vmscan.c revision 4356f21d09283dc6d39a6f7287a65ddab61e2808
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/* Which cgroup do we reclaim from */
107	struct mem_cgroup *mem_cgroup;
108
109	/*
110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111	 * are scanned.
112	 */
113	nodemask_t	*nodemask;
114};
115
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field)			\
120	do {								\
121		if ((_page)->lru.prev != _base) {			\
122			struct page *prev;				\
123									\
124			prev = lru_to_page(&(_page->lru));		\
125			prefetch(&prev->_field);			\
126		}							\
127	} while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field)			\
134	do {								\
135		if ((_page)->lru.prev != _base) {			\
136			struct page *prev;				\
137									\
138			prev = lru_to_page(&(_page->lru));		\
139			prefetchw(&prev->_field);			\
140		}							\
141	} while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100.  Higher means more swappy.
148 */
149int vm_swappiness = 60;
150long vm_total_pages;	/* The total number of pages which the VM controls */
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157#else
158#define scanning_global_lru(sc)	(1)
159#endif
160
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162						  struct scan_control *sc)
163{
164	if (!scanning_global_lru(sc))
165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167	return &zone->reclaim_stat;
168}
169
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171				struct scan_control *sc, enum lru_list lru)
172{
173	if (!scanning_global_lru(sc))
174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177	return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
181/*
182 * Add a shrinker callback to be called from the vm
183 */
184void register_shrinker(struct shrinker *shrinker)
185{
186	shrinker->nr = 0;
187	down_write(&shrinker_rwsem);
188	list_add_tail(&shrinker->list, &shrinker_list);
189	up_write(&shrinker_rwsem);
190}
191EXPORT_SYMBOL(register_shrinker);
192
193/*
194 * Remove one
195 */
196void unregister_shrinker(struct shrinker *shrinker)
197{
198	down_write(&shrinker_rwsem);
199	list_del(&shrinker->list);
200	up_write(&shrinker_rwsem);
201}
202EXPORT_SYMBOL(unregister_shrinker);
203
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205				     struct shrink_control *sc,
206				     unsigned long nr_to_scan)
207{
208	sc->nr_to_scan = nr_to_scan;
209	return (*shrinker->shrink)(shrinker, sc);
210}
211
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object.  With this in mind we age equal
218 * percentages of the lru and ageable caches.  This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt.  It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232unsigned long shrink_slab(struct shrink_control *shrink,
233			  unsigned long nr_pages_scanned,
234			  unsigned long lru_pages)
235{
236	struct shrinker *shrinker;
237	unsigned long ret = 0;
238
239	if (nr_pages_scanned == 0)
240		nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242	if (!down_read_trylock(&shrinker_rwsem)) {
243		/* Assume we'll be able to shrink next time */
244		ret = 1;
245		goto out;
246	}
247
248	list_for_each_entry(shrinker, &shrinker_list, list) {
249		unsigned long long delta;
250		unsigned long total_scan;
251		unsigned long max_pass;
252		int shrink_ret = 0;
253		long nr;
254		long new_nr;
255		long batch_size = shrinker->batch ? shrinker->batch
256						  : SHRINK_BATCH;
257
258		/*
259		 * copy the current shrinker scan count into a local variable
260		 * and zero it so that other concurrent shrinker invocations
261		 * don't also do this scanning work.
262		 */
263		do {
264			nr = shrinker->nr;
265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267		total_scan = nr;
268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
270		delta *= max_pass;
271		do_div(delta, lru_pages + 1);
272		total_scan += delta;
273		if (total_scan < 0) {
274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
275			       "delete nr=%ld\n",
276			       shrinker->shrink, total_scan);
277			total_scan = max_pass;
278		}
279
280		/*
281		 * We need to avoid excessive windup on filesystem shrinkers
282		 * due to large numbers of GFP_NOFS allocations causing the
283		 * shrinkers to return -1 all the time. This results in a large
284		 * nr being built up so when a shrink that can do some work
285		 * comes along it empties the entire cache due to nr >>>
286		 * max_pass.  This is bad for sustaining a working set in
287		 * memory.
288		 *
289		 * Hence only allow the shrinker to scan the entire cache when
290		 * a large delta change is calculated directly.
291		 */
292		if (delta < max_pass / 4)
293			total_scan = min(total_scan, max_pass / 2);
294
295		/*
296		 * Avoid risking looping forever due to too large nr value:
297		 * never try to free more than twice the estimate number of
298		 * freeable entries.
299		 */
300		if (total_scan > max_pass * 2)
301			total_scan = max_pass * 2;
302
303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
304					nr_pages_scanned, lru_pages,
305					max_pass, delta, total_scan);
306
307		while (total_scan >= batch_size) {
308			int nr_before;
309
310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
312							batch_size);
313			if (shrink_ret == -1)
314				break;
315			if (shrink_ret < nr_before)
316				ret += nr_before - shrink_ret;
317			count_vm_events(SLABS_SCANNED, batch_size);
318			total_scan -= batch_size;
319
320			cond_resched();
321		}
322
323		/*
324		 * move the unused scan count back into the shrinker in a
325		 * manner that handles concurrent updates. If we exhausted the
326		 * scan, there is no need to do an update.
327		 */
328		do {
329			nr = shrinker->nr;
330			new_nr = total_scan + nr;
331			if (total_scan <= 0)
332				break;
333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336	}
337	up_read(&shrinker_rwsem);
338out:
339	cond_resched();
340	return ret;
341}
342
343static void set_reclaim_mode(int priority, struct scan_control *sc,
344				   bool sync)
345{
346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348	/*
349	 * Initially assume we are entering either lumpy reclaim or
350	 * reclaim/compaction.Depending on the order, we will either set the
351	 * sync mode or just reclaim order-0 pages later.
352	 */
353	if (COMPACTION_BUILD)
354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355	else
356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358	/*
359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360	 * restricting when its set to either costly allocations or when
361	 * under memory pressure
362	 */
363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364		sc->reclaim_mode |= syncmode;
365	else if (sc->order && priority < DEF_PRIORITY - 2)
366		sc->reclaim_mode |= syncmode;
367	else
368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369}
370
371static void reset_reclaim_mode(struct scan_control *sc)
372{
373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374}
375
376static inline int is_page_cache_freeable(struct page *page)
377{
378	/*
379	 * A freeable page cache page is referenced only by the caller
380	 * that isolated the page, the page cache radix tree and
381	 * optional buffer heads at page->private.
382	 */
383	return page_count(page) - page_has_private(page) == 2;
384}
385
386static int may_write_to_queue(struct backing_dev_info *bdi,
387			      struct scan_control *sc)
388{
389	if (current->flags & PF_SWAPWRITE)
390		return 1;
391	if (!bdi_write_congested(bdi))
392		return 1;
393	if (bdi == current->backing_dev_info)
394		return 1;
395
396	/* lumpy reclaim for hugepage often need a lot of write */
397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398		return 1;
399	return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out.  Probably
404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up.  But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415				struct page *page, int error)
416{
417	lock_page(page);
418	if (page_mapping(page) == mapping)
419		mapping_set_error(mapping, error);
420	unlock_page(page);
421}
422
423/* possible outcome of pageout() */
424typedef enum {
425	/* failed to write page out, page is locked */
426	PAGE_KEEP,
427	/* move page to the active list, page is locked */
428	PAGE_ACTIVATE,
429	/* page has been sent to the disk successfully, page is unlocked */
430	PAGE_SUCCESS,
431	/* page is clean and locked */
432	PAGE_CLEAN,
433} pageout_t;
434
435/*
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
438 */
439static pageout_t pageout(struct page *page, struct address_space *mapping,
440			 struct scan_control *sc)
441{
442	/*
443	 * If the page is dirty, only perform writeback if that write
444	 * will be non-blocking.  To prevent this allocation from being
445	 * stalled by pagecache activity.  But note that there may be
446	 * stalls if we need to run get_block().  We could test
447	 * PagePrivate for that.
448	 *
449	 * If this process is currently in __generic_file_aio_write() against
450	 * this page's queue, we can perform writeback even if that
451	 * will block.
452	 *
453	 * If the page is swapcache, write it back even if that would
454	 * block, for some throttling. This happens by accident, because
455	 * swap_backing_dev_info is bust: it doesn't reflect the
456	 * congestion state of the swapdevs.  Easy to fix, if needed.
457	 */
458	if (!is_page_cache_freeable(page))
459		return PAGE_KEEP;
460	if (!mapping) {
461		/*
462		 * Some data journaling orphaned pages can have
463		 * page->mapping == NULL while being dirty with clean buffers.
464		 */
465		if (page_has_private(page)) {
466			if (try_to_free_buffers(page)) {
467				ClearPageDirty(page);
468				printk("%s: orphaned page\n", __func__);
469				return PAGE_CLEAN;
470			}
471		}
472		return PAGE_KEEP;
473	}
474	if (mapping->a_ops->writepage == NULL)
475		return PAGE_ACTIVATE;
476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
477		return PAGE_KEEP;
478
479	if (clear_page_dirty_for_io(page)) {
480		int res;
481		struct writeback_control wbc = {
482			.sync_mode = WB_SYNC_NONE,
483			.nr_to_write = SWAP_CLUSTER_MAX,
484			.range_start = 0,
485			.range_end = LLONG_MAX,
486			.for_reclaim = 1,
487		};
488
489		SetPageReclaim(page);
490		res = mapping->a_ops->writepage(page, &wbc);
491		if (res < 0)
492			handle_write_error(mapping, page, res);
493		if (res == AOP_WRITEPAGE_ACTIVATE) {
494			ClearPageReclaim(page);
495			return PAGE_ACTIVATE;
496		}
497
498		/*
499		 * Wait on writeback if requested to. This happens when
500		 * direct reclaiming a large contiguous area and the
501		 * first attempt to free a range of pages fails.
502		 */
503		if (PageWriteback(page) &&
504		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505			wait_on_page_writeback(page);
506
507		if (!PageWriteback(page)) {
508			/* synchronous write or broken a_ops? */
509			ClearPageReclaim(page);
510		}
511		trace_mm_vmscan_writepage(page,
512			trace_reclaim_flags(page, sc->reclaim_mode));
513		inc_zone_page_state(page, NR_VMSCAN_WRITE);
514		return PAGE_SUCCESS;
515	}
516
517	return PAGE_CLEAN;
518}
519
520/*
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
523 */
524static int __remove_mapping(struct address_space *mapping, struct page *page)
525{
526	BUG_ON(!PageLocked(page));
527	BUG_ON(mapping != page_mapping(page));
528
529	spin_lock_irq(&mapping->tree_lock);
530	/*
531	 * The non racy check for a busy page.
532	 *
533	 * Must be careful with the order of the tests. When someone has
534	 * a ref to the page, it may be possible that they dirty it then
535	 * drop the reference. So if PageDirty is tested before page_count
536	 * here, then the following race may occur:
537	 *
538	 * get_user_pages(&page);
539	 * [user mapping goes away]
540	 * write_to(page);
541	 *				!PageDirty(page)    [good]
542	 * SetPageDirty(page);
543	 * put_page(page);
544	 *				!page_count(page)   [good, discard it]
545	 *
546	 * [oops, our write_to data is lost]
547	 *
548	 * Reversing the order of the tests ensures such a situation cannot
549	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550	 * load is not satisfied before that of page->_count.
551	 *
552	 * Note that if SetPageDirty is always performed via set_page_dirty,
553	 * and thus under tree_lock, then this ordering is not required.
554	 */
555	if (!page_freeze_refs(page, 2))
556		goto cannot_free;
557	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558	if (unlikely(PageDirty(page))) {
559		page_unfreeze_refs(page, 2);
560		goto cannot_free;
561	}
562
563	if (PageSwapCache(page)) {
564		swp_entry_t swap = { .val = page_private(page) };
565		__delete_from_swap_cache(page);
566		spin_unlock_irq(&mapping->tree_lock);
567		swapcache_free(swap, page);
568	} else {
569		void (*freepage)(struct page *);
570
571		freepage = mapping->a_ops->freepage;
572
573		__delete_from_page_cache(page);
574		spin_unlock_irq(&mapping->tree_lock);
575		mem_cgroup_uncharge_cache_page(page);
576
577		if (freepage != NULL)
578			freepage(page);
579	}
580
581	return 1;
582
583cannot_free:
584	spin_unlock_irq(&mapping->tree_lock);
585	return 0;
586}
587
588/*
589 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590 * someone else has a ref on the page, abort and return 0.  If it was
591 * successfully detached, return 1.  Assumes the caller has a single ref on
592 * this page.
