vmscan.c revision 4e41695356fb4e0b153be1440ad027e46e0a7ea2
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51struct scan_control {
52	/* Incremented by the number of inactive pages that were scanned */
53	unsigned long nr_scanned;
54
55	/* Number of pages freed so far during a call to shrink_zones() */
56	unsigned long nr_reclaimed;
57
58	/* This context's GFP mask */
59	gfp_t gfp_mask;
60
61	int may_writepage;
62
63	/* Can mapped pages be reclaimed? */
64	int may_unmap;
65
66	/* Can pages be swapped as part of reclaim? */
67	int may_swap;
68
69	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71	 * In this context, it doesn't matter that we scan the
72	 * whole list at once. */
73	int swap_cluster_max;
74
75	int swappiness;
76
77	int all_unreclaimable;
78
79	int order;
80
81	/* Which cgroup do we reclaim from */
82	struct mem_cgroup *mem_cgroup;
83
84	/*
85	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86	 * are scanned.
87	 */
88	nodemask_t	*nodemask;
89
90	/* Pluggable isolate pages callback */
91	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92			unsigned long *scanned, int order, int mode,
93			struct zone *z, struct mem_cgroup *mem_cont,
94			int active, int file);
95};
96
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field)			\
101	do {								\
102		if ((_page)->lru.prev != _base) {			\
103			struct page *prev;				\
104									\
105			prev = lru_to_page(&(_page->lru));		\
106			prefetch(&prev->_field);			\
107		}							\
108	} while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field)			\
115	do {								\
116		if ((_page)->lru.prev != _base) {			\
117			struct page *prev;				\
118									\
119			prev = lru_to_page(&(_page->lru));		\
120			prefetchw(&prev->_field);			\
121		}							\
122	} while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100.  Higher means more swappy.
129 */
130int vm_swappiness = 60;
131long vm_total_pages;	/* The total number of pages which the VM controls */
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138#else
139#define scanning_global_lru(sc)	(1)
140#endif
141
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143						  struct scan_control *sc)
144{
145	if (!scanning_global_lru(sc))
146		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148	return &zone->reclaim_stat;
149}
150
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152				struct scan_control *sc, enum lru_list lru)
153{
154	if (!scanning_global_lru(sc))
155		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157	return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
161/*
162 * Add a shrinker callback to be called from the vm
163 */
164void register_shrinker(struct shrinker *shrinker)
165{
166	shrinker->nr = 0;
167	down_write(&shrinker_rwsem);
168	list_add_tail(&shrinker->list, &shrinker_list);
169	up_write(&shrinker_rwsem);
170}
171EXPORT_SYMBOL(register_shrinker);
172
173/*
174 * Remove one
175 */
176void unregister_shrinker(struct shrinker *shrinker)
177{
178	down_write(&shrinker_rwsem);
179	list_del(&shrinker->list);
180	up_write(&shrinker_rwsem);
181}
182EXPORT_SYMBOL(unregister_shrinker);
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object.  With this in mind we age equal
190 * percentages of the lru and ageable caches.  This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt.  It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205			unsigned long lru_pages)
206{
207	struct shrinker *shrinker;
208	unsigned long ret = 0;
209
210	if (scanned == 0)
211		scanned = SWAP_CLUSTER_MAX;
212
213	if (!down_read_trylock(&shrinker_rwsem))
214		return 1;	/* Assume we'll be able to shrink next time */
215
216	list_for_each_entry(shrinker, &shrinker_list, list) {
217		unsigned long long delta;
218		unsigned long total_scan;
219		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220
221		delta = (4 * scanned) / shrinker->seeks;
222		delta *= max_pass;
223		do_div(delta, lru_pages + 1);
224		shrinker->nr += delta;
225		if (shrinker->nr < 0) {
226			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227			       "delete nr=%ld\n",
228			       shrinker->shrink, shrinker->nr);
229			shrinker->nr = max_pass;
230		}
231
232		/*
233		 * Avoid risking looping forever due to too large nr value:
234		 * never try to free more than twice the estimate number of
235		 * freeable entries.
236		 */
237		if (shrinker->nr > max_pass * 2)
238			shrinker->nr = max_pass * 2;
239
240		total_scan = shrinker->nr;
241		shrinker->nr = 0;
242
243		while (total_scan >= SHRINK_BATCH) {
244			long this_scan = SHRINK_BATCH;
245			int shrink_ret;
246			int nr_before;
247
248			nr_before = (*shrinker->shrink)(0, gfp_mask);
249			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250			if (shrink_ret == -1)
251				break;
252			if (shrink_ret < nr_before)
253				ret += nr_before - shrink_ret;
254			count_vm_events(SLABS_SCANNED, this_scan);
255			total_scan -= this_scan;
256
257			cond_resched();
258		}
259
260		shrinker->nr += total_scan;
261	}
262	up_read(&shrinker_rwsem);
263	return ret;
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269	struct address_space *mapping;
270
271	/* Page is in somebody's page tables. */
272	if (page_mapped(page))
273		return 1;
274
275	/* Be more reluctant to reclaim swapcache than pagecache */
276	if (PageSwapCache(page))
277		return 1;
278
279	mapping = page_mapping(page);
280	if (!mapping)
281		return 0;
282
283	/* File is mmap'd by somebody? */
284	return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
289	/*
290	 * A freeable page cache page is referenced only by the caller
291	 * that isolated the page, the page cache radix tree and
292	 * optional buffer heads at page->private.
293	 */
294	return page_count(page) - page_has_private(page) == 2;
295}
296
297static int may_write_to_queue(struct backing_dev_info *bdi)
298{
299	if (current->flags & PF_SWAPWRITE)
300		return 1;
301	if (!bdi_write_congested(bdi))
302		return 1;
303	if (bdi == current->backing_dev_info)
304		return 1;
305	return 0;
306}
307
308/*
309 * We detected a synchronous write error writing a page out.  Probably
310 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
311 * fsync(), msync() or close().
312 *
313 * The tricky part is that after writepage we cannot touch the mapping: nothing
314 * prevents it from being freed up.  But we have a ref on the page and once
315 * that page is locked, the mapping is pinned.
316 *
317 * We're allowed to run sleeping lock_page() here because we know the caller has
318 * __GFP_FS.
319 */
320static void handle_write_error(struct address_space *mapping,
321				struct page *page, int error)
322{
323	lock_page(page);
324	if (page_mapping(page) == mapping)
325		mapping_set_error(mapping, error);
326	unlock_page(page);
327}
328
329/* Request for sync pageout. */
330enum pageout_io {
331	PAGEOUT_IO_ASYNC,
332	PAGEOUT_IO_SYNC,
333};
334
335/* possible outcome of pageout() */
336typedef enum {
337	/* failed to write page out, page is locked */
338	PAGE_KEEP,
339	/* move page to the active list, page is locked */
340	PAGE_ACTIVATE,
341	/* page has been sent to the disk successfully, page is unlocked */
342	PAGE_SUCCESS,
343	/* page is clean and locked */
344	PAGE_CLEAN,
345} pageout_t;
346
347/*
348 * pageout is called by shrink_page_list() for each dirty page.
349 * Calls ->writepage().
350 */
351static pageout_t pageout(struct page *page, struct address_space *mapping,
352						enum pageout_io sync_writeback)
353{
354	/*
355	 * If the page is dirty, only perform writeback if that write
356	 * will be non-blocking.  To prevent this allocation from being
357	 * stalled by pagecache activity.  But note that there may be
358	 * stalls if we need to run get_block().  We could test
359	 * PagePrivate for that.
360	 *
361	 * If this process is currently in generic_file_write() against
362	 * this page's queue, we can perform writeback even if that
363	 * will block.
364	 *
365	 * If the page is swapcache, write it back even if that would
366	 * block, for some throttling. This happens by accident, because
367	 * swap_backing_dev_info is bust: it doesn't reflect the
368	 * congestion state of the swapdevs.  Easy to fix, if needed.
369	 */
370	if (!is_page_cache_freeable(page))
371		return PAGE_KEEP;
372	if (!mapping) {
373		/*
374		 * Some data journaling orphaned pages can have
375		 * page->mapping == NULL while being dirty with clean buffers.
376		 */
377		if (page_has_private(page)) {
378			if (try_to_free_buffers(page)) {
379				ClearPageDirty(page);
380				printk("%s: orphaned page\n", __func__);
381				return PAGE_CLEAN;
382			}
383		}
384		return PAGE_KEEP;
385	}
386	if (mapping->a_ops->writepage == NULL)
387		return PAGE_ACTIVATE;
388	if (!may_write_to_queue(mapping->backing_dev_info))
389		return PAGE_KEEP;
390
391	if (clear_page_dirty_for_io(page)) {
392		int res;
393		struct writeback_control wbc = {
394			.sync_mode = WB_SYNC_NONE,
395			.nr_to_write = SWAP_CLUSTER_MAX,
396			.range_start = 0,
397			.range_end = LLONG_MAX,
398			.nonblocking = 1,
399			.for_reclaim = 1,
400		};
401
402		SetPageReclaim(page);
403		res = mapping->a_ops->writepage(page, &wbc);
404		if (res < 0)
405			handle_write_error(mapping, page, res);
406		if (res == AOP_WRITEPAGE_ACTIVATE) {
407			ClearPageReclaim(page);
408			return PAGE_ACTIVATE;
409		}
410
411		/*
412		 * Wait on writeback if requested to. This happens when
413		 * direct reclaiming a large contiguous area and the
414		 * first attempt to free a range of pages fails.
