vmscan.c revision 4111304dab198c687bc60f2e235a9f7ee92c47c8
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/*
107	 * The memory cgroup that hit its limit and as a result is the
108	 * primary target of this reclaim invocation.
109	 */
110	struct mem_cgroup *target_mem_cgroup;
111
112	/*
113	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114	 * are scanned.
115	 */
116	nodemask_t	*nodemask;
117};
118
119struct mem_cgroup_zone {
120	struct mem_cgroup *mem_cgroup;
121	struct zone *zone;
122};
123
124#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126#ifdef ARCH_HAS_PREFETCH
127#define prefetch_prev_lru_page(_page, _base, _field)			\
128	do {								\
129		if ((_page)->lru.prev != _base) {			\
130			struct page *prev;				\
131									\
132			prev = lru_to_page(&(_page->lru));		\
133			prefetch(&prev->_field);			\
134		}							\
135	} while (0)
136#else
137#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138#endif
139
140#ifdef ARCH_HAS_PREFETCHW
141#define prefetchw_prev_lru_page(_page, _base, _field)			\
142	do {								\
143		if ((_page)->lru.prev != _base) {			\
144			struct page *prev;				\
145									\
146			prev = lru_to_page(&(_page->lru));		\
147			prefetchw(&prev->_field);			\
148		}							\
149	} while (0)
150#else
151#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152#endif
153
154/*
155 * From 0 .. 100.  Higher means more swappy.
156 */
157int vm_swappiness = 60;
158long vm_total_pages;	/* The total number of pages which the VM controls */
159
160static LIST_HEAD(shrinker_list);
161static DECLARE_RWSEM(shrinker_rwsem);
162
163#ifdef CONFIG_CGROUP_MEM_RES_CTLR
164static bool global_reclaim(struct scan_control *sc)
165{
166	return !sc->target_mem_cgroup;
167}
168
169static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170{
171	return !mz->mem_cgroup;
172}
173#else
174static bool global_reclaim(struct scan_control *sc)
175{
176	return true;
177}
178
179static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180{
181	return true;
182}
183#endif
184
185static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186{
187	if (!scanning_global_lru(mz))
188		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190	return &mz->zone->reclaim_stat;
191}
192
193static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194				       enum lru_list lru)
195{
196	if (!scanning_global_lru(mz))
197		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198						    zone_to_nid(mz->zone),
199						    zone_idx(mz->zone),
200						    BIT(lru));
201
202	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203}
204
205
206/*
207 * Add a shrinker callback to be called from the vm
208 */
209void register_shrinker(struct shrinker *shrinker)
210{
211	atomic_long_set(&shrinker->nr_in_batch, 0);
212	down_write(&shrinker_rwsem);
213	list_add_tail(&shrinker->list, &shrinker_list);
214	up_write(&shrinker_rwsem);
215}
216EXPORT_SYMBOL(register_shrinker);
217
218/*
219 * Remove one
220 */
221void unregister_shrinker(struct shrinker *shrinker)
222{
223	down_write(&shrinker_rwsem);
224	list_del(&shrinker->list);
225	up_write(&shrinker_rwsem);
226}
227EXPORT_SYMBOL(unregister_shrinker);
228
229static inline int do_shrinker_shrink(struct shrinker *shrinker,
230				     struct shrink_control *sc,
231				     unsigned long nr_to_scan)
232{
233	sc->nr_to_scan = nr_to_scan;
234	return (*shrinker->shrink)(shrinker, sc);
235}
236
237#define SHRINK_BATCH 128
238/*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object.  With this in mind we age equal
243 * percentages of the lru and ageable caches.  This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt.  It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257unsigned long shrink_slab(struct shrink_control *shrink,
258			  unsigned long nr_pages_scanned,
259			  unsigned long lru_pages)
260{
261	struct shrinker *shrinker;
262	unsigned long ret = 0;
263
264	if (nr_pages_scanned == 0)
265		nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267	if (!down_read_trylock(&shrinker_rwsem)) {
268		/* Assume we'll be able to shrink next time */
269		ret = 1;
270		goto out;
271	}
272
273	list_for_each_entry(shrinker, &shrinker_list, list) {
274		unsigned long long delta;
275		long total_scan;
276		long max_pass;
277		int shrink_ret = 0;
278		long nr;
279		long new_nr;
280		long batch_size = shrinker->batch ? shrinker->batch
281						  : SHRINK_BATCH;
282
283		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284		if (max_pass <= 0)
285			continue;
286
287		/*
288		 * copy the current shrinker scan count into a local variable
289		 * and zero it so that other concurrent shrinker invocations
290		 * don't also do this scanning work.
291		 */
292		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294		total_scan = nr;
295		delta = (4 * nr_pages_scanned) / shrinker->seeks;
296		delta *= max_pass;
297		do_div(delta, lru_pages + 1);
298		total_scan += delta;
299		if (total_scan < 0) {
300			printk(KERN_ERR "shrink_slab: %pF negative objects to "
301			       "delete nr=%ld\n",
302			       shrinker->shrink, total_scan);
303			total_scan = max_pass;
304		}
305
306		/*
307		 * We need to avoid excessive windup on filesystem shrinkers
308		 * due to large numbers of GFP_NOFS allocations causing the
309		 * shrinkers to return -1 all the time. This results in a large
310		 * nr being built up so when a shrink that can do some work
311		 * comes along it empties the entire cache due to nr >>>
312		 * max_pass.  This is bad for sustaining a working set in
313		 * memory.
314		 *
315		 * Hence only allow the shrinker to scan the entire cache when
316		 * a large delta change is calculated directly.
317		 */
318		if (delta < max_pass / 4)
319			total_scan = min(total_scan, max_pass / 2);
320
321		/*
322		 * Avoid risking looping forever due to too large nr value:
323		 * never try to free more than twice the estimate number of
324		 * freeable entries.
325		 */
326		if (total_scan > max_pass * 2)
327			total_scan = max_pass * 2;
328
329		trace_mm_shrink_slab_start(shrinker, shrink, nr,
330					nr_pages_scanned, lru_pages,
331					max_pass, delta, total_scan);
332
333		while (total_scan >= batch_size) {
334			int nr_before;
335
336			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337			shrink_ret = do_shrinker_shrink(shrinker, shrink,
338							batch_size);
339			if (shrink_ret == -1)
340				break;
341			if (shrink_ret < nr_before)
342				ret += nr_before - shrink_ret;
343			count_vm_events(SLABS_SCANNED, batch_size);
344			total_scan -= batch_size;
345
346			cond_resched();
347		}
348
349		/*
350		 * move the unused scan count back into the shrinker in a
351		 * manner that handles concurrent updates. If we exhausted the
352		 * scan, there is no need to do an update.
353		 */
354		if (total_scan > 0)
355			new_nr = atomic_long_add_return(total_scan,
356					&shrinker->nr_in_batch);
357		else
358			new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361	}
362	up_read(&shrinker_rwsem);
363out:
364	cond_resched();
365	return ret;
366}
367
368static void set_reclaim_mode(int priority, struct scan_control *sc,
369				   bool sync)
370{
371	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373	/*
374	 * Initially assume we are entering either lumpy reclaim or
375	 * reclaim/compaction.Depending on the order, we will either set the
376	 * sync mode or just reclaim order-0 pages later.
377	 */
378	if (COMPACTION_BUILD)
379		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380	else
381		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383	/*
384	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385	 * restricting when its set to either costly allocations or when
386	 * under memory pressure
387	 */
388	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389		sc->reclaim_mode |= syncmode;
390	else if (sc->order && priority < DEF_PRIORITY - 2)
391		sc->reclaim_mode |= syncmode;
392	else
393		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394}
395
396static void reset_reclaim_mode(struct scan_control *sc)
397{
398	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399}
400
401static inline int is_page_cache_freeable(struct page *page)
402{
403	/*
404	 * A freeable page cache page is referenced only by the caller
405	 * that isolated the page, the page cache radix tree and
406	 * optional buffer heads at page->private.
407	 */
408	return page_count(page) - page_has_private(page) == 2;
409}
410
411static int may_write_to_queue(struct backing_dev_info *bdi,
412			      struct scan_control *sc)
413{
414	if (current->flags & PF_SWAPWRITE)
415		return 1;
416	if (!bdi_write_congested(bdi))
417		return 1;
418	if (bdi == current->backing_dev_info)
419		return 1;
420
421	/* lumpy reclaim for hugepage often need a lot of write */
422	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423		return 1;
424	return 0;
425}
426
427/*
428 * We detected a synchronous write error writing a page out.  Probably
429 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up.  But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439static void handle_write_error(struct address_space *mapping,
440				struct page *page, int error)
441{
442	lock_page(page);
443	if (page_mapping(page) == mapping)
444		mapping_set_error(mapping, error);
445	unlock_page(page);
446}
447
448/* possible outcome of pageout() */
449typedef enum {
450	/* failed to write page out, page is locked */
451	PAGE_KEEP,
452	/* move page to the active list, page is locked */
453	PAGE_ACTIVATE,
454	/* page has been sent to the disk successfully, page is unlocked */
455	PAGE_SUCCESS,
456	/* page is clean and locked */
457	PAGE_CLEAN,
458} pageout_t;
459
460/*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464static pageout_t pageout(struct page *page, struct address_space *mapping,
465			 struct scan_control *sc)
466{
467	/*
468	 * If the page is dirty, only perform writeback if that write
469	 * will be non-blocking.  To prevent this allocation from being
470	 * stalled by pagecache activity.  But note that there may be
471	 * stalls if we need to run get_block().  We could test
472	 * PagePrivate for that.
473	 *
474	 * If this process is currently in __generic_file_aio_write() against
475	 * this page's queue, we can perform writeback even if that
476	 * will block.
477	 *
478	 * If the page is swapcache, write it back even if that would
479	 * block, for some throttling. This happens by accident, because
480	 * swap_backing_dev_info is bust: it doesn't reflect the
481	 * congestion state of the swapdevs.  Easy to fix, if needed.
482	 */
483	if (!is_page_cache_freeable(page))
484		return PAGE_KEEP;
485	if (!mapping) {
486		/*
487		 * Some data journaling orphaned pages can have
488		 * page->mapping == NULL while being dirty with clean buffers.
489		 */
490		if (page_has_private(page)) {
491			if (try_to_free_buffers(page)) {
492				ClearPageDirty(page);
493				printk("%s: orphaned page\n", __func__);
494				return PAGE_CLEAN;
495			}
496		}
497		return PAGE_KEEP;
498	}
499	if (mapping->a_ops->writepage == NULL)
500		return PAGE_ACTIVATE;
501	if (!may_write_to_queue(mapping->backing_dev_info, sc))
502		return PAGE_KEEP;
503
504	if (clear_page_dirty_for_io(page)) {
505		int res;
506		struct writeback_control wbc = {
507			.sync_mode = WB_SYNC_NONE,
508			.nr_to_write = SWAP_CLUSTER_MAX,
509			.range_start = 0,
510			.range_end = LLONG_MAX,
511			.for_reclaim = 1,
512		};
513
514		SetPageReclaim(page);
515		res = mapping->a_ops->writepage(page, &wbc);
516		if (res < 0)
517			handle_write_error(mapping, page, res);
518		if (res == AOP_WRITEPAGE_ACTIVATE) {
519			ClearPageReclaim(page);
520			return PAGE_ACTIVATE;
521		}
522
523		if (!PageWriteback(page)) {
524			/* synchronous write or broken a_ops? */
525			ClearPageReclaim(page);
526		}
527		trace_mm_vmscan_writepage(page,
528			trace_reclaim_flags(page, sc->reclaim_mode));
529		inc_zone_page_state(page, NR_VMSCAN_WRITE);
530		return PAGE_SUCCESS;
531	}
532
533	return PAGE_CLEAN;
534}
535
536/*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540static int __remove_mapping(struct address_space *mapping, struct page *page)
541{
542	BUG_ON(!PageLocked(page));
543	BUG_ON(mapping != page_mapping(page));
544
545	spin_lock_irq(&mapping->tree_lock);
546	/*
547	 * The non racy check for a busy page.
548	 *
549	 * Must be careful with the order of the tests. When someone has
550	 * a ref to the page, it may be possible that they dirty it then
551	 * drop the reference. So if PageDirty is tested before page_count
552	 * here, then the following race may occur:
553	 *
554	 * get_user_pages(&page);
555	 * [user mapping goes away]
556	 * write_to(page);
557	 *				!PageDirty(page)    [good]
558	 * SetPageDirty(page);
559	 * put_page(page);
560	 *				!page_count(page)   [good, discard it]
561	 *
562	 * [oops, our write_to data is lost]
563	 *
564	 * Reversing the order of the tests ensures such a situation cannot
565	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566	 * load is not satisfied before that of page->_count.
567	 *
568	 * Note that if SetPageDirty is always performed via set_page_dirty,
569	 * and thus under tree_lock, then this ordering is not required.
570	 */
571	if (!page_freeze_refs(page, 2))
572		goto cannot_free;
573	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574	if (unlikely(PageDirty(page))) {
575		page_unfreeze_refs(page, 2);
576		goto cannot_free;
577	}
578
579	if (PageSwapCache(page)) {
580		swp_entry_t swap = { .val = page_private(page) };
581		__delete_from_swap_cache(page);
582		spin_unlock_irq(&mapping->tree_lock);
583		swapcache_free(swap, page);
584	} else {
585		void (*freepage)(struct page *);
586
587		freepage = mapping->a_ops->freepage;
588
589		__delete_from_page_cache(page);
590		spin_unlock_irq(&mapping->tree_lock);
591		mem_cgroup_uncharge_cache_page(page);
592
593		if (freepage != NULL)
594			freepage(page);
595	}
596
597	return 1;
598
599cannot_free:
600	spin_unlock_irq(&mapping->tree_lock);
601	return 0;
602}
603
604/*
605 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
606 * someone else has a ref on the page, abort and return 0.  If it was
607 * successfully detached, return 1.  Assumes the caller has a single ref on
608 * this page.
