after_ making sure that the page is freeable and
512		 * not in use by anybody. 	(pagecache + us == 2)
513		 */
514		if (unlikely(page_count(page) != 2))
515			goto cannot_free;
516		smp_rmb();
517		if (unlikely(PageDirty(page)))
518			goto cannot_free;
519
520#ifdef CONFIG_SWAP
521		if (PageSwapCache(page)) {
522			swp_entry_t swap = { .val = page->private };
523			__delete_from_swap_cache(page);
524			write_unlock_irq(&mapping->tree_lock);
525			swap_free(swap);
526			__put_page(page);	/* The pagecache ref */
527			goto free_it;
528		}
529#endif /* CONFIG_SWAP */
530
531		__remove_from_page_cache(page);
532		write_unlock_irq(&mapping->tree_lock);
533		__put_page(page);
534
535free_it:
536		unlock_page(page);
537		reclaimed++;
538		if (!pagevec_add(&freed_pvec, page))
539			__pagevec_release_nonlru(&freed_pvec);
540		continue;
541
542cannot_free:
543		write_unlock_irq(&mapping->tree_lock);
544		goto keep_locked;
545
546activate_locked:
547		SetPageActive(page);
548		pgactivate++;
549keep_locked:
550		unlock_page(page);
551keep:
552		list_add(&page->lru, &ret_pages);
553		BUG_ON(PageLRU(page));
554	}
555	list_splice(&ret_pages, page_list);
556	if (pagevec_count(&freed_pvec))
557		__pagevec_release_nonlru(&freed_pvec);
558	mod_page_state(pgactivate, pgactivate);
559	sc->nr_reclaimed += reclaimed;
560	return reclaimed;
561}
562
563/*
564 * zone->lru_lock is heavily contended.  Some of the functions that
565 * shrink the lists perform better by taking out a batch of pages
566 * and working on them outside the LRU lock.
567 *
568 * For pagecache intensive workloads, this function is the hottest
569 * spot in the kernel (apart from copy_*_user functions).
570 *
571 * Appropriate locks must be held before calling this function.
572 *
573 * @nr_to_scan:	The number of pages to look through on the list.
574 * @src:	The LRU list to pull pages off.
575 * @dst:	The temp list to put pages on to.
576 * @scanned:	The number of pages that were scanned.
577 *
578 * returns how many pages were moved onto *@dst.
579 */
580static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
581			     struct list_head *dst, int *scanned)
582{
583	int nr_taken = 0;
584	struct page *page;
585	int scan = 0;
586
587	while (scan++ < nr_to_scan && !list_empty(src)) {
588		page = lru_to_page(src);
589		prefetchw_prev_lru_page(page, src, flags);
590
591		if (!TestClearPageLRU(page))
592			BUG();
593		list_del(&page->lru);
594		if (get_page_testone(page)) {
595			/*
596			 * It is being freed elsewhere
597			 */
598			__put_page(page);
599			SetPageLRU(page);
600			list_add(&page->lru, src);
601			continue;
602		} else {
603			list_add(&page->lru, dst);
604			nr_taken++;
605		}
606	}
607
608	*scanned = scan;
609	return nr_taken;
610}
611
612/*
613 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
614 */
615static void shrink_cache(struct zone *zone, struct scan_control *sc)
616{
617	LIST_HEAD(page_list);
618	struct pagevec pvec;
619	int max_scan = sc->nr_to_scan;
620
621	pagevec_init(&pvec, 1);
622
623	lru_add_drain();
624	spin_lock_irq(&zone->lru_lock);
625	while (max_scan > 0) {
626		struct page *page;
627		int nr_taken;
628		int nr_scan;
629		int nr_freed;
630
631		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
632					     &zone->inactive_list,
633					     &page_list, &nr_scan);
634		zone->nr_inactive -= nr_taken;
635		zone->pages_scanned += nr_scan;
636		spin_unlock_irq(&zone->lru_lock);
637
638		if (nr_taken == 0)
639			goto done;
640
641		max_scan -= nr_scan;
642		if (current_is_kswapd())
643			mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
644		else
645			mod_page_state_zone(zone, pgscan_direct, nr_scan);
646		nr_freed = shrink_list(&page_list, sc);
647		if (current_is_kswapd())
648			mod_page_state(kswapd_steal, nr_freed);
649		mod_page_state_zone(zone, pgsteal, nr_freed);
650		sc->nr_to_reclaim -= nr_freed;
651
652		spin_lock_irq(&zone->lru_lock);
653		/*
654		 * Put back any unfreeable pages.