415		 */
416		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
417			wait_on_page_writeback(page);
418
419		if (!PageWriteback(page)) {
420			/* synchronous write or broken a_ops? */
421			ClearPageReclaim(page);
422		}
423		inc_zone_page_state(page, NR_VMSCAN_WRITE);
424		return PAGE_SUCCESS;
425	}
426
427	return PAGE_CLEAN;
428}
429
430/*
431 * Same as remove_mapping, but if the page is removed from the mapping, it
432 * gets returned with a refcount of 0.
433 */
434static int __remove_mapping(struct address_space *mapping, struct page *page)
435{
436	BUG_ON(!PageLocked(page));
437	BUG_ON(mapping != page_mapping(page));
438
439	spin_lock_irq(&mapping->tree_lock);
440	/*
441	 * The non racy check for a busy page.
442	 *
443	 * Must be careful with the order of the tests. When someone has
444	 * a ref to the page, it may be possible that they dirty it then
445	 * drop the reference. So if PageDirty is tested before page_count
446	 * here, then the following race may occur:
447	 *
448	 * get_user_pages(&page);
449	 * [user mapping goes away]
450	 * write_to(page);
451	 *				!PageDirty(page)    [good]
452	 * SetPageDirty(page);
453	 * put_page(page);
454	 *				!page_count(page)   [good, discard it]
455	 *
456	 * [oops, our write_to data is lost]
457	 *
458	 * Reversing the order of the tests ensures such a situation cannot
459	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
460	 * load is not satisfied before that of page->_count.
461	 *
462	 * Note that if SetPageDirty is always performed via set_page_dirty,
463	 * and thus under tree_lock, then this ordering is not required.
464	 */
465	if (!page_freeze_refs(page, 2))
466		goto cannot_free;
467	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
468	if (unlikely(PageDirty(page))) {
469		page_unfreeze_refs(page, 2);
470		goto cannot_free;
471	}
472
473	if (PageSwapCache(page)) {
474		swp_entry_t swap = { .val = page_private(page) };
475		__delete_from_swap_cache(page);
476		spin_unlock_irq(&mapping->tree_lock);
477		swapcache_free(swap, page);
478	} else {
479		__remove_from_page_cache(page);
480		spin_unlock_irq(&mapping->tree_lock);
481		mem_cgroup_uncharge_cache_page(page);
482	}
483
484	return 1;
485
486cannot_free:
487	spin_unlock_irq(&mapping->tree_lock);
488	return 0;
489}
490
491/*
492 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
493 * someone else has a ref on the page, abort and return 0.  If it was
494 * successfully detached, return 1.  Assumes the caller has a single ref on
495 * this page.
496 */
497int remove_mapping(struct address_space *mapping, struct page *page)
498{
499	if (__remove_mapping(mapping, page)) {
500		/*
501		 * Unfreezing the refcount with 1 rather than 2 effectively
502		 * drops the pagecache ref for us without requiring another
503		 * atomic operation.
504		 */
505		page_unfreeze_refs(page, 1);
506		return 1;
507	}
508	return 0;
509}
510
511/**
512 * putback_lru_page - put previously isolated page onto appropriate LRU list
513 * @page: page to be put back to appropriate lru list
514 *
515 * Add previously isolated @page to appropriate LRU list.
516 * Page may still be unevictable for other reasons.
517 *
518 * lru_lock must not be held, interrupts must be enabled.
519 */
520void putback_lru_page(struct page *page)
521{
522	int lru;
523	int active = !!TestClearPageActive(page);
524	int was_unevictable = PageUnevictable(page);
525
526	VM_BUG_ON(PageLRU(page));
527
528redo:
529	ClearPageUnevictable(page);
530
531	if (page_evictable(page, NULL)) {
532		/*
533		 * For evictable pages, we can use the cache.
534		 * In event of a race, worst case is we end up with an
535		 * unevictable page on [in]active list.
536		 * We know how to handle that.
537		 */
538		lru = active + page_lru_base_type(page);
539		lru_cache_add_lru(page, lru);
540	} else {
541		/*
542		 * Put unevictable pages directly on zone's unevictable
543		 * list.
544		 */
545		lru = LRU_UNEVICTABLE;
546		add_page_to_unevictable_list(page);
547	}
548
549	/*
550	 * page's status can change while we move it among lru. If an evictable
551	 * page is on unevictable list, it never be freed. To avoid that,
552	 * check after we added it to the list, again.
553	 */
554	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
555		if (!isolate_lru_page(page)) {
556			put_page(page);
557			goto redo;
558		}
559		/* This means someone else dropped this page from LRU
560		 * So, it will be freed or putback to LRU again. There is
561		 * nothing to do here.
562		 */
563	}
564
565	if (was_unevictable && lru != LRU_UNEVICTABLE)
566		count_vm_event(UNEVICTABLE_PGRESCUED);
567	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
568		count_vm_event(UNEVICTABLE_PGCULLED);
569
570	put_page(page);		/* drop ref from isolate */
571}
572
573/*
574 * shrink_page_list() returns the number of reclaimed pages
575 */
576static unsigned long shrink_page_list(struct list_head *page_list,
577					struct scan_control *sc,
578					enum pageout_io sync_writeback)
579{
580	LIST_HEAD(ret_pages);
581	struct pagevec freed_pvec;
582	int pgactivate = 0;
583	unsigned long nr_reclaimed = 0;
584	unsigned long vm_flags;
585
586	cond_resched();
587
588	pagevec_init(&freed_pvec, 1);
589	while (!list_empty(page_list)) {
590		struct address_space *mapping;
591		struct page *page;
592		int may_enter_fs;
593		int referenced;
594
595		cond_resched();
596
597		page = lru_to_page(page_list);
598		list_del(&page->lru);
599
600		if (!trylock_page(page))
601			goto keep;
602
603		VM_BUG_ON(PageActive(page));
604
605		sc->nr_scanned++;
606
607		if (unlikely(!page_evictable(page, NULL)))
608			goto cull_mlocked;
609
610		if (!sc->may_unmap && page_mapped(page))
611			goto keep_locked;
612
613		/* Double the slab pressure for mapped and swapcache pages */
614		if (page_mapped(page) || PageSwapCache(page))
615			sc->nr_scanned++;
616
617		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
618			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
619
620		if (PageWriteback(page)) {
621			/*
622			 * Synchronous reclaim is performed in two passes,
623			 * first an asynchronous pass over the list to
624			 * start parallel writeback, and a second synchronous
625			 * pass to wait for the IO to complete.  Wait here
626			 * for any page for which writeback has already
627			 * started.
628			 */
629			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
630				wait_on_page_writeback(page);
631			else
632				goto keep_locked;
633		}
634
635		referenced = page_referenced(page, 1,
636						sc->mem_cgroup, &vm_flags);
637		/*
638		 * In active use or really unfreeable?  Activate it.
639		 * If page which have PG_mlocked lost isoltation race,
640		 * try_to_unmap moves it to unevictable list
641		 */
642		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
643					referenced && page_mapping_inuse(page)
644					&& !(vm_flags & VM_LOCKED))
645			goto activate_locked;
646
647		/*
648		 * Anonymous process memory has backing store?
649		 * Try to allocate it some swap space here.
650		 */
651		if (PageAnon(page) && !PageSwapCache(page)) {
652			if (!(sc->gfp_mask & __GFP_IO))
653				goto keep_locked;
654			if (!add_to_swap(page))
655				goto activate_locked;
656			may_enter_fs = 1;
657		}
658
659		mapping = page_mapping(page);
660
661		/*
662		 * The page is mapped into the page tables of one or more
663		 * processes. Try to unmap it here.
664		 */
665		if (page_mapped(page) && mapping) {
666			switch (try_to_unmap(page, 0)) {
667			case SWAP_FAIL:
668				goto activate_locked;
669			case SWAP_AGAIN:
670				goto keep_locked;
671			case SWAP_MLOCK:
672				goto cull_mlocked;
673			case SWAP_SUCCESS:
674				; /* try to free the page below */
675			}
676		}
677
678		if (PageDirty(page)) {
679			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
680				goto keep_locked;
681			if (!may_enter_fs)
682				goto keep_locked;
683			if (!sc->may_writepage)
684				goto keep_locked;
685
686			/* Page is dirty, try to write it out here */
687			switch (pageout(page, mapping, sync_writeback)) {
688			case PAGE_KEEP:
689				goto keep_locked;
690			case PAGE_ACTIVATE:
691				goto activate_locked;
692			case PAGE_SUCCESS:
693				if (PageWriteback(page) || PageDirty(page))
694					goto keep;
695				/*
696				 * A synchronous write - probably a ramdisk.  Go
697				 * ahead and try to reclaim the page.