609 */
610int remove_mapping(struct address_space *mapping, struct page *page)
611{
612	if (__remove_mapping(mapping, page)) {
613		/*
614		 * Unfreezing the refcount with 1 rather than 2 effectively
615		 * drops the pagecache ref for us without requiring another
616		 * atomic operation.
617		 */
618		page_unfreeze_refs(page, 1);
619		return 1;
620	}
621	return 0;
622}
623
624/**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633void putback_lru_page(struct page *page)
634{
635	int lru;
636	int active = !!TestClearPageActive(page);
637	int was_unevictable = PageUnevictable(page);
638
639	VM_BUG_ON(PageLRU(page));
640
641redo:
642	ClearPageUnevictable(page);
643
644	if (page_evictable(page, NULL)) {
645		/*
646		 * For evictable pages, we can use the cache.
647		 * In event of a race, worst case is we end up with an
648		 * unevictable page on [in]active list.
649		 * We know how to handle that.
650		 */
651		lru = active + page_lru_base_type(page);
652		lru_cache_add_lru(page, lru);
653	} else {
654		/*
655		 * Put unevictable pages directly on zone's unevictable
656		 * list.
657		 */
658		lru = LRU_UNEVICTABLE;
659		add_page_to_unevictable_list(page);
660		/*
661		 * When racing with an mlock or AS_UNEVICTABLE clearing
662		 * (page is unlocked) make sure that if the other thread
663		 * does not observe our setting of PG_lru and fails
664		 * isolation/check_move_unevictable_page,
665		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666		 * the page back to the evictable list.
667		 *
668		 * The other side is TestClearPageMlocked() or shmem_lock().
669		 */
670		smp_mb();
671	}
672
673	/*
674	 * page's status can change while we move it among lru. If an evictable
675	 * page is on unevictable list, it never be freed. To avoid that,
676	 * check after we added it to the list, again.
677	 */
678	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679		if (!isolate_lru_page(page)) {
680			put_page(page);
681			goto redo;
682		}
683		/* This means someone else dropped this page from LRU
684		 * So, it will be freed or putback to LRU again. There is
685		 * nothing to do here.
686		 */
687	}
688
689	if (was_unevictable && lru != LRU_UNEVICTABLE)
690		count_vm_event(UNEVICTABLE_PGRESCUED);
691	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692		count_vm_event(UNEVICTABLE_PGCULLED);
693
694	put_page(page);		/* drop ref from isolate */
695}
696
697enum page_references {
698	PAGEREF_RECLAIM,
699	PAGEREF_RECLAIM_CLEAN,
700	PAGEREF_KEEP,
701	PAGEREF_ACTIVATE,
702};
703
704static enum page_references page_check_references(struct page *page,
705						  struct mem_cgroup_zone *mz,
706						  struct scan_control *sc)
707{
708	int referenced_ptes, referenced_page;
709	unsigned long vm_flags;
710
711	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712	referenced_page = TestClearPageReferenced(page);
713
714	/* Lumpy reclaim - ignore references */
715	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716		return PAGEREF_RECLAIM;
717
718	/*
719	 * Mlock lost the isolation race with us.  Let try_to_unmap()
720	 * move the page to the unevictable list.
721	 */
722	if (vm_flags & VM_LOCKED)
723		return PAGEREF_RECLAIM;
724
725	if (referenced_ptes) {
726		if (PageAnon(page))
727			return PAGEREF_ACTIVATE;
728		/*
729		 * All mapped pages start out with page table
730		 * references from the instantiating fault, so we need
731		 * to look twice if a mapped file page is used more
732		 * than once.
733		 *
734		 * Mark it and spare it for another trip around the
735		 * inactive list.  Another page table reference will
736		 * lead to its activation.
737		 *
738		 * Note: the mark is set for activated pages as well
739		 * so that recently deactivated but used pages are
740		 * quickly recovered.
741		 */
742		SetPageReferenced(page);
743
744		if (referenced_page || referenced_ptes > 1)
745			return PAGEREF_ACTIVATE;
746
747		/*
748		 * Activate file-backed executable pages after first usage.
749		 */
750		if (vm_flags & VM_EXEC)
751			return PAGEREF_ACTIVATE;
752
753		return PAGEREF_KEEP;
754	}
755
756	/* Reclaim if clean, defer dirty pages to writeback */
757	if (referenced_page && !PageSwapBacked(page))
758		return PAGEREF_RECLAIM_CLEAN;
759
760	return PAGEREF_RECLAIM;
761}
762
763/*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766static unsigned long shrink_page_list(struct list_head *page_list,
767				      struct mem_cgroup_zone *mz,
768				      struct scan_control *sc,
769				      int priority,
770				      unsigned long *ret_nr_dirty,
771				      unsigned long *ret_nr_writeback)
772{
773	LIST_HEAD(ret_pages);
774	LIST_HEAD(free_pages);
775	int pgactivate = 0;
776	unsigned long nr_dirty = 0;
777	unsigned long nr_congested = 0;
778	unsigned long nr_reclaimed = 0;
779	unsigned long nr_writeback = 0;
780
781	cond_resched();
782
783	while (!list_empty(page_list)) {
784		enum page_references references;
785		struct address_space *mapping;
786		struct page *page;
787		int may_enter_fs;
788
789		cond_resched();
790
791		page = lru_to_page(page_list);
792		list_del(&page->lru);
793
794		if (!trylock_page(page))
795			goto keep;
796
797		VM_BUG_ON(PageActive(page));
798		VM_BUG_ON(page_zone(page) != mz->zone);
799
800		sc->nr_scanned++;
801
802		if (unlikely(!page_evictable(page, NULL)))
803			goto cull_mlocked;
804
805		if (!sc->may_unmap && page_mapped(page))
806			goto keep_locked;
807
808		/* Double the slab pressure for mapped and swapcache pages */
809		if (page_mapped(page) || PageSwapCache(page))
810			sc->nr_scanned++;
811
812		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815		if (PageWriteback(page)) {
816			nr_writeback++;
817			/*
818			 * Synchronous reclaim cannot queue pages for
819			 * writeback due to the possibility of stack overflow
820			 * but if it encounters a page under writeback, wait
821			 * for the IO to complete.
822			 */
823			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824			    may_enter_fs)
825				wait_on_page_writeback(page);
826			else {
827				unlock_page(page);
828				goto keep_lumpy;
829			}
830		}
831
832		references = page_check_references(page, mz, sc);
833		switch (references) {
834		case PAGEREF_ACTIVATE:
835			goto activate_locked;
836		case PAGEREF_KEEP:
837			goto keep_locked;
838		case PAGEREF_RECLAIM:
839		case PAGEREF_RECLAIM_CLEAN:
840			; /* try to reclaim the page below */
841		}
842
843		/*
844		 * Anonymous process memory has backing store?
845		 * Try to allocate it some swap space here.
846		 */
847		if (PageAnon(page) && !PageSwapCache(page)) {
848			if (!(sc->gfp_mask & __GFP_IO))
849				goto keep_locked;
850			if (!add_to_swap(page))
851				goto activate_locked;
852			may_enter_fs = 1;
853		}
854
855		mapping = page_mapping(page);
856
857		/*
858		 * The page is mapped into the page tables of one or more
859		 * processes. Try to unmap it here.
860		 */
861		if (page_mapped(page) && mapping) {
862			switch (try_to_unmap(page, TTU_UNMAP)) {
863			case SWAP_FAIL:
864				goto activate_locked;
865			case SWAP_AGAIN:
866				goto keep_locked;
867			case SWAP_MLOCK:
868				goto cull_mlocked;
869			case SWAP_SUCCESS:
870				; /* try to free the page below */
871			}
872		}
873
874		if (PageDirty(page)) {
875			nr_dirty++;
876
877			/*
878			 * Only kswapd can writeback filesystem pages to
879			 * avoid risk of stack overflow but do not writeback
880			 * unless under significant pressure.
881			 */
882			if (page_is_file_cache(page) &&
883					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884				/*
885				 * Immediately reclaim when written back.
886				 * Similar in principal to deactivate_page()
887				 * except we already have the page isolated
888				 * and know it's dirty
889				 */
890				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891				SetPageReclaim(page);
892
893				goto keep_locked;
894			}
895
896			if (references == PAGEREF_RECLAIM_CLEAN)
897				goto keep_locked;
898			if (!may_enter_fs)
899				goto keep_locked;
900			if (!sc->may_writepage)
901				goto keep_locked;
902
903			/* Page is dirty, try to write it out here */
904			switch (pageout(page, mapping, sc)) {
905			case PAGE_KEEP:
906				nr_congested++;
907				goto keep_locked;
908			case PAGE_ACTIVATE:
909				goto activate_locked;
910			case PAGE_SUCCESS:
911				if (PageWriteback(page))
912					goto keep_lumpy;
913				if (PageDirty(page))
914					goto keep;
915
916				/*
917				 * A synchronous write - probably a ramdisk.  Go
918				 * ahead and try to reclaim the page.
919				 */
920				if (!trylock_page(page))
921					goto keep;
922				if (PageDirty(page) || PageWriteback(page))
923					goto keep_locked;
924				mapping = page_mapping(page);
925			case PAGE_CLEAN:
926				; /* try to free the page below */
927			}
928		}
929
930		/*
931		 * If the page has buffers, try to free the buffer mappings
932		 * associated with this page. If we succeed we try to free
933		 * the page as well.
934		 *
935		 * We do this even if the page is PageDirty().
936		 * try_to_release_page() does not perform I/O, but it is
937		 * possible for a page to have PageDirty set, but it is actually
938		 * clean (all its buffers are clean).  This happens if the
939		 * buffers were written out directly, with submit_bh(). ext3
940		 * will do this, as well as the blockdev mapping.
941		 * try_to_release_page() will discover that cleanness and will
942		 * drop the buffers and mark the page clean - it can be freed.
943		 *
944		 * Rarely, pages can have buffers and no ->mapping.  These are
945		 * the pages which were not successfully invalidated in
946		 * truncate_complete_page().  We try to drop those buffers here
947		 * and if that worked, and the page is no longer mapped into
948		 * process address space (page_count == 1) it can be freed.
949		 * Otherwise, leave the page on the LRU so it is swappable.
950		 */
951		if (page_has_private(page)) {
952			if (!try_to_release_page(page, sc->gfp_mask))
953				goto activate_locked;
954			if (!mapping && page_count(page) == 1) {
955				unlock_page(page);
956				if (put_page_testzero(page))
957					goto free_it;
958				else {
959					/*
960					 * rare race with speculative reference.
961					 * the speculative reference will free
962					 * this page shortly, so we may
963					 * increment nr_reclaimed here (and
964					 * leave it off the LRU).
965					 */
966					nr_reclaimed++;
967					continue;
968				}
969			}
970		}
971
972		if (!mapping || !__remove_mapping(mapping, page))
973			goto keep_locked;
974
975		/*
976		 * At this point, we have no other references and there is
977		 * no way to pick any more up (removed from LRU, removed
978		 * from pagecache). Can use non-atomic bitops now (and
979		 * we obviously don't have to worry about waking up a process
980		 * waiting on the page lock, because there are no references.
981		 */
982		__clear_page_locked(page);
983free_it:
984		nr_reclaimed++;
985
986		/*
987		 * Is there need to periodically free_page_list? It would
988		 * appear not as the counts should be low
989		 */
990		list_add(&page->lru, &free_pages);
991		continue;
992
993cull_mlocked:
994		if (PageSwapCache(page))
995			try_to_free_swap(page);
996		unlock_page(page);
997		putback_lru_page(page);
998		reset_reclaim_mode(sc);
999		continue;
1000
1001activate_locked:
1002		/* Not a candidate for swapping, so reclaim swap space. */
1003		if (PageSwapCache(page) && vm_swap_full())
1004			try_to_free_swap(page);
1005		VM_BUG_ON(PageActive(page));
1006		SetPageActive(page);
1007		pgactivate++;
1008keep_locked:
1009		unlock_page(page);
1010keep:
1011		reset_reclaim_mode(sc);
1012keep_lumpy:
1013		list_add(&page->lru, &ret_pages);
1014		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015	}
1016
1017	/*
1018	 * Tag a zone as congested if all the dirty pages encountered were
1019	 * backed by a congested BDI. In this case, reclaimers should just
1020	 * back off and wait for congestion to clear because further reclaim
1021	 * will encounter the same problem
1022	 */
1023	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024		zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026	free_hot_cold_page_list(&free_pages, 1);
1027
1028	list_splice(&ret_pages, page_list);
1029	count_vm_events(PGACTIVATE, pgactivate);
1030	*ret_nr_dirty += nr_dirty;
1031	*ret_nr_writeback += nr_writeback;
1032	return nr_reclaimed;
1033}
1034
1035/*
1036 * Attempt to remove the specified page from its LRU.  Only take this page
1037 * if it is of the appropriate PageActive status.  Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page:	page to consider
1041 * mode:	one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046{
1047	bool all_lru_mode;
1048	int ret = -EINVAL;
1049
1050	/* Only take pages on the LRU. */
1051	if (!PageLRU(page))
1052		return ret;
1053
1054	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057	/*
1058	 * When checking the active state, we need to be sure we are
1059	 * dealing with comparible boolean values.  Take the logical not
1060	 * of each.