593 */
594int remove_mapping(struct address_space *mapping, struct page *page)
595{
596	if (__remove_mapping(mapping, page)) {
597		/*
598		 * Unfreezing the refcount with 1 rather than 2 effectively
599		 * drops the pagecache ref for us without requiring another
600		 * atomic operation.
601		 */
602		page_unfreeze_refs(page, 1);
603		return 1;
604	}
605	return 0;
606}
607
608/**
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
611 *
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
614 *
615 * lru_lock must not be held, interrupts must be enabled.
616 */
617void putback_lru_page(struct page *page)
618{
619	int lru;
620	int active = !!TestClearPageActive(page);
621	int was_unevictable = PageUnevictable(page);
622
623	VM_BUG_ON(PageLRU(page));
624
625redo:
626	ClearPageUnevictable(page);
627
628	if (page_evictable(page, NULL)) {
629		/*
630		 * For evictable pages, we can use the cache.
631		 * In event of a race, worst case is we end up with an
632		 * unevictable page on [in]active list.
633		 * We know how to handle that.
634		 */
635		lru = active + page_lru_base_type(page);
636		lru_cache_add_lru(page, lru);
637	} else {
638		/*
639		 * Put unevictable pages directly on zone's unevictable
640		 * list.
641		 */
642		lru = LRU_UNEVICTABLE;
643		add_page_to_unevictable_list(page);
644		/*
645		 * When racing with an mlock clearing (page is
646		 * unlocked), make sure that if the other thread does
647		 * not observe our setting of PG_lru and fails
648		 * isolation, we see PG_mlocked cleared below and move
649		 * the page back to the evictable list.
650		 *
651		 * The other side is TestClearPageMlocked().
652		 */
653		smp_mb();
654	}
655
656	/*
657	 * page's status can change while we move it among lru. If an evictable
658	 * page is on unevictable list, it never be freed. To avoid that,
659	 * check after we added it to the list, again.
660	 */
661	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662		if (!isolate_lru_page(page)) {
663			put_page(page);
664			goto redo;
665		}
666		/* This means someone else dropped this page from LRU
667		 * So, it will be freed or putback to LRU again. There is
668		 * nothing to do here.
669		 */
670	}
671
672	if (was_unevictable && lru != LRU_UNEVICTABLE)
673		count_vm_event(UNEVICTABLE_PGRESCUED);
674	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675		count_vm_event(UNEVICTABLE_PGCULLED);
676
677	put_page(page);		/* drop ref from isolate */
678}
679
680enum page_references {
681	PAGEREF_RECLAIM,
682	PAGEREF_RECLAIM_CLEAN,
683	PAGEREF_KEEP,
684	PAGEREF_ACTIVATE,
685};
686
687static enum page_references page_check_references(struct page *page,
688						  struct scan_control *sc)
689{
690	int referenced_ptes, referenced_page;
691	unsigned long vm_flags;
692
693	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694	referenced_page = TestClearPageReferenced(page);
695
696	/* Lumpy reclaim - ignore references */
697	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698		return PAGEREF_RECLAIM;
699
700	/*
701	 * Mlock lost the isolation race with us.  Let try_to_unmap()
702	 * move the page to the unevictable list.
703	 */
704	if (vm_flags & VM_LOCKED)
705		return PAGEREF_RECLAIM;
706
707	if (referenced_ptes) {
708		if (PageAnon(page))
709			return PAGEREF_ACTIVATE;
710		/*
711		 * All mapped pages start out with page table
712		 * references from the instantiating fault, so we need
713		 * to look twice if a mapped file page is used more
714		 * than once.
715		 *
716		 * Mark it and spare it for another trip around the
717		 * inactive list.  Another page table reference will
718		 * lead to its activation.
719		 *
720		 * Note: the mark is set for activated pages as well
721		 * so that recently deactivated but used pages are
722		 * quickly recovered.
723		 */
724		SetPageReferenced(page);
725
726		if (referenced_page)
727			return PAGEREF_ACTIVATE;
728
729		return PAGEREF_KEEP;
730	}
731
732	/* Reclaim if clean, defer dirty pages to writeback */
733	if (referenced_page && !PageSwapBacked(page))
734		return PAGEREF_RECLAIM_CLEAN;
735
736	return PAGEREF_RECLAIM;
737}
738
739static noinline_for_stack void free_page_list(struct list_head *free_pages)
740{
741	struct pagevec freed_pvec;
742	struct page *page, *tmp;
743
744	pagevec_init(&freed_pvec, 1);
745
746	list_for_each_entry_safe(page, tmp, free_pages, lru) {
747		list_del(&page->lru);
748		if (!pagevec_add(&freed_pvec, page)) {
749			__pagevec_free(&freed_pvec);
750			pagevec_reinit(&freed_pvec);
751		}
752	}
753
754	pagevec_free(&freed_pvec);
755}
756
757/*
758 * shrink_page_list() returns the number of reclaimed pages
759 */
760static unsigned long shrink_page_list(struct list_head *page_list,
761				      struct zone *zone,
762				      struct scan_control *sc)
763{
764	LIST_HEAD(ret_pages);
765	LIST_HEAD(free_pages);
766	int pgactivate = 0;
767	unsigned long nr_dirty = 0;
768	unsigned long nr_congested = 0;
769	unsigned long nr_reclaimed = 0;
770
771	cond_resched();
772
773	while (!list_empty(page_list)) {
774		enum page_references references;
775		struct address_space *mapping;
776		struct page *page;
777		int may_enter_fs;
778
779		cond_resched();
780
781		page = lru_to_page(page_list);
782		list_del(&page->lru);
783
784		if (!trylock_page(page))
785			goto keep;
786
787		VM_BUG_ON(PageActive(page));
788		VM_BUG_ON(page_zone(page) != zone);
789
790		sc->nr_scanned++;
791
792		if (unlikely(!page_evictable(page, NULL)))
793			goto cull_mlocked;
794
795		if (!sc->may_unmap && page_mapped(page))
796			goto keep_locked;
797
798		/* Double the slab pressure for mapped and swapcache pages */
799		if (page_mapped(page) || PageSwapCache(page))
800			sc->nr_scanned++;
801
802		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805		if (PageWriteback(page)) {
806			/*
807			 * Synchronous reclaim is performed in two passes,
808			 * first an asynchronous pass over the list to
809			 * start parallel writeback, and a second synchronous
810			 * pass to wait for the IO to complete.  Wait here
811			 * for any page for which writeback has already
812			 * started.
813			 */
814			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815			    may_enter_fs)
816				wait_on_page_writeback(page);
817			else {
818				unlock_page(page);
819				goto keep_lumpy;
820			}
821		}
822
823		references = page_check_references(page, sc);
824		switch (references) {
825		case PAGEREF_ACTIVATE:
826			goto activate_locked;
827		case PAGEREF_KEEP:
828			goto keep_locked;
829		case PAGEREF_RECLAIM:
830		case PAGEREF_RECLAIM_CLEAN:
831			; /* try to reclaim the page below */
832		}
833
834		/*
835		 * Anonymous process memory has backing store?
836		 * Try to allocate it some swap space here.
837		 */
838		if (PageAnon(page) && !PageSwapCache(page)) {
839			if (!(sc->gfp_mask & __GFP_IO))
840				goto keep_locked;
841			if (!add_to_swap(page))
842				goto activate_locked;
843			may_enter_fs = 1;
844		}
845
846		mapping = page_mapping(page);
847
848		/*
849		 * The page is mapped into the page tables of one or more
850		 * processes. Try to unmap it here.
851		 */
852		if (page_mapped(page) && mapping) {
853			switch (try_to_unmap(page, TTU_UNMAP)) {
854			case SWAP_FAIL:
855				goto activate_locked;
856			case SWAP_AGAIN:
857				goto keep_locked;
858			case SWAP_MLOCK:
859				goto cull_mlocked;
860			case SWAP_SUCCESS:
861				; /* try to free the page below */
862			}
863		}
864
865		if (PageDirty(page)) {
866			nr_dirty++;
867
868			if (references == PAGEREF_RECLAIM_CLEAN)
869				goto keep_locked;
870			if (!may_enter_fs)
871				goto keep_locked;
872			if (!sc->may_writepage)
873				goto keep_locked;
874
875			/* Page is dirty, try to write it out here */
876			switch (pageout(page, mapping, sc)) {
877			case PAGE_KEEP:
878				nr_congested++;
879				goto keep_locked;
880			case PAGE_ACTIVATE:
881				goto activate_locked;
882			case PAGE_SUCCESS:
883				if (PageWriteback(page))
884					goto keep_lumpy;
885				if (PageDirty(page))
886					goto keep;
887
888				/*
889				 * A synchronous write - probably a ramdisk.  Go
890				 * ahead and try to reclaim the page.
891				 */
892				if (!trylock_page(page))
893					goto keep;
894				if (PageDirty(page) || PageWriteback(page))
895					goto keep_locked;
896				mapping = page_mapping(page);
897			case PAGE_CLEAN:
898				; /* try to free the page below */
899			}
900		}
901
902		/*
903		 * If the page has buffers, try to free the buffer mappings
904		 * associated with this page. If we succeed we try to free
905		 * the page as well.
906		 *
907		 * We do this even if the page is PageDirty().
908		 * try_to_release_page() does not perform I/O, but it is
909		 * possible for a page to have PageDirty set, but it is actually
910		 * clean (all its buffers are clean).  This happens if the
911		 * buffers were written out directly, with submit_bh(). ext3
912		 * will do this, as well as the blockdev mapping.
913		 * try_to_release_page() will discover that cleanness and will
914		 * drop the buffers and mark the page clean - it can be freed.
915		 *
916		 * Rarely, pages can have buffers and no ->mapping.  These are
917		 * the pages which were not successfully invalidated in
918		 * truncate_complete_page().  We try to drop those buffers here
919		 * and if that worked, and the page is no longer mapped into
920		 * process address space (page_count == 1) it can be freed.
921		 * Otherwise, leave the page on the LRU so it is swappable.
922		 */
923		if (page_has_private(page)) {
924			if (!try_to_release_page(page, sc->gfp_mask))
925				goto activate_locked;
926			if (!mapping && page_count(page) == 1) {
927				unlock_page(page);
928				if (put_page_testzero(page))
929					goto free_it;
930				else {
931					/*
932					 * rare race with speculative reference.
933					 * the speculative reference will free
934					 * this page shortly, so we may
935					 * increment nr_reclaimed here (and
936					 * leave it off the LRU).
937					 */
938					nr_reclaimed++;
939					continue;
940				}
941			}
942		}
943
944		if (!mapping || !__remove_mapping(mapping, page))
945			goto keep_locked;
946
947		/*
948		 * At this point, we have no other references and there is
949		 * no way to pick any more up (removed from LRU, removed
950		 * from pagecache). Can use non-atomic bitops now (and
951		 * we obviously don't have to worry about waking up a process
952		 * waiting on the page lock, because there are no references.
953		 */
954		__clear_page_locked(page);
955free_it:
956		nr_reclaimed++;
957
958		/*
959		 * Is there need to periodically free_page_list? It would
960		 * appear not as the counts should be low
961		 */
962		list_add(&page->lru, &free_pages);
963		continue;
964
965cull_mlocked:
966		if (PageSwapCache(page))
967			try_to_free_swap(page);
968		unlock_page(page);
969		putback_lru_page(page);
970		reset_reclaim_mode(sc);
971		continue;
972
973activate_locked:
974		/* Not a candidate for swapping, so reclaim swap space. */
975		if (PageSwapCache(page) && vm_swap_full())
976			try_to_free_swap(page);
977		VM_BUG_ON(PageActive(page));
978		SetPageActive(page);
979		pgactivate++;
980keep_locked:
981		unlock_page(page);
982keep:
983		reset_reclaim_mode(sc);
984keep_lumpy:
985		list_add(&page->lru, &ret_pages);
986		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987	}
988
989	/*
990	 * Tag a zone as congested if all the dirty pages encountered were
991	 * backed by a congested BDI. In this case, reclaimers should just
992	 * back off and wait for congestion to clear because further reclaim
993	 * will encounter the same problem
994	 */
995	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996		zone_set_flag(zone, ZONE_CONGESTED);
997
998	free_page_list(&free_pages);
999
1000	list_splice(&ret_pages, page_list);
1001	count_vm_events(PGACTIVATE, pgactivate);
1002	return nr_reclaimed;
1003}
1004
1005/*
1006 * Attempt to remove the specified page from its LRU.  Only take this page
1007 * if it is of the appropriate PageActive status.  Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page:	page to consider
1011 * mode:	one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016{
1017	bool all_lru_mode;
1018	int ret = -EINVAL;
1019
1020	/* Only take pages on the LRU. */
1021	if (!PageLRU(page))
1022		return ret;
1023
1024	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027	/*
1028	 * When checking the active state, we need to be sure we are
1029	 * dealing with comparible boolean values.  Take the logical not
1030	 * of each.