655		 */
656		while (!list_empty(&page_list)) {
657			page = lru_to_page(&page_list);
658			if (TestSetPageLRU(page))
659				BUG();
660			list_del(&page->lru);
661			if (PageActive(page))
662				add_page_to_active_list(zone, page);
663			else
664				add_page_to_inactive_list(zone, page);
665			if (!pagevec_add(&pvec, page)) {
666				spin_unlock_irq(&zone->lru_lock);
667				__pagevec_release(&pvec);
668				spin_lock_irq(&zone->lru_lock);
669			}
670		}
671  	}
672	spin_unlock_irq(&zone->lru_lock);
673done:
674	pagevec_release(&pvec);
675}
676
677/*
678 * This moves pages from the active list to the inactive list.
679 *
680 * We move them the other way if the page is referenced by one or more
681 * processes, from rmap.
682 *
683 * If the pages are mostly unmapped, the processing is fast and it is
684 * appropriate to hold zone->lru_lock across the whole operation.  But if
685 * the pages are mapped, the processing is slow (page_referenced()) so we
686 * should drop zone->lru_lock around each page.  It's impossible to balance
687 * this, so instead we remove the pages from the LRU while processing them.
688 * It is safe to rely on PG_active against the non-LRU pages in here because
689 * nobody will play with that bit on a non-LRU page.
690 *
691 * The downside is that we have to touch page->_count against each page.
692 * But we had to alter page->flags anyway.
693 */
694static void
695refill_inactive_zone(struct zone *zone, struct scan_control *sc)
696{
697	int pgmoved;
698	int pgdeactivate = 0;
699	int pgscanned;
700	int nr_pages = sc->nr_to_scan;
701	LIST_HEAD(l_hold);	/* The pages which were snipped off */
702	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
703	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
704	struct page *page;
705	struct pagevec pvec;
706	int reclaim_mapped = 0;
707	long mapped_ratio;
708	long distress;
709	long swap_tendency;
710
711	lru_add_drain();
712	spin_lock_irq(&zone->lru_lock);
713	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
714				    &l_hold, &pgscanned);
715	zone->pages_scanned += pgscanned;
716	zone->nr_active -= pgmoved;
717	spin_unlock_irq(&zone->lru_lock);
718
719	/*
720	 * `distress' is a measure of how much trouble we're having reclaiming
721	 * pages.  0 -> no problems.  100 -> great trouble.
722	 */
723	distress = 100 >> zone->prev_priority;
724
725	/*
726	 * The point of this algorithm is to decide when to start reclaiming
727	 * mapped memory instead of just pagecache.  Work out how much memory
728	 * is mapped.
729	 */
730	mapped_ratio = (sc->nr_mapped * 100) / total_memory;
731
732	/*
733	 * Now decide how much we really want to unmap some pages.  The mapped
734	 * ratio is downgraded - just because there's a lot of mapped memory
735	 * doesn't necessarily mean that page reclaim isn't succeeding.
736	 *
737	 * The distress ratio is important - we don't want to start going oom.
738	 *
739	 * A 100% value of vm_swappiness overrides this algorithm altogether.
740	 */
741	swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
742
743	/*
744	 * Now use this metric to decide whether to start moving mapped memory
745	 * onto the inactive list.