1061	 */
1062	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063		return ret;
1064
1065	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066		return ret;
1067
1068	/*
1069	 * When this function is being called for lumpy reclaim, we
1070	 * initially look into all LRU pages, active, inactive and
1071	 * unevictable; only give shrink_page_list evictable pages.
1072	 */
1073	if (PageUnevictable(page))
1074		return ret;
1075
1076	ret = -EBUSY;
1077
1078	/*
1079	 * To minimise LRU disruption, the caller can indicate that it only
1080	 * wants to isolate pages it will be able to operate on without
1081	 * blocking - clean pages for the most part.
1082	 *
1083	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084	 * is used by reclaim when it is cannot write to backing storage
1085	 *
1086	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087	 * that it is possible to migrate without blocking
1088	 */
1089	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090		/* All the caller can do on PageWriteback is block */
1091		if (PageWriteback(page))
1092			return ret;
1093
1094		if (PageDirty(page)) {
1095			struct address_space *mapping;
1096
1097			/* ISOLATE_CLEAN means only clean pages */
1098			if (mode & ISOLATE_CLEAN)
1099				return ret;
1100
1101			/*
1102			 * Only pages without mappings or that have a
1103			 * ->migratepage callback are possible to migrate
1104			 * without blocking
1105			 */
1106			mapping = page_mapping(page);
1107			if (mapping && !mapping->a_ops->migratepage)
1108				return ret;
1109		}
1110	}
1111
1112	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113		return ret;
1114
1115	if (likely(get_page_unless_zero(page))) {
1116		/*
1117		 * Be careful not to clear PageLRU until after we're
1118		 * sure the page is not being freed elsewhere -- the
1119		 * page release code relies on it.
1120		 */
1121		ClearPageLRU(page);
1122		ret = 0;
1123	}
1124
1125	return ret;
1126}
1127
1128/*
1129 * zone->lru_lock is heavily contended.  Some of the functions that
1130 * shrink the lists perform better by taking out a batch of pages
1131 * and working on them outside the LRU lock.
1132 *
1133 * For pagecache intensive workloads, this function is the hottest
1134 * spot in the kernel (apart from copy_*_user functions).
1135 *
1136 * Appropriate locks must be held before calling this function.
1137 *
1138 * @nr_to_scan:	The number of pages to look through on the list.
1139 * @src:	The LRU list to pull pages off.
1140 * @dst:	The temp list to put pages on to.
1141 * @scanned:	The number of pages that were scanned.
1142 * @order:	The caller's attempted allocation order
1143 * @mode:	One of the LRU isolation modes
1144 * @file:	True [1] if isolating file [!anon] pages
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
1148static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149		struct list_head *src, struct list_head *dst,
1150		unsigned long *scanned, int order, isolate_mode_t mode,
1151		int file)
1152{
1153	unsigned long nr_taken = 0;
1154	unsigned long nr_lumpy_taken = 0;
1155	unsigned long nr_lumpy_dirty = 0;
1156	unsigned long nr_lumpy_failed = 0;
1157	unsigned long scan;
1158
1159	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1160		struct page *page;
1161		unsigned long pfn;
1162		unsigned long end_pfn;
1163		unsigned long page_pfn;
1164		int zone_id;
1165
1166		page = lru_to_page(src);
1167		prefetchw_prev_lru_page(page, src, flags);
1168
1169		VM_BUG_ON(!PageLRU(page));
1170
1171		switch (__isolate_lru_page(page, mode, file)) {
1172		case 0:
1173			mem_cgroup_lru_del(page);
1174			list_move(&page->lru, dst);
1175			nr_taken += hpage_nr_pages(page);
1176			break;
1177
1178		case -EBUSY:
1179			/* else it is being freed elsewhere */
1180			list_move(&page->lru, src);
1181			continue;
1182
1183		default:
1184			BUG();
1185		}
1186
1187		if (!order)
1188			continue;
1189
1190		/*
1191		 * Attempt to take all pages in the order aligned region
1192		 * surrounding the tag page.  Only take those pages of
1193		 * the same active state as that tag page.  We may safely
1194		 * round the target page pfn down to the requested order
1195		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1196		 * where that page is in a different zone we will detect
1197		 * it from its zone id and abort this block scan.
1198		 */
1199		zone_id = page_zone_id(page);
1200		page_pfn = page_to_pfn(page);
1201		pfn = page_pfn & ~((1 << order) - 1);
1202		end_pfn = pfn + (1 << order);
1203		for (; pfn < end_pfn; pfn++) {
1204			struct page *cursor_page;
1205
1206			/* The target page is in the block, ignore it. */
1207			if (unlikely(pfn == page_pfn))
1208				continue;
1209
1210			/* Avoid holes within the zone. */
1211			if (unlikely(!pfn_valid_within(pfn)))
1212				break;
1213
1214			cursor_page = pfn_to_page(pfn);
1215
1216			/* Check that we have not crossed a zone boundary. */
1217			if (unlikely(page_zone_id(cursor_page) != zone_id))
1218				break;
1219
1220			/*
1221			 * If we don't have enough swap space, reclaiming of
1222			 * anon page which don't already have a swap slot is
1223			 * pointless.
1224			 */
1225			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1226			    !PageSwapCache(cursor_page))
1227				break;
1228
1229			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1230				unsigned int isolated_pages;
1231
1232				mem_cgroup_lru_del(cursor_page);
1233				list_move(&cursor_page->lru, dst);
1234				isolated_pages = hpage_nr_pages(cursor_page);
1235				nr_taken += isolated_pages;
1236				nr_lumpy_taken += isolated_pages;
1237				if (PageDirty(cursor_page))
1238					nr_lumpy_dirty += isolated_pages;
1239				scan++;
1240				pfn += isolated_pages - 1;
1241			} else {
1242				/*
1243				 * Check if the page is freed already.
1244				 *
1245				 * We can't use page_count() as that
1246				 * requires compound_head and we don't
1247				 * have a pin on the page here. If a
1248				 * page is tail, we may or may not
1249				 * have isolated the head, so assume
1250				 * it's not free, it'd be tricky to
1251				 * track the head status without a
1252				 * page pin.
1253				 */
1254				if (!PageTail(cursor_page) &&
1255				    !atomic_read(&cursor_page->_count))
1256					continue;
1257				break;
1258			}
1259		}
1260
1261		/* If we break out of the loop above, lumpy reclaim failed */
1262		if (pfn < end_pfn)
1263			nr_lumpy_failed++;
1264	}
1265
1266	*scanned = scan;
1267
1268	trace_mm_vmscan_lru_isolate(order,
1269			nr_to_scan, scan,
1270			nr_taken,
1271			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1272			mode, file);
1273	return nr_taken;
1274}
1275
1276static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
1277				   struct list_head *dst,
1278				   unsigned long *scanned, int order,
1279				   isolate_mode_t mode, int active, int file)
1280{
1281	struct lruvec *lruvec;
1282	int lru = LRU_BASE;
1283
1284	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1285	if (active)
1286		lru += LRU_ACTIVE;
1287	if (file)
1288		lru += LRU_FILE;
1289	return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1290				 scanned, order, mode, file);
1291}
1292
1293/*
1294 * clear_active_flags() is a helper for shrink_active_list(), clearing
1295 * any active bits from the pages in the list.
1296 */
1297static unsigned long clear_active_flags(struct list_head *page_list,
1298					unsigned int *count)
1299{
1300	int nr_active = 0;
1301	int lru;
1302	struct page *page;
1303
1304	list_for_each_entry(page, page_list, lru) {
1305		int numpages = hpage_nr_pages(page);
1306		lru = page_lru_base_type(page);
1307		if (PageActive(page)) {
1308			lru += LRU_ACTIVE;
1309			ClearPageActive(page);
1310			nr_active += numpages;
1311		}
1312		if (count)
1313			count[lru] += numpages;
1314	}
1315
1316	return nr_active;
1317}
1318
1319/**
1320 * isolate_lru_page - tries to isolate a page from its LRU list
1321 * @page: page to isolate from its LRU list
1322 *
1323 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1324 * vmstat statistic corresponding to whatever LRU list the page was on.
1325 *
1326 * Returns 0 if the page was removed from an LRU list.
1327 * Returns -EBUSY if the page was not on an LRU list.
1328 *
1329 * The returned page will have PageLRU() cleared.  If it was found on
1330 * the active list, it will have PageActive set.  If it was found on
1331 * the unevictable list, it will have the PageUnevictable bit set. That flag
1332 * may need to be cleared by the caller before letting the page go.
1333 *
1334 * The vmstat statistic corresponding to the list on which the page was
1335 * found will be decremented.
1336 *
1337 * Restrictions:
1338 * (1) Must be called with an elevated refcount on the page. This is a
1339 *     fundamentnal difference from isolate_lru_pages (which is called
1340 *     without a stable reference).
1341 * (2) the lru_lock must not be held.
1342 * (3) interrupts must be enabled.
1343 */
1344int isolate_lru_page(struct page *page)
1345{
1346	int ret = -EBUSY;
1347
1348	VM_BUG_ON(!page_count(page));
1349
1350	if (PageLRU(page)) {
1351		struct zone *zone = page_zone(page);
1352
1353		spin_lock_irq(&zone->lru_lock);
1354		if (PageLRU(page)) {
1355			int lru = page_lru(page);
1356			ret = 0;
1357			get_page(page);
1358			ClearPageLRU(page);
1359
1360			del_page_from_lru_list(zone, page, lru);
1361		}
1362		spin_unlock_irq(&zone->lru_lock);
1363	}
1364	return ret;
1365}
1366
1367/*
1368 * Are there way too many processes in the direct reclaim path already?
1369 */
1370static int too_many_isolated(struct zone *zone, int file,
1371		struct scan_control *sc)
1372{
1373	unsigned long inactive, isolated;
1374
1375	if (current_is_kswapd())
1376		return 0;
1377
1378	if (!global_reclaim(sc))
1379		return 0;
1380
1381	if (file) {
1382		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1383		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1384	} else {
1385		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1386		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1387	}
1388
1389	return isolated > inactive;
1390}
1391
1392/*
1393 * TODO: Try merging with migrations version of putback_lru_pages
1394 */
1395static noinline_for_stack void
1396putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1397		  unsigned long nr_anon, unsigned long nr_file,
1398		  struct list_head *page_list)
1399{
1400	struct page *page;
1401	LIST_HEAD(pages_to_free);
1402	struct zone *zone = mz->zone;
1403	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404
1405	/*
1406	 * Put back any unfreeable pages.
1407	 */
1408	spin_lock(&zone->lru_lock);
1409	while (!list_empty(page_list)) {
1410		int lru;
1411		page = lru_to_page(page_list);
1412		VM_BUG_ON(PageLRU(page));
1413		list_del(&page->lru);
1414		if (unlikely(!page_evictable(page, NULL))) {
1415			spin_unlock_irq(&zone->lru_lock);
1416			putback_lru_page(page);
1417			spin_lock_irq(&zone->lru_lock);
1418			continue;
1419		}
1420		SetPageLRU(page);
1421		lru = page_lru(page);
1422		add_page_to_lru_list(zone, page, lru);
1423		if (is_active_lru(lru)) {
1424			int file = is_file_lru(lru);
1425			int numpages = hpage_nr_pages(page);
1426			reclaim_stat->recent_rotated[file] += numpages;
1427		}
1428		if (put_page_testzero(page)) {
1429			__ClearPageLRU(page);
1430			__ClearPageActive(page);
1431			del_page_from_lru_list(zone, page, lru);
1432
1433			if (unlikely(PageCompound(page))) {
1434				spin_unlock_irq(&zone->lru_lock);
1435				(*get_compound_page_dtor(page))(page);
1436				spin_lock_irq(&zone->lru_lock);
1437			} else
1438				list_add(&page->lru, &pages_to_free);
1439		}
1440	}
1441	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1442	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1443
1444	spin_unlock_irq(&zone->lru_lock);
1445	free_hot_cold_page_list(&pages_to_free, 1);
1446}
1447
1448static noinline_for_stack void
1449update_isolated_counts(struct mem_cgroup_zone *mz,
1450		       struct scan_control *sc,
1451		       unsigned long *nr_anon,
1452		       unsigned long *nr_file,
1453		       struct list_head *isolated_list)
1454{
1455	unsigned long nr_active;
1456	struct zone *zone = mz->zone;
1457	unsigned int count[NR_LRU_LISTS] = { 0, };
1458	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1459
1460	nr_active = clear_active_flags(isolated_list, count);
1461	__count_vm_events(PGDEACTIVATE, nr_active);
1462
1463	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1464			      -count[LRU_ACTIVE_FILE]);
1465	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1466			      -count[LRU_INACTIVE_FILE]);
1467	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1468			      -count[LRU_ACTIVE_ANON]);
1469	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1470			      -count[LRU_INACTIVE_ANON]);
1471
1472	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1473	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1474	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1475	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1476
1477	reclaim_stat->recent_scanned[0] += *nr_anon;
1478	reclaim_stat->recent_scanned[1] += *nr_file;
1479}
1480
1481/*
1482 * Returns true if a direct reclaim should wait on pages under writeback.
1483 *
1484 * If we are direct reclaiming for contiguous pages and we do not reclaim
1485 * everything in the list, try again and wait for writeback IO to complete.
1486 * This will stall high-order allocations noticeably. Only do that when really
1487 * need to free the pages under high memory pressure.