1031	 */
1032	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033		return ret;
1034
1035	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036		return ret;
1037
1038	/*
1039	 * When this function is being called for lumpy reclaim, we
1040	 * initially look into all LRU pages, active, inactive and
1041	 * unevictable; only give shrink_page_list evictable pages.
1042	 */
1043	if (PageUnevictable(page))
1044		return ret;
1045
1046	ret = -EBUSY;
1047
1048	if (likely(get_page_unless_zero(page))) {
1049		/*
1050		 * Be careful not to clear PageLRU until after we're
1051		 * sure the page is not being freed elsewhere -- the
1052		 * page release code relies on it.
1053		 */
1054		ClearPageLRU(page);
1055		ret = 0;
1056	}
1057
1058	return ret;
1059}
1060
1061/*
1062 * zone->lru_lock is heavily contended.  Some of the functions that
1063 * shrink the lists perform better by taking out a batch of pages
1064 * and working on them outside the LRU lock.
1065 *
1066 * For pagecache intensive workloads, this function is the hottest
1067 * spot in the kernel (apart from copy_*_user functions).
1068 *
1069 * Appropriate locks must be held before calling this function.
1070 *
1071 * @nr_to_scan:	The number of pages to look through on the list.
1072 * @src:	The LRU list to pull pages off.
1073 * @dst:	The temp list to put pages on to.
1074 * @scanned:	The number of pages that were scanned.
1075 * @order:	The caller's attempted allocation order
1076 * @mode:	One of the LRU isolation modes
1077 * @file:	True [1] if isolating file [!anon] pages
1078 *
1079 * returns how many pages were moved onto *@dst.
1080 */
1081static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1082		struct list_head *src, struct list_head *dst,
1083		unsigned long *scanned, int order, isolate_mode_t mode,
1084		int file)
1085{
1086	unsigned long nr_taken = 0;
1087	unsigned long nr_lumpy_taken = 0;
1088	unsigned long nr_lumpy_dirty = 0;
1089	unsigned long nr_lumpy_failed = 0;
1090	unsigned long scan;
1091
1092	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1093		struct page *page;
1094		unsigned long pfn;
1095		unsigned long end_pfn;
1096		unsigned long page_pfn;
1097		int zone_id;
1098
1099		page = lru_to_page(src);
1100		prefetchw_prev_lru_page(page, src, flags);
1101
1102		VM_BUG_ON(!PageLRU(page));
1103
1104		switch (__isolate_lru_page(page, mode, file)) {
1105		case 0:
1106			list_move(&page->lru, dst);
1107			mem_cgroup_del_lru(page);
1108			nr_taken += hpage_nr_pages(page);
1109			break;
1110
1111		case -EBUSY:
1112			/* else it is being freed elsewhere */
1113			list_move(&page->lru, src);
1114			mem_cgroup_rotate_lru_list(page, page_lru(page));
1115			continue;
1116
1117		default:
1118			BUG();
1119		}
1120
1121		if (!order)
1122			continue;
1123
1124		/*
1125		 * Attempt to take all pages in the order aligned region
1126		 * surrounding the tag page.  Only take those pages of
1127		 * the same active state as that tag page.  We may safely
1128		 * round the target page pfn down to the requested order
1129		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1130		 * where that page is in a different zone we will detect
1131		 * it from its zone id and abort this block scan.
1132		 */
1133		zone_id = page_zone_id(page);
1134		page_pfn = page_to_pfn(page);
1135		pfn = page_pfn & ~((1 << order) - 1);
1136		end_pfn = pfn + (1 << order);
1137		for (; pfn < end_pfn; pfn++) {
1138			struct page *cursor_page;
1139
1140			/* The target page is in the block, ignore it. */
1141			if (unlikely(pfn == page_pfn))
1142				continue;
1143
1144			/* Avoid holes within the zone. */
1145			if (unlikely(!pfn_valid_within(pfn)))
1146				break;
1147
1148			cursor_page = pfn_to_page(pfn);
1149
1150			/* Check that we have not crossed a zone boundary. */
1151			if (unlikely(page_zone_id(cursor_page) != zone_id))
1152				break;
1153
1154			/*
1155			 * If we don't have enough swap space, reclaiming of
1156			 * anon page which don't already have a swap slot is
1157			 * pointless.
1158			 */
1159			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1160			    !PageSwapCache(cursor_page))
1161				break;
1162
1163			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1164				list_move(&cursor_page->lru, dst);
1165				mem_cgroup_del_lru(cursor_page);
1166				nr_taken += hpage_nr_pages(page);
1167				nr_lumpy_taken++;
1168				if (PageDirty(cursor_page))
1169					nr_lumpy_dirty++;
1170				scan++;
1171			} else {
1172				/*
1173				 * Check if the page is freed already.
1174				 *
1175				 * We can't use page_count() as that
1176				 * requires compound_head and we don't
1177				 * have a pin on the page here. If a
1178				 * page is tail, we may or may not
1179				 * have isolated the head, so assume
1180				 * it's not free, it'd be tricky to
1181				 * track the head status without a
1182				 * page pin.
1183				 */
1184				if (!PageTail(cursor_page) &&
1185				    !atomic_read(&cursor_page->_count))
1186					continue;
1187				break;
1188			}
1189		}
1190
1191		/* If we break out of the loop above, lumpy reclaim failed */
1192		if (pfn < end_pfn)
1193			nr_lumpy_failed++;
1194	}
1195
1196	*scanned = scan;
1197
1198	trace_mm_vmscan_lru_isolate(order,
1199			nr_to_scan, scan,
1200			nr_taken,
1201			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1202			mode);
1203	return nr_taken;
1204}
1205
1206static unsigned long isolate_pages_global(unsigned long nr,
1207					struct list_head *dst,
1208					unsigned long *scanned, int order,
1209					isolate_mode_t mode,
1210					struct zone *z,	int active, int file)
1211{
1212	int lru = LRU_BASE;
1213	if (active)
1214		lru += LRU_ACTIVE;
1215	if (file)
1216		lru += LRU_FILE;
1217	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1218								mode, file);
1219}
1220
1221/*
1222 * clear_active_flags() is a helper for shrink_active_list(), clearing
1223 * any active bits from the pages in the list.
1224 */
1225static unsigned long clear_active_flags(struct list_head *page_list,
1226					unsigned int *count)
1227{
1228	int nr_active = 0;
1229	int lru;
1230	struct page *page;
1231
1232	list_for_each_entry(page, page_list, lru) {
1233		int numpages = hpage_nr_pages(page);
1234		lru = page_lru_base_type(page);
1235		if (PageActive(page)) {
1236			lru += LRU_ACTIVE;
1237			ClearPageActive(page);
1238			nr_active += numpages;
1239		}
1240		if (count)
1241			count[lru] += numpages;
1242	}
1243
1244	return nr_active;
1245}
1246
1247/**
1248 * isolate_lru_page - tries to isolate a page from its LRU list
1249 * @page: page to isolate from its LRU list
1250 *
1251 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1252 * vmstat statistic corresponding to whatever LRU list the page was on.
1253 *
1254 * Returns 0 if the page was removed from an LRU list.
1255 * Returns -EBUSY if the page was not on an LRU list.
1256 *
1257 * The returned page will have PageLRU() cleared.  If it was found on
1258 * the active list, it will have PageActive set.  If it was found on
1259 * the unevictable list, it will have the PageUnevictable bit set. That flag
1260 * may need to be cleared by the caller before letting the page go.
1261 *
1262 * The vmstat statistic corresponding to the list on which the page was
1263 * found will be decremented.
1264 *
1265 * Restrictions:
1266 * (1) Must be called with an elevated refcount on the page. This is a
1267 *     fundamentnal difference from isolate_lru_pages (which is called
1268 *     without a stable reference).
1269 * (2) the lru_lock must not be held.
1270 * (3) interrupts must be enabled.
1271 */
1272int isolate_lru_page(struct page *page)
1273{
1274	int ret = -EBUSY;
1275
1276	VM_BUG_ON(!page_count(page));
1277
1278	if (PageLRU(page)) {
1279		struct zone *zone = page_zone(page);
1280
1281		spin_lock_irq(&zone->lru_lock);
1282		if (PageLRU(page)) {
1283			int lru = page_lru(page);
1284			ret = 0;
1285			get_page(page);
1286			ClearPageLRU(page);
1287
1288			del_page_from_lru_list(zone, page, lru);
1289		}
1290		spin_unlock_irq(&zone->lru_lock);
1291	}
1292	return ret;
1293}
1294
1295/*
1296 * Are there way too many processes in the direct reclaim path already?
1297 */
1298static int too_many_isolated(struct zone *zone, int file,
1299		struct scan_control *sc)
1300{
1301	unsigned long inactive, isolated;
1302
1303	if (current_is_kswapd())
1304		return 0;
1305
1306	if (!scanning_global_lru(sc))
1307		return 0;
1308
1309	if (file) {
1310		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1311		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1312	} else {
1313		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1314		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1315	}
1316
1317	return isolated > inactive;
1318}
1319
1320/*
1321 * TODO: Try merging with migrations version of putback_lru_pages
1322 */
1323static noinline_for_stack void
1324putback_lru_pages(struct zone *zone, struct scan_control *sc,
1325				unsigned long nr_anon, unsigned long nr_file,
1326				struct list_head *page_list)
1327{
1328	struct page *page;
1329	struct pagevec pvec;
1330	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1331
1332	pagevec_init(&pvec, 1);
1333
1334	/*
1335	 * Put back any unfreeable pages.
1336	 */
1337	spin_lock(&zone->lru_lock);
1338	while (!list_empty(page_list)) {
1339		int lru;
1340		page = lru_to_page(page_list);
1341		VM_BUG_ON(PageLRU(page));
1342		list_del(&page->lru);
1343		if (unlikely(!page_evictable(page, NULL))) {
1344			spin_unlock_irq(&zone->lru_lock);
1345			putback_lru_page(page);
1346			spin_lock_irq(&zone->lru_lock);
1347			continue;
1348		}
1349		SetPageLRU(page);
1350		lru = page_lru(page);
1351		add_page_to_lru_list(zone, page, lru);
1352		if (is_active_lru(lru)) {
1353			int file = is_file_lru(lru);
1354			int numpages = hpage_nr_pages(page);
1355			reclaim_stat->recent_rotated[file] += numpages;
1356		}
1357		if (!pagevec_add(&pvec, page)) {
1358			spin_unlock_irq(&zone->lru_lock);
1359			__pagevec_release(&pvec);
1360			spin_lock_irq(&zone->lru_lock);
1361		}
1362	}
1363	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1364	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1365
1366	spin_unlock_irq(&zone->lru_lock);
1367	pagevec_release(&pvec);
1368}
1369
1370static noinline_for_stack void update_isolated_counts(struct zone *zone,
1371					struct scan_control *sc,
1372					unsigned long *nr_anon,
1373					unsigned long *nr_file,
1374					struct list_head *isolated_list)
1375{
1376	unsigned long nr_active;
1377	unsigned int count[NR_LRU_LISTS] = { 0, };
1378	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1379
1380	nr_active = clear_active_flags(isolated_list, count);
1381	__count_vm_events(PGDEACTIVATE, nr_active);
1382
1383	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1384			      -count[LRU_ACTIVE_FILE]);
1385	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1386			      -count[LRU_INACTIVE_FILE]);
1387	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1388			      -count[LRU_ACTIVE_ANON]);
1389	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1390			      -count[LRU_INACTIVE_ANON]);
1391
1392	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1393	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1394	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1395	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1396
1397	reclaim_stat->recent_scanned[0] += *nr_anon;
1398	reclaim_stat->recent_scanned[1] += *nr_file;
1399}
1400
1401/*
1402 * Returns true if the caller should wait to clean dirty/writeback pages.
1403 *
1404 * If we are direct reclaiming for contiguous pages and we do not reclaim
1405 * everything in the list, try again and wait for writeback IO to complete.
1406 * This will stall high-order allocations noticeably. Only do that when really
1407 * need to free the pages under high memory pressure.
1408 */
1409static inline bool should_reclaim_stall(unsigned long nr_taken,
1410					unsigned long nr_freed,
1411					int priority,
1412					struct scan_control *sc)
1413{
1414	int lumpy_stall_priority;
1415
1416	/* kswapd should not stall on sync IO */
1417	if (current_is_kswapd())
1418		return false;
1419
1420	/* Only stall on lumpy reclaim */
1421	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1422		return false;
1423
1424	/* If we have reclaimed everything on the isolated list, no stall */
1425	if (nr_freed == nr_taken)
1426		return false;
1427
1428	/*
1429	 * For high-order allocations, there are two stall thresholds.