698				 */
699				if (!trylock_page(page))
700					goto keep;
701				if (PageDirty(page) || PageWriteback(page))
702					goto keep_locked;
703				mapping = page_mapping(page);
704			case PAGE_CLEAN:
705				; /* try to free the page below */
706			}
707		}
708
709		/*
710		 * If the page has buffers, try to free the buffer mappings
711		 * associated with this page. If we succeed we try to free
712		 * the page as well.
713		 *
714		 * We do this even if the page is PageDirty().
715		 * try_to_release_page() does not perform I/O, but it is
716		 * possible for a page to have PageDirty set, but it is actually
717		 * clean (all its buffers are clean).  This happens if the
718		 * buffers were written out directly, with submit_bh(). ext3
719		 * will do this, as well as the blockdev mapping.
720		 * try_to_release_page() will discover that cleanness and will
721		 * drop the buffers and mark the page clean - it can be freed.
722		 *
723		 * Rarely, pages can have buffers and no ->mapping.  These are
724		 * the pages which were not successfully invalidated in
725		 * truncate_complete_page().  We try to drop those buffers here
726		 * and if that worked, and the page is no longer mapped into
727		 * process address space (page_count == 1) it can be freed.
728		 * Otherwise, leave the page on the LRU so it is swappable.
729		 */
730		if (page_has_private(page)) {
731			if (!try_to_release_page(page, sc->gfp_mask))
732				goto activate_locked;
733			if (!mapping && page_count(page) == 1) {
734				unlock_page(page);
735				if (put_page_testzero(page))
736					goto free_it;
737				else {
738					/*
739					 * rare race with speculative reference.
740					 * the speculative reference will free
741					 * this page shortly, so we may
742					 * increment nr_reclaimed here (and
743					 * leave it off the LRU).
744					 */
745					nr_reclaimed++;
746					continue;
747				}
748			}
749		}
750
751		if (!mapping || !__remove_mapping(mapping, page))
752			goto keep_locked;
753
754		/*
755		 * At this point, we have no other references and there is
756		 * no way to pick any more up (removed from LRU, removed
757		 * from pagecache). Can use non-atomic bitops now (and
758		 * we obviously don't have to worry about waking up a process
759		 * waiting on the page lock, because there are no references.
760		 */
761		__clear_page_locked(page);
762free_it:
763		nr_reclaimed++;
764		if (!pagevec_add(&freed_pvec, page)) {
765			__pagevec_free(&freed_pvec);
766			pagevec_reinit(&freed_pvec);
767		}
768		continue;
769
770cull_mlocked:
771		if (PageSwapCache(page))
772			try_to_free_swap(page);
773		unlock_page(page);
774		putback_lru_page(page);
775		continue;
776
777activate_locked:
778		/* Not a candidate for swapping, so reclaim swap space. */
779		if (PageSwapCache(page) && vm_swap_full())
780			try_to_free_swap(page);
781		VM_BUG_ON(PageActive(page));
782		SetPageActive(page);
783		pgactivate++;
784keep_locked:
785		unlock_page(page);
786keep:
787		list_add(&page->lru, &ret_pages);
788		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
789	}
790	list_splice(&ret_pages, page_list);
791	if (pagevec_count(&freed_pvec))
792		__pagevec_free(&freed_pvec);
793	count_vm_events(PGACTIVATE, pgactivate);
794	return nr_reclaimed;
795}
796
797/* LRU Isolation modes. */
798#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
799#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
800#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
801
802/*
803 * Attempt to remove the specified page from its LRU.  Only take this page
804 * if it is of the appropriate PageActive status.  Pages which are being
805 * freed elsewhere are also ignored.
806 *
807 * page:	page to consider
808 * mode:	one of the LRU isolation modes defined above
809 *
810 * returns 0 on success, -ve errno on failure.
811 */
812int __isolate_lru_page(struct page *page, int mode, int file)
813{
814	int ret = -EINVAL;
815
816	/* Only take pages on the LRU. */
817	if (!PageLRU(page))
818		return ret;
819
820	/*
821	 * When checking the active state, we need to be sure we are
822	 * dealing with comparible boolean values.  Take the logical not
823	 * of each.
824	 */
825	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
826		return ret;
827
828	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
829		return ret;
830
831	/*
832	 * When this function is being called for lumpy reclaim, we
833	 * initially look into all LRU pages, active, inactive and
834	 * unevictable; only give shrink_page_list evictable pages.
835	 */
836	if (PageUnevictable(page))
837		return ret;
838
839	ret = -EBUSY;
840
841	if (likely(get_page_unless_zero(page))) {
842		/*
843		 * Be careful not to clear PageLRU until after we're
844		 * sure the page is not being freed elsewhere -- the
845		 * page release code relies on it.
846		 */
847		ClearPageLRU(page);
848		ret = 0;
849	}
850
851	return ret;
852}
853
854/*
855 * zone->lru_lock is heavily contended.  Some of the functions that
856 * shrink the lists perform better by taking out a batch of pages
857 * and working on them outside the LRU lock.
858 *
859 * For pagecache intensive workloads, this function is the hottest
860 * spot in the kernel (apart from copy_*_user functions).
861 *
862 * Appropriate locks must be held before calling this function.
863 *
864 * @nr_to_scan:	The number of pages to look through on the list.
865 * @src:	The LRU list to pull pages off.
866 * @dst:	The temp list to put pages on to.
867 * @scanned:	The number of pages that were scanned.
868 * @order:	The caller's attempted allocation order
869 * @mode:	One of the LRU isolation modes
870 * @file:	True [1] if isolating file [!anon] pages
871 *
872 * returns how many pages were moved onto *@dst.
873 */
874static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
875		struct list_head *src, struct list_head *dst,
876		unsigned long *scanned, int order, int mode, int file)
877{
878	unsigned long nr_taken = 0;
879	unsigned long scan;
880
881	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
882		struct page *page;
883		unsigned long pfn;
884		unsigned long end_pfn;
885		unsigned long page_pfn;
886		int zone_id;
887
888		page = lru_to_page(src);
889		prefetchw_prev_lru_page(page, src, flags);
890
891		VM_BUG_ON(!PageLRU(page));
892
893		switch (__isolate_lru_page(page, mode, file)) {
894		case 0:
895			list_move(&page->lru, dst);
896			mem_cgroup_del_lru(page);
897			nr_taken++;
898			break;
899
900		case -EBUSY:
901			/* else it is being freed elsewhere */
902			list_move(&page->lru, src);
903			mem_cgroup_rotate_lru_list(page, page_lru(page));
904			continue;
905
906		default:
907			BUG();
908		}
909
910		if (!order)
911			continue;
912
913		/*
914		 * Attempt to take all pages in the order aligned region
915		 * surrounding the tag page.  Only take those pages of
916		 * the same active state as that tag page.  We may safely
917		 * round the target page pfn down to the requested order
918		 * as the mem_map is guarenteed valid out to MAX_ORDER,
919		 * where that page is in a different zone we will detect
920		 * it from its zone id and abort this block scan.
921		 */
922		zone_id = page_zone_id(page);
923		page_pfn = page_to_pfn(page);
924		pfn = page_pfn & ~((1 << order) - 1);
925		end_pfn = pfn + (1 << order);
926		for (; pfn < end_pfn; pfn++) {
927			struct page *cursor_page;
928
929			/* The target page is in the block, ignore it. */
930			if (unlikely(pfn == page_pfn))
931				continue;
932
933			/* Avoid holes within the zone. */
934			if (unlikely(!pfn_valid_within(pfn)))
935				break;
936
937			cursor_page = pfn_to_page(pfn);
938
939			/* Check that we have not crossed a zone boundary. */
940			if (unlikely(page_zone_id(cursor_page) != zone_id))
941				continue;
942
943			/*
944			 * If we don't have enough swap space, reclaiming of
945			 * anon page which don't already have a swap slot is
946			 * pointless.
947			 */
948			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
949					!PageSwapCache(cursor_page))
950				continue;
951
952			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
953				list_move(&cursor_page->lru, dst);
954				mem_cgroup_del_lru(cursor_page);
955				nr_taken++;
956				scan++;
957			}
958		}
959	}
960
961	*scanned = scan;
962	return nr_taken;
963}
964
965static unsigned long isolate_pages_global(unsigned long nr,
966					struct list_head *dst,
967					unsigned long *scanned, int order,
968					int mode, struct zone *z,
969					struct mem_cgroup *mem_cont,
970					int active, int file)
971{
972	int lru = LRU_BASE;
973	if (active)
974		lru += LRU_ACTIVE;
975	if (file)
976		lru += LRU_FILE;
977	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
978								mode, file);
979}
980
981/*
982 * clear_active_flags() is a helper for shrink_active_list(), clearing
983 * any active bits from the pages in the list.
984 */
985static unsigned long clear_active_flags(struct list_head *page_list,
986					unsigned int *count)
987{
988	int nr_active = 0;
989	int lru;
990	struct page *page;
991
992	list_for_each_entry(page, page_list, lru) {
993		lru = page_lru_base_type(page);
994		if (PageActive(page)) {
995			lru += LRU_ACTIVE;
996			ClearPageActive(page);
997			nr_active++;
998		}
999		count[lru]++;
1000	}
1001
1002	return nr_active;
1003}
1004
1005/**
1006 * isolate_lru_page - tries to isolate a page from its LRU list
1007 * @page: page to isolate from its LRU list
1008 *
1009 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1010 * vmstat statistic corresponding to whatever LRU list the page was on.