1488 */
1489static inline bool should_reclaim_stall(unsigned long nr_taken,
1490					unsigned long nr_freed,
1491					int priority,
1492					struct scan_control *sc)
1493{
1494	int lumpy_stall_priority;
1495
1496	/* kswapd should not stall on sync IO */
1497	if (current_is_kswapd())
1498		return false;
1499
1500	/* Only stall on lumpy reclaim */
1501	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1502		return false;
1503
1504	/* If we have reclaimed everything on the isolated list, no stall */
1505	if (nr_freed == nr_taken)
1506		return false;
1507
1508	/*
1509	 * For high-order allocations, there are two stall thresholds.
1510	 * High-cost allocations stall immediately where as lower
1511	 * order allocations such as stacks require the scanning
1512	 * priority to be much higher before stalling.
1513	 */
1514	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1515		lumpy_stall_priority = DEF_PRIORITY;
1516	else
1517		lumpy_stall_priority = DEF_PRIORITY / 3;
1518
1519	return priority <= lumpy_stall_priority;
1520}
1521
1522/*
1523 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1524 * of reclaimed pages
1525 */
1526static noinline_for_stack unsigned long
1527shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1528		     struct scan_control *sc, int priority, int file)
1529{
1530	LIST_HEAD(page_list);
1531	unsigned long nr_scanned;
1532	unsigned long nr_reclaimed = 0;
1533	unsigned long nr_taken;
1534	unsigned long nr_anon;
1535	unsigned long nr_file;
1536	unsigned long nr_dirty = 0;
1537	unsigned long nr_writeback = 0;
1538	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1539	struct zone *zone = mz->zone;
1540
1541	while (unlikely(too_many_isolated(zone, file, sc))) {
1542		congestion_wait(BLK_RW_ASYNC, HZ/10);
1543
1544		/* We are about to die and free our memory. Return now. */
1545		if (fatal_signal_pending(current))
1546			return SWAP_CLUSTER_MAX;
1547	}
1548
1549	set_reclaim_mode(priority, sc, false);
1550	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1551		reclaim_mode |= ISOLATE_ACTIVE;
1552
1553	lru_add_drain();
1554
1555	if (!sc->may_unmap)
1556		reclaim_mode |= ISOLATE_UNMAPPED;
1557	if (!sc->may_writepage)
1558		reclaim_mode |= ISOLATE_CLEAN;
1559
1560	spin_lock_irq(&zone->lru_lock);
1561
1562	nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
1563				 &nr_scanned, sc->order,
1564				 reclaim_mode, 0, file);
1565	if (global_reclaim(sc)) {
1566		zone->pages_scanned += nr_scanned;
1567		if (current_is_kswapd())
1568			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1569					       nr_scanned);
1570		else
1571			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1572					       nr_scanned);
1573	}
1574
1575	if (nr_taken == 0) {
1576		spin_unlock_irq(&zone->lru_lock);
1577		return 0;
1578	}
1579
1580	update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1581
1582	spin_unlock_irq(&zone->lru_lock);
1583
1584	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1585						&nr_dirty, &nr_writeback);
1586
1587	/* Check if we should syncronously wait for writeback */
1588	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1589		set_reclaim_mode(priority, sc, true);
1590		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1591					priority, &nr_dirty, &nr_writeback);
1592	}
1593
1594	local_irq_disable();
1595	if (current_is_kswapd())
1596		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1597	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1598
1599	putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1600
1601	/*
1602	 * If reclaim is isolating dirty pages under writeback, it implies
1603	 * that the long-lived page allocation rate is exceeding the page
1604	 * laundering rate. Either the global limits are not being effective
1605	 * at throttling processes due to the page distribution throughout
1606	 * zones or there is heavy usage of a slow backing device. The
1607	 * only option is to throttle from reclaim context which is not ideal
1608	 * as there is no guarantee the dirtying process is throttled in the
1609	 * same way balance_dirty_pages() manages.
1610	 *
1611	 * This scales the number of dirty pages that must be under writeback
1612	 * before throttling depending on priority. It is a simple backoff
1613	 * function that has the most effect in the range DEF_PRIORITY to
1614	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1615	 * in trouble and reclaim is considered to be in trouble.
1616	 *
1617	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1618	 * DEF_PRIORITY-1  50% must be PageWriteback
1619	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1620	 * ...
1621	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1622	 *                     isolated page is PageWriteback
1623	 */
1624	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1625		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1626
1627	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1628		zone_idx(zone),
1629		nr_scanned, nr_reclaimed,
1630		priority,
1631		trace_shrink_flags(file, sc->reclaim_mode));
1632	return nr_reclaimed;
1633}
1634
1635/*
1636 * This moves pages from the active list to the inactive list.
1637 *
1638 * We move them the other way if the page is referenced by one or more
1639 * processes, from rmap.
1640 *
1641 * If the pages are mostly unmapped, the processing is fast and it is
1642 * appropriate to hold zone->lru_lock across the whole operation.  But if
1643 * the pages are mapped, the processing is slow (page_referenced()) so we
1644 * should drop zone->lru_lock around each page.  It's impossible to balance
1645 * this, so instead we remove the pages from the LRU while processing them.
1646 * It is safe to rely on PG_active against the non-LRU pages in here because
1647 * nobody will play with that bit on a non-LRU page.
1648 *
1649 * The downside is that we have to touch page->_count against each page.
1650 * But we had to alter page->flags anyway.
1651 */
1652
1653static void move_active_pages_to_lru(struct zone *zone,
1654				     struct list_head *list,
1655				     struct list_head *pages_to_free,
1656				     enum lru_list lru)
1657{
1658	unsigned long pgmoved = 0;
1659	struct page *page;
1660
1661	if (buffer_heads_over_limit) {
1662		spin_unlock_irq(&zone->lru_lock);
1663		list_for_each_entry(page, list, lru) {
1664			if (page_has_private(page) && trylock_page(page)) {
1665				if (page_has_private(page))
1666					try_to_release_page(page, 0);
1667				unlock_page(page);
1668			}
1669		}
1670		spin_lock_irq(&zone->lru_lock);
1671	}
1672
1673	while (!list_empty(list)) {
1674		struct lruvec *lruvec;
1675
1676		page = lru_to_page(list);
1677
1678		VM_BUG_ON(PageLRU(page));
1679		SetPageLRU(page);
1680
1681		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1682		list_move(&page->lru, &lruvec->lists[lru]);
1683		pgmoved += hpage_nr_pages(page);
1684
1685		if (put_page_testzero(page)) {
1686			__ClearPageLRU(page);
1687			__ClearPageActive(page);
1688			del_page_from_lru_list(zone, page, lru);
1689
1690			if (unlikely(PageCompound(page))) {
1691				spin_unlock_irq(&zone->lru_lock);
1692				(*get_compound_page_dtor(page))(page);
1693				spin_lock_irq(&zone->lru_lock);
1694			} else
1695				list_add(&page->lru, pages_to_free);
1696		}
1697	}
1698	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1699	if (!is_active_lru(lru))
1700		__count_vm_events(PGDEACTIVATE, pgmoved);
1701}
1702
1703static void shrink_active_list(unsigned long nr_pages,
1704			       struct mem_cgroup_zone *mz,
1705			       struct scan_control *sc,
1706			       int priority, int file)
1707{
1708	unsigned long nr_taken;
1709	unsigned long pgscanned;
1710	unsigned long vm_flags;
1711	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1712	LIST_HEAD(l_active);
1713	LIST_HEAD(l_inactive);
1714	struct page *page;
1715	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1716	unsigned long nr_rotated = 0;
1717	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1718	struct zone *zone = mz->zone;
1719
1720	lru_add_drain();
1721
1722	if (!sc->may_unmap)
1723		reclaim_mode |= ISOLATE_UNMAPPED;
1724	if (!sc->may_writepage)
1725		reclaim_mode |= ISOLATE_CLEAN;
1726
1727	spin_lock_irq(&zone->lru_lock);
1728
1729	nr_taken = isolate_pages(nr_pages, mz, &l_hold,
1730				 &pgscanned, sc->order,
1731				 reclaim_mode, 1, file);
1732
1733	if (global_reclaim(sc))
1734		zone->pages_scanned += pgscanned;
1735
1736	reclaim_stat->recent_scanned[file] += nr_taken;
1737
1738	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1739	if (file)
1740		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1741	else
1742		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1743	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1744	spin_unlock_irq(&zone->lru_lock);
1745
1746	while (!list_empty(&l_hold)) {
1747		cond_resched();
1748		page = lru_to_page(&l_hold);
1749		list_del(&page->lru);
1750
1751		if (unlikely(!page_evictable(page, NULL))) {
1752			putback_lru_page(page);
1753			continue;
1754		}
1755
1756		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1757			nr_rotated += hpage_nr_pages(page);
1758			/*
1759			 * Identify referenced, file-backed active pages and
1760			 * give them one more trip around the active list. So
1761			 * that executable code get better chances to stay in
1762			 * memory under moderate memory pressure.  Anon pages
1763			 * are not likely to be evicted by use-once streaming
1764			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1765			 * so we ignore them here.
1766			 */
1767			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1768				list_add(&page->lru, &l_active);
1769				continue;
1770			}
1771		}
1772
1773		ClearPageActive(page);	/* we are de-activating */
1774		list_add(&page->lru, &l_inactive);
1775	}
1776
1777	/*
1778	 * Move pages back to the lru list.
1779	 */
1780	spin_lock_irq(&zone->lru_lock);
1781	/*
1782	 * Count referenced pages from currently used mappings as rotated,
1783	 * even though only some of them are actually re-activated.  This
1784	 * helps balance scan pressure between file and anonymous pages in
1785	 * get_scan_ratio.
1786	 */
1787	reclaim_stat->recent_rotated[file] += nr_rotated;
1788
1789	move_active_pages_to_lru(zone, &l_active, &l_hold,
1790						LRU_ACTIVE + file * LRU_FILE);
1791	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1792						LRU_BASE   + file * LRU_FILE);
1793	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1794	spin_unlock_irq(&zone->lru_lock);
1795
1796	free_hot_cold_page_list(&l_hold, 1);
1797}
1798
1799#ifdef CONFIG_SWAP
1800static int inactive_anon_is_low_global(struct zone *zone)
1801{
1802	unsigned long active, inactive;
1803
1804	active = zone_page_state(zone, NR_ACTIVE_ANON);
1805	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1806
1807	if (inactive * zone->inactive_ratio < active)
1808		return 1;
1809
1810	return 0;
1811}
1812
1813/**
1814 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1815 * @zone: zone to check
1816 * @sc:   scan control of this context
1817 *
1818 * Returns true if the zone does not have enough inactive anon pages,
1819 * meaning some active anon pages need to be deactivated.
1820 */
1821static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1822{
1823	/*
1824	 * If we don't have swap space, anonymous page deactivation
1825	 * is pointless.
1826	 */
1827	if (!total_swap_pages)
1828		return 0;
1829
1830	if (!scanning_global_lru(mz))
1831		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1832						       mz->zone);
1833
1834	return inactive_anon_is_low_global(mz->zone);
1835}
1836#else
1837static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1838{
1839	return 0;
1840}
1841#endif
1842
1843static int inactive_file_is_low_global(struct zone *zone)
1844{
1845	unsigned long active, inactive;
1846
1847	active = zone_page_state(zone, NR_ACTIVE_FILE);
1848	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1849
1850	return (active > inactive);
1851}
1852
1853/**
1854 * inactive_file_is_low - check if file pages need to be deactivated
1855 * @mz: memory cgroup and zone to check
1856 *
1857 * When the system is doing streaming IO, memory pressure here
1858 * ensures that active file pages get deactivated, until more
1859 * than half of the file pages are on the inactive list.
1860 *
1861 * Once we get to that situation, protect the system's working
1862 * set from being evicted by disabling active file page aging.
1863 *
1864 * This uses a different ratio than the anonymous pages, because
1865 * the page cache uses a use-once replacement algorithm.
1866 */
1867static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1868{
1869	if (!scanning_global_lru(mz))
1870		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1871						       mz->zone);
1872
1873	return inactive_file_is_low_global(mz->zone);
1874}
1875
1876static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1877{
1878	if (file)
1879		return inactive_file_is_low(mz);
1880	else
1881		return inactive_anon_is_low(mz);
1882}
1883
1884static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1885				 struct mem_cgroup_zone *mz,
1886				 struct scan_control *sc, int priority)
1887{
1888	int file = is_file_lru(lru);
1889
1890	if (is_active_lru(lru)) {
1891		if (inactive_list_is_low(mz, file))
1892			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1893		return 0;
1894	}
1895
1896	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1897}
1898
1899static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1900			     struct scan_control *sc)
1901{
1902	if (global_reclaim(sc))
1903		return vm_swappiness;
1904	return mem_cgroup_swappiness(mz->mem_cgroup);
1905}
1906
1907/*
1908 * Determine how aggressively the anon and file LRU lists should be
1909 * scanned.  The relative value of each set of LRU lists is determined
1910 * by looking at the fraction of the pages scanned we did rotate back
1911 * onto the active list instead of evict.