1430	 * High-cost allocations stall immediately where as lower
1431	 * order allocations such as stacks require the scanning
1432	 * priority to be much higher before stalling.
1433	 */
1434	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1435		lumpy_stall_priority = DEF_PRIORITY;
1436	else
1437		lumpy_stall_priority = DEF_PRIORITY / 3;
1438
1439	return priority <= lumpy_stall_priority;
1440}
1441
1442/*
1443 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1444 * of reclaimed pages
1445 */
1446static noinline_for_stack unsigned long
1447shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1448			struct scan_control *sc, int priority, int file)
1449{
1450	LIST_HEAD(page_list);
1451	unsigned long nr_scanned;
1452	unsigned long nr_reclaimed = 0;
1453	unsigned long nr_taken;
1454	unsigned long nr_anon;
1455	unsigned long nr_file;
1456	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1457
1458	while (unlikely(too_many_isolated(zone, file, sc))) {
1459		congestion_wait(BLK_RW_ASYNC, HZ/10);
1460
1461		/* We are about to die and free our memory. Return now. */
1462		if (fatal_signal_pending(current))
1463			return SWAP_CLUSTER_MAX;
1464	}
1465
1466	set_reclaim_mode(priority, sc, false);
1467	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1468		reclaim_mode |= ISOLATE_ACTIVE;
1469
1470	lru_add_drain();
1471	spin_lock_irq(&zone->lru_lock);
1472
1473	if (scanning_global_lru(sc)) {
1474		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1475			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1476		zone->pages_scanned += nr_scanned;
1477		if (current_is_kswapd())
1478			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1479					       nr_scanned);
1480		else
1481			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1482					       nr_scanned);
1483	} else {
1484		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1485			&nr_scanned, sc->order, reclaim_mode, zone,
1486			sc->mem_cgroup, 0, file);
1487		/*
1488		 * mem_cgroup_isolate_pages() keeps track of
1489		 * scanned pages on its own.
1490		 */
1491	}
1492
1493	if (nr_taken == 0) {
1494		spin_unlock_irq(&zone->lru_lock);
1495		return 0;
1496	}
1497
1498	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1499
1500	spin_unlock_irq(&zone->lru_lock);
1501
1502	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1503
1504	/* Check if we should syncronously wait for writeback */
1505	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1506		set_reclaim_mode(priority, sc, true);
1507		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1508	}
1509
1510	local_irq_disable();
1511	if (current_is_kswapd())
1512		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1513	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1514
1515	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1516
1517	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1518		zone_idx(zone),
1519		nr_scanned, nr_reclaimed,
1520		priority,
1521		trace_shrink_flags(file, sc->reclaim_mode));
1522	return nr_reclaimed;
1523}
1524
1525/*
1526 * This moves pages from the active list to the inactive list.
1527 *
1528 * We move them the other way if the page is referenced by one or more
1529 * processes, from rmap.
1530 *
1531 * If the pages are mostly unmapped, the processing is fast and it is
1532 * appropriate to hold zone->lru_lock across the whole operation.  But if
1533 * the pages are mapped, the processing is slow (page_referenced()) so we
1534 * should drop zone->lru_lock around each page.  It's impossible to balance
1535 * this, so instead we remove the pages from the LRU while processing them.
1536 * It is safe to rely on PG_active against the non-LRU pages in here because
1537 * nobody will play with that bit on a non-LRU page.
1538 *
1539 * The downside is that we have to touch page->_count against each page.
1540 * But we had to alter page->flags anyway.
1541 */
1542
1543static void move_active_pages_to_lru(struct zone *zone,
1544				     struct list_head *list,
1545				     enum lru_list lru)
1546{
1547	unsigned long pgmoved = 0;
1548	struct pagevec pvec;
1549	struct page *page;
1550
1551	pagevec_init(&pvec, 1);
1552
1553	while (!list_empty(list)) {
1554		page = lru_to_page(list);
1555
1556		VM_BUG_ON(PageLRU(page));
1557		SetPageLRU(page);
1558
1559		list_move(&page->lru, &zone->lru[lru].list);
1560		mem_cgroup_add_lru_list(page, lru);
1561		pgmoved += hpage_nr_pages(page);
1562
1563		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1564			spin_unlock_irq(&zone->lru_lock);
1565			if (buffer_heads_over_limit)
1566				pagevec_strip(&pvec);
1567			__pagevec_release(&pvec);
1568			spin_lock_irq(&zone->lru_lock);
1569		}
1570	}
1571	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1572	if (!is_active_lru(lru))
1573		__count_vm_events(PGDEACTIVATE, pgmoved);
1574}
1575
1576static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1577			struct scan_control *sc, int priority, int file)
1578{
1579	unsigned long nr_taken;
1580	unsigned long pgscanned;
1581	unsigned long vm_flags;
1582	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1583	LIST_HEAD(l_active);
1584	LIST_HEAD(l_inactive);
1585	struct page *page;
1586	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1587	unsigned long nr_rotated = 0;
1588
1589	lru_add_drain();
1590	spin_lock_irq(&zone->lru_lock);
1591	if (scanning_global_lru(sc)) {
1592		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1593						&pgscanned, sc->order,
1594						ISOLATE_ACTIVE, zone,
1595						1, file);
1596		zone->pages_scanned += pgscanned;
1597	} else {
1598		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1599						&pgscanned, sc->order,
1600						ISOLATE_ACTIVE, zone,
1601						sc->mem_cgroup, 1, file);
1602		/*
1603		 * mem_cgroup_isolate_pages() keeps track of
1604		 * scanned pages on its own.
1605		 */
1606	}
1607
1608	reclaim_stat->recent_scanned[file] += nr_taken;
1609
1610	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1611	if (file)
1612		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1613	else
1614		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1615	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1616	spin_unlock_irq(&zone->lru_lock);
1617
1618	while (!list_empty(&l_hold)) {
1619		cond_resched();
1620		page = lru_to_page(&l_hold);
1621		list_del(&page->lru);
1622
1623		if (unlikely(!page_evictable(page, NULL))) {
1624			putback_lru_page(page);
1625			continue;
1626		}
1627
1628		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1629			nr_rotated += hpage_nr_pages(page);
1630			/*
1631			 * Identify referenced, file-backed active pages and
1632			 * give them one more trip around the active list. So
1633			 * that executable code get better chances to stay in
1634			 * memory under moderate memory pressure.  Anon pages
1635			 * are not likely to be evicted by use-once streaming
1636			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1637			 * so we ignore them here.
1638			 */
1639			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1640				list_add(&page->lru, &l_active);
1641				continue;
1642			}
1643		}
1644
1645		ClearPageActive(page);	/* we are de-activating */
1646		list_add(&page->lru, &l_inactive);
1647	}
1648
1649	/*
1650	 * Move pages back to the lru list.
1651	 */
1652	spin_lock_irq(&zone->lru_lock);
1653	/*
1654	 * Count referenced pages from currently used mappings as rotated,
1655	 * even though only some of them are actually re-activated.  This
1656	 * helps balance scan pressure between file and anonymous pages in
1657	 * get_scan_ratio.
1658	 */
1659	reclaim_stat->recent_rotated[file] += nr_rotated;
1660
1661	move_active_pages_to_lru(zone, &l_active,
1662						LRU_ACTIVE + file * LRU_FILE);
1663	move_active_pages_to_lru(zone, &l_inactive,
1664						LRU_BASE   + file * LRU_FILE);
1665	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1666	spin_unlock_irq(&zone->lru_lock);
1667}
1668
1669#ifdef CONFIG_SWAP
1670static int inactive_anon_is_low_global(struct zone *zone)
1671{
1672	unsigned long active, inactive;
1673
1674	active = zone_page_state(zone, NR_ACTIVE_ANON);
1675	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1676
1677	if (inactive * zone->inactive_ratio < active)
1678		return 1;
1679
1680	return 0;
1681}
1682
1683/**
1684 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1685 * @zone: zone to check
1686 * @sc:   scan control of this context
1687 *
1688 * Returns true if the zone does not have enough inactive anon pages,
1689 * meaning some active anon pages need to be deactivated.
1690 */
1691static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1692{
1693	int low;
1694
1695	/*
1696	 * If we don't have swap space, anonymous page deactivation
1697	 * is pointless.
1698	 */
1699	if (!total_swap_pages)
1700		return 0;
1701
1702	if (scanning_global_lru(sc))
1703		low = inactive_anon_is_low_global(zone);
1704	else
1705		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1706	return low;
1707}
1708#else
1709static inline int inactive_anon_is_low(struct zone *zone,
1710					struct scan_control *sc)
1711{
1712	return 0;
1713}
1714#endif
1715
1716static int inactive_file_is_low_global(struct zone *zone)
1717{
1718	unsigned long active, inactive;
1719
1720	active = zone_page_state(zone, NR_ACTIVE_FILE);
1721	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1722
1723	return (active > inactive);
1724}
1725
1726/**
1727 * inactive_file_is_low - check if file pages need to be deactivated
1728 * @zone: zone to check
1729 * @sc:   scan control of this context
1730 *
1731 * When the system is doing streaming IO, memory pressure here
1732 * ensures that active file pages get deactivated, until more
1733 * than half of the file pages are on the inactive list.
1734 *
1735 * Once we get to that situation, protect the system's working
1736 * set from being evicted by disabling active file page aging.
1737 *
1738 * This uses a different ratio than the anonymous pages, because
1739 * the page cache uses a use-once replacement algorithm.
1740 */
1741static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1742{
1743	int low;
1744
1745	if (scanning_global_lru(sc))
1746		low = inactive_file_is_low_global(zone);
1747	else
1748		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1749	return low;
1750}
1751
1752static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1753				int file)
1754{
1755	if (file)
1756		return inactive_file_is_low(zone, sc);
1757	else
1758		return inactive_anon_is_low(zone, sc);
1759}
1760
1761static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1762	struct zone *zone, struct scan_control *sc, int priority)
1763{
1764	int file = is_file_lru(lru);
1765
1766	if (is_active_lru(lru)) {
1767		if (inactive_list_is_low(zone, sc, file))
1768		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1769		return 0;
1770	}
1771
1772	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1773}
1774
1775static int vmscan_swappiness(struct scan_control *sc)
1776{
1777	if (scanning_global_lru(sc))
1778		return vm_swappiness;
1779	return mem_cgroup_swappiness(sc->mem_cgroup);
1780}
1781
1782/*
1783 * Determine how aggressively the anon and file LRU lists should be
1784 * scanned.  The relative value of each set of LRU lists is determined
1785 * by looking at the fraction of the pages scanned we did rotate back
1786 * onto the active list instead of evict.
1787 *
1788 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1789 */
1790static void get_scan_count(struct zone *zone, struct scan_control *sc,
1791					unsigned long *nr, int priority)
1792{
1793	unsigned long anon, file, free;
1794	unsigned long anon_prio, file_prio;
1795	unsigned long ap, fp;
1796	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1797	u64 fraction[2], denominator;
1798	enum lru_list l;
1799	int noswap = 0;
1800	bool force_scan = false;
1801	unsigned long nr_force_scan[2];
1802
1803	/* kswapd does zone balancing and needs to scan this zone */
1804	if (scanning_global_lru(sc) && current_is_kswapd())
1805		force_scan = true;
1806	/* memcg may have small limit and need to avoid priority drop */
1807	if (!scanning_global_lru(sc))
1808		force_scan = true;
1809
1810	/* If we have no swap space, do not bother scanning anon pages. */
1811	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1812		noswap = 1;
1813		fraction[0] = 0;
1814		fraction[1] = 1;
1815		denominator = 1;
1816		nr_force_scan[0] = 0;
1817		nr_force_scan[1] = SWAP_CLUSTER_MAX;
1818		goto out;
1819	}
1820
1821	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1822		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1823	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1824		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1825
1826	if (scanning_global_lru(sc)) {
1827		free  = zone_page_state(zone, NR_FREE_PAGES);
1828		/* If we have very few page cache pages,
1829		   force-scan anon pages. */
1830		if (unlikely(file + free <= high_wmark_pages(zone))) {
1831			fraction[0] = 1;
1832			fraction[1] = 0;
1833			denominator = 1;
1834			nr_force_scan[0] = SWAP_CLUSTER_MAX;
1835			nr_force_scan[1] = 0;
1836			goto out;
1837		}
1838	}
1839
1840	/*
1841	 * With swappiness at 100, anonymous and file have the same priority.
1842	 * This scanning priority is essentially the inverse of IO cost.