1011 *
1012 * Returns 0 if the page was removed from an LRU list.
1013 * Returns -EBUSY if the page was not on an LRU list.
1014 *
1015 * The returned page will have PageLRU() cleared.  If it was found on
1016 * the active list, it will have PageActive set.  If it was found on
1017 * the unevictable list, it will have the PageUnevictable bit set. That flag
1018 * may need to be cleared by the caller before letting the page go.
1019 *
1020 * The vmstat statistic corresponding to the list on which the page was
1021 * found will be decremented.
1022 *
1023 * Restrictions:
1024 * (1) Must be called with an elevated refcount on the page. This is a
1025 *     fundamentnal difference from isolate_lru_pages (which is called
1026 *     without a stable reference).
1027 * (2) the lru_lock must not be held.
1028 * (3) interrupts must be enabled.
1029 */
1030int isolate_lru_page(struct page *page)
1031{
1032	int ret = -EBUSY;
1033
1034	if (PageLRU(page)) {
1035		struct zone *zone = page_zone(page);
1036
1037		spin_lock_irq(&zone->lru_lock);
1038		if (PageLRU(page) && get_page_unless_zero(page)) {
1039			int lru = page_lru(page);
1040			ret = 0;
1041			ClearPageLRU(page);
1042
1043			del_page_from_lru_list(zone, page, lru);
1044		}
1045		spin_unlock_irq(&zone->lru_lock);
1046	}
1047	return ret;
1048}
1049
1050/*
1051 * Are there way too many processes in the direct reclaim path already?
1052 */
1053static int too_many_isolated(struct zone *zone, int file,
1054		struct scan_control *sc)
1055{
1056	unsigned long inactive, isolated;
1057
1058	if (current_is_kswapd())
1059		return 0;
1060
1061	if (!scanning_global_lru(sc))
1062		return 0;
1063
1064	if (file) {
1065		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1066		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1067	} else {
1068		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1069		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1070	}
1071
1072	return isolated > inactive;
1073}
1074
1075/*
1076 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1077 * of reclaimed pages
1078 */
1079static unsigned long shrink_inactive_list(unsigned long max_scan,
1080			struct zone *zone, struct scan_control *sc,
1081			int priority, int file)
1082{
1083	LIST_HEAD(page_list);
1084	struct pagevec pvec;
1085	unsigned long nr_scanned = 0;
1086	unsigned long nr_reclaimed = 0;
1087	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1088	int lumpy_reclaim = 0;
1089
1090	while (unlikely(too_many_isolated(zone, file, sc))) {
1091		congestion_wait(WRITE, HZ/10);
1092
1093		/* We are about to die and free our memory. Return now. */
1094		if (fatal_signal_pending(current))
1095			return SWAP_CLUSTER_MAX;
1096	}
1097
1098	/*
1099	 * If we need a large contiguous chunk of memory, or have
1100	 * trouble getting a small set of contiguous pages, we
1101	 * will reclaim both active and inactive pages.
1102	 *
1103	 * We use the same threshold as pageout congestion_wait below.
1104	 */
1105	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1106		lumpy_reclaim = 1;
1107	else if (sc->order && priority < DEF_PRIORITY - 2)
1108		lumpy_reclaim = 1;
1109
1110	pagevec_init(&pvec, 1);
1111
1112	lru_add_drain();
1113	spin_lock_irq(&zone->lru_lock);
1114	do {
1115		struct page *page;
1116		unsigned long nr_taken;
1117		unsigned long nr_scan;
1118		unsigned long nr_freed;
1119		unsigned long nr_active;
1120		unsigned int count[NR_LRU_LISTS] = { 0, };
1121		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1122		unsigned long nr_anon;
1123		unsigned long nr_file;
1124
1125		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1126			     &page_list, &nr_scan, sc->order, mode,
1127				zone, sc->mem_cgroup, 0, file);
1128
1129		if (scanning_global_lru(sc)) {
1130			zone->pages_scanned += nr_scan;
1131			if (current_is_kswapd())
1132				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1133						       nr_scan);
1134			else
1135				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1136						       nr_scan);
1137		}
1138
1139		if (nr_taken == 0)
1140			goto done;
1141
1142		nr_active = clear_active_flags(&page_list, count);
1143		__count_vm_events(PGDEACTIVATE, nr_active);
1144
1145		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1146						-count[LRU_ACTIVE_FILE]);
1147		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1148						-count[LRU_INACTIVE_FILE]);
1149		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1150						-count[LRU_ACTIVE_ANON]);
1151		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1152						-count[LRU_INACTIVE_ANON]);
1153
1154		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1155		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1156		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1157		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1158
1159		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1160		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1161		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1162		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1163
1164		spin_unlock_irq(&zone->lru_lock);
1165
1166		nr_scanned += nr_scan;
1167		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1168
1169		/*
1170		 * If we are direct reclaiming for contiguous pages and we do
1171		 * not reclaim everything in the list, try again and wait
1172		 * for IO to complete. This will stall high-order allocations
1173		 * but that should be acceptable to the caller
1174		 */
1175		if (nr_freed < nr_taken && !current_is_kswapd() &&
1176		    lumpy_reclaim) {
1177			congestion_wait(BLK_RW_ASYNC, HZ/10);
1178
1179			/*
1180			 * The attempt at page out may have made some
1181			 * of the pages active, mark them inactive again.
1182			 */
1183			nr_active = clear_active_flags(&page_list, count);
1184			count_vm_events(PGDEACTIVATE, nr_active);
1185
1186			nr_freed += shrink_page_list(&page_list, sc,
1187							PAGEOUT_IO_SYNC);
1188		}
1189
1190		nr_reclaimed += nr_freed;
1191
1192		local_irq_disable();
1193		if (current_is_kswapd())
1194			__count_vm_events(KSWAPD_STEAL, nr_freed);
1195		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1196
1197		spin_lock(&zone->lru_lock);
1198		/*
1199		 * Put back any unfreeable pages.
1200		 */
1201		while (!list_empty(&page_list)) {
1202			int lru;
1203			page = lru_to_page(&page_list);
1204			VM_BUG_ON(PageLRU(page));
1205			list_del(&page->lru);
1206			if (unlikely(!page_evictable(page, NULL))) {
1207				spin_unlock_irq(&zone->lru_lock);
1208				putback_lru_page(page);
1209				spin_lock_irq(&zone->lru_lock);
1210				continue;
1211			}
1212			SetPageLRU(page);
1213			lru = page_lru(page);
1214			add_page_to_lru_list(zone, page, lru);
1215			if (is_active_lru(lru)) {
1216				int file = is_file_lru(lru);
1217				reclaim_stat->recent_rotated[file]++;
1218			}
1219			if (!pagevec_add(&pvec, page)) {
1220				spin_unlock_irq(&zone->lru_lock);
1221				__pagevec_release(&pvec);
1222				spin_lock_irq(&zone->lru_lock);
1223			}
1224		}
1225		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1226		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1227
1228  	} while (nr_scanned < max_scan);
1229
1230done:
1231	spin_unlock_irq(&zone->lru_lock);
1232	pagevec_release(&pvec);
1233	return nr_reclaimed;
1234}
1235
1236/*
1237 * We are about to scan this zone at a certain priority level.  If that priority
1238 * level is smaller (ie: more urgent) than the previous priority, then note
1239 * that priority level within the zone.  This is done so that when the next
1240 * process comes in to scan this zone, it will immediately start out at this
1241 * priority level rather than having to build up its own scanning priority.
1242 * Here, this priority affects only the reclaim-mapped threshold.
1243 */
1244static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1245{
1246	if (priority < zone->prev_priority)
1247		zone->prev_priority = priority;
1248}
1249
1250/*
1251 * This moves pages from the active list to the inactive list.
1252 *
1253 * We move them the other way if the page is referenced by one or more
1254 * processes, from rmap.
1255 *
1256 * If the pages are mostly unmapped, the processing is fast and it is
1257 * appropriate to hold zone->lru_lock across the whole operation.  But if
1258 * the pages are mapped, the processing is slow (page_referenced()) so we
1259 * should drop zone->lru_lock around each page.  It's impossible to balance
1260 * this, so instead we remove the pages from the LRU while processing them.
1261 * It is safe to rely on PG_active against the non-LRU pages in here because
1262 * nobody will play with that bit on a non-LRU page.
1263 *
1264 * The downside is that we have to touch page->_count against each page.
1265 * But we had to alter page->flags anyway.