746	 */
747	if (swap_tendency >= 100)
748		reclaim_mapped = 1;
749
750	while (!list_empty(&l_hold)) {
751		cond_resched();
752		page = lru_to_page(&l_hold);
753		list_del(&page->lru);
754		if (page_mapped(page)) {
755			if (!reclaim_mapped ||
756			    (total_swap_pages == 0 && PageAnon(page)) ||
757			    page_referenced(page, 0, sc->priority <= 0)) {
758				list_add(&page->lru, &l_active);
759				continue;
760			}
761		}
762		list_add(&page->lru, &l_inactive);
763	}
764
765	pagevec_init(&pvec, 1);
766	pgmoved = 0;
767	spin_lock_irq(&zone->lru_lock);
768	while (!list_empty(&l_inactive)) {
769		page = lru_to_page(&l_inactive);
770		prefetchw_prev_lru_page(page, &l_inactive, flags);
771		if (TestSetPageLRU(page))
772			BUG();
773		if (!TestClearPageActive(page))
774			BUG();
775		list_move(&page->lru, &zone->inactive_list);
776		pgmoved++;
777		if (!pagevec_add(&pvec, page)) {
778			zone->nr_inactive += pgmoved;
779			spin_unlock_irq(&zone->lru_lock);
780			pgdeactivate += pgmoved;
781			pgmoved = 0;
782			if (buffer_heads_over_limit)
783				pagevec_strip(&pvec);
784			__pagevec_release(&pvec);
785			spin_lock_irq(&zone->lru_lock);
786		}
787	}
788	zone->nr_inactive += pgmoved;
789	pgdeactivate += pgmoved;
790	if (buffer_heads_over_limit) {
791		spin_unlock_irq(&zone->lru_lock);
792		pagevec_strip(&pvec);
793		spin_lock_irq(&zone->lru_lock);
794	}
795
796	pgmoved = 0;
797	while (!list_empty(&l_active)) {
798		page = lru_to_page(&l_active);
799		prefetchw_prev_lru_page(page, &l_active, flags);
800		if (TestSetPageLRU(page))
801			BUG();
802		BUG_ON(!PageActive(page));
803		list_move(&page->lru, &zone->active_list);
804		pgmoved++;
805		if (!pagevec_add(&pvec, page)) {
806			zone->nr_active += pgmoved;
807			pgmoved = 0;
808			spin_unlock_irq(&zone->lru_lock);
809			__pagevec_release(&pvec);
810			spin_lock_irq(&zone->lru_lock);
811		}
812	}
813	zone->nr_active += pgmoved;
814	spin_unlock_irq(&zone->lru_lock);
815	pagevec_release(&pvec);
816
817	mod_page_state_zone(zone, pgrefill, pgscanned);
818	mod_page_state(pgdeactivate, pgdeactivate);
819}
820
821/*
822 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
823 */
824static void
825shrink_zone(struct zone *zone, struct scan_control *sc)
826{
827	unsigned long nr_active;
828	unsigned long nr_inactive;
829
830	atomic_inc(&zone->reclaim_in_progress);
831
832	/*
833	 * Add one to `nr_to_scan' just to make sure that the kernel will
834	 * slowly sift through the active list.
835	 */
836	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
837	nr_active = zone->nr_scan_active;
838	if (nr_active >= sc->swap_cluster_max)
839		zone->nr_scan_active = 0;
840	else
841		nr_active = 0;
842
843	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
844	nr_inactive = zone->nr_scan_inactive;
845	if (nr_inactive >= sc->swap_cluster_max)
846		zone->nr_scan_inactive = 0;
847	else
848		nr_inactive = 0;
849
850	sc->nr_to_reclaim = sc->swap_cluster_max;
851
852	while (nr_active || nr_inactive) {
853		if (nr_active) {
854			sc->nr_to_scan = min(nr_active,
855					(unsigned long)sc->swap_cluster_max);
856			nr_active -= sc->nr_to_scan;
857			refill_inactive_zone(zone, sc);
858		}
859
860		if (nr_inactive) {
861			sc->nr_to_scan = min(nr_inactive,
862					(unsigned long)sc->swap_cluster_max);
863			nr_inactive -= sc->nr_to_scan;
864			shrink_cache(zone, sc);
865			if (sc->nr_to_reclaim <= 0)
866				break;
867		}
868	}
869
870	throttle_vm_writeout();
871
872	atomic_dec(&zone->reclaim_in_progress);
873}
874
875/*
876 * This is the direct reclaim path, for page-allocating processes.  We only
877 * try to reclaim pages from zones which will satisfy the caller's allocation
878 * request.
879 *
880 * We reclaim from a zone even if that zone is over pages_high.  Because:
881 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
882 *    allocation or
883 * b) The zones may be over pages_high but they must go *over* pages_high to
884 *    satisfy the `incremental min' zone defense algorithm.
885 *
886 * Returns the number of reclaimed pages.
887 *
888 * If a zone is deemed to be full of pinned pages then just give it a light
889 * scan then give up on it.