1912 *
1913 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1914 */
1915static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1916			   unsigned long *nr, int priority)
1917{
1918	unsigned long anon, file, free;
1919	unsigned long anon_prio, file_prio;
1920	unsigned long ap, fp;
1921	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1922	u64 fraction[2], denominator;
1923	enum lru_list lru;
1924	int noswap = 0;
1925	bool force_scan = false;
1926
1927	/*
1928	 * If the zone or memcg is small, nr[l] can be 0.  This
1929	 * results in no scanning on this priority and a potential
1930	 * priority drop.  Global direct reclaim can go to the next
1931	 * zone and tends to have no problems. Global kswapd is for
1932	 * zone balancing and it needs to scan a minimum amount. When
1933	 * reclaiming for a memcg, a priority drop can cause high
1934	 * latencies, so it's better to scan a minimum amount there as
1935	 * well.
1936	 */
1937	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1938		force_scan = true;
1939	if (!global_reclaim(sc))
1940		force_scan = true;
1941
1942	/* If we have no swap space, do not bother scanning anon pages. */
1943	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1944		noswap = 1;
1945		fraction[0] = 0;
1946		fraction[1] = 1;
1947		denominator = 1;
1948		goto out;
1949	}
1950
1951	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1952		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1953	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1954		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1955
1956	if (global_reclaim(sc)) {
1957		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1958		/* If we have very few page cache pages,
1959		   force-scan anon pages. */
1960		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1961			fraction[0] = 1;
1962			fraction[1] = 0;
1963			denominator = 1;
1964			goto out;
1965		}
1966	}
1967
1968	/*
1969	 * With swappiness at 100, anonymous and file have the same priority.
1970	 * This scanning priority is essentially the inverse of IO cost.
1971	 */
1972	anon_prio = vmscan_swappiness(mz, sc);
1973	file_prio = 200 - vmscan_swappiness(mz, sc);
1974
1975	/*
1976	 * OK, so we have swap space and a fair amount of page cache
1977	 * pages.  We use the recently rotated / recently scanned
1978	 * ratios to determine how valuable each cache is.
1979	 *
1980	 * Because workloads change over time (and to avoid overflow)
1981	 * we keep these statistics as a floating average, which ends
1982	 * up weighing recent references more than old ones.
1983	 *
1984	 * anon in [0], file in [1]
1985	 */
1986	spin_lock_irq(&mz->zone->lru_lock);
1987	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1988		reclaim_stat->recent_scanned[0] /= 2;
1989		reclaim_stat->recent_rotated[0] /= 2;
1990	}
1991
1992	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1993		reclaim_stat->recent_scanned[1] /= 2;
1994		reclaim_stat->recent_rotated[1] /= 2;
1995	}
1996
1997	/*
1998	 * The amount of pressure on anon vs file pages is inversely
1999	 * proportional to the fraction of recently scanned pages on
2000	 * each list that were recently referenced and in active use.
2001	 */
2002	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
2003	ap /= reclaim_stat->recent_rotated[0] + 1;
2004
2005	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
2006	fp /= reclaim_stat->recent_rotated[1] + 1;
2007	spin_unlock_irq(&mz->zone->lru_lock);
2008
2009	fraction[0] = ap;
2010	fraction[1] = fp;
2011	denominator = ap + fp + 1;
2012out:
2013	for_each_evictable_lru(lru) {
2014		int file = is_file_lru(lru);
2015		unsigned long scan;
2016
2017		scan = zone_nr_lru_pages(mz, lru);
2018		if (priority || noswap) {
2019			scan >>= priority;
2020			if (!scan && force_scan)
2021				scan = SWAP_CLUSTER_MAX;
2022			scan = div64_u64(scan * fraction[file], denominator);
2023		}
2024		nr[lru] = scan;
2025	}
2026}
2027
2028/*
2029 * Reclaim/compaction depends on a number of pages being freed. To avoid
2030 * disruption to the system, a small number of order-0 pages continue to be
2031 * rotated and reclaimed in the normal fashion. However, by the time we get
2032 * back to the allocator and call try_to_compact_zone(), we ensure that
2033 * there are enough free pages for it to be likely successful
2034 */
2035static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2036					unsigned long nr_reclaimed,
2037					unsigned long nr_scanned,
2038					struct scan_control *sc)
2039{
2040	unsigned long pages_for_compaction;
2041	unsigned long inactive_lru_pages;
2042
2043	/* If not in reclaim/compaction mode, stop */
2044	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2045		return false;
2046
2047	/* Consider stopping depending on scan and reclaim activity */
2048	if (sc->gfp_mask & __GFP_REPEAT) {
2049		/*
2050		 * For __GFP_REPEAT allocations, stop reclaiming if the
2051		 * full LRU list has been scanned and we are still failing
2052		 * to reclaim pages. This full LRU scan is potentially
2053		 * expensive but a __GFP_REPEAT caller really wants to succeed
2054		 */
2055		if (!nr_reclaimed && !nr_scanned)
2056			return false;
2057	} else {
2058		/*
2059		 * For non-__GFP_REPEAT allocations which can presumably
2060		 * fail without consequence, stop if we failed to reclaim
2061		 * any pages from the last SWAP_CLUSTER_MAX number of
2062		 * pages that were scanned. This will return to the
2063		 * caller faster at the risk reclaim/compaction and
2064		 * the resulting allocation attempt fails
2065		 */
2066		if (!nr_reclaimed)
2067			return false;
2068	}
2069
2070	/*
2071	 * If we have not reclaimed enough pages for compaction and the
2072	 * inactive lists are large enough, continue reclaiming
2073	 */
2074	pages_for_compaction = (2UL << sc->order);
2075	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2076	if (nr_swap_pages > 0)
2077		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2078	if (sc->nr_reclaimed < pages_for_compaction &&
2079			inactive_lru_pages > pages_for_compaction)
2080		return true;
2081
2082	/* If compaction would go ahead or the allocation would succeed, stop */
2083	switch (compaction_suitable(mz->zone, sc->order)) {
2084	case COMPACT_PARTIAL:
2085	case COMPACT_CONTINUE:
2086		return false;
2087	default:
2088		return true;
2089	}
2090}
2091
2092/*
2093 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2094 */
2095static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2096				   struct scan_control *sc)
2097{
2098	unsigned long nr[NR_LRU_LISTS];
2099	unsigned long nr_to_scan;
2100	enum lru_list lru;
2101	unsigned long nr_reclaimed, nr_scanned;
2102	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2103	struct blk_plug plug;
2104
2105restart:
2106	nr_reclaimed = 0;
2107	nr_scanned = sc->nr_scanned;
2108	get_scan_count(mz, sc, nr, priority);
2109
2110	blk_start_plug(&plug);
2111	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2112					nr[LRU_INACTIVE_FILE]) {
2113		for_each_evictable_lru(lru) {
2114			if (nr[lru]) {
2115				nr_to_scan = min_t(unsigned long,
2116						   nr[lru], SWAP_CLUSTER_MAX);
2117				nr[lru] -= nr_to_scan;
2118
2119				nr_reclaimed += shrink_list(lru, nr_to_scan,
2120							    mz, sc, priority);
2121			}
2122		}
2123		/*
2124		 * On large memory systems, scan >> priority can become
2125		 * really large. This is fine for the starting priority;
2126		 * we want to put equal scanning pressure on each zone.
2127		 * However, if the VM has a harder time of freeing pages,
2128		 * with multiple processes reclaiming pages, the total
2129		 * freeing target can get unreasonably large.
2130		 */
2131		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2132			break;
2133	}
2134	blk_finish_plug(&plug);
2135	sc->nr_reclaimed += nr_reclaimed;
2136
2137	/*
2138	 * Even if we did not try to evict anon pages at all, we want to
2139	 * rebalance the anon lru active/inactive ratio.
2140	 */
2141	if (inactive_anon_is_low(mz))
2142		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2143
2144	/* reclaim/compaction might need reclaim to continue */
2145	if (should_continue_reclaim(mz, nr_reclaimed,
2146					sc->nr_scanned - nr_scanned, sc))
2147		goto restart;
2148
2149	throttle_vm_writeout(sc->gfp_mask);
2150}
2151
2152static void shrink_zone(int priority, struct zone *zone,
2153			struct scan_control *sc)
2154{
2155	struct mem_cgroup *root = sc->target_mem_cgroup;
2156	struct mem_cgroup_reclaim_cookie reclaim = {
2157		.zone = zone,
2158		.priority = priority,
2159	};
2160	struct mem_cgroup *memcg;
2161
2162	memcg = mem_cgroup_iter(root, NULL, &reclaim);
2163	do {
2164		struct mem_cgroup_zone mz = {
2165			.mem_cgroup = memcg,
2166			.zone = zone,
2167		};
2168
2169		shrink_mem_cgroup_zone(priority, &mz, sc);
2170		/*
2171		 * Limit reclaim has historically picked one memcg and
2172		 * scanned it with decreasing priority levels until
2173		 * nr_to_reclaim had been reclaimed.  This priority
2174		 * cycle is thus over after a single memcg.
2175		 *
2176		 * Direct reclaim and kswapd, on the other hand, have
2177		 * to scan all memory cgroups to fulfill the overall
2178		 * scan target for the zone.
2179		 */
2180		if (!global_reclaim(sc)) {
2181			mem_cgroup_iter_break(root, memcg);
2182			break;
2183		}
2184		memcg = mem_cgroup_iter(root, memcg, &reclaim);
2185	} while (memcg);
2186}
2187
2188/* Returns true if compaction should go ahead for a high-order request */
2189static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2190{
2191	unsigned long balance_gap, watermark;
2192	bool watermark_ok;
2193
2194	/* Do not consider compaction for orders reclaim is meant to satisfy */
2195	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2196		return false;
2197
2198	/*
2199	 * Compaction takes time to run and there are potentially other
2200	 * callers using the pages just freed. Continue reclaiming until
2201	 * there is a buffer of free pages available to give compaction
2202	 * a reasonable chance of completing and allocating the page
2203	 */
2204	balance_gap = min(low_wmark_pages(zone),
2205		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2206			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2207	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2208	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2209
2210	/*
2211	 * If compaction is deferred, reclaim up to a point where
2212	 * compaction will have a chance of success when re-enabled
2213	 */
2214	if (compaction_deferred(zone))
2215		return watermark_ok;
2216
2217	/* If compaction is not ready to start, keep reclaiming */
2218	if (!compaction_suitable(zone, sc->order))
2219		return false;
2220
2221	return watermark_ok;
2222}
2223
2224/*
2225 * This is the direct reclaim path, for page-allocating processes.  We only
2226 * try to reclaim pages from zones which will satisfy the caller's allocation
2227 * request.
2228 *
2229 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2230 * Because:
2231 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2232 *    allocation or
2233 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2234 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2235 *    zone defense algorithm.
2236 *
2237 * If a zone is deemed to be full of pinned pages then just give it a light
2238 * scan then give up on it.
2239 *
2240 * This function returns true if a zone is being reclaimed for a costly
2241 * high-order allocation and compaction is ready to begin. This indicates to
2242 * the caller that it should consider retrying the allocation instead of
2243 * further reclaim.
2244 */
2245static bool shrink_zones(int priority, struct zonelist *zonelist,
2246					struct scan_control *sc)
2247{
2248	struct zoneref *z;
2249	struct zone *zone;
2250	unsigned long nr_soft_reclaimed;
2251	unsigned long nr_soft_scanned;
2252	bool aborted_reclaim = false;
2253
2254	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2255					gfp_zone(sc->gfp_mask), sc->nodemask) {
2256		if (!populated_zone(zone))
2257			continue;
2258		/*
2259		 * Take care memory controller reclaiming has small influence
2260		 * to global LRU.
2261		 */
2262		if (global_reclaim(sc)) {
2263			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2264				continue;
2265			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2266				continue;	/* Let kswapd poll it */
2267			if (COMPACTION_BUILD) {
2268				/*
2269				 * If we already have plenty of memory free for
2270				 * compaction in this zone, don't free any more.
2271				 * Even though compaction is invoked for any
2272				 * non-zero order, only frequent costly order
2273				 * reclamation is disruptive enough to become a
2274				 * noticable problem, like transparent huge page
2275				 * allocations.
2276				 */
2277				if (compaction_ready(zone, sc)) {
2278					aborted_reclaim = true;
2279					continue;
2280				}
2281			}
2282			/*
2283			 * This steals pages from memory cgroups over softlimit
2284			 * and returns the number of reclaimed pages and
2285			 * scanned pages. This works for global memory pressure
2286			 * and balancing, not for a memcg's limit.
2287			 */
2288			nr_soft_scanned = 0;
2289			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2290						sc->order, sc->gfp_mask,
2291						&nr_soft_scanned);
2292			sc->nr_reclaimed += nr_soft_reclaimed;
2293			sc->nr_scanned += nr_soft_scanned;
2294			/* need some check for avoid more shrink_zone() */
2295		}
2296
2297		shrink_zone(priority, zone, sc);
2298	}
2299
2300	return aborted_reclaim;
2301}
2302
2303static bool zone_reclaimable(struct zone *zone)
2304{
2305	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2306}
2307
2308/* All zones in zonelist are unreclaimable? */
2309static bool all_unreclaimable(struct zonelist *zonelist,
2310		struct scan_control *sc)
2311{
2312	struct zoneref *z;
2313	struct zone *zone;
2314
2315	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2316			gfp_zone(sc->gfp_mask), sc->nodemask) {
2317		if (!populated_zone(zone))
2318			continue;
2319		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2320			continue;
2321		if (!zone->all_unreclaimable)
2322			return false;
2323	}
2324
2325	return true;
2326}
2327
2328/*
2329 * This is the main entry point to direct page reclaim.
2330 *
2331 * If a full scan of the inactive list fails to free enough memory then we
2332 * are "out of memory" and something needs to be killed.