1266 */
1267
1268static void move_active_pages_to_lru(struct zone *zone,
1269				     struct list_head *list,
1270				     enum lru_list lru)
1271{
1272	unsigned long pgmoved = 0;
1273	struct pagevec pvec;
1274	struct page *page;
1275
1276	pagevec_init(&pvec, 1);
1277
1278	while (!list_empty(list)) {
1279		page = lru_to_page(list);
1280
1281		VM_BUG_ON(PageLRU(page));
1282		SetPageLRU(page);
1283
1284		list_move(&page->lru, &zone->lru[lru].list);
1285		mem_cgroup_add_lru_list(page, lru);
1286		pgmoved++;
1287
1288		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1289			spin_unlock_irq(&zone->lru_lock);
1290			if (buffer_heads_over_limit)
1291				pagevec_strip(&pvec);
1292			__pagevec_release(&pvec);
1293			spin_lock_irq(&zone->lru_lock);
1294		}
1295	}
1296	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1297	if (!is_active_lru(lru))
1298		__count_vm_events(PGDEACTIVATE, pgmoved);
1299}
1300
1301static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1302			struct scan_control *sc, int priority, int file)
1303{
1304	unsigned long nr_taken;
1305	unsigned long pgscanned;
1306	unsigned long vm_flags;
1307	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1308	LIST_HEAD(l_active);
1309	LIST_HEAD(l_inactive);
1310	struct page *page;
1311	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1312	unsigned long nr_rotated = 0;
1313
1314	lru_add_drain();
1315	spin_lock_irq(&zone->lru_lock);
1316	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1317					ISOLATE_ACTIVE, zone,
1318					sc->mem_cgroup, 1, file);
1319	/*
1320	 * zone->pages_scanned is used for detect zone's oom
1321	 * mem_cgroup remembers nr_scan by itself.
1322	 */
1323	if (scanning_global_lru(sc)) {
1324		zone->pages_scanned += pgscanned;
1325	}
1326	reclaim_stat->recent_scanned[file] += nr_taken;
1327
1328	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1329	if (file)
1330		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1331	else
1332		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1333	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1334	spin_unlock_irq(&zone->lru_lock);
1335
1336	while (!list_empty(&l_hold)) {
1337		cond_resched();
1338		page = lru_to_page(&l_hold);
1339		list_del(&page->lru);
1340
1341		if (unlikely(!page_evictable(page, NULL))) {
1342			putback_lru_page(page);
1343			continue;
1344		}
1345
1346		/* page_referenced clears PageReferenced */
1347		if (page_mapping_inuse(page) &&
1348		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1349			nr_rotated++;
1350			/*
1351			 * Identify referenced, file-backed active pages and
1352			 * give them one more trip around the active list. So
1353			 * that executable code get better chances to stay in
1354			 * memory under moderate memory pressure.  Anon pages
1355			 * are not likely to be evicted by use-once streaming
1356			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1357			 * so we ignore them here.
1358			 */
1359			if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1360				list_add(&page->lru, &l_active);
1361				continue;
1362			}
1363		}
1364
1365		ClearPageActive(page);	/* we are de-activating */
1366		list_add(&page->lru, &l_inactive);
1367	}
1368
1369	/*
1370	 * Move pages back to the lru list.
1371	 */
1372	spin_lock_irq(&zone->lru_lock);
1373	/*
1374	 * Count referenced pages from currently used mappings as rotated,
1375	 * even though only some of them are actually re-activated.  This
1376	 * helps balance scan pressure between file and anonymous pages in
1377	 * get_scan_ratio.
1378	 */
1379	reclaim_stat->recent_rotated[file] += nr_rotated;
1380
1381	move_active_pages_to_lru(zone, &l_active,
1382						LRU_ACTIVE + file * LRU_FILE);
1383	move_active_pages_to_lru(zone, &l_inactive,
1384						LRU_BASE   + file * LRU_FILE);
1385	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1386	spin_unlock_irq(&zone->lru_lock);
1387}
1388
1389static int inactive_anon_is_low_global(struct zone *zone)
1390{
1391	unsigned long active, inactive;
1392
1393	active = zone_page_state(zone, NR_ACTIVE_ANON);
1394	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1395
1396	if (inactive * zone->inactive_ratio < active)
1397		return 1;
1398
1399	return 0;
1400}
1401
1402/**
1403 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1404 * @zone: zone to check
1405 * @sc:   scan control of this context
1406 *
1407 * Returns true if the zone does not have enough inactive anon pages,
1408 * meaning some active anon pages need to be deactivated.
1409 */
1410static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1411{
1412	int low;
1413
1414	if (scanning_global_lru(sc))
1415		low = inactive_anon_is_low_global(zone);
1416	else
1417		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1418	return low;
1419}
1420
1421static int inactive_file_is_low_global(struct zone *zone)
1422{
1423	unsigned long active, inactive;
1424
1425	active = zone_page_state(zone, NR_ACTIVE_FILE);
1426	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1427
1428	return (active > inactive);
1429}
1430
1431/**
1432 * inactive_file_is_low - check if file pages need to be deactivated
1433 * @zone: zone to check
1434 * @sc:   scan control of this context
1435 *
1436 * When the system is doing streaming IO, memory pressure here
1437 * ensures that active file pages get deactivated, until more
1438 * than half of the file pages are on the inactive list.
1439 *
1440 * Once we get to that situation, protect the system's working
1441 * set from being evicted by disabling active file page aging.
1442 *
1443 * This uses a different ratio than the anonymous pages, because
1444 * the page cache uses a use-once replacement algorithm.
1445 */
1446static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1447{
1448	int low;
1449
1450	if (scanning_global_lru(sc))
1451		low = inactive_file_is_low_global(zone);
1452	else
1453		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1454	return low;
1455}
1456
1457static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1458	struct zone *zone, struct scan_control *sc, int priority)
1459{
1460	int file = is_file_lru(lru);
1461
1462	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1463		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1464		return 0;
1465	}
1466
1467	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1468		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1469		return 0;
1470	}
1471	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1472}
1473
1474/*
1475 * Determine how aggressively the anon and file LRU lists should be
1476 * scanned.  The relative value of each set of LRU lists is determined
1477 * by looking at the fraction of the pages scanned we did rotate back
1478 * onto the active list instead of evict.
1479 *
1480 * percent[0] specifies how much pressure to put on ram/swap backed
1481 * memory, while percent[1] determines pressure on the file LRUs.
1482 */
1483static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1484					unsigned long *percent)
1485{
1486	unsigned long anon, file, free;
1487	unsigned long anon_prio, file_prio;
1488	unsigned long ap, fp;
1489	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1490
1491	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1492		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1493	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1494		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1495
1496	if (scanning_global_lru(sc)) {
1497		free  = zone_page_state(zone, NR_FREE_PAGES);
1498		/* If we have very few page cache pages,
1499		   force-scan anon pages. */
1500		if (unlikely(file + free <= high_wmark_pages(zone))) {
1501			percent[0] = 100;
1502			percent[1] = 0;
1503			return;
1504		}
1505	}
1506
1507	/*
1508	 * OK, so we have swap space and a fair amount of page cache
1509	 * pages.  We use the recently rotated / recently scanned
1510	 * ratios to determine how valuable each cache is.
1511	 *
1512	 * Because workloads change over time (and to avoid overflow)
1513	 * we keep these statistics as a floating average, which ends
1514	 * up weighing recent references more than old ones.
1515	 *
1516	 * anon in [0], file in [1]
1517	 */
1518	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1519		spin_lock_irq(&zone->lru_lock);
1520		reclaim_stat->recent_scanned[0] /= 2;
1521		reclaim_stat->recent_rotated[0] /= 2;
1522		spin_unlock_irq(&zone->lru_lock);
1523	}
1524
1525	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1526		spin_lock_irq(&zone->lru_lock);
1527		reclaim_stat->recent_scanned[1] /= 2;
1528		reclaim_stat->recent_rotated[1] /= 2;
1529		spin_unlock_irq(&zone->lru_lock);
1530	}
1531
1532	/*
1533	 * With swappiness at 100, anonymous and file have the same priority.
1534	 * This scanning priority is essentially the inverse of IO cost.
1535	 */
1536	anon_prio = sc->swappiness;
1537	file_prio = 200 - sc->swappiness;
1538
1539	/*
1540	 * The amount of pressure on anon vs file pages is inversely
1541	 * proportional to the fraction of recently scanned pages on
1542	 * each list that were recently referenced and in active use.
1543	 */
1544	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1545	ap /= reclaim_stat->recent_rotated[0] + 1;
1546
1547	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1548	fp /= reclaim_stat->recent_rotated[1] + 1;
1549
1550	/* Normalize to percentages */
1551	percent[0] = 100 * ap / (ap + fp + 1);
1552	percent[1] = 100 - percent[0];
1553}
1554
1555/*
1556 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1557 * until we collected @swap_cluster_max pages to scan.
