vmscan.c revision 49d2e9cc4544369635cd6f4ef6d5bb0f757079a7
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h>	/* for try_to_release_page(),
26					buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44	/* failed to write page out, page is locked */
45	PAGE_KEEP,
46	/* move page to the active list, page is locked */
47	PAGE_ACTIVATE,
48	/* page has been sent to the disk successfully, page is unlocked */
49	PAGE_SUCCESS,
50	/* page is clean and locked */
51	PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56	unsigned long nr_to_scan;
57
58	/* Incremented by the number of inactive pages that were scanned */
59	unsigned long nr_scanned;
60
61	/* Incremented by the number of pages reclaimed */
62	unsigned long nr_reclaimed;
63
64	unsigned long nr_mapped;	/* From page_state */
65
66	/* Ask shrink_caches, or shrink_zone to scan at this priority */
67	unsigned int priority;
68
69	/* This context's GFP mask */
70	gfp_t gfp_mask;
71
72	int may_writepage;
73
74	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
75	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76	 * In this context, it doesn't matter that we scan the
77	 * whole list at once. */
78	int swap_cluster_max;
79};
80
81/*
82 * The list of shrinker callbacks used by to apply pressure to
83 * ageable caches.
84 */
85struct shrinker {
86	shrinker_t		shrinker;
87	struct list_head	list;
88	int			seeks;	/* seeks to recreate an obj */
89	long			nr;	/* objs pending delete */
90};
91
92#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
93
94#ifdef ARCH_HAS_PREFETCH
95#define prefetch_prev_lru_page(_page, _base, _field)			\
96	do {								\
97		if ((_page)->lru.prev != _base) {			\
98			struct page *prev;				\
99									\
100			prev = lru_to_page(&(_page->lru));		\
101			prefetch(&prev->_field);			\
102		}							\
103	} while (0)
104#else
105#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106#endif
107
108#ifdef ARCH_HAS_PREFETCHW
109#define prefetchw_prev_lru_page(_page, _base, _field)			\
110	do {								\
111		if ((_page)->lru.prev != _base) {			\
112			struct page *prev;				\
113									\
114			prev = lru_to_page(&(_page->lru));		\
115			prefetchw(&prev->_field);			\
116		}							\
117	} while (0)
118#else
119#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122/*
123 * From 0 .. 100.  Higher means more swappy.
124 */
125int vm_swappiness = 60;
126static long total_memory;
127
128static LIST_HEAD(shrinker_list);
129static DECLARE_RWSEM(shrinker_rwsem);
130
131/*
132 * Add a shrinker callback to be called from the vm
133 */
134struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
135{
136        struct shrinker *shrinker;
137
138        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139        if (shrinker) {
140	        shrinker->shrinker = theshrinker;
141	        shrinker->seeks = seeks;
142	        shrinker->nr = 0;
143	        down_write(&shrinker_rwsem);
144	        list_add_tail(&shrinker->list, &shrinker_list);
145	        up_write(&shrinker_rwsem);
146	}
147	return shrinker;
148}
149EXPORT_SYMBOL(set_shrinker);
150
151/*
152 * Remove one
153 */
154void remove_shrinker(struct shrinker *shrinker)
155{
156	down_write(&shrinker_rwsem);
157	list_del(&shrinker->list);
158	up_write(&shrinker_rwsem);
159	kfree(shrinker);
160}
161EXPORT_SYMBOL(remove_shrinker);
162
163#define SHRINK_BATCH 128
164/*
165 * Call the shrink functions to age shrinkable caches
166 *
167 * Here we assume it costs one seek to replace a lru page and that it also
168 * takes a seek to recreate a cache object.  With this in mind we age equal
169 * percentages of the lru and ageable caches.  This should balance the seeks
170 * generated by these structures.
171 *
172 * If the vm encounted mapped pages on the LRU it increase the pressure on
173 * slab to avoid swapping.
174 *
175 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
176 *
177 * `lru_pages' represents the number of on-LRU pages in all the zones which
178 * are eligible for the caller's allocation attempt.  It is used for balancing
179 * slab reclaim versus page reclaim.
180 *
181 * Returns the number of slab objects which we shrunk.
182 */
183int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
184{
185	struct shrinker *shrinker;
186	int ret = 0;
187
188	if (scanned == 0)
189		scanned = SWAP_CLUSTER_MAX;
190
191	if (!down_read_trylock(&shrinker_rwsem))
192		return 1;	/* Assume we'll be able to shrink next time */
193
194	list_for_each_entry(shrinker, &shrinker_list, list) {
195		unsigned long long delta;
196		unsigned long total_scan;
197		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
198
199		delta = (4 * scanned) / shrinker->seeks;
200		delta *= max_pass;
201		do_div(delta, lru_pages + 1);
202		shrinker->nr += delta;
203		if (shrinker->nr < 0) {
204			printk(KERN_ERR "%s: nr=%ld\n",
205					__FUNCTION__, shrinker->nr);
206			shrinker->nr = max_pass;
207		}
208
209		/*
210		 * Avoid risking looping forever due to too large nr value:
211		 * never try to free more than twice the estimate number of
212		 * freeable entries.