2333 *
2334 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2335 * high - the zone may be full of dirty or under-writeback pages, which this
2336 * caller can't do much about.  We kick the writeback threads and take explicit
2337 * naps in the hope that some of these pages can be written.  But if the
2338 * allocating task holds filesystem locks which prevent writeout this might not
2339 * work, and the allocation attempt will fail.
2340 *
2341 * returns:	0, if no pages reclaimed
2342 * 		else, the number of pages reclaimed
2343 */
2344static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2345					struct scan_control *sc,
2346					struct shrink_control *shrink)
2347{
2348	int priority;
2349	unsigned long total_scanned = 0;
2350	struct reclaim_state *reclaim_state = current->reclaim_state;
2351	struct zoneref *z;
2352	struct zone *zone;
2353	unsigned long writeback_threshold;
2354	bool aborted_reclaim;
2355
2356	get_mems_allowed();
2357	delayacct_freepages_start();
2358
2359	if (global_reclaim(sc))
2360		count_vm_event(ALLOCSTALL);
2361
2362	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2363		sc->nr_scanned = 0;
2364		if (!priority)
2365			disable_swap_token(sc->target_mem_cgroup);
2366		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2367
2368		/*
2369		 * Don't shrink slabs when reclaiming memory from
2370		 * over limit cgroups
2371		 */
2372		if (global_reclaim(sc)) {
2373			unsigned long lru_pages = 0;
2374			for_each_zone_zonelist(zone, z, zonelist,
2375					gfp_zone(sc->gfp_mask)) {
2376				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2377					continue;
2378
2379				lru_pages += zone_reclaimable_pages(zone);
2380			}
2381
2382			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2383			if (reclaim_state) {
2384				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2385				reclaim_state->reclaimed_slab = 0;
2386			}
2387		}
2388		total_scanned += sc->nr_scanned;
2389		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2390			goto out;
2391
2392		/*
2393		 * Try to write back as many pages as we just scanned.  This
2394		 * tends to cause slow streaming writers to write data to the
2395		 * disk smoothly, at the dirtying rate, which is nice.   But
2396		 * that's undesirable in laptop mode, where we *want* lumpy
2397		 * writeout.  So in laptop mode, write out the whole world.
2398		 */
2399		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2400		if (total_scanned > writeback_threshold) {
2401			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2402						WB_REASON_TRY_TO_FREE_PAGES);
2403			sc->may_writepage = 1;
2404		}
2405
2406		/* Take a nap, wait for some writeback to complete */
2407		if (!sc->hibernation_mode && sc->nr_scanned &&
2408		    priority < DEF_PRIORITY - 2) {
2409			struct zone *preferred_zone;
2410
2411			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2412						&cpuset_current_mems_allowed,
2413						&preferred_zone);
2414			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2415		}
2416	}
2417
2418out:
2419	delayacct_freepages_end();
2420	put_mems_allowed();
2421
2422	if (sc->nr_reclaimed)
2423		return sc->nr_reclaimed;
2424
2425	/*
2426	 * As hibernation is going on, kswapd is freezed so that it can't mark
2427	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2428	 * check.
2429	 */
2430	if (oom_killer_disabled)
2431		return 0;
2432
2433	/* Aborted reclaim to try compaction? don't OOM, then */
2434	if (aborted_reclaim)
2435		return 1;
2436
2437	/* top priority shrink_zones still had more to do? don't OOM, then */
2438	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2439		return 1;
2440
2441	return 0;
2442}
2443
2444unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2445				gfp_t gfp_mask, nodemask_t *nodemask)
2446{
2447	unsigned long nr_reclaimed;
2448	struct scan_control sc = {
2449		.gfp_mask = gfp_mask,
2450		.may_writepage = !laptop_mode,
2451		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2452		.may_unmap = 1,
2453		.may_swap = 1,
2454		.order = order,
2455		.target_mem_cgroup = NULL,
2456		.nodemask = nodemask,
2457	};
2458	struct shrink_control shrink = {
2459		.gfp_mask = sc.gfp_mask,
2460	};
2461
2462	trace_mm_vmscan_direct_reclaim_begin(order,
2463				sc.may_writepage,
2464				gfp_mask);
2465
2466	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2467
2468	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2469
2470	return nr_reclaimed;
2471}
2472
2473#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2474
2475unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2476						gfp_t gfp_mask, bool noswap,
2477						struct zone *zone,
2478						unsigned long *nr_scanned)
2479{
2480	struct scan_control sc = {
2481		.nr_scanned = 0,
2482		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2483		.may_writepage = !laptop_mode,
2484		.may_unmap = 1,
2485		.may_swap = !noswap,
2486		.order = 0,
2487		.target_mem_cgroup = memcg,
2488	};
2489	struct mem_cgroup_zone mz = {
2490		.mem_cgroup = memcg,
2491		.zone = zone,
2492	};
2493
2494	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2495			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2496
2497	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2498						      sc.may_writepage,
2499						      sc.gfp_mask);
2500
2501	/*
2502	 * NOTE: Although we can get the priority field, using it
2503	 * here is not a good idea, since it limits the pages we can scan.
2504	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2505	 * will pick up pages from other mem cgroup's as well. We hack
2506	 * the priority and make it zero.
2507	 */
2508	shrink_mem_cgroup_zone(0, &mz, &sc);
2509
2510	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2511
2512	*nr_scanned = sc.nr_scanned;
2513	return sc.nr_reclaimed;
2514}
2515
2516unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2517					   gfp_t gfp_mask,
2518					   bool noswap)
2519{
2520	struct zonelist *zonelist;
2521	unsigned long nr_reclaimed;
2522	int nid;
2523	struct scan_control sc = {
2524		.may_writepage = !laptop_mode,
2525		.may_unmap = 1,
2526		.may_swap = !noswap,
2527		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2528		.order = 0,
2529		.target_mem_cgroup = memcg,
2530		.nodemask = NULL, /* we don't care the placement */
2531		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2532				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2533	};
2534	struct shrink_control shrink = {
2535		.gfp_mask = sc.gfp_mask,
2536	};
2537
2538	/*
2539	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2540	 * take care of from where we get pages. So the node where we start the
2541	 * scan does not need to be the current node.
2542	 */
2543	nid = mem_cgroup_select_victim_node(memcg);
2544
2545	zonelist = NODE_DATA(nid)->node_zonelists;
2546
2547	trace_mm_vmscan_memcg_reclaim_begin(0,
2548					    sc.may_writepage,
2549					    sc.gfp_mask);
2550
2551	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2552
2553	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2554
2555	return nr_reclaimed;
2556}
2557#endif
2558
2559static void age_active_anon(struct zone *zone, struct scan_control *sc,
2560			    int priority)
2561{
2562	struct mem_cgroup *memcg;
2563
2564	if (!total_swap_pages)
2565		return;
2566
2567	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2568	do {
2569		struct mem_cgroup_zone mz = {
2570			.mem_cgroup = memcg,
2571			.zone = zone,
2572		};
2573
2574		if (inactive_anon_is_low(&mz))
2575			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2576					   sc, priority, 0);
2577
2578		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2579	} while (memcg);
2580}
2581
2582/*
2583 * pgdat_balanced is used when checking if a node is balanced for high-order
2584 * allocations. Only zones that meet watermarks and are in a zone allowed
2585 * by the callers classzone_idx are added to balanced_pages. The total of
2586 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2587 * for the node to be considered balanced. Forcing all zones to be balanced
2588 * for high orders can cause excessive reclaim when there are imbalanced zones.
2589 * The choice of 25% is due to
2590 *   o a 16M DMA zone that is balanced will not balance a zone on any
2591 *     reasonable sized machine
2592 *   o On all other machines, the top zone must be at least a reasonable
2593 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2594 *     would need to be at least 256M for it to be balance a whole node.
2595 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2596 *     to balance a node on its own. These seemed like reasonable ratios.
2597 */
2598static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2599						int classzone_idx)
2600{
2601	unsigned long present_pages = 0;
2602	int i;
2603
2604	for (i = 0; i <= classzone_idx; i++)
2605		present_pages += pgdat->node_zones[i].present_pages;
2606
2607	/* A special case here: if zone has no page, we think it's balanced */
2608	return balanced_pages >= (present_pages >> 2);
2609}
2610
2611/* is kswapd sleeping prematurely? */
2612static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2613					int classzone_idx)
2614{
2615	int i;
2616	unsigned long balanced = 0;
2617	bool all_zones_ok = true;
2618
2619	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2620	if (remaining)
2621		return true;
2622
2623	/* Check the watermark levels */
2624	for (i = 0; i <= classzone_idx; i++) {
2625		struct zone *zone = pgdat->node_zones + i;
2626
2627		if (!populated_zone(zone))
2628			continue;
2629
2630		/*
2631		 * balance_pgdat() skips over all_unreclaimable after
2632		 * DEF_PRIORITY. Effectively, it considers them balanced so
2633		 * they must be considered balanced here as well if kswapd
2634		 * is to sleep
2635		 */
2636		if (zone->all_unreclaimable) {
2637			balanced += zone->present_pages;
2638			continue;
2639		}
2640
2641		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2642							i, 0))
2643			all_zones_ok = false;
2644		else
2645			balanced += zone->present_pages;
2646	}
2647
2648	/*
2649	 * For high-order requests, the balanced zones must contain at least
2650	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2651	 * must be balanced
2652	 */
2653	if (order)
2654		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2655	else
2656		return !all_zones_ok;
2657}
2658
2659/*
2660 * For kswapd, balance_pgdat() will work across all this node's zones until
2661 * they are all at high_wmark_pages(zone).
2662 *
2663 * Returns the final order kswapd was reclaiming at
2664 *
2665 * There is special handling here for zones which are full of pinned pages.
2666 * This can happen if the pages are all mlocked, or if they are all used by
2667 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2668 * What we do is to detect the case where all pages in the zone have been
2669 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2670 * dead and from now on, only perform a short scan.  Basically we're polling
2671 * the zone for when the problem goes away.
2672 *
2673 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2674 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2675 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2676 * lower zones regardless of the number of free pages in the lower zones. This
2677 * interoperates with the page allocator fallback scheme to ensure that aging
2678 * of pages is balanced across the zones.
2679 */
2680static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2681							int *classzone_idx)
2682{
2683	int all_zones_ok;
2684	unsigned long balanced;
2685	int priority;
2686	int i;
2687	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2688	unsigned long total_scanned;
2689	struct reclaim_state *reclaim_state = current->reclaim_state;
2690	unsigned long nr_soft_reclaimed;
2691	unsigned long nr_soft_scanned;
2692	struct scan_control sc = {
2693		.gfp_mask = GFP_KERNEL,
2694		.may_unmap = 1,
2695		.may_swap = 1,
2696		/*
2697		 * kswapd doesn't want to be bailed out while reclaim. because
2698		 * we want to put equal scanning pressure on each zone.
2699		 */
2700		.nr_to_reclaim = ULONG_MAX,
2701		.order = order,
2702		.target_mem_cgroup = NULL,
2703	};
2704	struct shrink_control shrink = {
2705		.gfp_mask = sc.gfp_mask,
2706	};
2707loop_again:
2708	total_scanned = 0;
2709	sc.nr_reclaimed = 0;
2710	sc.may_writepage = !laptop_mode;
2711	count_vm_event(PAGEOUTRUN);
2712
2713	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2714		unsigned long lru_pages = 0;
2715		int has_under_min_watermark_zone = 0;
2716
2717		/* The swap token gets in the way of swapout... */
2718		if (!priority)
2719			disable_swap_token(NULL);
2720
2721		all_zones_ok = 1;
2722		balanced = 0;
2723
2724		/*
2725		 * Scan in the highmem->dma direction for the highest
2726		 * zone which needs scanning
2727		 */
2728		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2729			struct zone *zone = pgdat->node_zones + i;
2730
2731			if (!populated_zone(zone))
2732				continue;
2733
2734			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2735				continue;
2736
2737			/*
2738			 * Do some background aging of the anon list, to give
2739			 * pages a chance to be referenced before reclaiming.
2740			 */
2741			age_active_anon(zone, &sc, priority);
2742
2743			if (!zone_watermark_ok_safe(zone, order,
2744					high_wmark_pages(zone), 0, 0)) {
2745				end_zone = i;
2746				break;
2747			} else {
2748				/* If balanced, clear the congested flag */
2749				zone_clear_flag(zone, ZONE_CONGESTED);
2750			}
2751		}
2752		if (i < 0)
2753			goto out;
2754
2755		for (i = 0; i <= end_zone; i++) {
2756			struct zone *zone = pgdat->node_zones + i;
2757
2758			lru_pages += zone_reclaimable_pages(zone);
2759		}
2760
2761		/*
2762		 * Now scan the zone in the dma->highmem direction, stopping
2763		 * at the last zone which needs scanning.
2764		 *
2765		 * We do this because the page allocator works in the opposite
2766		 * direction.  This prevents the page allocator from allocating
2767		 * pages behind kswapd's direction of progress, which would
2768		 * cause too much scanning of the lower zones.
2769		 */
2770		for (i = 0; i <= end_zone; i++) {
2771			struct zone *zone = pgdat->node_zones + i;
2772			int nr_slab;
2773			unsigned long balance_gap;
2774
2775			if (!populated_zone(zone))
2776				continue;
2777
2778			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2779				continue;
2780
2781			sc.nr_scanned = 0;
2782
2783			nr_soft_scanned = 0;
2784			/*
2785			 * Call soft limit reclaim before calling shrink_zone.