1558 */
1559static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1560				       unsigned long *nr_saved_scan,
1561				       unsigned long swap_cluster_max)
1562{
1563	unsigned long nr;
1564
1565	*nr_saved_scan += nr_to_scan;
1566	nr = *nr_saved_scan;
1567
1568	if (nr >= swap_cluster_max)
1569		*nr_saved_scan = 0;
1570	else
1571		nr = 0;
1572
1573	return nr;
1574}
1575
1576/*
1577 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1578 */
1579static void shrink_zone(int priority, struct zone *zone,
1580				struct scan_control *sc)
1581{
1582	unsigned long nr[NR_LRU_LISTS];
1583	unsigned long nr_to_scan;
1584	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1585	enum lru_list l;
1586	unsigned long nr_reclaimed = sc->nr_reclaimed;
1587	unsigned long swap_cluster_max = sc->swap_cluster_max;
1588	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1589	int noswap = 0;
1590
1591	/* If we have no swap space, do not bother scanning anon pages. */
1592	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1593		noswap = 1;
1594		percent[0] = 0;
1595		percent[1] = 100;
1596	} else
1597		get_scan_ratio(zone, sc, percent);
1598
1599	for_each_evictable_lru(l) {
1600		int file = is_file_lru(l);
1601		unsigned long scan;
1602
1603		scan = zone_nr_lru_pages(zone, sc, l);
1604		if (priority || noswap) {
1605			scan >>= priority;
1606			scan = (scan * percent[file]) / 100;
1607		}
1608		nr[l] = nr_scan_try_batch(scan,
1609					  &reclaim_stat->nr_saved_scan[l],
1610					  swap_cluster_max);
1611	}
1612
1613	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1614					nr[LRU_INACTIVE_FILE]) {
1615		for_each_evictable_lru(l) {
1616			if (nr[l]) {
1617				nr_to_scan = min(nr[l], swap_cluster_max);
1618				nr[l] -= nr_to_scan;
1619
1620				nr_reclaimed += shrink_list(l, nr_to_scan,
1621							    zone, sc, priority);
1622			}
1623		}
1624		/*
1625		 * On large memory systems, scan >> priority can become
1626		 * really large. This is fine for the starting priority;
1627		 * we want to put equal scanning pressure on each zone.
1628		 * However, if the VM has a harder time of freeing pages,
1629		 * with multiple processes reclaiming pages, the total
1630		 * freeing target can get unreasonably large.
1631		 */
1632		if (nr_reclaimed > swap_cluster_max &&
1633			priority < DEF_PRIORITY && !current_is_kswapd())
1634			break;
1635	}
1636
1637	sc->nr_reclaimed = nr_reclaimed;
1638
1639	/*
1640	 * Even if we did not try to evict anon pages at all, we want to
1641	 * rebalance the anon lru active/inactive ratio.
1642	 */
1643	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1644		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1645
1646	throttle_vm_writeout(sc->gfp_mask);
1647}
1648
1649/*
1650 * This is the direct reclaim path, for page-allocating processes.  We only
1651 * try to reclaim pages from zones which will satisfy the caller's allocation
1652 * request.
1653 *
1654 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1655 * Because:
1656 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1657 *    allocation or
1658 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1659 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1660 *    zone defense algorithm.
1661 *
1662 * If a zone is deemed to be full of pinned pages then just give it a light
1663 * scan then give up on it.
1664 */
1665static void shrink_zones(int priority, struct zonelist *zonelist,
1666					struct scan_control *sc)
1667{
1668	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1669	struct zoneref *z;
1670	struct zone *zone;
1671
1672	sc->all_unreclaimable = 1;
1673	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1674					sc->nodemask) {
1675		if (!populated_zone(zone))
1676			continue;
1677		/*
1678		 * Take care memory controller reclaiming has small influence
1679		 * to global LRU.
1680		 */
1681		if (scanning_global_lru(sc)) {
1682			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1683				continue;
1684			note_zone_scanning_priority(zone, priority);
1685
1686			if (zone_is_all_unreclaimable(zone) &&
1687						priority != DEF_PRIORITY)
1688				continue;	/* Let kswapd poll it */
1689			sc->all_unreclaimable = 0;
1690		} else {
1691			/*
1692			 * Ignore cpuset limitation here. We just want to reduce
1693			 * # of used pages by us regardless of memory shortage.
1694			 */
1695			sc->all_unreclaimable = 0;
1696			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1697							priority);
1698		}
1699
1700		shrink_zone(priority, zone, sc);
1701	}
1702}
1703
1704/*
1705 * This is the main entry point to direct page reclaim.
1706 *
1707 * If a full scan of the inactive list fails to free enough memory then we
1708 * are "out of memory" and something needs to be killed.
1709 *
1710 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1711 * high - the zone may be full of dirty or under-writeback pages, which this
1712 * caller can't do much about.  We kick pdflush and take explicit naps in the
1713 * hope that some of these pages can be written.  But if the allocating task
1714 * holds filesystem locks which prevent writeout this might not work, and the
1715 * allocation attempt will fail.
1716 *
1717 * returns:	0, if no pages reclaimed
1718 * 		else, the number of pages reclaimed
1719 */
1720static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1721					struct scan_control *sc)
1722{
1723	int priority;
1724	unsigned long ret = 0;
1725	unsigned long total_scanned = 0;
1726	struct reclaim_state *reclaim_state = current->reclaim_state;
1727	unsigned long lru_pages = 0;
1728	struct zoneref *z;
1729	struct zone *zone;
1730	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1731
1732	delayacct_freepages_start();
1733
1734	if (scanning_global_lru(sc))
1735		count_vm_event(ALLOCSTALL);
1736	/*
1737	 * mem_cgroup will not do shrink_slab.
1738	 */
1739	if (scanning_global_lru(sc)) {
1740		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1741
1742			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1743				continue;
1744
1745			lru_pages += zone_reclaimable_pages(zone);
1746		}
1747	}
1748
1749	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1750		sc->nr_scanned = 0;
1751		if (!priority)
1752			disable_swap_token();
1753		shrink_zones(priority, zonelist, sc);
1754		/*
1755		 * Don't shrink slabs when reclaiming memory from
1756		 * over limit cgroups
1757		 */
1758		if (scanning_global_lru(sc)) {
1759			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1760			if (reclaim_state) {
1761				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1762				reclaim_state->reclaimed_slab = 0;
1763			}
1764		}
1765		total_scanned += sc->nr_scanned;
1766		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1767			ret = sc->nr_reclaimed;
1768			goto out;
1769		}
1770
1771		/*
1772		 * Try to write back as many pages as we just scanned.  This
1773		 * tends to cause slow streaming writers to write data to the
1774		 * disk smoothly, at the dirtying rate, which is nice.   But
1775		 * that's undesirable in laptop mode, where we *want* lumpy
1776		 * writeout.  So in laptop mode, write out the whole world.
1777		 */
1778		if (total_scanned > sc->swap_cluster_max +
1779					sc->swap_cluster_max / 2) {
1780			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1781			sc->may_writepage = 1;
1782		}
1783
1784		/* Take a nap, wait for some writeback to complete */
1785		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1786			congestion_wait(BLK_RW_ASYNC, HZ/10);
1787	}
1788	/* top priority shrink_zones still had more to do? don't OOM, then */
1789	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1790		ret = sc->nr_reclaimed;
1791out:
1792	/*
1793	 * Now that we've scanned all the zones at this priority level, note
1794	 * that level within the zone so that the next thread which performs
1795	 * scanning of this zone will immediately start out at this priority
1796	 * level.  This affects only the decision whether or not to bring
1797	 * mapped pages onto the inactive list.
1798	 */
1799	if (priority < 0)
1800		priority = 0;
1801
1802	if (scanning_global_lru(sc)) {
1803		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1804
1805			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1806				continue;
1807
1808			zone->prev_priority = priority;
1809		}
1810	} else
1811		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1812
1813	delayacct_freepages_end();
1814
1815	return ret;
1816}
1817
1818unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1819				gfp_t gfp_mask, nodemask_t *nodemask)
1820{
1821	struct scan_control sc = {
1822		.gfp_mask = gfp_mask,
1823		.may_writepage = !laptop_mode,
1824		.swap_cluster_max = SWAP_CLUSTER_MAX,
1825		.may_unmap = 1,
1826		.may_swap = 1,
1827		.swappiness = vm_swappiness,
1828		.order = order,
1829		.mem_cgroup = NULL,
1830		.isolate_pages = isolate_pages_global,
1831		.nodemask = nodemask,
1832	};
1833
1834	return do_try_to_free_pages(zonelist, &sc);
1835}
1836
1837#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1838
1839unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1840						gfp_t gfp_mask, bool noswap,
1841						unsigned int swappiness,
1842						struct zone *zone, int nid)
1843{
1844	struct scan_control sc = {
1845		.may_writepage = !laptop_mode,
1846		.may_unmap = 1,
1847		.may_swap = !noswap,
1848		.swap_cluster_max = SWAP_CLUSTER_MAX,
1849		.swappiness = swappiness,
1850		.order = 0,
1851		.mem_cgroup = mem,
1852		.isolate_pages = mem_cgroup_isolate_pages,
1853	};
1854	nodemask_t nm  = nodemask_of_node(nid);
1855
1856	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1857			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1858	sc.nodemask = &nm;
1859	sc.nr_reclaimed = 0;
1860	sc.nr_scanned = 0;
1861	/*
1862	 * NOTE: Although we can get the priority field, using it
1863	 * here is not a good idea, since it limits the pages we can scan.
1864	 * if we don't reclaim here, the shrink_zone from balance_pgdat
1865	 * will pick up pages from other mem cgroup's as well. We hack
1866	 * the priority and make it zero.