1843	 */
1844	anon_prio = vmscan_swappiness(sc);
1845	file_prio = 200 - vmscan_swappiness(sc);
1846
1847	/*
1848	 * OK, so we have swap space and a fair amount of page cache
1849	 * pages.  We use the recently rotated / recently scanned
1850	 * ratios to determine how valuable each cache is.
1851	 *
1852	 * Because workloads change over time (and to avoid overflow)
1853	 * we keep these statistics as a floating average, which ends
1854	 * up weighing recent references more than old ones.
1855	 *
1856	 * anon in [0], file in [1]
1857	 */
1858	spin_lock_irq(&zone->lru_lock);
1859	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1860		reclaim_stat->recent_scanned[0] /= 2;
1861		reclaim_stat->recent_rotated[0] /= 2;
1862	}
1863
1864	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1865		reclaim_stat->recent_scanned[1] /= 2;
1866		reclaim_stat->recent_rotated[1] /= 2;
1867	}
1868
1869	/*
1870	 * The amount of pressure on anon vs file pages is inversely
1871	 * proportional to the fraction of recently scanned pages on
1872	 * each list that were recently referenced and in active use.
1873	 */
1874	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1875	ap /= reclaim_stat->recent_rotated[0] + 1;
1876
1877	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1878	fp /= reclaim_stat->recent_rotated[1] + 1;
1879	spin_unlock_irq(&zone->lru_lock);
1880
1881	fraction[0] = ap;
1882	fraction[1] = fp;
1883	denominator = ap + fp + 1;
1884	if (force_scan) {
1885		unsigned long scan = SWAP_CLUSTER_MAX;
1886		nr_force_scan[0] = div64_u64(scan * ap, denominator);
1887		nr_force_scan[1] = div64_u64(scan * fp, denominator);
1888	}
1889out:
1890	for_each_evictable_lru(l) {
1891		int file = is_file_lru(l);
1892		unsigned long scan;
1893
1894		scan = zone_nr_lru_pages(zone, sc, l);
1895		if (priority || noswap) {
1896			scan >>= priority;
1897			scan = div64_u64(scan * fraction[file], denominator);
1898		}
1899
1900		/*
1901		 * If zone is small or memcg is small, nr[l] can be 0.
1902		 * This results no-scan on this priority and priority drop down.
1903		 * For global direct reclaim, it can visit next zone and tend
1904		 * not to have problems. For global kswapd, it's for zone
1905		 * balancing and it need to scan a small amounts. When using
1906		 * memcg, priority drop can cause big latency. So, it's better
1907		 * to scan small amount. See may_noscan above.
1908		 */
1909		if (!scan && force_scan)
1910			scan = nr_force_scan[file];
1911		nr[l] = scan;
1912	}
1913}
1914
1915/*
1916 * Reclaim/compaction depends on a number of pages being freed. To avoid
1917 * disruption to the system, a small number of order-0 pages continue to be
1918 * rotated and reclaimed in the normal fashion. However, by the time we get
1919 * back to the allocator and call try_to_compact_zone(), we ensure that
1920 * there are enough free pages for it to be likely successful
1921 */
1922static inline bool should_continue_reclaim(struct zone *zone,
1923					unsigned long nr_reclaimed,
1924					unsigned long nr_scanned,
1925					struct scan_control *sc)
1926{
1927	unsigned long pages_for_compaction;
1928	unsigned long inactive_lru_pages;
1929
1930	/* If not in reclaim/compaction mode, stop */
1931	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1932		return false;
1933
1934	/* Consider stopping depending on scan and reclaim activity */
1935	if (sc->gfp_mask & __GFP_REPEAT) {
1936		/*
1937		 * For __GFP_REPEAT allocations, stop reclaiming if the
1938		 * full LRU list has been scanned and we are still failing
1939		 * to reclaim pages. This full LRU scan is potentially
1940		 * expensive but a __GFP_REPEAT caller really wants to succeed
1941		 */
1942		if (!nr_reclaimed && !nr_scanned)
1943			return false;
1944	} else {
1945		/*
1946		 * For non-__GFP_REPEAT allocations which can presumably
1947		 * fail without consequence, stop if we failed to reclaim
1948		 * any pages from the last SWAP_CLUSTER_MAX number of
1949		 * pages that were scanned. This will return to the
1950		 * caller faster at the risk reclaim/compaction and
1951		 * the resulting allocation attempt fails
1952		 */
1953		if (!nr_reclaimed)
1954			return false;
1955	}
1956
1957	/*
1958	 * If we have not reclaimed enough pages for compaction and the
1959	 * inactive lists are large enough, continue reclaiming
1960	 */
1961	pages_for_compaction = (2UL << sc->order);
1962	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1963				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1964	if (sc->nr_reclaimed < pages_for_compaction &&
1965			inactive_lru_pages > pages_for_compaction)
1966		return true;
1967
1968	/* If compaction would go ahead or the allocation would succeed, stop */
1969	switch (compaction_suitable(zone, sc->order)) {
1970	case COMPACT_PARTIAL:
1971	case COMPACT_CONTINUE:
1972		return false;
1973	default:
1974		return true;
1975	}
1976}
1977
1978/*
1979 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1980 */
1981static void shrink_zone(int priority, struct zone *zone,
1982				struct scan_control *sc)
1983{
1984	unsigned long nr[NR_LRU_LISTS];
1985	unsigned long nr_to_scan;
1986	enum lru_list l;
1987	unsigned long nr_reclaimed, nr_scanned;
1988	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1989
1990restart:
1991	nr_reclaimed = 0;
1992	nr_scanned = sc->nr_scanned;
1993	get_scan_count(zone, sc, nr, priority);
1994
1995	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1996					nr[LRU_INACTIVE_FILE]) {
1997		for_each_evictable_lru(l) {
1998			if (nr[l]) {
1999				nr_to_scan = min_t(unsigned long,
2000						   nr[l], SWAP_CLUSTER_MAX);
2001				nr[l] -= nr_to_scan;
2002
2003				nr_reclaimed += shrink_list(l, nr_to_scan,
2004							    zone, sc, priority);
2005			}
2006		}
2007		/*
2008		 * On large memory systems, scan >> priority can become
2009		 * really large. This is fine for the starting priority;
2010		 * we want to put equal scanning pressure on each zone.
2011		 * However, if the VM has a harder time of freeing pages,
2012		 * with multiple processes reclaiming pages, the total
2013		 * freeing target can get unreasonably large.
2014		 */
2015		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2016			break;
2017	}
2018	sc->nr_reclaimed += nr_reclaimed;
2019
2020	/*
2021	 * Even if we did not try to evict anon pages at all, we want to
2022	 * rebalance the anon lru active/inactive ratio.
2023	 */
2024	if (inactive_anon_is_low(zone, sc))
2025		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2026
2027	/* reclaim/compaction might need reclaim to continue */
2028	if (should_continue_reclaim(zone, nr_reclaimed,
2029					sc->nr_scanned - nr_scanned, sc))
2030		goto restart;
2031
2032	throttle_vm_writeout(sc->gfp_mask);
2033}
2034
2035/*
2036 * This is the direct reclaim path, for page-allocating processes.  We only
2037 * try to reclaim pages from zones which will satisfy the caller's allocation
2038 * request.
2039 *
2040 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2041 * Because:
2042 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2043 *    allocation or
2044 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2045 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2046 *    zone defense algorithm.
2047 *
2048 * If a zone is deemed to be full of pinned pages then just give it a light
2049 * scan then give up on it.
2050 */
2051static void shrink_zones(int priority, struct zonelist *zonelist,
2052					struct scan_control *sc)
2053{
2054	struct zoneref *z;
2055	struct zone *zone;
2056	unsigned long nr_soft_reclaimed;
2057	unsigned long nr_soft_scanned;
2058
2059	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2060					gfp_zone(sc->gfp_mask), sc->nodemask) {
2061		if (!populated_zone(zone))
2062			continue;
2063		/*
2064		 * Take care memory controller reclaiming has small influence
2065		 * to global LRU.
2066		 */
2067		if (scanning_global_lru(sc)) {
2068			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2069				continue;
2070			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2071				continue;	/* Let kswapd poll it */
2072			/*
2073			 * This steals pages from memory cgroups over softlimit
2074			 * and returns the number of reclaimed pages and
2075			 * scanned pages. This works for global memory pressure
2076			 * and balancing, not for a memcg's limit.
2077			 */
2078			nr_soft_scanned = 0;
2079			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2080						sc->order, sc->gfp_mask,
2081						&nr_soft_scanned);
2082			sc->nr_reclaimed += nr_soft_reclaimed;
2083			sc->nr_scanned += nr_soft_scanned;
2084			/* need some check for avoid more shrink_zone() */
2085		}
2086
2087		shrink_zone(priority, zone, sc);
2088	}
2089}
2090
2091static bool zone_reclaimable(struct zone *zone)
2092{
2093	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2094}
2095
2096/* All zones in zonelist are unreclaimable? */
2097static bool all_unreclaimable(struct zonelist *zonelist,
2098		struct scan_control *sc)
2099{
2100	struct zoneref *z;
2101	struct zone *zone;
2102
2103	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2104			gfp_zone(sc->gfp_mask), sc->nodemask) {
2105		if (!populated_zone(zone))
2106			continue;
2107		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2108			continue;
2109		if (!zone->all_unreclaimable)
2110			return false;
2111	}
2112
2113	return true;
2114}
2115
2116/*
2117 * This is the main entry point to direct page reclaim.
2118 *
2119 * If a full scan of the inactive list fails to free enough memory then we
2120 * are "out of memory" and something needs to be killed.
2121 *
2122 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2123 * high - the zone may be full of dirty or under-writeback pages, which this
2124 * caller can't do much about.  We kick the writeback threads and take explicit
2125 * naps in the hope that some of these pages can be written.  But if the
2126 * allocating task holds filesystem locks which prevent writeout this might not
2127 * work, and the allocation attempt will fail.
2128 *
2129 * returns:	0, if no pages reclaimed
2130 * 		else, the number of pages reclaimed
2131 */
2132static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2133					struct scan_control *sc,
2134					struct shrink_control *shrink)
2135{
2136	int priority;
2137	unsigned long total_scanned = 0;
2138	struct reclaim_state *reclaim_state = current->reclaim_state;
2139	struct zoneref *z;
2140	struct zone *zone;
2141	unsigned long writeback_threshold;
2142
2143	get_mems_allowed();
2144	delayacct_freepages_start();
2145
2146	if (scanning_global_lru(sc))
2147		count_vm_event(ALLOCSTALL);
2148
2149	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2150		sc->nr_scanned = 0;
2151		if (!priority)
2152			disable_swap_token(sc->mem_cgroup);
2153		shrink_zones(priority, zonelist, sc);
2154		/*
2155		 * Don't shrink slabs when reclaiming memory from
2156		 * over limit cgroups
2157		 */
2158		if (scanning_global_lru(sc)) {
2159			unsigned long lru_pages = 0;
2160			for_each_zone_zonelist(zone, z, zonelist,
2161					gfp_zone(sc->gfp_mask)) {
2162				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2163					continue;
2164
2165				lru_pages += zone_reclaimable_pages(zone);
2166			}
2167
2168			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2169			if (reclaim_state) {
2170				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2171				reclaim_state->reclaimed_slab = 0;
2172			}
2173		}
2174		total_scanned += sc->nr_scanned;
2175		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2176			goto out;
2177
2178		/*
2179		 * Try to write back as many pages as we just scanned.  This
2180		 * tends to cause slow streaming writers to write data to the
2181		 * disk smoothly, at the dirtying rate, which is nice.   But
2182		 * that's undesirable in laptop mode, where we *want* lumpy
2183		 * writeout.  So in laptop mode, write out the whole world.
2184		 */
2185		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2186		if (total_scanned > writeback_threshold) {
2187			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2188			sc->may_writepage = 1;
2189		}
2190
2191		/* Take a nap, wait for some writeback to complete */
2192		if (!sc->hibernation_mode && sc->nr_scanned &&
2193		    priority < DEF_PRIORITY - 2) {
2194			struct zone *preferred_zone;
2195
2196			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2197						&cpuset_current_mems_allowed,
2198						&preferred_zone);
2199			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2200		}
2201	}
2202
2203out:
2204	delayacct_freepages_end();
2205	put_mems_allowed();
2206
2207	if (sc->nr_reclaimed)
2208		return sc->nr_reclaimed;
2209
2210	/*
2211	 * As hibernation is going on, kswapd is freezed so that it can't mark
2212	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2213	 * check.