2786			 */
2787			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2788							order, sc.gfp_mask,
2789							&nr_soft_scanned);
2790			sc.nr_reclaimed += nr_soft_reclaimed;
2791			total_scanned += nr_soft_scanned;
2792
2793			/*
2794			 * We put equal pressure on every zone, unless
2795			 * one zone has way too many pages free
2796			 * already. The "too many pages" is defined
2797			 * as the high wmark plus a "gap" where the
2798			 * gap is either the low watermark or 1%
2799			 * of the zone, whichever is smaller.
2800			 */
2801			balance_gap = min(low_wmark_pages(zone),
2802				(zone->present_pages +
2803					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2804				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2805			if (!zone_watermark_ok_safe(zone, order,
2806					high_wmark_pages(zone) + balance_gap,
2807					end_zone, 0)) {
2808				shrink_zone(priority, zone, &sc);
2809
2810				reclaim_state->reclaimed_slab = 0;
2811				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2812				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2813				total_scanned += sc.nr_scanned;
2814
2815				if (nr_slab == 0 && !zone_reclaimable(zone))
2816					zone->all_unreclaimable = 1;
2817			}
2818
2819			/*
2820			 * If we've done a decent amount of scanning and
2821			 * the reclaim ratio is low, start doing writepage
2822			 * even in laptop mode
2823			 */
2824			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2825			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2826				sc.may_writepage = 1;
2827
2828			if (zone->all_unreclaimable) {
2829				if (end_zone && end_zone == i)
2830					end_zone--;
2831				continue;
2832			}
2833
2834			if (!zone_watermark_ok_safe(zone, order,
2835					high_wmark_pages(zone), end_zone, 0)) {
2836				all_zones_ok = 0;
2837				/*
2838				 * We are still under min water mark.  This
2839				 * means that we have a GFP_ATOMIC allocation
2840				 * failure risk. Hurry up!
2841				 */
2842				if (!zone_watermark_ok_safe(zone, order,
2843					    min_wmark_pages(zone), end_zone, 0))
2844					has_under_min_watermark_zone = 1;
2845			} else {
2846				/*
2847				 * If a zone reaches its high watermark,
2848				 * consider it to be no longer congested. It's
2849				 * possible there are dirty pages backed by
2850				 * congested BDIs but as pressure is relieved,
2851				 * spectulatively avoid congestion waits
2852				 */
2853				zone_clear_flag(zone, ZONE_CONGESTED);
2854				if (i <= *classzone_idx)
2855					balanced += zone->present_pages;
2856			}
2857
2858		}
2859		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2860			break;		/* kswapd: all done */
2861		/*
2862		 * OK, kswapd is getting into trouble.  Take a nap, then take
2863		 * another pass across the zones.
2864		 */
2865		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2866			if (has_under_min_watermark_zone)
2867				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2868			else
2869				congestion_wait(BLK_RW_ASYNC, HZ/10);
2870		}
2871
2872		/*
2873		 * We do this so kswapd doesn't build up large priorities for
2874		 * example when it is freeing in parallel with allocators. It
2875		 * matches the direct reclaim path behaviour in terms of impact
2876		 * on zone->*_priority.
2877		 */
2878		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2879			break;
2880	}
2881out:
2882
2883	/*
2884	 * order-0: All zones must meet high watermark for a balanced node
2885	 * high-order: Balanced zones must make up at least 25% of the node
2886	 *             for the node to be balanced
2887	 */
2888	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2889		cond_resched();
2890
2891		try_to_freeze();
2892
2893		/*
2894		 * Fragmentation may mean that the system cannot be
2895		 * rebalanced for high-order allocations in all zones.
2896		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2897		 * it means the zones have been fully scanned and are still
2898		 * not balanced. For high-order allocations, there is
2899		 * little point trying all over again as kswapd may
2900		 * infinite loop.
2901		 *
2902		 * Instead, recheck all watermarks at order-0 as they
2903		 * are the most important. If watermarks are ok, kswapd will go
2904		 * back to sleep. High-order users can still perform direct
2905		 * reclaim if they wish.
2906		 */
2907		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2908			order = sc.order = 0;
2909
2910		goto loop_again;
2911	}
2912
2913	/*
2914	 * If kswapd was reclaiming at a higher order, it has the option of
2915	 * sleeping without all zones being balanced. Before it does, it must
2916	 * ensure that the watermarks for order-0 on *all* zones are met and
2917	 * that the congestion flags are cleared. The congestion flag must
2918	 * be cleared as kswapd is the only mechanism that clears the flag
2919	 * and it is potentially going to sleep here.
2920	 */
2921	if (order) {
2922		for (i = 0; i <= end_zone; i++) {
2923			struct zone *zone = pgdat->node_zones + i;
2924
2925			if (!populated_zone(zone))
2926				continue;
2927
2928			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2929				continue;
2930
2931			/* Confirm the zone is balanced for order-0 */
2932			if (!zone_watermark_ok(zone, 0,
2933					high_wmark_pages(zone), 0, 0)) {
2934				order = sc.order = 0;
2935				goto loop_again;
2936			}
2937
2938			/* If balanced, clear the congested flag */
2939			zone_clear_flag(zone, ZONE_CONGESTED);
2940			if (i <= *classzone_idx)
2941				balanced += zone->present_pages;
2942		}
2943	}
2944
2945	/*
2946	 * Return the order we were reclaiming at so sleeping_prematurely()
2947	 * makes a decision on the order we were last reclaiming at. However,
2948	 * if another caller entered the allocator slow path while kswapd
2949	 * was awake, order will remain at the higher level
2950	 */
2951	*classzone_idx = end_zone;
2952	return order;
2953}
2954
2955static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2956{
2957	long remaining = 0;
2958	DEFINE_WAIT(wait);
2959
2960	if (freezing(current) || kthread_should_stop())
2961		return;
2962
2963	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2964
2965	/* Try to sleep for a short interval */
2966	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2967		remaining = schedule_timeout(HZ/10);
2968		finish_wait(&pgdat->kswapd_wait, &wait);
2969		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2970	}
2971
2972	/*
2973	 * After a short sleep, check if it was a premature sleep. If not, then
2974	 * go fully to sleep until explicitly woken up.
2975	 */
2976	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2977		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2978
2979		/*
2980		 * vmstat counters are not perfectly accurate and the estimated
2981		 * value for counters such as NR_FREE_PAGES can deviate from the
2982		 * true value by nr_online_cpus * threshold. To avoid the zone
2983		 * watermarks being breached while under pressure, we reduce the
2984		 * per-cpu vmstat threshold while kswapd is awake and restore
2985		 * them before going back to sleep.
2986		 */
2987		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2988		schedule();
2989		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2990	} else {
2991		if (remaining)
2992			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2993		else
2994			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2995	}
2996	finish_wait(&pgdat->kswapd_wait, &wait);
2997}
2998
2999/*
3000 * The background pageout daemon, started as a kernel thread
3001 * from the init process.
3002 *
3003 * This basically trickles out pages so that we have _some_
3004 * free memory available even if there is no other activity
3005 * that frees anything up. This is needed for things like routing
3006 * etc, where we otherwise might have all activity going on in
3007 * asynchronous contexts that cannot page things out.
3008 *
3009 * If there are applications that are active memory-allocators
3010 * (most normal use), this basically shouldn't matter.
3011 */
3012static int kswapd(void *p)
3013{
3014	unsigned long order, new_order;
3015	unsigned balanced_order;
3016	int classzone_idx, new_classzone_idx;
3017	int balanced_classzone_idx;
3018	pg_data_t *pgdat = (pg_data_t*)p;
3019	struct task_struct *tsk = current;
3020
3021	struct reclaim_state reclaim_state = {
3022		.reclaimed_slab = 0,
3023	};
3024	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3025
3026	lockdep_set_current_reclaim_state(GFP_KERNEL);
3027
3028	if (!cpumask_empty(cpumask))
3029		set_cpus_allowed_ptr(tsk, cpumask);
3030	current->reclaim_state = &reclaim_state;
3031
3032	/*
3033	 * Tell the memory management that we're a "memory allocator",
3034	 * and that if we need more memory we should get access to it
3035	 * regardless (see "__alloc_pages()"). "kswapd" should
3036	 * never get caught in the normal page freeing logic.
3037	 *
3038	 * (Kswapd normally doesn't need memory anyway, but sometimes
3039	 * you need a small amount of memory in order to be able to
3040	 * page out something else, and this flag essentially protects
3041	 * us from recursively trying to free more memory as we're
3042	 * trying to free the first piece of memory in the first place).
3043	 */
3044	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3045	set_freezable();
3046
3047	order = new_order = 0;
3048	balanced_order = 0;
3049	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3050	balanced_classzone_idx = classzone_idx;
3051	for ( ; ; ) {
3052		int ret;
3053
3054		/*
3055		 * If the last balance_pgdat was unsuccessful it's unlikely a
3056		 * new request of a similar or harder type will succeed soon
3057		 * so consider going to sleep on the basis we reclaimed at
3058		 */
3059		if (balanced_classzone_idx >= new_classzone_idx &&
3060					balanced_order == new_order) {
3061			new_order = pgdat->kswapd_max_order;
3062			new_classzone_idx = pgdat->classzone_idx;
3063			pgdat->kswapd_max_order =  0;
3064			pgdat->classzone_idx = pgdat->nr_zones - 1;
3065		}
3066
3067		if (order < new_order || classzone_idx > new_classzone_idx) {
3068			/*
3069			 * Don't sleep if someone wants a larger 'order'
3070			 * allocation or has tigher zone constraints
3071			 */
3072			order = new_order;
3073			classzone_idx = new_classzone_idx;
3074		} else {
3075			kswapd_try_to_sleep(pgdat, balanced_order,
3076						balanced_classzone_idx);
3077			order = pgdat->kswapd_max_order;
3078			classzone_idx = pgdat->classzone_idx;
3079			new_order = order;
3080			new_classzone_idx = classzone_idx;
3081			pgdat->kswapd_max_order = 0;
3082			pgdat->classzone_idx = pgdat->nr_zones - 1;
3083		}
3084
3085		ret = try_to_freeze();
3086		if (kthread_should_stop())
3087			break;
3088
3089		/*
3090		 * We can speed up thawing tasks if we don't call balance_pgdat
3091		 * after returning from the refrigerator
3092		 */
3093		if (!ret) {
3094			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3095			balanced_classzone_idx = classzone_idx;
3096			balanced_order = balance_pgdat(pgdat, order,
3097						&balanced_classzone_idx);
3098		}
3099	}
3100	return 0;
3101}
3102
3103/*
3104 * A zone is low on free memory, so wake its kswapd task to service it.
3105 */
3106void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3107{
3108	pg_data_t *pgdat;
3109
3110	if (!populated_zone(zone))
3111		return;
3112
3113	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3114		return;
3115	pgdat = zone->zone_pgdat;
3116	if (pgdat->kswapd_max_order < order) {
3117		pgdat->kswapd_max_order = order;
3118		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3119	}
3120	if (!waitqueue_active(&pgdat->kswapd_wait))
3121		return;
3122	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3123		return;
3124
3125	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3126	wake_up_interruptible(&pgdat->kswapd_wait);
3127}
3128
3129/*
3130 * The reclaimable count would be mostly accurate.
3131 * The less reclaimable pages may be
3132 * - mlocked pages, which will be moved to unevictable list when encountered
3133 * - mapped pages, which may require several travels to be reclaimed
3134 * - dirty pages, which is not "instantly" reclaimable
3135 */
3136unsigned long global_reclaimable_pages(void)
3137{
3138	int nr;
3139
3140	nr = global_page_state(NR_ACTIVE_FILE) +
3141	     global_page_state(NR_INACTIVE_FILE);
3142
3143	if (nr_swap_pages > 0)
3144		nr += global_page_state(NR_ACTIVE_ANON) +
3145		      global_page_state(NR_INACTIVE_ANON);
3146
3147	return nr;
3148}
3149
3150unsigned long zone_reclaimable_pages(struct zone *zone)
3151{
3152	int nr;
3153
3154	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3155	     zone_page_state(zone, NR_INACTIVE_FILE);
3156
3157	if (nr_swap_pages > 0)
3158		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3159		      zone_page_state(zone, NR_INACTIVE_ANON);
3160
3161	return nr;
3162}
3163
3164#ifdef CONFIG_HIBERNATION
3165/*
3166 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3167 * freed pages.
3168 *
3169 * Rather than trying to age LRUs the aim is to preserve the overall
3170 * LRU order by reclaiming preferentially
3171 * inactive > active > active referenced > active mapped
3172 */
3173unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3174{
3175	struct reclaim_state reclaim_state;
3176	struct scan_control sc = {
3177		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3178		.may_swap = 1,
3179		.may_unmap = 1,
3180		.may_writepage = 1,
3181		.nr_to_reclaim = nr_to_reclaim,
3182		.hibernation_mode = 1,
3183		.order = 0,
3184	};
3185	struct shrink_control shrink = {
3186		.gfp_mask = sc.gfp_mask,
3187	};
3188	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3189	struct task_struct *p = current;
3190	unsigned long nr_reclaimed;
3191
3192	p->flags |= PF_MEMALLOC;
3193	lockdep_set_current_reclaim_state(sc.gfp_mask);
3194	reclaim_state.reclaimed_slab = 0;
3195	p->reclaim_state = &reclaim_state;
3196
3197	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3198
3199	p->reclaim_state = NULL;
3200	lockdep_clear_current_reclaim_state();
3201	p->flags &= ~PF_MEMALLOC;
3202
3203	return nr_reclaimed;
3204}
3205#endif /* CONFIG_HIBERNATION */
3206
3207/* It's optimal to keep kswapds on the same CPUs as their memory, but
3208   not required for correctness.  So if the last cpu in a node goes
3209   away, we get changed to run anywhere: as the first one comes back,
3210   restore their cpu bindings. */
3211static int __devinit cpu_callback(struct notifier_block *nfb,
3212				  unsigned long action, void *hcpu)
3213{
3214	int nid;
3215
3216	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3217		for_each_node_state(nid, N_HIGH_MEMORY) {
3218			pg_data_t *pgdat = NODE_DATA(nid);
3219			const struct cpumask *mask;
3220
3221			mask = cpumask_of_node(pgdat->node_id);
3222
3223			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3224				/* One of our CPUs online: restore mask */
3225				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3226		}
3227	}
3228	return NOTIFY_OK;
3229}
3230
3231/*
3232 * This kswapd start function will be called by init and node-hot-add.