1867	 */
1868	shrink_zone(0, zone, &sc);
1869	return sc.nr_reclaimed;
1870}
1871
1872unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1873					   gfp_t gfp_mask,
1874					   bool noswap,
1875					   unsigned int swappiness)
1876{
1877	struct zonelist *zonelist;
1878	struct scan_control sc = {
1879		.may_writepage = !laptop_mode,
1880		.may_unmap = 1,
1881		.may_swap = !noswap,
1882		.swap_cluster_max = SWAP_CLUSTER_MAX,
1883		.swappiness = swappiness,
1884		.order = 0,
1885		.mem_cgroup = mem_cont,
1886		.isolate_pages = mem_cgroup_isolate_pages,
1887		.nodemask = NULL, /* we don't care the placement */
1888	};
1889
1890	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1891			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1892	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1893	return do_try_to_free_pages(zonelist, &sc);
1894}
1895#endif
1896
1897/*
1898 * For kswapd, balance_pgdat() will work across all this node's zones until
1899 * they are all at high_wmark_pages(zone).
1900 *
1901 * Returns the number of pages which were actually freed.
1902 *
1903 * There is special handling here for zones which are full of pinned pages.
1904 * This can happen if the pages are all mlocked, or if they are all used by
1905 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1906 * What we do is to detect the case where all pages in the zone have been
1907 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1908 * dead and from now on, only perform a short scan.  Basically we're polling
1909 * the zone for when the problem goes away.
1910 *
1911 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1912 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1913 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1914 * lower zones regardless of the number of free pages in the lower zones. This
1915 * interoperates with the page allocator fallback scheme to ensure that aging
1916 * of pages is balanced across the zones.
1917 */
1918static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1919{
1920	int all_zones_ok;
1921	int priority;
1922	int i;
1923	unsigned long total_scanned;
1924	struct reclaim_state *reclaim_state = current->reclaim_state;
1925	struct scan_control sc = {
1926		.gfp_mask = GFP_KERNEL,
1927		.may_unmap = 1,
1928		.may_swap = 1,
1929		.swap_cluster_max = SWAP_CLUSTER_MAX,
1930		.swappiness = vm_swappiness,
1931		.order = order,
1932		.mem_cgroup = NULL,
1933		.isolate_pages = isolate_pages_global,
1934	};
1935	/*
1936	 * temp_priority is used to remember the scanning priority at which
1937	 * this zone was successfully refilled to
1938	 * free_pages == high_wmark_pages(zone).
1939	 */
1940	int temp_priority[MAX_NR_ZONES];
1941
1942loop_again:
1943	total_scanned = 0;
1944	sc.nr_reclaimed = 0;
1945	sc.may_writepage = !laptop_mode;
1946	count_vm_event(PAGEOUTRUN);
1947
1948	for (i = 0; i < pgdat->nr_zones; i++)
1949		temp_priority[i] = DEF_PRIORITY;
1950
1951	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1952		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1953		unsigned long lru_pages = 0;
1954
1955		/* The swap token gets in the way of swapout... */
1956		if (!priority)
1957			disable_swap_token();
1958
1959		all_zones_ok = 1;
1960
1961		/*
1962		 * Scan in the highmem->dma direction for the highest
1963		 * zone which needs scanning
1964		 */
1965		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1966			struct zone *zone = pgdat->node_zones + i;
1967
1968			if (!populated_zone(zone))
1969				continue;
1970
1971			if (zone_is_all_unreclaimable(zone) &&
1972			    priority != DEF_PRIORITY)
1973				continue;
1974
1975			/*
1976			 * Do some background aging of the anon list, to give
1977			 * pages a chance to be referenced before reclaiming.
1978			 */
1979			if (inactive_anon_is_low(zone, &sc))
1980				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1981							&sc, priority, 0);
1982
1983			if (!zone_watermark_ok(zone, order,
1984					high_wmark_pages(zone), 0, 0)) {
1985				end_zone = i;
1986				break;
1987			}
1988		}
1989		if (i < 0)
1990			goto out;
1991
1992		for (i = 0; i <= end_zone; i++) {
1993			struct zone *zone = pgdat->node_zones + i;
1994
1995			lru_pages += zone_reclaimable_pages(zone);
1996		}
1997
1998		/*
1999		 * Now scan the zone in the dma->highmem direction, stopping
2000		 * at the last zone which needs scanning.
2001		 *
2002		 * We do this because the page allocator works in the opposite
2003		 * direction.  This prevents the page allocator from allocating
2004		 * pages behind kswapd's direction of progress, which would
2005		 * cause too much scanning of the lower zones.
2006		 */
2007		for (i = 0; i <= end_zone; i++) {
2008			struct zone *zone = pgdat->node_zones + i;
2009			int nr_slab;
2010			int nid, zid;
2011
2012			if (!populated_zone(zone))
2013				continue;
2014
2015			if (zone_is_all_unreclaimable(zone) &&
2016					priority != DEF_PRIORITY)
2017				continue;
2018
2019			if (!zone_watermark_ok(zone, order,
2020					high_wmark_pages(zone), end_zone, 0))
2021				all_zones_ok = 0;
2022			temp_priority[i] = priority;
2023			sc.nr_scanned = 0;
2024			note_zone_scanning_priority(zone, priority);
2025
2026			nid = pgdat->node_id;
2027			zid = zone_idx(zone);
2028			/*
2029			 * Call soft limit reclaim before calling shrink_zone.
2030			 * For now we ignore the return value
2031			 */
2032			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2033							nid, zid);
2034			/*
2035			 * We put equal pressure on every zone, unless one
2036			 * zone has way too many pages free already.
2037			 */
2038			if (!zone_watermark_ok(zone, order,
2039					8*high_wmark_pages(zone), end_zone, 0))
2040				shrink_zone(priority, zone, &sc);
2041			reclaim_state->reclaimed_slab = 0;
2042			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2043						lru_pages);
2044			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2045			total_scanned += sc.nr_scanned;
2046			if (zone_is_all_unreclaimable(zone))
2047				continue;
2048			if (nr_slab == 0 && zone->pages_scanned >=
2049					(zone_reclaimable_pages(zone) * 6))
2050					zone_set_flag(zone,
2051						      ZONE_ALL_UNRECLAIMABLE);
2052			/*
2053			 * If we've done a decent amount of scanning and
2054			 * the reclaim ratio is low, start doing writepage
2055			 * even in laptop mode
2056			 */
2057			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2058			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2059				sc.may_writepage = 1;
2060		}
2061		if (all_zones_ok)
2062			break;		/* kswapd: all done */
2063		/*
2064		 * OK, kswapd is getting into trouble.  Take a nap, then take
2065		 * another pass across the zones.
2066		 */
2067		if (total_scanned && priority < DEF_PRIORITY - 2)
2068			congestion_wait(BLK_RW_ASYNC, HZ/10);
2069
2070		/*
2071		 * We do this so kswapd doesn't build up large priorities for
2072		 * example when it is freeing in parallel with allocators. It
2073		 * matches the direct reclaim path behaviour in terms of impact
2074		 * on zone->*_priority.
2075		 */
2076		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2077			break;
2078	}
2079out:
2080	/*
2081	 * Note within each zone the priority level at which this zone was
2082	 * brought into a happy state.  So that the next thread which scans this
2083	 * zone will start out at that priority level.
2084	 */
2085	for (i = 0; i < pgdat->nr_zones; i++) {
2086		struct zone *zone = pgdat->node_zones + i;
2087
2088		zone->prev_priority = temp_priority[i];
2089	}
2090	if (!all_zones_ok) {
2091		cond_resched();
2092
2093		try_to_freeze();
2094
2095		/*
2096		 * Fragmentation may mean that the system cannot be
2097		 * rebalanced for high-order allocations in all zones.
2098		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2099		 * it means the zones have been fully scanned and are still
2100		 * not balanced. For high-order allocations, there is
2101		 * little point trying all over again as kswapd may
2102		 * infinite loop.
2103		 *
2104		 * Instead, recheck all watermarks at order-0 as they
2105		 * are the most important. If watermarks are ok, kswapd will go
2106		 * back to sleep. High-order users can still perform direct
2107		 * reclaim if they wish.
2108		 */
2109		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2110			order = sc.order = 0;
2111
2112		goto loop_again;
2113	}
2114
2115	return sc.nr_reclaimed;
2116}
2117
2118/*
2119 * The background pageout daemon, started as a kernel thread
2120 * from the init process.
2121 *
2122 * This basically trickles out pages so that we have _some_
2123 * free memory available even if there is no other activity
2124 * that frees anything up. This is needed for things like routing
2125 * etc, where we otherwise might have all activity going on in
2126 * asynchronous contexts that cannot page things out.
2127 *
2128 * If there are applications that are active memory-allocators
2129 * (most normal use), this basically shouldn't matter.
2130 */
2131static int kswapd(void *p)
2132{
2133	unsigned long order;
2134	pg_data_t *pgdat = (pg_data_t*)p;
2135	struct task_struct *tsk = current;
2136	DEFINE_WAIT(wait);
2137	struct reclaim_state reclaim_state = {
2138		.reclaimed_slab = 0,
2139	};
2140	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2141
2142	lockdep_set_current_reclaim_state(GFP_KERNEL);
2143
2144	if (!cpumask_empty(cpumask))
2145		set_cpus_allowed_ptr(tsk, cpumask);
2146	current->reclaim_state = &reclaim_state;
2147
2148	/*
2149	 * Tell the memory management that we're a "memory allocator",
2150	 * and that if we need more memory we should get access to it
2151	 * regardless (see "__alloc_pages()"). "kswapd" should
2152	 * never get caught in the normal page freeing logic.