2214	 */
2215	if (oom_killer_disabled)
2216		return 0;
2217
2218	/* top priority shrink_zones still had more to do? don't OOM, then */
2219	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2220		return 1;
2221
2222	return 0;
2223}
2224
2225unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2226				gfp_t gfp_mask, nodemask_t *nodemask)
2227{
2228	unsigned long nr_reclaimed;
2229	struct scan_control sc = {
2230		.gfp_mask = gfp_mask,
2231		.may_writepage = !laptop_mode,
2232		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2233		.may_unmap = 1,
2234		.may_swap = 1,
2235		.order = order,
2236		.mem_cgroup = NULL,
2237		.nodemask = nodemask,
2238	};
2239	struct shrink_control shrink = {
2240		.gfp_mask = sc.gfp_mask,
2241	};
2242
2243	trace_mm_vmscan_direct_reclaim_begin(order,
2244				sc.may_writepage,
2245				gfp_mask);
2246
2247	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2248
2249	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2250
2251	return nr_reclaimed;
2252}
2253
2254#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2255
2256unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2257						gfp_t gfp_mask, bool noswap,
2258						struct zone *zone,
2259						unsigned long *nr_scanned)
2260{
2261	struct scan_control sc = {
2262		.nr_scanned = 0,
2263		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2264		.may_writepage = !laptop_mode,
2265		.may_unmap = 1,
2266		.may_swap = !noswap,
2267		.order = 0,
2268		.mem_cgroup = mem,
2269	};
2270
2271	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2272			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2273
2274	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2275						      sc.may_writepage,
2276						      sc.gfp_mask);
2277
2278	/*
2279	 * NOTE: Although we can get the priority field, using it
2280	 * here is not a good idea, since it limits the pages we can scan.
2281	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2282	 * will pick up pages from other mem cgroup's as well. We hack
2283	 * the priority and make it zero.
2284	 */
2285	shrink_zone(0, zone, &sc);
2286
2287	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2288
2289	*nr_scanned = sc.nr_scanned;
2290	return sc.nr_reclaimed;
2291}
2292
2293unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2294					   gfp_t gfp_mask,
2295					   bool noswap)
2296{
2297	struct zonelist *zonelist;
2298	unsigned long nr_reclaimed;
2299	int nid;
2300	struct scan_control sc = {
2301		.may_writepage = !laptop_mode,
2302		.may_unmap = 1,
2303		.may_swap = !noswap,
2304		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2305		.order = 0,
2306		.mem_cgroup = mem_cont,
2307		.nodemask = NULL, /* we don't care the placement */
2308		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2309				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2310	};
2311	struct shrink_control shrink = {
2312		.gfp_mask = sc.gfp_mask,
2313	};
2314
2315	/*
2316	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2317	 * take care of from where we get pages. So the node where we start the
2318	 * scan does not need to be the current node.
2319	 */
2320	nid = mem_cgroup_select_victim_node(mem_cont);
2321
2322	zonelist = NODE_DATA(nid)->node_zonelists;
2323
2324	trace_mm_vmscan_memcg_reclaim_begin(0,
2325					    sc.may_writepage,
2326					    sc.gfp_mask);
2327
2328	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2329
2330	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2331
2332	return nr_reclaimed;
2333}
2334#endif
2335
2336/*
2337 * pgdat_balanced is used when checking if a node is balanced for high-order
2338 * allocations. Only zones that meet watermarks and are in a zone allowed
2339 * by the callers classzone_idx are added to balanced_pages. The total of
2340 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2341 * for the node to be considered balanced. Forcing all zones to be balanced
2342 * for high orders can cause excessive reclaim when there are imbalanced zones.
2343 * The choice of 25% is due to
2344 *   o a 16M DMA zone that is balanced will not balance a zone on any
2345 *     reasonable sized machine
2346 *   o On all other machines, the top zone must be at least a reasonable
2347 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2348 *     would need to be at least 256M for it to be balance a whole node.
2349 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2350 *     to balance a node on its own. These seemed like reasonable ratios.
2351 */
2352static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2353						int classzone_idx)
2354{
2355	unsigned long present_pages = 0;
2356	int i;
2357
2358	for (i = 0; i <= classzone_idx; i++)
2359		present_pages += pgdat->node_zones[i].present_pages;
2360
2361	/* A special case here: if zone has no page, we think it's balanced */
2362	return balanced_pages >= (present_pages >> 2);
2363}
2364
2365/* is kswapd sleeping prematurely? */
2366static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2367					int classzone_idx)
2368{
2369	int i;
2370	unsigned long balanced = 0;
2371	bool all_zones_ok = true;
2372
2373	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2374	if (remaining)
2375		return true;
2376
2377	/* Check the watermark levels */
2378	for (i = 0; i <= classzone_idx; i++) {
2379		struct zone *zone = pgdat->node_zones + i;
2380
2381		if (!populated_zone(zone))
2382			continue;
2383
2384		/*
2385		 * balance_pgdat() skips over all_unreclaimable after
2386		 * DEF_PRIORITY. Effectively, it considers them balanced so
2387		 * they must be considered balanced here as well if kswapd
2388		 * is to sleep
2389		 */
2390		if (zone->all_unreclaimable) {
2391			balanced += zone->present_pages;
2392			continue;
2393		}
2394
2395		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2396							i, 0))
2397			all_zones_ok = false;
2398		else
2399			balanced += zone->present_pages;
2400	}
2401
2402	/*
2403	 * For high-order requests, the balanced zones must contain at least
2404	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2405	 * must be balanced
2406	 */
2407	if (order)
2408		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2409	else
2410		return !all_zones_ok;
2411}
2412
2413/*
2414 * For kswapd, balance_pgdat() will work across all this node's zones until
2415 * they are all at high_wmark_pages(zone).
2416 *
2417 * Returns the final order kswapd was reclaiming at
2418 *
2419 * There is special handling here for zones which are full of pinned pages.
2420 * This can happen if the pages are all mlocked, or if they are all used by
2421 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2422 * What we do is to detect the case where all pages in the zone have been
2423 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2424 * dead and from now on, only perform a short scan.  Basically we're polling
2425 * the zone for when the problem goes away.
2426 *
2427 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2428 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2429 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2430 * lower zones regardless of the number of free pages in the lower zones. This
2431 * interoperates with the page allocator fallback scheme to ensure that aging
2432 * of pages is balanced across the zones.
2433 */
2434static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2435							int *classzone_idx)
2436{
2437	int all_zones_ok;
2438	unsigned long balanced;
2439	int priority;
2440	int i;
2441	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2442	unsigned long total_scanned;
2443	struct reclaim_state *reclaim_state = current->reclaim_state;
2444	unsigned long nr_soft_reclaimed;
2445	unsigned long nr_soft_scanned;
2446	struct scan_control sc = {
2447		.gfp_mask = GFP_KERNEL,
2448		.may_unmap = 1,
2449		.may_swap = 1,
2450		/*
2451		 * kswapd doesn't want to be bailed out while reclaim. because
2452		 * we want to put equal scanning pressure on each zone.
2453		 */
2454		.nr_to_reclaim = ULONG_MAX,
2455		.order = order,
2456		.mem_cgroup = NULL,
2457	};
2458	struct shrink_control shrink = {
2459		.gfp_mask = sc.gfp_mask,
2460	};
2461loop_again:
2462	total_scanned = 0;
2463	sc.nr_reclaimed = 0;
2464	sc.may_writepage = !laptop_mode;
2465	count_vm_event(PAGEOUTRUN);
2466
2467	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2468		unsigned long lru_pages = 0;
2469		int has_under_min_watermark_zone = 0;
2470
2471		/* The swap token gets in the way of swapout... */
2472		if (!priority)
2473			disable_swap_token(NULL);
2474
2475		all_zones_ok = 1;
2476		balanced = 0;
2477
2478		/*
2479		 * Scan in the highmem->dma direction for the highest
2480		 * zone which needs scanning
2481		 */
2482		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2483			struct zone *zone = pgdat->node_zones + i;
2484
2485			if (!populated_zone(zone))
2486				continue;
2487
2488			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2489				continue;
2490
2491			/*
2492			 * Do some background aging of the anon list, to give
2493			 * pages a chance to be referenced before reclaiming.
2494			 */
2495			if (inactive_anon_is_low(zone, &sc))
2496				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2497							&sc, priority, 0);
2498
2499			if (!zone_watermark_ok_safe(zone, order,
2500					high_wmark_pages(zone), 0, 0)) {
2501				end_zone = i;
2502				break;
2503			} else {
2504				/* If balanced, clear the congested flag */
2505				zone_clear_flag(zone, ZONE_CONGESTED);
2506			}
2507		}
2508		if (i < 0)
2509			goto out;
2510
2511		for (i = 0; i <= end_zone; i++) {
2512			struct zone *zone = pgdat->node_zones + i;
2513
2514			lru_pages += zone_reclaimable_pages(zone);
2515		}
2516
2517		/*
2518		 * Now scan the zone in the dma->highmem direction, stopping
2519		 * at the last zone which needs scanning.
2520		 *
2521		 * We do this because the page allocator works in the opposite
2522		 * direction.  This prevents the page allocator from allocating
2523		 * pages behind kswapd's direction of progress, which would
2524		 * cause too much scanning of the lower zones.
2525		 */
2526		for (i = 0; i <= end_zone; i++) {
2527			struct zone *zone = pgdat->node_zones + i;
2528			int nr_slab;
2529			unsigned long balance_gap;
2530
2531			if (!populated_zone(zone))
2532				continue;
2533
2534			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2535				continue;
2536
2537			sc.nr_scanned = 0;
2538
2539			nr_soft_scanned = 0;
2540			/*
2541			 * Call soft limit reclaim before calling shrink_zone.
2542			 */
2543			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2544							order, sc.gfp_mask,
2545							&nr_soft_scanned);
2546			sc.nr_reclaimed += nr_soft_reclaimed;
2547			total_scanned += nr_soft_scanned;
2548
2549			/*
2550			 * We put equal pressure on every zone, unless
2551			 * one zone has way too many pages free
2552			 * already. The "too many pages" is defined
2553			 * as the high wmark plus a "gap" where the
2554			 * gap is either the low watermark or 1%
2555			 * of the zone, whichever is smaller.
2556			 */
2557			balance_gap = min(low_wmark_pages(zone),
2558				(zone->present_pages +
2559					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2560				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2561			if (!zone_watermark_ok_safe(zone, order,
2562					high_wmark_pages(zone) + balance_gap,
2563					end_zone, 0)) {
2564				shrink_zone(priority, zone, &sc);
2565
2566				reclaim_state->reclaimed_slab = 0;
2567				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2568				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2569				total_scanned += sc.nr_scanned;
2570
2571				if (nr_slab == 0 && !zone_reclaimable(zone))
2572					zone->all_unreclaimable = 1;
2573			}
2574
2575			/*
2576			 * If we've done a decent amount of scanning and
2577			 * the reclaim ratio is low, start doing writepage
2578			 * even in laptop mode
2579			 */
2580			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2581			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2582				sc.may_writepage = 1;
2583
2584			if (zone->all_unreclaimable) {
2585				if (end_zone && end_zone == i)
2586					end_zone--;
2587				continue;
2588			}
2589
2590			if (!zone_watermark_ok_safe(zone, order,
2591					high_wmark_pages(zone), end_zone, 0)) {
2592				all_zones_ok = 0;
2593				/*
2594				 * We are still under min water mark.  This
2595				 * means that we have a GFP_ATOMIC allocation
2596				 * failure risk. Hurry up!
2597				 */
2598				if (!zone_watermark_ok_safe(zone, order,
2599					    min_wmark_pages(zone), end_zone, 0))
2600					has_under_min_watermark_zone = 1;
2601			} else {
2602				/*
2603				 * If a zone reaches its high watermark,
2604				 * consider it to be no longer congested. It's
2605				 * possible there are dirty pages backed by
2606				 * congested BDIs but as pressure is relieved,
2607				 * spectulatively avoid congestion waits
2608				 */
2609				zone_clear_flag(zone, ZONE_CONGESTED);
2610				if (i <= *classzone_idx)
2611					balanced += zone->present_pages;
2612			}
2613
2614		}
2615		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2616			break;		/* kswapd: all done */
2617		/*
2618		 * OK, kswapd is getting into trouble.  Take a nap, then take
2619		 * another pass across the zones.
2620		 */
2621		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2622			if (has_under_min_watermark_zone)
2623				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2624			else
2625				congestion_wait(BLK_RW_ASYNC, HZ/10);
2626		}
2627
2628		/*
2629		 * We do this so kswapd doesn't build up large priorities for
2630		 * example when it is freeing in parallel with allocators. It
2631		 * matches the direct reclaim path behaviour in terms of impact
2632		 * on zone->*_priority.