213		 */
214		if (shrinker->nr > max_pass * 2)
215			shrinker->nr = max_pass * 2;
216
217		total_scan = shrinker->nr;
218		shrinker->nr = 0;
219
220		while (total_scan >= SHRINK_BATCH) {
221			long this_scan = SHRINK_BATCH;
222			int shrink_ret;
223			int nr_before;
224
225			nr_before = (*shrinker->shrinker)(0, gfp_mask);
226			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
227			if (shrink_ret == -1)
228				break;
229			if (shrink_ret < nr_before)
230				ret += nr_before - shrink_ret;
231			mod_page_state(slabs_scanned, this_scan);
232			total_scan -= this_scan;
233
234			cond_resched();
235		}
236
237		shrinker->nr += total_scan;
238	}
239	up_read(&shrinker_rwsem);
240	return ret;
241}
242
243/* Called without lock on whether page is mapped, so answer is unstable */
244static inline int page_mapping_inuse(struct page *page)
245{
246	struct address_space *mapping;
247
248	/* Page is in somebody's page tables. */
249	if (page_mapped(page))
250		return 1;
251
252	/* Be more reluctant to reclaim swapcache than pagecache */
253	if (PageSwapCache(page))
254		return 1;
255
256	mapping = page_mapping(page);
257	if (!mapping)
258		return 0;
259
260	/* File is mmap'd by somebody? */
261	return mapping_mapped(mapping);
262}
263
264static inline int is_page_cache_freeable(struct page *page)
265{
266	return page_count(page) - !!PagePrivate(page) == 2;
267}
268
269static int may_write_to_queue(struct backing_dev_info *bdi)
270{
271	if (current->flags & PF_SWAPWRITE)
272		return 1;
273	if (!bdi_write_congested(bdi))
274		return 1;
275	if (bdi == current->backing_dev_info)
276		return 1;
277	return 0;
278}
279
280/*
281 * We detected a synchronous write error writing a page out.  Probably
282 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
283 * fsync(), msync() or close().
284 *
285 * The tricky part is that after writepage we cannot touch the mapping: nothing
286 * prevents it from being freed up.  But we have a ref on the page and once
287 * that page is locked, the mapping is pinned.
288 *
289 * We're allowed to run sleeping lock_page() here because we know the caller has
290 * __GFP_FS.
291 */
292static void handle_write_error(struct address_space *mapping,
293				struct page *page, int error)
294{
295	lock_page(page);
296	if (page_mapping(page) == mapping) {
297		if (error == -ENOSPC)
298			set_bit(AS_ENOSPC, &mapping->flags);
299		else
300			set_bit(AS_EIO, &mapping->flags);
301	}
302	unlock_page(page);
303}
304
305/*
306 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
307 */
308static pageout_t pageout(struct page *page, struct address_space *mapping)
309{
310	/*
311	 * If the page is dirty, only perform writeback if that write
312	 * will be non-blocking.  To prevent this allocation from being
313	 * stalled by pagecache activity.  But note that there may be
314	 * stalls if we need to run get_block().  We could test
315	 * PagePrivate for that.
316	 *
317	 * If this process is currently in generic_file_write() against
318	 * this page's queue, we can perform writeback even if that
319	 * will block.
320	 *
321	 * If the page is swapcache, write it back even if that would
322	 * block, for some throttling. This happens by accident, because
323	 * swap_backing_dev_info is bust: it doesn't reflect the
324	 * congestion state of the swapdevs.  Easy to fix, if needed.
325	 * See swapfile.c:page_queue_congested().
326	 */
327	if (!is_page_cache_freeable(page))
328		return PAGE_KEEP;
329	if (!mapping) {
330		/*
331		 * Some data journaling orphaned pages can have
332		 * page->mapping == NULL while being dirty with clean buffers.
333		 */
334		if (PagePrivate(page)) {
335			if (try_to_free_buffers(page)) {
336				ClearPageDirty(page);
337				printk("%s: orphaned page\n", __FUNCTION__);
338				return PAGE_CLEAN;
339			}
340		}
341		return PAGE_KEEP;
342	}
343	if (mapping->a_ops->writepage == NULL)
344		return PAGE_ACTIVATE;
345	if (!may_write_to_queue(mapping->backing_dev_info))
346		return PAGE_KEEP;
347
348	if (clear_page_dirty_for_io(page)) {
349		int res;
350		struct writeback_control wbc = {
351			.sync_mode = WB_SYNC_NONE,
352			.nr_to_write = SWAP_CLUSTER_MAX,
353			.nonblocking = 1,
354			.for_reclaim = 1,
355		};
356
357		SetPageReclaim(page);
358		res = mapping->a_ops->writepage(page, &wbc);
359		if (res < 0)
360			handle_write_error(mapping, page, res);
361		if (res == AOP_WRITEPAGE_ACTIVATE) {
362			ClearPageReclaim(page);
363			return PAGE_ACTIVATE;
364		}
365		if (!PageWriteback(page)) {
366			/* synchronous write or broken a_ops? */
367			ClearPageReclaim(page);
368		}
369
370		return PAGE_SUCCESS;
371	}
372
373	return PAGE_CLEAN;
374}
375
376static int remove_mapping(struct address_space *mapping, struct page *page)
377{
378	if (!mapping)
379		return 0;		/* truncate got there first */
380
381	write_lock_irq(&mapping->tree_lock);
382
383	/*
384	 * The non-racy check for busy page.  It is critical to check
385	 * PageDirty _after_ making sure that the page is freeable and
386	 * not in use by anybody. 	(pagecache + us == 2)
387	 */
388	if (unlikely(page_count(page) != 2))
389		goto cannot_free;
390	smp_rmb();
391	if (unlikely(PageDirty(page)))
392		goto cannot_free;
393
394	if (PageSwapCache(page)) {
395		swp_entry_t swap = { .val = page_private(page) };
396		__delete_from_swap_cache(page);
397		write_unlock_irq(&mapping->tree_lock);
398		swap_free(swap);
399		__put_page(page);	/* The pagecache ref */
400		return 1;
401	}
402
403	__remove_from_page_cache(page);
404	write_unlock_irq(&mapping->tree_lock);
405	__put_page(page);
406	return 1;
407
408cannot_free:
409	write_unlock_irq(&mapping->tree_lock);
410	return 0;
411}
412
413/*
414 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
415 */
416static int shrink_list(struct list_head *page_list, struct scan_control *sc)
417{
418	LIST_HEAD(ret_pages);
419	struct pagevec freed_pvec;
420	int pgactivate = 0;
421	int reclaimed = 0;
422
423	cond_resched();
424
425	pagevec_init(&freed_pvec, 1);
426	while (!list_empty(page_list)) {
427		struct address_space *mapping;
428		struct page *page;
429		int may_enter_fs;
430		int referenced;
431
432		cond_resched();
433
434		page = lru_to_page(page_list);
435		list_del(&page->lru);
436
437		if (TestSetPageLocked(page))
438			goto keep;
439
440		BUG_ON(PageActive(page));
441
442		sc->nr_scanned++;
443		/* Double the slab pressure for mapped and swapcache pages */
444		if (page_mapped(page) || PageSwapCache(page))
445			sc->nr_scanned++;
446
447		if (PageWriteback(page))
448			goto keep_locked;
449
450		referenced = page_referenced(page, 1);
451		/* In active use or really unfreeable?  Activate it. */
452		if (referenced && page_mapping_inuse(page))
453			goto activate_locked;
454
455#ifdef CONFIG_SWAP
456		/*
457		 * Anonymous process memory has backing store?