890 */
891static void
892shrink_caches(struct zone **zones, struct scan_control *sc)
893{
894	int i;
895
896	for (i = 0; zones[i] != NULL; i++) {
897		struct zone *zone = zones[i];
898
899		if (zone->present_pages == 0)
900			continue;
901
902		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
903			continue;
904
905		zone->temp_priority = sc->priority;
906		if (zone->prev_priority > sc->priority)
907			zone->prev_priority = sc->priority;
908
909		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
910			continue;	/* Let kswapd poll it */
911
912		shrink_zone(zone, sc);
913	}
914}
915
916/*
917 * This is the main entry point to direct page reclaim.
918 *
919 * If a full scan of the inactive list fails to free enough memory then we
920 * are "out of memory" and something needs to be killed.
921 *
922 * If the caller is !__GFP_FS then the probability of a failure is reasonably
923 * high - the zone may be full of dirty or under-writeback pages, which this
924 * caller can't do much about.  We kick pdflush and take explicit naps in the
925 * hope that some of these pages can be written.  But if the allocating task
926 * holds filesystem locks which prevent writeout this might not work, and the
927 * allocation attempt will fail.
928 */
929int try_to_free_pages(struct zone **zones, unsigned int gfp_mask)
930{
931	int priority;
932	int ret = 0;
933	int total_scanned = 0, total_reclaimed = 0;
934	struct reclaim_state *reclaim_state = current->reclaim_state;
935	struct scan_control sc;
936	unsigned long lru_pages = 0;
937	int i;
938
939	sc.gfp_mask = gfp_mask;
940	sc.may_writepage = 0;
941	sc.may_swap = 1;
942
943	inc_page_state(allocstall);
944
945	for (i = 0; zones[i] != NULL; i++) {
946		struct zone *zone = zones[i];
947
948		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
949			continue;
950
951		zone->temp_priority = DEF_PRIORITY;
952		lru_pages += zone->nr_active + zone->nr_inactive;
953	}
954
955	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
956		sc.nr_mapped = read_page_state(nr_mapped);
957		sc.nr_scanned = 0;
958		sc.nr_reclaimed = 0;
959		sc.priority = priority;
960		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
961		shrink_caches(zones, &sc);
962		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
963		if (reclaim_state) {
964			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
965			reclaim_state->reclaimed_slab = 0;
966		}
967		total_scanned += sc.nr_scanned;
968		total_reclaimed += sc.nr_reclaimed;
969		if (total_reclaimed >= sc.swap_cluster_max) {
970			ret = 1;
971			goto out;
972		}
973
974		/*
975		 * Try to write back as many pages as we just scanned.  This
976		 * tends to cause slow streaming writers to write data to the
977		 * disk smoothly, at the dirtying rate, which is nice.   But
978		 * that's undesirable in laptop mode, where we *want* lumpy
979		 * writeout.  So in laptop mode, write out the whole world.
980		 */
981		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
982			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
983			sc.may_writepage = 1;
984		}
985
986		/* Take a nap, wait for some writeback to complete */
987		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
988			blk_congestion_wait(WRITE, HZ/10);
989	}
990out:
991	for (i = 0; zones[i] != 0; i++) {
992		struct zone *zone = zones[i];
993
994		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
995			continue;
996
997		zone->prev_priority = zone->temp_priority;
998	}
999	return ret;
1000}
1001
1002/*
1003 * For kswapd, balance_pgdat() will work across all this node's zones until
1004 * they are all at pages_high.
1005 *
1006 * If `nr_pages' is non-zero then it is the number of pages which are to be
1007 * reclaimed, regardless of the zone occupancies.  This is a software suspend
1008 * special.
1009 *
1010 * Returns the number of pages which were actually freed.
1011 *
1012 * There is special handling here for zones which are full of pinned pages.
1013 * This can happen if the pages are all mlocked, or if they are all used by
1014 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1015 * What we do is to detect the case where all pages in the zone have been
1016 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1017 * dead and from now on, only perform a short scan.  Basically we're polling
1018 * the zone for when the problem goes away.
1019 *
1020 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1021 * zones which have free_pages > pages_high, but once a zone is found to have
1022 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1023 * of the number of free pages in the lower zones.  This interoperates with
1024 * the page allocator fallback scheme to ensure that aging of pages is balanced
1025 * across the zones.