2633		 */
2634		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2635			break;
2636	}
2637out:
2638
2639	/*
2640	 * order-0: All zones must meet high watermark for a balanced node
2641	 * high-order: Balanced zones must make up at least 25% of the node
2642	 *             for the node to be balanced
2643	 */
2644	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2645		cond_resched();
2646
2647		try_to_freeze();
2648
2649		/*
2650		 * Fragmentation may mean that the system cannot be
2651		 * rebalanced for high-order allocations in all zones.
2652		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2653		 * it means the zones have been fully scanned and are still
2654		 * not balanced. For high-order allocations, there is
2655		 * little point trying all over again as kswapd may
2656		 * infinite loop.
2657		 *
2658		 * Instead, recheck all watermarks at order-0 as they
2659		 * are the most important. If watermarks are ok, kswapd will go
2660		 * back to sleep. High-order users can still perform direct
2661		 * reclaim if they wish.
2662		 */
2663		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2664			order = sc.order = 0;
2665
2666		goto loop_again;
2667	}
2668
2669	/*
2670	 * If kswapd was reclaiming at a higher order, it has the option of
2671	 * sleeping without all zones being balanced. Before it does, it must
2672	 * ensure that the watermarks for order-0 on *all* zones are met and
2673	 * that the congestion flags are cleared. The congestion flag must
2674	 * be cleared as kswapd is the only mechanism that clears the flag
2675	 * and it is potentially going to sleep here.
2676	 */
2677	if (order) {
2678		for (i = 0; i <= end_zone; i++) {
2679			struct zone *zone = pgdat->node_zones + i;
2680
2681			if (!populated_zone(zone))
2682				continue;
2683
2684			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2685				continue;
2686
2687			/* Confirm the zone is balanced for order-0 */
2688			if (!zone_watermark_ok(zone, 0,
2689					high_wmark_pages(zone), 0, 0)) {
2690				order = sc.order = 0;
2691				goto loop_again;
2692			}
2693
2694			/* If balanced, clear the congested flag */
2695			zone_clear_flag(zone, ZONE_CONGESTED);
2696		}
2697	}
2698
2699	/*
2700	 * Return the order we were reclaiming at so sleeping_prematurely()
2701	 * makes a decision on the order we were last reclaiming at. However,
2702	 * if another caller entered the allocator slow path while kswapd
2703	 * was awake, order will remain at the higher level
2704	 */
2705	*classzone_idx = end_zone;
2706	return order;
2707}
2708
2709static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2710{
2711	long remaining = 0;
2712	DEFINE_WAIT(wait);
2713
2714	if (freezing(current) || kthread_should_stop())
2715		return;
2716
2717	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2718
2719	/* Try to sleep for a short interval */
2720	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2721		remaining = schedule_timeout(HZ/10);
2722		finish_wait(&pgdat->kswapd_wait, &wait);
2723		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2724	}
2725
2726	/*
2727	 * After a short sleep, check if it was a premature sleep. If not, then
2728	 * go fully to sleep until explicitly woken up.
2729	 */
2730	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2731		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2732
2733		/*
2734		 * vmstat counters are not perfectly accurate and the estimated
2735		 * value for counters such as NR_FREE_PAGES can deviate from the
2736		 * true value by nr_online_cpus * threshold. To avoid the zone
2737		 * watermarks being breached while under pressure, we reduce the
2738		 * per-cpu vmstat threshold while kswapd is awake and restore
2739		 * them before going back to sleep.
2740		 */
2741		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2742		schedule();
2743		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2744	} else {
2745		if (remaining)
2746			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2747		else
2748			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2749	}
2750	finish_wait(&pgdat->kswapd_wait, &wait);
2751}
2752
2753/*
2754 * The background pageout daemon, started as a kernel thread
2755 * from the init process.
2756 *
2757 * This basically trickles out pages so that we have _some_
2758 * free memory available even if there is no other activity
2759 * that frees anything up. This is needed for things like routing
2760 * etc, where we otherwise might have all activity going on in
2761 * asynchronous contexts that cannot page things out.
2762 *
2763 * If there are applications that are active memory-allocators
2764 * (most normal use), this basically shouldn't matter.
2765 */
2766static int kswapd(void *p)
2767{
2768	unsigned long order, new_order;
2769	int classzone_idx, new_classzone_idx;
2770	pg_data_t *pgdat = (pg_data_t*)p;
2771	struct task_struct *tsk = current;
2772
2773	struct reclaim_state reclaim_state = {
2774		.reclaimed_slab = 0,
2775	};
2776	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2777
2778	lockdep_set_current_reclaim_state(GFP_KERNEL);
2779
2780	if (!cpumask_empty(cpumask))
2781		set_cpus_allowed_ptr(tsk, cpumask);
2782	current->reclaim_state = &reclaim_state;
2783
2784	/*
2785	 * Tell the memory management that we're a "memory allocator",
2786	 * and that if we need more memory we should get access to it
2787	 * regardless (see "__alloc_pages()"). "kswapd" should
2788	 * never get caught in the normal page freeing logic.
2789	 *
2790	 * (Kswapd normally doesn't need memory anyway, but sometimes
2791	 * you need a small amount of memory in order to be able to
2792	 * page out something else, and this flag essentially protects
2793	 * us from recursively trying to free more memory as we're
2794	 * trying to free the first piece of memory in the first place).
2795	 */
2796	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2797	set_freezable();
2798
2799	order = new_order = 0;
2800	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2801	for ( ; ; ) {
2802		int ret;
2803
2804		/*
2805		 * If the last balance_pgdat was unsuccessful it's unlikely a
2806		 * new request of a similar or harder type will succeed soon
2807		 * so consider going to sleep on the basis we reclaimed at
2808		 */
2809		if (classzone_idx >= new_classzone_idx && order == new_order) {
2810			new_order = pgdat->kswapd_max_order;
2811			new_classzone_idx = pgdat->classzone_idx;
2812			pgdat->kswapd_max_order =  0;
2813			pgdat->classzone_idx = pgdat->nr_zones - 1;
2814		}
2815
2816		if (order < new_order || classzone_idx > new_classzone_idx) {
2817			/*
2818			 * Don't sleep if someone wants a larger 'order'
2819			 * allocation or has tigher zone constraints
2820			 */
2821			order = new_order;
2822			classzone_idx = new_classzone_idx;
2823		} else {
2824			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2825			order = pgdat->kswapd_max_order;
2826			classzone_idx = pgdat->classzone_idx;
2827			pgdat->kswapd_max_order = 0;
2828			pgdat->classzone_idx = pgdat->nr_zones - 1;
2829		}
2830
2831		ret = try_to_freeze();
2832		if (kthread_should_stop())
2833			break;
2834
2835		/*
2836		 * We can speed up thawing tasks if we don't call balance_pgdat
2837		 * after returning from the refrigerator
2838		 */
2839		if (!ret) {
2840			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2841			order = balance_pgdat(pgdat, order, &classzone_idx);
2842		}
2843	}
2844	return 0;
2845}
2846
2847/*
2848 * A zone is low on free memory, so wake its kswapd task to service it.
2849 */
2850void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2851{
2852	pg_data_t *pgdat;
2853
2854	if (!populated_zone(zone))
2855		return;
2856
2857	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2858		return;
2859	pgdat = zone->zone_pgdat;
2860	if (pgdat->kswapd_max_order < order) {
2861		pgdat->kswapd_max_order = order;
2862		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2863	}
2864	if (!waitqueue_active(&pgdat->kswapd_wait))
2865		return;
2866	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2867		return;
2868
2869	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2870	wake_up_interruptible(&pgdat->kswapd_wait);
2871}
2872
2873/*
2874 * The reclaimable count would be mostly accurate.
2875 * The less reclaimable pages may be
2876 * - mlocked pages, which will be moved to unevictable list when encountered
2877 * - mapped pages, which may require several travels to be reclaimed
2878 * - dirty pages, which is not "instantly" reclaimable
2879 */
2880unsigned long global_reclaimable_pages(void)
2881{
2882	int nr;
2883
2884	nr = global_page_state(NR_ACTIVE_FILE) +
2885	     global_page_state(NR_INACTIVE_FILE);
2886
2887	if (nr_swap_pages > 0)
2888		nr += global_page_state(NR_ACTIVE_ANON) +
2889		      global_page_state(NR_INACTIVE_ANON);
2890
2891	return nr;
2892}
2893
2894unsigned long zone_reclaimable_pages(struct zone *zone)
2895{
2896	int nr;
2897
2898	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2899	     zone_page_state(zone, NR_INACTIVE_FILE);
2900
2901	if (nr_swap_pages > 0)
2902		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2903		      zone_page_state(zone, NR_INACTIVE_ANON);
2904
2905	return nr;
2906}
2907
2908#ifdef CONFIG_HIBERNATION
2909/*
2910 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2911 * freed pages.
2912 *
2913 * Rather than trying to age LRUs the aim is to preserve the overall
2914 * LRU order by reclaiming preferentially
2915 * inactive > active > active referenced > active mapped
2916 */
2917unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2918{
2919	struct reclaim_state reclaim_state;
2920	struct scan_control sc = {
2921		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2922		.may_swap = 1,
2923		.may_unmap = 1,
2924		.may_writepage = 1,
2925		.nr_to_reclaim = nr_to_reclaim,
2926		.hibernation_mode = 1,
2927		.order = 0,
2928	};
2929	struct shrink_control shrink = {
2930		.gfp_mask = sc.gfp_mask,
2931	};
2932	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2933	struct task_struct *p = current;
2934	unsigned long nr_reclaimed;
2935
2936	p->flags |= PF_MEMALLOC;
2937	lockdep_set_current_reclaim_state(sc.gfp_mask);
2938	reclaim_state.reclaimed_slab = 0;
2939	p->reclaim_state = &reclaim_state;
2940
2941	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2942
2943	p->reclaim_state = NULL;
2944	lockdep_clear_current_reclaim_state();
2945	p->flags &= ~PF_MEMALLOC;
2946
2947	return nr_reclaimed;
2948}
2949#endif /* CONFIG_HIBERNATION */
2950
2951/* It's optimal to keep kswapds on the same CPUs as their memory, but
2952   not required for correctness.  So if the last cpu in a node goes
2953   away, we get changed to run anywhere: as the first one comes back,
2954   restore their cpu bindings. */
2955static int __devinit cpu_callback(struct notifier_block *nfb,
2956				  unsigned long action, void *hcpu)
2957{
2958	int nid;
2959
2960	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2961		for_each_node_state(nid, N_HIGH_MEMORY) {
2962			pg_data_t *pgdat = NODE_DATA(nid);
2963			const struct cpumask *mask;
2964
2965			mask = cpumask_of_node(pgdat->node_id);
2966
2967			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2968				/* One of our CPUs online: restore mask */
2969				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2970		}
2971	}
2972	return NOTIFY_OK;
2973}
2974
2975/*
2976 * This kswapd start function will be called by init and node-hot-add.
2977 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2978 */
2979int kswapd_run(int nid)
2980{
2981	pg_data_t *pgdat = NODE_DATA(nid);
2982	int ret = 0;
2983
2984	if (pgdat->kswapd)
2985		return 0;
2986
2987	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2988	if (IS_ERR(pgdat->kswapd)) {
2989		/* failure at boot is fatal */
2990		BUG_ON(system_state == SYSTEM_BOOTING);
2991		printk("Failed to start kswapd on node %d\n",nid);
2992		ret = -1;
2993	}
2994	return ret;
2995}
2996
2997/*
2998 * Called by memory hotplug when all memory in a node is offlined.
2999 */
3000void kswapd_stop(int nid)
3001{
3002	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3003
3004	if (kswapd)
3005		kthread_stop(kswapd);
3006}
3007
3008static int __init kswapd_init(void)
3009{
3010	int nid;
3011
3012	swap_setup();
3013	for_each_node_state(nid, N_HIGH_MEMORY)
3014 		kswapd_run(nid);
3015	hotcpu_notifier(cpu_callback, 0);
3016	return 0;
3017}
3018
3019module_init(kswapd_init)
3020
3021#ifdef CONFIG_NUMA
3022/*
3023 * Zone reclaim mode
3024 *
3025 * If non-zero call zone_reclaim when the number of free pages falls below
3026 * the watermarks.
3027 */
3028int zone_reclaim_mode __read_mostly;
3029
3030#define RECLAIM_OFF 0
3031#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3032#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3033#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3034
3035/*
3036 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3037 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3038 * a zone.
3039 */
3040#define ZONE_RECLAIM_PRIORITY 4
3041
3042/*
3043 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3044 * occur.