458		 * Try to allocate it some swap space here.
459		 */
460		if (PageAnon(page) && !PageSwapCache(page)) {
461			if (!add_to_swap(page))
462				goto activate_locked;
463		}
464#endif /* CONFIG_SWAP */
465
466		mapping = page_mapping(page);
467		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
468			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
469
470		/*
471		 * The page is mapped into the page tables of one or more
472		 * processes. Try to unmap it here.
473		 */
474		if (page_mapped(page) && mapping) {
475			switch (try_to_unmap(page)) {
476			case SWAP_FAIL:
477				goto activate_locked;
478			case SWAP_AGAIN:
479				goto keep_locked;
480			case SWAP_SUCCESS:
481				; /* try to free the page below */
482			}
483		}
484
485		if (PageDirty(page)) {
486			if (referenced)
487				goto keep_locked;
488			if (!may_enter_fs)
489				goto keep_locked;
490			if (laptop_mode && !sc->may_writepage)
491				goto keep_locked;
492
493			/* Page is dirty, try to write it out here */
494			switch(pageout(page, mapping)) {
495			case PAGE_KEEP:
496				goto keep_locked;
497			case PAGE_ACTIVATE:
498				goto activate_locked;
499			case PAGE_SUCCESS:
500				if (PageWriteback(page) || PageDirty(page))
501					goto keep;
502				/*
503				 * A synchronous write - probably a ramdisk.  Go
504				 * ahead and try to reclaim the page.
505				 */
506				if (TestSetPageLocked(page))
507					goto keep;
508				if (PageDirty(page) || PageWriteback(page))
509					goto keep_locked;
510				mapping = page_mapping(page);
511			case PAGE_CLEAN:
512				; /* try to free the page below */
513			}
514		}
515
516		/*
517		 * If the page has buffers, try to free the buffer mappings
518		 * associated with this page. If we succeed we try to free
519		 * the page as well.
520		 *
521		 * We do this even if the page is PageDirty().
522		 * try_to_release_page() does not perform I/O, but it is
523		 * possible for a page to have PageDirty set, but it is actually
524		 * clean (all its buffers are clean).  This happens if the
525		 * buffers were written out directly, with submit_bh(). ext3
526		 * will do this, as well as the blockdev mapping.
527		 * try_to_release_page() will discover that cleanness and will
528		 * drop the buffers and mark the page clean - it can be freed.
529		 *
530		 * Rarely, pages can have buffers and no ->mapping.  These are
531		 * the pages which were not successfully invalidated in
532		 * truncate_complete_page().  We try to drop those buffers here
533		 * and if that worked, and the page is no longer mapped into
534		 * process address space (page_count == 1) it can be freed.
535		 * Otherwise, leave the page on the LRU so it is swappable.
536		 */
537		if (PagePrivate(page)) {
538			if (!try_to_release_page(page, sc->gfp_mask))
539				goto activate_locked;
540			if (!mapping && page_count(page) == 1)
541				goto free_it;
542		}
543
544		if (!remove_mapping(mapping, page))
545			goto keep_locked;
546
547free_it:
548		unlock_page(page);
549		reclaimed++;
550		if (!pagevec_add(&freed_pvec, page))
551			__pagevec_release_nonlru(&freed_pvec);
552		continue;
553
554activate_locked:
555		SetPageActive(page);
556		pgactivate++;
557keep_locked:
558		unlock_page(page);
559keep:
560		list_add(&page->lru, &ret_pages);
561		BUG_ON(PageLRU(page));
562	}
563	list_splice(&ret_pages, page_list);
564	if (pagevec_count(&freed_pvec))
565		__pagevec_release_nonlru(&freed_pvec);
566	mod_page_state(pgactivate, pgactivate);
567	sc->nr_reclaimed += reclaimed;
568	return reclaimed;
569}
570
571/*
572 * swapout a single page
573 * page is locked upon entry, unlocked on exit
574 *
575 * return codes:
576 *	0 = complete
577 *	1 = retry
578 */
579static int swap_page(struct page *page)
580{
581	struct address_space *mapping = page_mapping(page);
582
583	if (page_mapped(page) && mapping)
584		if (try_to_unmap(page) != SWAP_SUCCESS)
585			goto unlock_retry;
586
587	if (PageDirty(page)) {
588		/* Page is dirty, try to write it out here */
589		switch(pageout(page, mapping)) {
590		case PAGE_KEEP:
591		case PAGE_ACTIVATE:
592			goto unlock_retry;
593
594		case PAGE_SUCCESS:
595			goto retry;
596
597		case PAGE_CLEAN:
598			; /* try to free the page below */
599		}
600	}
601
602	if (PagePrivate(page)) {
603		if (!try_to_release_page(page, GFP_KERNEL) ||
604		    (!mapping && page_count(page) == 1))
605			goto unlock_retry;
606	}
607
608	if (remove_mapping(mapping, page)) {
609		/* Success */
610		unlock_page(page);
611		return 0;
612	}
613
614unlock_retry:
615	unlock_page(page);
616
617retry:
618	return 1;
619}
620/*
621 * migrate_pages
622 *
623 * Two lists are passed to this function. The first list
624 * contains the pages isolated from the LRU to be migrated.
625 * The second list contains new pages that the pages isolated
626 * can be moved to. If the second list is NULL then all
627 * pages are swapped out.