1026 */
1027static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1028{
1029	int to_free = nr_pages;
1030	int all_zones_ok;
1031	int priority;
1032	int i;
1033	int total_scanned, total_reclaimed;
1034	struct reclaim_state *reclaim_state = current->reclaim_state;
1035	struct scan_control sc;
1036
1037loop_again:
1038	total_scanned = 0;
1039	total_reclaimed = 0;
1040	sc.gfp_mask = GFP_KERNEL;
1041	sc.may_writepage = 0;
1042	sc.may_swap = 1;
1043	sc.nr_mapped = read_page_state(nr_mapped);
1044
1045	inc_page_state(pageoutrun);
1046
1047	for (i = 0; i < pgdat->nr_zones; i++) {
1048		struct zone *zone = pgdat->node_zones + i;
1049
1050		zone->temp_priority = DEF_PRIORITY;
1051	}
1052
1053	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1054		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1055		unsigned long lru_pages = 0;
1056
1057		all_zones_ok = 1;
1058
1059		if (nr_pages == 0) {
1060			/*
1061			 * Scan in the highmem->dma direction for the highest
1062			 * zone which needs scanning
1063			 */
1064			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1065				struct zone *zone = pgdat->node_zones + i;
1066
1067				if (zone->present_pages == 0)
1068					continue;
1069
1070				if (zone->all_unreclaimable &&
1071						priority != DEF_PRIORITY)
1072					continue;
1073
1074				if (!zone_watermark_ok(zone, order,
1075						zone->pages_high, 0, 0, 0)) {
1076					end_zone = i;
1077					goto scan;
1078				}
1079			}
1080			goto out;
1081		} else {
1082			end_zone = pgdat->nr_zones - 1;
1083		}
1084scan:
1085		for (i = 0; i <= end_zone; i++) {
1086			struct zone *zone = pgdat->node_zones + i;
1087
1088			lru_pages += zone->nr_active + zone->nr_inactive;
1089		}
1090
1091		/*
1092		 * Now scan the zone in the dma->highmem direction, stopping
1093		 * at the last zone which needs scanning.
1094		 *
1095		 * We do this because the page allocator works in the opposite
1096		 * direction.  This prevents the page allocator from allocating
1097		 * pages behind kswapd's direction of progress, which would
1098		 * cause too much scanning of the lower zones.
1099		 */
1100		for (i = 0; i <= end_zone; i++) {
1101			struct zone *zone = pgdat->node_zones + i;
1102			int nr_slab;
1103
1104			if (zone->present_pages == 0)
1105				continue;
1106
1107			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1108				continue;
1109
1110			if (nr_pages == 0) {	/* Not software suspend */
1111				if (!zone_watermark_ok(zone, order,
1112						zone->pages_high, end_zone, 0, 0))
1113					all_zones_ok = 0;
1114			}
1115			zone->temp_priority = priority;
1116			if (zone->prev_priority > priority)
1117				zone->prev_priority = priority;
1118			sc.nr_scanned = 0;
1119			sc.nr_reclaimed = 0;
1120			sc.priority = priority;
1121			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1122			atomic_inc(&zone->reclaim_in_progress);
1123			shrink_zone(zone, &sc);
1124			atomic_dec(&zone->reclaim_in_progress);
1125			reclaim_state->reclaimed_slab = 0;
1126			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1127						lru_pages);
1128			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1129			total_reclaimed += sc.nr_reclaimed;
1130			total_scanned += sc.nr_scanned;
1131			if (zone->all_unreclaimable)
1132				continue;
1133			if (nr_slab == 0 && zone->pages_scanned >=
1134				    (zone->nr_active + zone->nr_inactive) * 4)
1135				zone->all_unreclaimable = 1;
1136			/*
1137			 * If we've done a decent amount of scanning and
1138			 * the reclaim ratio is low, start doing writepage
1139			 * even in laptop mode
1140			 */
1141			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1142			    total_scanned > total_reclaimed+total_reclaimed/2)
1143				sc.may_writepage = 1;
1144		}
1145		if (nr_pages && to_free > total_reclaimed)
1146			continue;	/* swsusp: need to do more work */
1147		if (all_zones_ok)
1148			break;		/* kswapd: all done */
1149		/*
1150		 * OK, kswapd is getting into trouble.  Take a nap, then take
1151		 * another pass across the zones.