3233 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3234 */
3235int kswapd_run(int nid)
3236{
3237	pg_data_t *pgdat = NODE_DATA(nid);
3238	int ret = 0;
3239
3240	if (pgdat->kswapd)
3241		return 0;
3242
3243	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3244	if (IS_ERR(pgdat->kswapd)) {
3245		/* failure at boot is fatal */
3246		BUG_ON(system_state == SYSTEM_BOOTING);
3247		printk("Failed to start kswapd on node %d\n",nid);
3248		ret = -1;
3249	}
3250	return ret;
3251}
3252
3253/*
3254 * Called by memory hotplug when all memory in a node is offlined.
3255 */
3256void kswapd_stop(int nid)
3257{
3258	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3259
3260	if (kswapd)
3261		kthread_stop(kswapd);
3262}
3263
3264static int __init kswapd_init(void)
3265{
3266	int nid;
3267
3268	swap_setup();
3269	for_each_node_state(nid, N_HIGH_MEMORY)
3270 		kswapd_run(nid);
3271	hotcpu_notifier(cpu_callback, 0);
3272	return 0;
3273}
3274
3275module_init(kswapd_init)
3276
3277#ifdef CONFIG_NUMA
3278/*
3279 * Zone reclaim mode
3280 *
3281 * If non-zero call zone_reclaim when the number of free pages falls below
3282 * the watermarks.
3283 */
3284int zone_reclaim_mode __read_mostly;
3285
3286#define RECLAIM_OFF 0
3287#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3288#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3289#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3290
3291/*
3292 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3293 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3294 * a zone.
3295 */
3296#define ZONE_RECLAIM_PRIORITY 4
3297
3298/*
3299 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3300 * occur.
3301 */
3302int sysctl_min_unmapped_ratio = 1;
3303
3304/*
3305 * If the number of slab pages in a zone grows beyond this percentage then
3306 * slab reclaim needs to occur.
3307 */
3308int sysctl_min_slab_ratio = 5;
3309
3310static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3311{
3312	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3313	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3314		zone_page_state(zone, NR_ACTIVE_FILE);
3315
3316	/*
3317	 * It's possible for there to be more file mapped pages than
3318	 * accounted for by the pages on the file LRU lists because
3319	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3320	 */
3321	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3322}
3323
3324/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3325static long zone_pagecache_reclaimable(struct zone *zone)
3326{
3327	long nr_pagecache_reclaimable;
3328	long delta = 0;
3329
3330	/*
3331	 * If RECLAIM_SWAP is set, then all file pages are considered
3332	 * potentially reclaimable. Otherwise, we have to worry about
3333	 * pages like swapcache and zone_unmapped_file_pages() provides
3334	 * a better estimate
3335	 */
3336	if (zone_reclaim_mode & RECLAIM_SWAP)
3337		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3338	else
3339		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3340
3341	/* If we can't clean pages, remove dirty pages from consideration */
3342	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3343		delta += zone_page_state(zone, NR_FILE_DIRTY);
3344
3345	/* Watch for any possible underflows due to delta */
3346	if (unlikely(delta > nr_pagecache_reclaimable))
3347		delta = nr_pagecache_reclaimable;
3348
3349	return nr_pagecache_reclaimable - delta;
3350}
3351
3352/*
3353 * Try to free up some pages from this zone through reclaim.
3354 */
3355static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3356{
3357	/* Minimum pages needed in order to stay on node */
3358	const unsigned long nr_pages = 1 << order;
3359	struct task_struct *p = current;
3360	struct reclaim_state reclaim_state;
3361	int priority;
3362	struct scan_control sc = {
3363		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3364		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3365		.may_swap = 1,
3366		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3367				       SWAP_CLUSTER_MAX),
3368		.gfp_mask = gfp_mask,
3369		.order = order,
3370	};
3371	struct shrink_control shrink = {
3372		.gfp_mask = sc.gfp_mask,
3373	};
3374	unsigned long nr_slab_pages0, nr_slab_pages1;
3375
3376	cond_resched();
3377	/*
3378	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3379	 * and we also need to be able to write out pages for RECLAIM_WRITE
3380	 * and RECLAIM_SWAP.
3381	 */
3382	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3383	lockdep_set_current_reclaim_state(gfp_mask);
3384	reclaim_state.reclaimed_slab = 0;
3385	p->reclaim_state = &reclaim_state;
3386
3387	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3388		/*
3389		 * Free memory by calling shrink zone with increasing
3390		 * priorities until we have enough memory freed.
3391		 */
3392		priority = ZONE_RECLAIM_PRIORITY;
3393		do {
3394			shrink_zone(priority, zone, &sc);
3395			priority--;
3396		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3397	}
3398
3399	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3400	if (nr_slab_pages0 > zone->min_slab_pages) {
3401		/*
3402		 * shrink_slab() does not currently allow us to determine how
3403		 * many pages were freed in this zone. So we take the current
3404		 * number of slab pages and shake the slab until it is reduced
3405		 * by the same nr_pages that we used for reclaiming unmapped
3406		 * pages.
3407		 *
3408		 * Note that shrink_slab will free memory on all zones and may
3409		 * take a long time.
3410		 */
3411		for (;;) {
3412			unsigned long lru_pages = zone_reclaimable_pages(zone);
3413
3414			/* No reclaimable slab or very low memory pressure */
3415			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3416				break;
3417
3418			/* Freed enough memory */
3419			nr_slab_pages1 = zone_page_state(zone,
3420							NR_SLAB_RECLAIMABLE);
3421			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3422				break;
3423		}
3424
3425		/*
3426		 * Update nr_reclaimed by the number of slab pages we
3427		 * reclaimed from this zone.
3428		 */
3429		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3430		if (nr_slab_pages1 < nr_slab_pages0)
3431			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3432	}
3433
3434	p->reclaim_state = NULL;
3435	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3436	lockdep_clear_current_reclaim_state();
3437	return sc.nr_reclaimed >= nr_pages;
3438}
3439
3440int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3441{
3442	int node_id;
3443	int ret;
3444
3445	/*
3446	 * Zone reclaim reclaims unmapped file backed pages and
3447	 * slab pages if we are over the defined limits.
3448	 *
3449	 * A small portion of unmapped file backed pages is needed for
3450	 * file I/O otherwise pages read by file I/O will be immediately
3451	 * thrown out if the zone is overallocated. So we do not reclaim
3452	 * if less than a specified percentage of the zone is used by
3453	 * unmapped file backed pages.
3454	 */
3455	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3456	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3457		return ZONE_RECLAIM_FULL;
3458
3459	if (zone->all_unreclaimable)
3460		return ZONE_RECLAIM_FULL;
3461
3462	/*
3463	 * Do not scan if the allocation should not be delayed.
3464	 */
3465	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3466		return ZONE_RECLAIM_NOSCAN;
3467
3468	/*
3469	 * Only run zone reclaim on the local zone or on zones that do not
3470	 * have associated processors. This will favor the local processor
3471	 * over remote processors and spread off node memory allocations
3472	 * as wide as possible.
3473	 */
3474	node_id = zone_to_nid(zone);
3475	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3476		return ZONE_RECLAIM_NOSCAN;
3477
3478	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3479		return ZONE_RECLAIM_NOSCAN;
3480
3481	ret = __zone_reclaim(zone, gfp_mask, order);
3482	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3483
3484	if (!ret)
3485		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3486
3487	return ret;
3488}
3489#endif
3490
3491/*
3492 * page_evictable - test whether a page is evictable
3493 * @page: the page to test
3494 * @vma: the VMA in which the page is or will be mapped, may be NULL
3495 *
3496 * Test whether page is evictable--i.e., should be placed on active/inactive
3497 * lists vs unevictable list.  The vma argument is !NULL when called from the
3498 * fault path to determine how to instantate a new page.
3499 *
3500 * Reasons page might not be evictable:
3501 * (1) page's mapping marked unevictable
3502 * (2) page is part of an mlocked VMA
3503 *
3504 */
3505int page_evictable(struct page *page, struct vm_area_struct *vma)
3506{
3507
3508	if (mapping_unevictable(page_mapping(page)))
3509		return 0;
3510
3511	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3512		return 0;
3513
3514	return 1;
3515}
3516
3517/**
3518 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3519 * @page: page to check evictability and move to appropriate lru list
3520 * @zone: zone page is in
3521 *
3522 * Checks a page for evictability and moves the page to the appropriate
3523 * zone lru list.
3524 *
3525 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3526 * have PageUnevictable set.
3527 */
3528static void check_move_unevictable_page(struct page *page, struct zone *zone)
3529{
3530	struct lruvec *lruvec;
3531
3532	VM_BUG_ON(PageActive(page));
3533retry:
3534	ClearPageUnevictable(page);
3535	if (page_evictable(page, NULL)) {
3536		enum lru_list l = page_lru_base_type(page);
3537
3538		__dec_zone_state(zone, NR_UNEVICTABLE);
3539		lruvec = mem_cgroup_lru_move_lists(zone, page,
3540						   LRU_UNEVICTABLE, l);
3541		list_move(&page->lru, &lruvec->lists[l]);
3542		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3543		__count_vm_event(UNEVICTABLE_PGRESCUED);
3544	} else {
3545		/*
3546		 * rotate unevictable list
3547		 */
3548		SetPageUnevictable(page);
3549		lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3550						   LRU_UNEVICTABLE);
3551		list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3552		if (page_evictable(page, NULL))
3553			goto retry;
3554	}
3555}
3556
3557/**
3558 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3559 * @mapping: struct address_space to scan for evictable pages
3560 *
3561 * Scan all pages in mapping.  Check unevictable pages for
3562 * evictability and move them to the appropriate zone lru list.
3563 */
3564void scan_mapping_unevictable_pages(struct address_space *mapping)
3565{
3566	pgoff_t next = 0;
3567	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3568			 PAGE_CACHE_SHIFT;
3569	struct zone *zone;
3570	struct pagevec pvec;
3571
3572	if (mapping->nrpages == 0)
3573		return;
3574
3575	pagevec_init(&pvec, 0);
3576	while (next < end &&
3577		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3578		int i;
3579		int pg_scanned = 0;
3580
3581		zone = NULL;
3582
3583		for (i = 0; i < pagevec_count(&pvec); i++) {
3584			struct page *page = pvec.pages[i];
3585			pgoff_t page_index = page->index;
3586			struct zone *pagezone = page_zone(page);
3587
3588			pg_scanned++;
3589			if (page_index > next)
3590				next = page_index;
3591			next++;
3592
3593			if (pagezone != zone) {
3594				if (zone)
3595					spin_unlock_irq(&zone->lru_lock);
3596				zone = pagezone;
3597				spin_lock_irq(&zone->lru_lock);
3598			}
3599
3600			if (PageLRU(page) && PageUnevictable(page))
3601				check_move_unevictable_page(page, zone);
3602		}
3603		if (zone)
3604			spin_unlock_irq(&zone->lru_lock);
3605		pagevec_release(&pvec);
3606
3607		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3608	}
3609
3610}
3611
3612static void warn_scan_unevictable_pages(void)
3613{
3614	printk_once(KERN_WARNING
3615		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3616		    "disabled for lack of a legitimate use case.  If you have "
3617		    "one, please send an email to linux-mm@kvack.org.\n",
3618		    current->comm);
3619}
3620
3621/*
3622 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3623 * all nodes' unevictable lists for evictable pages
3624 */
3625unsigned long scan_unevictable_pages;
3626
3627int scan_unevictable_handler(struct ctl_table *table, int write,
3628			   void __user *buffer,
3629			   size_t *length, loff_t *ppos)
3630{
3631	warn_scan_unevictable_pages();
3632	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3633	scan_unevictable_pages = 0;
3634	return 0;
3635}
3636
3637#ifdef CONFIG_NUMA
3638/*
3639 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3640 * a specified node's per zone unevictable lists for evictable pages.
3641 */
3642
3643static ssize_t read_scan_unevictable_node(struct device *dev,
3644					  struct device_attribute *attr,
3645					  char *buf)
3646{
3647	warn_scan_unevictable_pages();
3648	return sprintf(buf, "0\n");	/* always zero; should fit... */
3649}
3650
3651static ssize_t write_scan_unevictable_node(struct device *dev,
3652					   struct device_attribute *attr,
3653					const char *buf, size_t count)
3654{
3655	warn_scan_unevictable_pages();
3656	return 1;
3657}
3658
3659
3660static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3661			read_scan_unevictable_node,
3662			write_scan_unevictable_node);
3663
3664int scan_unevictable_register_node(struct node *node)
3665{
3666	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3667}
3668
3669void scan_unevictable_unregister_node(struct node *node)
3670{
3671	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3672}
3673#endif
3674