628 *
629 * The function returns after 10 attempts or if no pages
630 * are movable anymore because t has become empty
631 * or no retryable pages exist anymore.
632 *
633 * SIMPLIFIED VERSION: This implementation of migrate_pages
634 * is only swapping out pages and never touches the second
635 * list. The direct migration patchset
636 * extends this function to avoid the use of swap.
637 */
638int migrate_pages(struct list_head *l, struct list_head *t)
639{
640	int retry;
641	LIST_HEAD(failed);
642	int nr_failed = 0;
643	int pass = 0;
644	struct page *page;
645	struct page *page2;
646	int swapwrite = current->flags & PF_SWAPWRITE;
647
648	if (!swapwrite)
649		current->flags |= PF_SWAPWRITE;
650
651redo:
652	retry = 0;
653
654	list_for_each_entry_safe(page, page2, l, lru) {
655		cond_resched();
656
657		/*
658		 * Skip locked pages during the first two passes to give the
659		 * functions holding the lock time to release the page. Later we use
660		 * lock_page to have a higher chance of acquiring the lock.
661		 */
662		if (pass > 2)
663			lock_page(page);
664		else
665			if (TestSetPageLocked(page))
666				goto retry_later;
667
668		/*
669		 * Only wait on writeback if we have already done a pass where
670		 * we we may have triggered writeouts for lots of pages.
671		 */
672		if (pass > 0)
673			wait_on_page_writeback(page);
674		else
675			if (PageWriteback(page)) {
676				unlock_page(page);
677				goto retry_later;
678			}
679
680#ifdef CONFIG_SWAP
681		if (PageAnon(page) && !PageSwapCache(page)) {
682			if (!add_to_swap(page)) {
683				unlock_page(page);
684				list_move(&page->lru, &failed);
685				nr_failed++;
686				continue;
687			}
688		}
689#endif /* CONFIG_SWAP */
690
691		/*
692		 * Page is properly locked and writeback is complete.
693		 * Try to migrate the page.
694		 */
695		if (swap_page(page)) {
696retry_later:
697			retry++;
698		}
699	}
700	if (retry && pass++ < 10)
701		goto redo;
702
703	if (!swapwrite)
704		current->flags &= ~PF_SWAPWRITE;
705
706	if (!list_empty(&failed))
707		list_splice(&failed, l);
708
709	return nr_failed + retry;
710}
711
712/*
713 * zone->lru_lock is heavily contended.  Some of the functions that
714 * shrink the lists perform better by taking out a batch of pages
715 * and working on them outside the LRU lock.
716 *
717 * For pagecache intensive workloads, this function is the hottest
718 * spot in the kernel (apart from copy_*_user functions).
719 *
720 * Appropriate locks must be held before calling this function.
721 *
722 * @nr_to_scan:	The number of pages to look through on the list.
723 * @src:	The LRU list to pull pages off.
724 * @dst:	The temp list to put pages on to.
725 * @scanned:	The number of pages that were scanned.
726 *
727 * returns how many pages were moved onto *@dst.
728 */
729static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
730			     struct list_head *dst, int *scanned)
731{
732	int nr_taken = 0;
733	struct page *page;
734	int scan = 0;
735
736	while (scan++ < nr_to_scan && !list_empty(src)) {
737		page = lru_to_page(src);
738		prefetchw_prev_lru_page(page, src, flags);
739
740		switch (__isolate_lru_page(page)) {
741		case 1:
742			/* Succeeded to isolate page */
743			list_move(&page->lru, dst);
744			nr_taken++;
745			break;
746		case -ENOENT:
747			/* Not possible to isolate */
748			list_move(&page->lru, src);
749			break;
750		default:
751			BUG();
752		}
753	}
754
755	*scanned = scan;
756	return nr_taken;
757}
758
759static void lru_add_drain_per_cpu(void *dummy)
760{
761	lru_add_drain();
762}
763
764/*
765 * Isolate one page from the LRU lists and put it on the
766 * indicated list. Do necessary cache draining if the
767 * page is not on the LRU lists yet.
768 *
769 * Result:
770 *  0 = page not on LRU list
771 *  1 = page removed from LRU list and added to the specified list.
772 * -ENOENT = page is being freed elsewhere.
773 */
774int isolate_lru_page(struct page *page)
775{
776	int rc = 0;
777	struct zone *zone = page_zone(page);
778
779redo:
780	spin_lock_irq(&zone->lru_lock);
781	rc = __isolate_lru_page(page);
782	if (rc == 1) {
783		if (PageActive(page))
784			del_page_from_active_list(zone, page);
785		else
786			del_page_from_inactive_list(zone, page);
787	}
788	spin_unlock_irq(&zone->lru_lock);
789	if (rc == 0) {
790		/*
791		 * Maybe this page is still waiting for a cpu to drain it
792		 * from one of the lru lists?
793		 */
794		rc = schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
795		if (rc == 0 && PageLRU(page))
796			goto redo;
797	}
798	return rc;
799}
800
801/*
802 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
803 */
804static void shrink_cache(struct zone *zone, struct scan_control *sc)
805{
806	LIST_HEAD(page_list);
807	struct pagevec pvec;
808	int max_scan = sc->nr_to_scan;
809
810	pagevec_init(&pvec, 1);
811
812	lru_add_drain();
813	spin_lock_irq(&zone->lru_lock);
814	while (max_scan > 0) {
815		struct page *page;
816		int nr_taken;
817		int nr_scan;
818		int nr_freed;
819
820		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
821					     &zone->inactive_list,
822					     &page_list, &nr_scan);
823		zone->nr_inactive -= nr_taken;
824		zone->pages_scanned += nr_scan;
825		spin_unlock_irq(&zone->lru_lock);
826
827		if (nr_taken == 0)
828			goto done;
829
830		max_scan -= nr_scan;
831		nr_freed = shrink_list(&page_list, sc);
832
833		local_irq_disable();
834		if (current_is_kswapd()) {
835			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
836			__mod_page_state(kswapd_steal, nr_freed);
837		} else
838			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
839		__mod_page_state_zone(zone, pgsteal, nr_freed);
840
841		spin_lock(&zone->lru_lock);
842		/*
843		 * Put back any unfreeable pages.