1152		 */
1153		if (total_scanned && priority < DEF_PRIORITY - 2)
1154			blk_congestion_wait(WRITE, HZ/10);
1155
1156		/*
1157		 * We do this so kswapd doesn't build up large priorities for
1158		 * example when it is freeing in parallel with allocators. It
1159		 * matches the direct reclaim path behaviour in terms of impact
1160		 * on zone->*_priority.
1161		 */
1162		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1163			break;
1164	}
1165out:
1166	for (i = 0; i < pgdat->nr_zones; i++) {
1167		struct zone *zone = pgdat->node_zones + i;
1168
1169		zone->prev_priority = zone->temp_priority;
1170	}
1171	if (!all_zones_ok) {
1172		cond_resched();
1173		goto loop_again;
1174	}
1175
1176	return total_reclaimed;
1177}
1178
1179/*
1180 * The background pageout daemon, started as a kernel thread
1181 * from the init process.
1182 *
1183 * This basically trickles out pages so that we have _some_
1184 * free memory available even if there is no other activity
1185 * that frees anything up. This is needed for things like routing
1186 * etc, where we otherwise might have all activity going on in
1187 * asynchronous contexts that cannot page things out.
1188 *
1189 * If there are applications that are active memory-allocators
1190 * (most normal use), this basically shouldn't matter.
1191 */
1192static int kswapd(void *p)
1193{
1194	unsigned long order;
1195	pg_data_t *pgdat = (pg_data_t*)p;
1196	struct task_struct *tsk = current;
1197	DEFINE_WAIT(wait);
1198	struct reclaim_state reclaim_state = {
1199		.reclaimed_slab = 0,
1200	};
1201	cpumask_t cpumask;
1202
1203	daemonize("kswapd%d", pgdat->node_id);
1204	cpumask = node_to_cpumask(pgdat->node_id);
1205	if (!cpus_empty(cpumask))
1206		set_cpus_allowed(tsk, cpumask);
1207	current->reclaim_state = &reclaim_state;
1208
1209	/*
1210	 * Tell the memory management that we're a "memory allocator",
1211	 * and that if we need more memory we should get access to it
1212	 * regardless (see "__alloc_pages()"). "kswapd" should
1213	 * never get caught in the normal page freeing logic.
1214	 *
1215	 * (Kswapd normally doesn't need memory anyway, but sometimes
1216	 * you need a small amount of memory in order to be able to
1217	 * page out something else, and this flag essentially protects
1218	 * us from recursively trying to free more memory as we're
1219	 * trying to free the first piece of memory in the first place).
1220	 */
1221	tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1222
1223	order = 0;
1224	for ( ; ; ) {
1225		unsigned long new_order;
1226
1227		try_to_freeze();
1228
1229		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1230		new_order = pgdat->kswapd_max_order;
1231		pgdat->kswapd_max_order = 0;
1232		if (order < new_order) {
1233			/*
1234			 * Don't sleep if someone wants a larger 'order'
1235			 * allocation
1236			 */
1237			order = new_order;
1238		} else {
1239			schedule();
1240			order = pgdat->kswapd_max_order;
1241		}
1242		finish_wait(&pgdat->kswapd_wait, &wait);
1243
1244		balance_pgdat(pgdat, 0, order);
1245	}
1246	return 0;
1247}
1248
1249/*
1250 * A zone is low on free memory, so wake its kswapd task to service it.
1251 */
1252void wakeup_kswapd(struct zone *zone, int order)
1253{
1254	pg_data_t *pgdat;
1255
1256	if (zone->present_pages == 0)
1257		return;
1258
1259	pgdat = zone->zone_pgdat;
1260	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0))
1261		return;
1262	if (pgdat->kswapd_max_order < order)
1263		pgdat->kswapd_max_order = order;
1264	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1265		return;
1266	if (!waitqueue_active(&pgdat->kswapd_wait))
1267		return;
1268	wake_up_interruptible(&pgdat->kswapd_wait);
1269}
1270
1271#ifdef CONFIG_PM
1272/*
1273 * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1274 * pages.