3045 */
3046int sysctl_min_unmapped_ratio = 1;
3047
3048/*
3049 * If the number of slab pages in a zone grows beyond this percentage then
3050 * slab reclaim needs to occur.
3051 */
3052int sysctl_min_slab_ratio = 5;
3053
3054static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3055{
3056	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3057	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3058		zone_page_state(zone, NR_ACTIVE_FILE);
3059
3060	/*
3061	 * It's possible for there to be more file mapped pages than
3062	 * accounted for by the pages on the file LRU lists because
3063	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3064	 */
3065	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3066}
3067
3068/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3069static long zone_pagecache_reclaimable(struct zone *zone)
3070{
3071	long nr_pagecache_reclaimable;
3072	long delta = 0;
3073
3074	/*
3075	 * If RECLAIM_SWAP is set, then all file pages are considered
3076	 * potentially reclaimable. Otherwise, we have to worry about
3077	 * pages like swapcache and zone_unmapped_file_pages() provides
3078	 * a better estimate
3079	 */
3080	if (zone_reclaim_mode & RECLAIM_SWAP)
3081		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3082	else
3083		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3084
3085	/* If we can't clean pages, remove dirty pages from consideration */
3086	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3087		delta += zone_page_state(zone, NR_FILE_DIRTY);
3088
3089	/* Watch for any possible underflows due to delta */
3090	if (unlikely(delta > nr_pagecache_reclaimable))
3091		delta = nr_pagecache_reclaimable;
3092
3093	return nr_pagecache_reclaimable - delta;
3094}
3095
3096/*
3097 * Try to free up some pages from this zone through reclaim.
3098 */
3099static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3100{
3101	/* Minimum pages needed in order to stay on node */
3102	const unsigned long nr_pages = 1 << order;
3103	struct task_struct *p = current;
3104	struct reclaim_state reclaim_state;
3105	int priority;
3106	struct scan_control sc = {
3107		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3108		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3109		.may_swap = 1,
3110		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3111				       SWAP_CLUSTER_MAX),
3112		.gfp_mask = gfp_mask,
3113		.order = order,
3114	};
3115	struct shrink_control shrink = {
3116		.gfp_mask = sc.gfp_mask,
3117	};
3118	unsigned long nr_slab_pages0, nr_slab_pages1;
3119
3120	cond_resched();
3121	/*
3122	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3123	 * and we also need to be able to write out pages for RECLAIM_WRITE
3124	 * and RECLAIM_SWAP.
3125	 */
3126	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3127	lockdep_set_current_reclaim_state(gfp_mask);
3128	reclaim_state.reclaimed_slab = 0;
3129	p->reclaim_state = &reclaim_state;
3130
3131	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3132		/*
3133		 * Free memory by calling shrink zone with increasing
3134		 * priorities until we have enough memory freed.
3135		 */
3136		priority = ZONE_RECLAIM_PRIORITY;
3137		do {
3138			shrink_zone(priority, zone, &sc);
3139			priority--;
3140		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3141	}
3142
3143	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3144	if (nr_slab_pages0 > zone->min_slab_pages) {
3145		/*
3146		 * shrink_slab() does not currently allow us to determine how
3147		 * many pages were freed in this zone. So we take the current
3148		 * number of slab pages and shake the slab until it is reduced
3149		 * by the same nr_pages that we used for reclaiming unmapped
3150		 * pages.
3151		 *
3152		 * Note that shrink_slab will free memory on all zones and may
3153		 * take a long time.
3154		 */
3155		for (;;) {
3156			unsigned long lru_pages = zone_reclaimable_pages(zone);
3157
3158			/* No reclaimable slab or very low memory pressure */
3159			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3160				break;
3161
3162			/* Freed enough memory */
3163			nr_slab_pages1 = zone_page_state(zone,
3164							NR_SLAB_RECLAIMABLE);
3165			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3166				break;
3167		}
3168
3169		/*
3170		 * Update nr_reclaimed by the number of slab pages we
3171		 * reclaimed from this zone.
3172		 */
3173		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3174		if (nr_slab_pages1 < nr_slab_pages0)
3175			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3176	}
3177
3178	p->reclaim_state = NULL;
3179	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3180	lockdep_clear_current_reclaim_state();
3181	return sc.nr_reclaimed >= nr_pages;
3182}
3183
3184int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3185{
3186	int node_id;
3187	int ret;
3188
3189	/*
3190	 * Zone reclaim reclaims unmapped file backed pages and
3191	 * slab pages if we are over the defined limits.
3192	 *
3193	 * A small portion of unmapped file backed pages is needed for
3194	 * file I/O otherwise pages read by file I/O will be immediately
3195	 * thrown out if the zone is overallocated. So we do not reclaim
3196	 * if less than a specified percentage of the zone is used by
3197	 * unmapped file backed pages.
3198	 */
3199	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3200	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3201		return ZONE_RECLAIM_FULL;
3202
3203	if (zone->all_unreclaimable)
3204		return ZONE_RECLAIM_FULL;
3205
3206	/*
3207	 * Do not scan if the allocation should not be delayed.
3208	 */
3209	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3210		return ZONE_RECLAIM_NOSCAN;
3211
3212	/*
3213	 * Only run zone reclaim on the local zone or on zones that do not
3214	 * have associated processors. This will favor the local processor
3215	 * over remote processors and spread off node memory allocations
3216	 * as wide as possible.
3217	 */
3218	node_id = zone_to_nid(zone);
3219	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3220		return ZONE_RECLAIM_NOSCAN;
3221
3222	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3223		return ZONE_RECLAIM_NOSCAN;
3224
3225	ret = __zone_reclaim(zone, gfp_mask, order);
3226	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3227
3228	if (!ret)
3229		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3230
3231	return ret;
3232}
3233#endif
3234
3235/*
3236 * page_evictable - test whether a page is evictable
3237 * @page: the page to test
3238 * @vma: the VMA in which the page is or will be mapped, may be NULL
3239 *
3240 * Test whether page is evictable--i.e., should be placed on active/inactive
3241 * lists vs unevictable list.  The vma argument is !NULL when called from the
3242 * fault path to determine how to instantate a new page.
3243 *
3244 * Reasons page might not be evictable:
3245 * (1) page's mapping marked unevictable
3246 * (2) page is part of an mlocked VMA
3247 *
3248 */
3249int page_evictable(struct page *page, struct vm_area_struct *vma)
3250{
3251
3252	if (mapping_unevictable(page_mapping(page)))
3253		return 0;
3254
3255	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3256		return 0;
3257
3258	return 1;
3259}
3260
3261/**
3262 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3263 * @page: page to check evictability and move to appropriate lru list
3264 * @zone: zone page is in
3265 *
3266 * Checks a page for evictability and moves the page to the appropriate
3267 * zone lru list.
3268 *
3269 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3270 * have PageUnevictable set.
3271 */
3272static void check_move_unevictable_page(struct page *page, struct zone *zone)
3273{
3274	VM_BUG_ON(PageActive(page));
3275
3276retry:
3277	ClearPageUnevictable(page);
3278	if (page_evictable(page, NULL)) {
3279		enum lru_list l = page_lru_base_type(page);
3280
3281		__dec_zone_state(zone, NR_UNEVICTABLE);
3282		list_move(&page->lru, &zone->lru[l].list);
3283		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3284		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3285		__count_vm_event(UNEVICTABLE_PGRESCUED);
3286	} else {
3287		/*
3288		 * rotate unevictable list
3289		 */
3290		SetPageUnevictable(page);
3291		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3292		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3293		if (page_evictable(page, NULL))
3294			goto retry;
3295	}
3296}
3297
3298/**
3299 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3300 * @mapping: struct address_space to scan for evictable pages
3301 *
3302 * Scan all pages in mapping.  Check unevictable pages for
3303 * evictability and move them to the appropriate zone lru list.
3304 */
3305void scan_mapping_unevictable_pages(struct address_space *mapping)
3306{
3307	pgoff_t next = 0;
3308	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3309			 PAGE_CACHE_SHIFT;
3310	struct zone *zone;
3311	struct pagevec pvec;
3312
3313	if (mapping->nrpages == 0)
3314		return;
3315
3316	pagevec_init(&pvec, 0);
3317	while (next < end &&
3318		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3319		int i;
3320		int pg_scanned = 0;
3321
3322		zone = NULL;
3323
3324		for (i = 0; i < pagevec_count(&pvec); i++) {
3325			struct page *page = pvec.pages[i];
3326			pgoff_t page_index = page->index;
3327			struct zone *pagezone = page_zone(page);
3328
3329			pg_scanned++;
3330			if (page_index > next)
3331				next = page_index;
3332			next++;
3333
3334			if (pagezone != zone) {
3335				if (zone)
3336					spin_unlock_irq(&zone->lru_lock);
3337				zone = pagezone;
3338				spin_lock_irq(&zone->lru_lock);
3339			}
3340
3341			if (PageLRU(page) && PageUnevictable(page))
3342				check_move_unevictable_page(page, zone);
3343		}
3344		if (zone)
3345			spin_unlock_irq(&zone->lru_lock);
3346		pagevec_release(&pvec);
3347
3348		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3349	}
3350
3351}
3352
3353/**
3354 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3355 * @zone - zone of which to scan the unevictable list
3356 *
3357 * Scan @zone's unevictable LRU lists to check for pages that have become
3358 * evictable.  Move those that have to @zone's inactive list where they
3359 * become candidates for reclaim, unless shrink_inactive_zone() decides
3360 * to reactivate them.  Pages that are still unevictable are rotated
3361 * back onto @zone's unevictable list.
3362 */
3363#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3364static void scan_zone_unevictable_pages(struct zone *zone)
3365{
3366	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3367	unsigned long scan;
3368	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3369
3370	while (nr_to_scan > 0) {
3371		unsigned long batch_size = min(nr_to_scan,
3372						SCAN_UNEVICTABLE_BATCH_SIZE);
3373
3374		spin_lock_irq(&zone->lru_lock);
3375		for (scan = 0;  scan < batch_size; scan++) {
3376			struct page *page = lru_to_page(l_unevictable);
3377
3378			if (!trylock_page(page))
3379				continue;
3380
3381			prefetchw_prev_lru_page(page, l_unevictable, flags);
3382
3383			if (likely(PageLRU(page) && PageUnevictable(page)))
3384				check_move_unevictable_page(page, zone);
3385
3386			unlock_page(page);
3387		}
3388		spin_unlock_irq(&zone->lru_lock);
3389
3390		nr_to_scan -= batch_size;
3391	}
3392}
3393
3394
3395/**
3396 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3397 *
3398 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3399 * pages that have become evictable.  Move those back to the zones'
3400 * inactive list where they become candidates for reclaim.
3401 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3402 * and we add swap to the system.  As such, it runs in the context of a task
3403 * that has possibly/probably made some previously unevictable pages
3404 * evictable.
3405 */
3406static void scan_all_zones_unevictable_pages(void)
3407{
3408	struct zone *zone;
3409
3410	for_each_zone(zone) {
3411		scan_zone_unevictable_pages(zone);
3412	}
3413}
3414
3415/*
3416 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3417 * all nodes' unevictable lists for evictable pages
3418 */
3419unsigned long scan_unevictable_pages;
3420
3421int scan_unevictable_handler(struct ctl_table *table, int write,
3422			   void __user *buffer,
3423			   size_t *length, loff_t *ppos)
3424{
3425	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3426
3427	if (write && *(unsigned long *)table->data)
3428		scan_all_zones_unevictable_pages();
3429
3430	scan_unevictable_pages = 0;
3431	return 0;
3432}
3433
3434#ifdef CONFIG_NUMA
3435/*
3436 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3437 * a specified node's per zone unevictable lists for evictable pages.
3438 */
3439
3440static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3441					  struct sysdev_attribute *attr,
3442					  char *buf)
3443{
3444	return sprintf(buf, "0\n");	/* always zero; should fit... */
3445}
3446
3447static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3448					   struct sysdev_attribute *attr,
3449					const char *buf, size_t count)
3450{
3451	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3452	struct zone *zone;
3453	unsigned long res;
3454	unsigned long req = strict_strtoul(buf, 10, &res);
3455
3456	if (!req)
3457		return 1;	/* zero is no-op */
3458
3459	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3460		if (!populated_zone(zone))
3461			continue;
3462		scan_zone_unevictable_pages(zone);
3463	}
3464	return 1;
3465}
3466
3467
3468static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3469			read_scan_unevictable_node,
3470			write_scan_unevictable_node);
3471
3472int scan_unevictable_register_node(struct node *node)
3473{
3474	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3475}
3476
3477void scan_unevictable_unregister_node(struct node *node)
3478{
3479	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3480}
3481#endif
3482