844		 */
845		while (!list_empty(&page_list)) {
846			page = lru_to_page(&page_list);
847			if (TestSetPageLRU(page))
848				BUG();
849			list_del(&page->lru);
850			if (PageActive(page))
851				add_page_to_active_list(zone, page);
852			else
853				add_page_to_inactive_list(zone, page);
854			if (!pagevec_add(&pvec, page)) {
855				spin_unlock_irq(&zone->lru_lock);
856				__pagevec_release(&pvec);
857				spin_lock_irq(&zone->lru_lock);
858			}
859		}
860  	}
861	spin_unlock_irq(&zone->lru_lock);
862done:
863	pagevec_release(&pvec);
864}
865
866static inline void move_to_lru(struct page *page)
867{
868	list_del(&page->lru);
869	if (PageActive(page)) {
870		/*
871		 * lru_cache_add_active checks that
872		 * the PG_active bit is off.
873		 */
874		ClearPageActive(page);
875		lru_cache_add_active(page);
876	} else {
877		lru_cache_add(page);
878	}
879	put_page(page);
880}
881
882/*
883 * Add isolated pages on the list back to the LRU
884 *
885 * returns the number of pages put back.
886 */
887int putback_lru_pages(struct list_head *l)
888{
889	struct page *page;
890	struct page *page2;
891	int count = 0;
892
893	list_for_each_entry_safe(page, page2, l, lru) {
894		move_to_lru(page);
895		count++;
896	}
897	return count;
898}
899
900/*
901 * This moves pages from the active list to the inactive list.
902 *
903 * We move them the other way if the page is referenced by one or more
904 * processes, from rmap.
905 *
906 * If the pages are mostly unmapped, the processing is fast and it is
907 * appropriate to hold zone->lru_lock across the whole operation.  But if
908 * the pages are mapped, the processing is slow (page_referenced()) so we
909 * should drop zone->lru_lock around each page.  It's impossible to balance
910 * this, so instead we remove the pages from the LRU while processing them.
911 * It is safe to rely on PG_active against the non-LRU pages in here because
912 * nobody will play with that bit on a non-LRU page.
913 *
914 * The downside is that we have to touch page->_count against each page.
915 * But we had to alter page->flags anyway.
916 */
917static void
918refill_inactive_zone(struct zone *zone, struct scan_control *sc)
919{
920	int pgmoved;
921	int pgdeactivate = 0;
922	int pgscanned;
923	int nr_pages = sc->nr_to_scan;
924	LIST_HEAD(l_hold);	/* The pages which were snipped off */
925	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
926	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
927	struct page *page;
928	struct pagevec pvec;
929	int reclaim_mapped = 0;
930	long mapped_ratio;
931	long distress;
932	long swap_tendency;
933
934	lru_add_drain();
935	spin_lock_irq(&zone->lru_lock);
936	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
937				    &l_hold, &pgscanned);
938	zone->pages_scanned += pgscanned;
939	zone->nr_active -= pgmoved;
940	spin_unlock_irq(&zone->lru_lock);
941
942	/*
943	 * `distress' is a measure of how much trouble we're having reclaiming
944	 * pages.  0 -> no problems.  100 -> great trouble.
945	 */
946	distress = 100 >> zone->prev_priority;
947
948	/*
949	 * The point of this algorithm is to decide when to start reclaiming
950	 * mapped memory instead of just pagecache.  Work out how much memory
951	 * is mapped.
952	 */
953	mapped_ratio = (sc->nr_mapped * 100) / total_memory;
954
955	/*
956	 * Now decide how much we really want to unmap some pages.  The mapped
957	 * ratio is downgraded - just because there's a lot of mapped memory
958	 * doesn't necessarily mean that page reclaim isn't succeeding.
959	 *
960	 * The distress ratio is important - we don't want to start going oom.
961	 *
962	 * A 100% value of vm_swappiness overrides this algorithm altogether.
963	 */
964	swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
965
966	/*
967	 * Now use this metric to decide whether to start moving mapped memory
968	 * onto the inactive list.
969	 */
970	if (swap_tendency >= 100)
971		reclaim_mapped = 1;
972
973	while (!list_empty(&l_hold)) {
974		cond_resched();
975		page = lru_to_page(&l_hold);
976		list_del(&page->lru);
977		if (page_mapped(page)) {
978			if (!reclaim_mapped ||
979			    (total_swap_pages == 0 && PageAnon(page)) ||
980			    page_referenced(page, 0)) {
981				list_add(&page->lru, &l_active);
982				continue;
983			}
984		}
985		list_add(&page->lru, &l_inactive);
986	}
987
988	pagevec_init(&pvec, 1);
989	pgmoved = 0;
990	spin_lock_irq(&zone->lru_lock);
991	while (!list_empty(&l_inactive)) {
992		page = lru_to_page(&l_inactive);
993		prefetchw_prev_lru_page(page, &l_inactive, flags);
994		if (TestSetPageLRU(page))
995			BUG();
996		if (!TestClearPageActive(page))
997			BUG();
998		list_move(&page->lru, &zone->inactive_list);
999		pgmoved++;
1000		if (!pagevec_add(&pvec, page)) {
1001			zone->nr_inactive += pgmoved;
1002			spin_unlock_irq(&zone->lru_lock);
1003			pgdeactivate += pgmoved;
1004			pgmoved = 0;
1005			if (buffer_heads_over_limit)
1006				pagevec_strip(&pvec);
1007			__pagevec_release(&pvec);
1008			spin_lock_irq(&zone->lru_lock);
1009		}
1010	}
1011	zone->nr_inactive += pgmoved;
1012	pgdeactivate += pgmoved;
1013	if (buffer_heads_over_limit) {
1014		spin_unlock_irq(&zone->lru_lock);
1015		pagevec_strip(&pvec);
1016		spin_lock_irq(&zone->lru_lock);
1017	}
1018
1019	pgmoved = 0;
1020	while (!list_empty(&l_active)) {
1021		page = lru_to_page(&l_active);
1022		prefetchw_prev_lru_page(page, &l_active, flags);
1023		if (TestSetPageLRU(page))
1024			BUG();
1025		BUG_ON(!PageActive(page));
1026		list_move(&page->lru, &zone->active_list);
1027		pgmoved++;
1028		if (!pagevec_add(&pvec, page)) {
1029			zone->nr_active += pgmoved;
1030			pgmoved = 0;
1031			spin_unlock_irq(&zone->lru_lock);
1032			__pagevec_release(&pvec);
1033			spin_lock_irq(&zone->lru_lock);
1034		}
1035	}
1036	zone->nr_active += pgmoved;
1037	spin_unlock(&zone->lru_lock);
1038
1039	__mod_page_state_zone(zone, pgrefill, pgscanned);
1040	__mod_page_state(pgdeactivate, pgdeactivate);
1041	local_irq_enable();
1042
1043	pagevec_release(&pvec);
1044}
1045
1046/*
1047 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1048 */
1049static void
1050shrink_zone(struct zone *zone, struct scan_control *sc)
1051{
1052	unsigned long nr_active;
1053	unsigned long nr_inactive;
1054
1055	atomic_inc(&zone->reclaim_in_progress);
1056
1057	/*
1058	 * Add one to `nr_to_scan' just to make sure that the kernel will
1059	 * slowly sift through the active list.