1275 */
1276int shrink_all_memory(int nr_pages)
1277{
1278	pg_data_t *pgdat;
1279	int nr_to_free = nr_pages;
1280	int ret = 0;
1281	struct reclaim_state reclaim_state = {
1282		.reclaimed_slab = 0,
1283	};
1284
1285	current->reclaim_state = &reclaim_state;
1286	for_each_pgdat(pgdat) {
1287		int freed;
1288		freed = balance_pgdat(pgdat, nr_to_free, 0);
1289		ret += freed;
1290		nr_to_free -= freed;
1291		if (nr_to_free <= 0)
1292			break;
1293	}
1294	current->reclaim_state = NULL;
1295	return ret;
1296}
1297#endif
1298
1299#ifdef CONFIG_HOTPLUG_CPU
1300/* It's optimal to keep kswapds on the same CPUs as their memory, but
1301   not required for correctness.  So if the last cpu in a node goes
1302   away, we get changed to run anywhere: as the first one comes back,
1303   restore their cpu bindings. */
1304static int __devinit cpu_callback(struct notifier_block *nfb,
1305				  unsigned long action,
1306				  void *hcpu)
1307{
1308	pg_data_t *pgdat;
1309	cpumask_t mask;
1310
1311	if (action == CPU_ONLINE) {
1312		for_each_pgdat(pgdat) {
1313			mask = node_to_cpumask(pgdat->node_id);
1314			if (any_online_cpu(mask) != NR_CPUS)
1315				/* One of our CPUs online: restore mask */
1316				set_cpus_allowed(pgdat->kswapd, mask);
1317		}
1318	}
1319	return NOTIFY_OK;
1320}
1321#endif /* CONFIG_HOTPLUG_CPU */
1322
1323static int __init kswapd_init(void)
1324{
1325	pg_data_t *pgdat;
1326	swap_setup();
1327	for_each_pgdat(pgdat)
1328		pgdat->kswapd
1329		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1330	total_memory = nr_free_pagecache_pages();
1331	hotcpu_notifier(cpu_callback, 0);
1332	return 0;
1333}
1334
1335module_init(kswapd_init)
1336
1337
1338/*
1339 * Try to free up some pages from this zone through reclaim.
1340 */
1341int zone_reclaim(struct zone *zone, unsigned int gfp_mask, unsigned int order)
1342{
1343	struct scan_control sc;
1344	int nr_pages = 1 << order;
1345	int total_reclaimed = 0;
1346
1347	/* The reclaim may sleep, so don't do it if sleep isn't allowed */
1348	if (!(gfp_mask & __GFP_WAIT))
1349		return 0;
1350	if (zone->all_unreclaimable)
1351		return 0;
1352
1353	sc.gfp_mask = gfp_mask;
1354	sc.may_writepage = 0;
1355	sc.may_swap = 0;
1356	sc.nr_mapped = read_page_state(nr_mapped);
1357	sc.nr_scanned = 0;
1358	sc.nr_reclaimed = 0;
1359	/* scan at the highest priority */
1360	sc.priority = 0;
1361
1362	if (nr_pages > SWAP_CLUSTER_MAX)
1363		sc.swap_cluster_max = nr_pages;
1364	else
1365		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1366
1367	/* Don't reclaim the zone if there are other reclaimers active */
1368	if (atomic_read(&zone->reclaim_in_progress) > 0)
1369		goto out;
1370
1371	shrink_zone(zone, &sc);
1372	total_reclaimed = sc.nr_reclaimed;
1373
1374 out:
1375	return total_reclaimed;
1376}
1377
1378asmlinkage long sys_set_zone_reclaim(unsigned int node, unsigned int zone,
1379				     unsigned int state)
1380{
1381	struct zone *z;
1382	int i;
1383
1384	if (!capable(CAP_SYS_ADMIN))
1385		return -EACCES;
1386
1387	if (node >= MAX_NUMNODES || !node_online(node))
1388		return -EINVAL;
1389
1390	/* This will break if we ever add more zones */
1391	if (!(zone & (1<<ZONE_DMA|1<<ZONE_NORMAL|1<<ZONE_HIGHMEM)))
1392		return -EINVAL;
1393
1394	for (i = 0; i < MAX_NR_ZONES; i++) {
1395		if (!(zone & 1<<i))
1396			continue;
1397
1398		z = &NODE_DATA(node)->node_zones[i];
1399
1400		if (state)
1401			z->reclaim_pages = 1;
1402		else
1403			z->reclaim_pages = 0;
1404	}
1405
1406	return 0;
1407}
1408