1060	 */
1061	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1062	nr_active = zone->nr_scan_active;
1063	if (nr_active >= sc->swap_cluster_max)
1064		zone->nr_scan_active = 0;
1065	else
1066		nr_active = 0;
1067
1068	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1069	nr_inactive = zone->nr_scan_inactive;
1070	if (nr_inactive >= sc->swap_cluster_max)
1071		zone->nr_scan_inactive = 0;
1072	else
1073		nr_inactive = 0;
1074
1075	while (nr_active || nr_inactive) {
1076		if (nr_active) {
1077			sc->nr_to_scan = min(nr_active,
1078					(unsigned long)sc->swap_cluster_max);
1079			nr_active -= sc->nr_to_scan;
1080			refill_inactive_zone(zone, sc);
1081		}
1082
1083		if (nr_inactive) {
1084			sc->nr_to_scan = min(nr_inactive,
1085					(unsigned long)sc->swap_cluster_max);
1086			nr_inactive -= sc->nr_to_scan;
1087			shrink_cache(zone, sc);
1088		}
1089	}
1090
1091	throttle_vm_writeout();
1092
1093	atomic_dec(&zone->reclaim_in_progress);
1094}
1095
1096/*
1097 * This is the direct reclaim path, for page-allocating processes.  We only
1098 * try to reclaim pages from zones which will satisfy the caller's allocation
1099 * request.
1100 *
1101 * We reclaim from a zone even if that zone is over pages_high.  Because:
1102 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1103 *    allocation or
1104 * b) The zones may be over pages_high but they must go *over* pages_high to
1105 *    satisfy the `incremental min' zone defense algorithm.
1106 *
1107 * Returns the number of reclaimed pages.
1108 *
1109 * If a zone is deemed to be full of pinned pages then just give it a light
1110 * scan then give up on it.
1111 */
1112static void
1113shrink_caches(struct zone **zones, struct scan_control *sc)
1114{
1115	int i;
1116
1117	for (i = 0; zones[i] != NULL; i++) {
1118		struct zone *zone = zones[i];
1119
1120		if (!populated_zone(zone))
1121			continue;
1122
1123		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1124			continue;
1125
1126		zone->temp_priority = sc->priority;
1127		if (zone->prev_priority > sc->priority)
1128			zone->prev_priority = sc->priority;
1129
1130		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1131			continue;	/* Let kswapd poll it */
1132
1133		shrink_zone(zone, sc);
1134	}
1135}
1136
1137/*
1138 * This is the main entry point to direct page reclaim.
1139 *
1140 * If a full scan of the inactive list fails to free enough memory then we
1141 * are "out of memory" and something needs to be killed.
1142 *
1143 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1144 * high - the zone may be full of dirty or under-writeback pages, which this
1145 * caller can't do much about.  We kick pdflush and take explicit naps in the
1146 * hope that some of these pages can be written.  But if the allocating task
1147 * holds filesystem locks which prevent writeout this might not work, and the
1148 * allocation attempt will fail.
1149 */
1150int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1151{
1152	int priority;
1153	int ret = 0;
1154	int total_scanned = 0, total_reclaimed = 0;
1155	struct reclaim_state *reclaim_state = current->reclaim_state;
1156	struct scan_control sc;
1157	unsigned long lru_pages = 0;
1158	int i;
1159
1160	sc.gfp_mask = gfp_mask;
1161	sc.may_writepage = 0;
1162
1163	inc_page_state(allocstall);
1164
1165	for (i = 0; zones[i] != NULL; i++) {
1166		struct zone *zone = zones[i];
1167
1168		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1169			continue;
1170
1171		zone->temp_priority = DEF_PRIORITY;
1172		lru_pages += zone->nr_active + zone->nr_inactive;
1173	}
1174
1175	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1176		sc.nr_mapped = read_page_state(nr_mapped);
1177		sc.nr_scanned = 0;
1178		sc.nr_reclaimed = 0;
1179		sc.priority = priority;
1180		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1181		if (!priority)
1182			disable_swap_token();
1183		shrink_caches(zones, &sc);
1184		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1185		if (reclaim_state) {
1186			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1187			reclaim_state->reclaimed_slab = 0;
1188		}
1189		total_scanned += sc.nr_scanned;
1190		total_reclaimed += sc.nr_reclaimed;
1191		if (total_reclaimed >= sc.swap_cluster_max) {
1192			ret = 1;
1193			goto out;
1194		}
1195
1196		/*
1197		 * Try to write back as many pages as we just scanned.  This
1198		 * tends to cause slow streaming writers to write data to the
1199		 * disk smoothly, at the dirtying rate, which is nice.   But
1200		 * that's undesirable in laptop mode, where we *want* lumpy
1201		 * writeout.  So in laptop mode, write out the whole world.
1202		 */
1203		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1204			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1205			sc.may_writepage = 1;
1206		}
1207
1208		/* Take a nap, wait for some writeback to complete */
1209		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1210			blk_congestion_wait(WRITE, HZ/10);
1211	}
1212out:
1213	for (i = 0; zones[i] != 0; i++) {
1214		struct zone *zone = zones[i];
1215
1216		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1217			continue;
1218
1219		zone->prev_priority = zone->temp_priority;
1220	}
1221	return ret;
1222}
1223
1224/*
1225 * For kswapd, balance_pgdat() will work across all this node's zones until
1226 * they are all at pages_high.
1227 *
1228 * If `nr_pages' is non-zero then it is the number of pages which are to be
1229 * reclaimed, regardless of the zone occupancies.  This is a software suspend
1230 * special.
1231 *
1232 * Returns the number of pages which were actually freed.
1233 *
1234 * There is special handling here for zones which are full of pinned pages.
1235 * This can happen if the pages are all mlocked, or if they are all used by
1236 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1237 * What we do is to detect the case where all pages in the zone have been
1238 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1239 * dead and from now on, only perform a short scan.  Basically we're polling
1240 * the zone for when the problem goes away.
1241 *
1242 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1243 * zones which have free_pages > pages_high, but once a zone is found to have
1244 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1245 * of the number of free pages in the lower zones.  This interoperates with
1246 * the page allocator fallback scheme to ensure that aging of pages is balanced
1247 * across the zones.
1248 */
1249static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1250{
1251	int to_free = nr_pages;
1252	int all_zones_ok;
1253	int priority;
1254	int i;
1255	int total_scanned, total_reclaimed;
1256	struct reclaim_state *reclaim_state = current->reclaim_state;
1257	struct scan_control sc;
1258
1259loop_again:
1260	total_scanned = 0;
1261	total_reclaimed = 0;
1262	sc.gfp_mask = GFP_KERNEL;
1263	sc.may_writepage = 0;
1264	sc.nr_mapped = read_page_state(nr_mapped);
1265
1266	inc_page_state(pageoutrun);
1267
1268	for (i = 0; i < pgdat->nr_zones; i++) {
1269		struct zone *zone = pgdat->node_zones + i;
1270
1271		zone->temp_priority = DEF_PRIORITY;
1272	}
1273
1274	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1275		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1276		unsigned long lru_pages = 0;
1277
1278		/* The swap token gets in the way of swapout... */
1279		if (!priority)
1280			disable_swap_token();
1281
1282		all_zones_ok = 1;
1283
1284		if (nr_pages == 0) {
1285			/*
1286			 * Scan in the highmem->dma direction for the highest
1287			 * zone which needs scanning
1288			 */
1289			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1290				struct zone *zone = pgdat->node_zones + i;
1291
1292				if (!populated_zone(zone))
1293					continue;
1294
1295				if (zone->all_unreclaimable &&
1296						priority != DEF_PRIORITY)
1297					continue;
1298
1299				if (!zone_watermark_ok(zone, order,
1300						zone->pages_high, 0, 0)) {
1301					end_zone = i;
1302					goto scan;
1303				}
1304			}
1305			goto out;
1306		} else {
1307			end_zone = pgdat->nr_zones - 1;
1308		}
1309scan:
1310		for (i = 0; i <= end_zone; i++) {
1311			struct zone *zone = pgdat->node_zones + i;
1312
1313			lru_pages += zone->nr_active + zone->nr_inactive;
1314		}
1315
1316		/*
1317		 * Now scan the zone in the dma->highmem direction, stopping
1318		 * at the last zone which needs scanning.
1319		 *
1320		 * We do this because the page allocator works in the opposite
1321		 * direction.  This prevents the page allocator from allocating
1322		 * pages behind kswapd's direction of progress, which would
1323		 * cause too much scanning of the lower zones.
1324		 */
1325		for (i = 0; i <= end_zone; i++) {
1326			struct zone *zone = pgdat->node_zones + i;
1327			int nr_slab;
1328
1329			if (!populated_zone(zone))
1330				continue;
1331
1332			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1333				continue;
1334
1335			if (nr_pages == 0) {	/* Not software suspend */
1336				if (!zone_watermark_ok(zone, order,
1337						zone->pages_high, end_zone, 0))
1338					all_zones_ok = 0;
1339			}
1340			zone->temp_priority = priority;
1341			if (zone->prev_priority > priority)
1342				zone->prev_priority = priority;
1343			sc.nr_scanned = 0;
1344			sc.nr_reclaimed = 0;
1345			sc.priority = priority;
1346			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1347			atomic_inc(&zone->reclaim_in_progress);
1348			shrink_zone(zone, &sc);
1349			atomic_dec(&zone->reclaim_in_progress);
1350			reclaim_state->reclaimed_slab = 0;
1351			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1352						lru_pages);
1353			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1354			total_reclaimed += sc.nr_reclaimed;
1355			total_scanned += sc.nr_scanned;
1356			if (zone->all_unreclaimable)
1357				continue;
1358			if (nr_slab == 0 && zone->pages_scanned >=
1359				    (zone->nr_active + zone->nr_inactive) * 4)
1360				zone->all_unreclaimable = 1;
1361			/*
1362			 * If we've done a decent amount of scanning and
1363			 * the reclaim ratio is low, start doing writepage
1364			 * even in laptop mode
1365			 */
1366			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1367			    total_scanned > total_reclaimed+total_reclaimed/2)
1368				sc.may_writepage = 1;
1369		}
1370		if (nr_pages && to_free > total_reclaimed)
1371			continue;	/* swsusp: need to do more work */
1372		if (all_zones_ok)
1373			break;		/* kswapd: all done */
1374		/*
1375		 * OK, kswapd is getting into trouble.  Take a nap, then take
1376		 * another pass across the zones.
1377		 */
1378		if (total_scanned && priority < DEF_PRIORITY - 2)
1379			blk_congestion_wait(WRITE, HZ/10);
1380
1381		/*
1382		 * We do this so kswapd doesn't build up large priorities for
1383		 * example when it is freeing in parallel with allocators. It
1384		 * matches the direct reclaim path behaviour in terms of impact
1385		 * on zone->*_priority.
1386		 */
1387		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1388			break;
1389	}
1390out:
1391	for (i = 0; i < pgdat->nr_zones; i++) {
1392		struct zone *zone = pgdat->node_zones + i;
1393
1394		zone->prev_priority = zone->temp_priority;
1395	}
1396	if (!all_zones_ok) {
1397		cond_resched();
1398		goto loop_again;
1399	}
1400
1401	return total_reclaimed;
1402}
1403
1404/*
1405 * The background pageout daemon, started as a kernel thread
1406 * from the init process.
1407 *
1408 * This basically trickles out pages so that we have _some_
1409 * free memory available even if there is no other activity
1410 * that frees anything up. This is needed for things like routing
1411 * etc, where we otherwise might have all activity going on in
1412 * asynchronous contexts that cannot page things out.
1413 *
1414 * If there are applications that are active memory-allocators
1415 * (most normal use), this basically shouldn't matter.
1416 */
1417static int kswapd(void *p)
1418{
1419	unsigned long order;
1420	pg_data_t *pgdat = (pg_data_t*)p;
1421	struct task_struct *tsk = current;
1422	DEFINE_WAIT(wait);
1423	struct reclaim_state reclaim_state = {
1424		.reclaimed_slab = 0,
1425	};
1426	cpumask_t cpumask;
1427
1428	daemonize("kswapd%d", pgdat->node_id);
1429	cpumask = node_to_cpumask(pgdat->node_id);
1430	if (!cpus_empty(cpumask))
1431		set_cpus_allowed(tsk, cpumask);
1432	current->reclaim_state = &reclaim_state;
1433
1434	/*
1435	 * Tell the memory management that we're a "memory allocator",
1436	 * and that if we need more memory we should get access to it
1437	 * regardless (see "__alloc_pages()"). "kswapd" should
1438	 * never get caught in the normal page freeing logic.
1439	 *
1440	 * (Kswapd normally doesn't need memory anyway, but sometimes
1441	 * you need a small amount of memory in order to be able to
1442	 * page out something else, and this flag essentially protects
1443	 * us from recursively trying to free more memory as we're
1444	 * trying to free the first piece of memory in the first place).
1445	 */
1446	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1447
1448	order = 0;
1449	for ( ; ; ) {
1450		unsigned long new_order;
1451
1452		try_to_freeze();
1453
1454		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1455		new_order = pgdat->kswapd_max_order;
1456		pgdat->kswapd_max_order = 0;
1457		if (order < new_order) {
1458			/*
1459			 * Don't sleep if someone wants a larger 'order'
1460			 * allocation
1461			 */
1462			order = new_order;
1463		} else {
1464			schedule();
1465			order = pgdat->kswapd_max_order;
1466		}
1467		finish_wait(&pgdat->kswapd_wait, &wait);
1468
1469		balance_pgdat(pgdat, 0, order);
1470	}
1471	return 0;
1472}
1473
1474/*
1475 * A zone is low on free memory, so wake its kswapd task to service it.
1476 */
1477void wakeup_kswapd(struct zone *zone, int order)
1478{
1479	pg_data_t *pgdat;
1480
1481	if (!populated_zone(zone))
1482		return;
1483
1484	pgdat = zone->zone_pgdat;
1485	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1486		return;
1487	if (pgdat->kswapd_max_order < order)
1488		pgdat->kswapd_max_order = order;
1489	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1490		return;
1491	if (!waitqueue_active(&pgdat->kswapd_wait))
1492		return;
1493	wake_up_interruptible(&pgdat->kswapd_wait);
1494}
1495
1496#ifdef CONFIG_PM
1497/*
1498 * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1499 * pages.
1500 */
1501int shrink_all_memory(int nr_pages)
1502{
1503	pg_data_t *pgdat;
1504	int nr_to_free = nr_pages;
1505	int ret = 0;
1506	struct reclaim_state reclaim_state = {
1507		.reclaimed_slab = 0,
1508	};
1509
1510	current->reclaim_state = &reclaim_state;
1511	for_each_pgdat(pgdat) {
1512		int freed;
1513		freed = balance_pgdat(pgdat, nr_to_free, 0);
1514		ret += freed;
1515		nr_to_free -= freed;
1516		if (nr_to_free <= 0)
1517			break;
1518	}
1519	current->reclaim_state = NULL;
1520	return ret;
1521}
1522#endif
1523
1524#ifdef CONFIG_HOTPLUG_CPU
1525/* It's optimal to keep kswapds on the same CPUs as their memory, but
1526   not required for correctness.  So if the last cpu in a node goes
1527   away, we get changed to run anywhere: as the first one comes back,
1528   restore their cpu bindings. */
1529static int __devinit cpu_callback(struct notifier_block *nfb,
1530				  unsigned long action,
1531				  void *hcpu)
1532{
1533	pg_data_t *pgdat;
1534	cpumask_t mask;
1535
1536	if (action == CPU_ONLINE) {
1537		for_each_pgdat(pgdat) {
1538			mask = node_to_cpumask(pgdat->node_id);
1539			if (any_online_cpu(mask) != NR_CPUS)
1540				/* One of our CPUs online: restore mask */
1541				set_cpus_allowed(pgdat->kswapd, mask);
1542		}
1543	}
1544	return NOTIFY_OK;
1545}
1546#endif /* CONFIG_HOTPLUG_CPU */
1547
1548static int __init kswapd_init(void)
1549{
1550	pg_data_t *pgdat;
1551	swap_setup();
1552	for_each_pgdat(pgdat)
1553		pgdat->kswapd
1554		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1555	total_memory = nr_free_pagecache_pages();
1556	hotcpu_notifier(cpu_callback, 0);
1557	return 0;
1558}
1559
1560module_init(kswapd_init)
1561