2153	 *
2154	 * (Kswapd normally doesn't need memory anyway, but sometimes
2155	 * you need a small amount of memory in order to be able to
2156	 * page out something else, and this flag essentially protects
2157	 * us from recursively trying to free more memory as we're
2158	 * trying to free the first piece of memory in the first place).
2159	 */
2160	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2161	set_freezable();
2162
2163	order = 0;
2164	for ( ; ; ) {
2165		unsigned long new_order;
2166
2167		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2168		new_order = pgdat->kswapd_max_order;
2169		pgdat->kswapd_max_order = 0;
2170		if (order < new_order) {
2171			/*
2172			 * Don't sleep if someone wants a larger 'order'
2173			 * allocation
2174			 */
2175			order = new_order;
2176		} else {
2177			if (!freezing(current))
2178				schedule();
2179
2180			order = pgdat->kswapd_max_order;
2181		}
2182		finish_wait(&pgdat->kswapd_wait, &wait);
2183
2184		if (!try_to_freeze()) {
2185			/* We can speed up thawing tasks if we don't call
2186			 * balance_pgdat after returning from the refrigerator
2187			 */
2188			balance_pgdat(pgdat, order);
2189		}
2190	}
2191	return 0;
2192}
2193
2194/*
2195 * A zone is low on free memory, so wake its kswapd task to service it.
2196 */
2197void wakeup_kswapd(struct zone *zone, int order)
2198{
2199	pg_data_t *pgdat;
2200
2201	if (!populated_zone(zone))
2202		return;
2203
2204	pgdat = zone->zone_pgdat;
2205	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2206		return;
2207	if (pgdat->kswapd_max_order < order)
2208		pgdat->kswapd_max_order = order;
2209	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2210		return;
2211	if (!waitqueue_active(&pgdat->kswapd_wait))
2212		return;
2213	wake_up_interruptible(&pgdat->kswapd_wait);
2214}
2215
2216/*
2217 * The reclaimable count would be mostly accurate.
2218 * The less reclaimable pages may be
2219 * - mlocked pages, which will be moved to unevictable list when encountered
2220 * - mapped pages, which may require several travels to be reclaimed
2221 * - dirty pages, which is not "instantly" reclaimable
2222 */
2223unsigned long global_reclaimable_pages(void)
2224{
2225	int nr;
2226
2227	nr = global_page_state(NR_ACTIVE_FILE) +
2228	     global_page_state(NR_INACTIVE_FILE);
2229
2230	if (nr_swap_pages > 0)
2231		nr += global_page_state(NR_ACTIVE_ANON) +
2232		      global_page_state(NR_INACTIVE_ANON);
2233
2234	return nr;
2235}
2236
2237unsigned long zone_reclaimable_pages(struct zone *zone)
2238{
2239	int nr;
2240
2241	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2242	     zone_page_state(zone, NR_INACTIVE_FILE);
2243
2244	if (nr_swap_pages > 0)
2245		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2246		      zone_page_state(zone, NR_INACTIVE_ANON);
2247
2248	return nr;
2249}
2250
2251#ifdef CONFIG_HIBERNATION
2252/*
2253 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2254 * from LRU lists system-wide, for given pass and priority.
2255 *
2256 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2257 */
2258static void shrink_all_zones(unsigned long nr_pages, int prio,
2259				      int pass, struct scan_control *sc)
2260{
2261	struct zone *zone;
2262	unsigned long nr_reclaimed = 0;
2263	struct zone_reclaim_stat *reclaim_stat;
2264
2265	for_each_populated_zone(zone) {
2266		enum lru_list l;
2267
2268		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2269			continue;
2270
2271		for_each_evictable_lru(l) {
2272			enum zone_stat_item ls = NR_LRU_BASE + l;
2273			unsigned long lru_pages = zone_page_state(zone, ls);
2274
2275			/* For pass = 0, we don't shrink the active list */
2276			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2277						l == LRU_ACTIVE_FILE))
2278				continue;
2279
2280			reclaim_stat = get_reclaim_stat(zone, sc);
2281			reclaim_stat->nr_saved_scan[l] +=
2282						(lru_pages >> prio) + 1;
2283			if (reclaim_stat->nr_saved_scan[l]
2284						>= nr_pages || pass > 3) {
2285				unsigned long nr_to_scan;
2286
2287				reclaim_stat->nr_saved_scan[l] = 0;
2288				nr_to_scan = min(nr_pages, lru_pages);
2289				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2290								sc, prio);
2291				if (nr_reclaimed >= nr_pages) {
2292					sc->nr_reclaimed += nr_reclaimed;
2293					return;
2294				}
2295			}
2296		}
2297	}
2298	sc->nr_reclaimed += nr_reclaimed;
2299}
2300
2301/*
2302 * Try to free `nr_pages' of memory, system-wide, and return the number of
2303 * freed pages.
2304 *
2305 * Rather than trying to age LRUs the aim is to preserve the overall
2306 * LRU order by reclaiming preferentially
2307 * inactive > active > active referenced > active mapped
2308 */
2309unsigned long shrink_all_memory(unsigned long nr_pages)
2310{
2311	unsigned long lru_pages, nr_slab;
2312	int pass;
2313	struct reclaim_state reclaim_state;
2314	struct scan_control sc = {
2315		.gfp_mask = GFP_KERNEL,
2316		.may_unmap = 0,
2317		.may_writepage = 1,
2318		.isolate_pages = isolate_pages_global,
2319		.nr_reclaimed = 0,
2320	};
2321
2322	current->reclaim_state = &reclaim_state;
2323
2324	lru_pages = global_reclaimable_pages();
2325	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2326	/* If slab caches are huge, it's better to hit them first */
2327	while (nr_slab >= lru_pages) {
2328		reclaim_state.reclaimed_slab = 0;
2329		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2330		if (!reclaim_state.reclaimed_slab)
2331			break;
2332
2333		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2334		if (sc.nr_reclaimed >= nr_pages)
2335			goto out;
2336
2337		nr_slab -= reclaim_state.reclaimed_slab;
2338	}
2339
2340	/*
2341	 * We try to shrink LRUs in 5 passes:
2342	 * 0 = Reclaim from inactive_list only
2343	 * 1 = Reclaim from active list but don't reclaim mapped
2344	 * 2 = 2nd pass of type 1
2345	 * 3 = Reclaim mapped (normal reclaim)
2346	 * 4 = 2nd pass of type 3
2347	 */
2348	for (pass = 0; pass < 5; pass++) {
2349		int prio;
2350
2351		/* Force reclaiming mapped pages in the passes #3 and #4 */
2352		if (pass > 2)
2353			sc.may_unmap = 1;
2354
2355		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2356			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2357
2358			sc.nr_scanned = 0;
2359			sc.swap_cluster_max = nr_to_scan;
2360			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2361			if (sc.nr_reclaimed >= nr_pages)
2362				goto out;
2363
2364			reclaim_state.reclaimed_slab = 0;
2365			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2366				    global_reclaimable_pages());
2367			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2368			if (sc.nr_reclaimed >= nr_pages)
2369				goto out;
2370
2371			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2372				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2373		}
2374	}
2375
2376	/*
2377	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2378	 * something in slab caches
2379	 */
2380	if (!sc.nr_reclaimed) {
2381		do {
2382			reclaim_state.reclaimed_slab = 0;
2383			shrink_slab(nr_pages, sc.gfp_mask,
2384				    global_reclaimable_pages());
2385			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2386		} while (sc.nr_reclaimed < nr_pages &&
2387				reclaim_state.reclaimed_slab > 0);
2388	}
2389
2390
2391out:
2392	current->reclaim_state = NULL;
2393
2394	return sc.nr_reclaimed;
2395}
2396#endif /* CONFIG_HIBERNATION */
2397
2398/* It's optimal to keep kswapds on the same CPUs as their memory, but
2399   not required for correctness.  So if the last cpu in a node goes
2400   away, we get changed to run anywhere: as the first one comes back,
2401   restore their cpu bindings. */
2402static int __devinit cpu_callback(struct notifier_block *nfb,
2403				  unsigned long action, void *hcpu)
2404{
2405	int nid;
2406
2407	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2408		for_each_node_state(nid, N_HIGH_MEMORY) {
2409			pg_data_t *pgdat = NODE_DATA(nid);
2410			const struct cpumask *mask;
2411
2412			mask = cpumask_of_node(pgdat->node_id);
2413
2414			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2415				/* One of our CPUs online: restore mask */
2416				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2417		}
2418	}
2419	return NOTIFY_OK;
2420}
2421
2422/*
2423 * This kswapd start function will be called by init and node-hot-add.
2424 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2425 */
2426int kswapd_run(int nid)
2427{
2428	pg_data_t *pgdat = NODE_DATA(nid);
2429	int ret = 0;
2430
2431	if (pgdat->kswapd)
2432		return 0;
2433
2434	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2435	if (IS_ERR(pgdat->kswapd)) {
2436		/* failure at boot is fatal */
2437		BUG_ON(system_state == SYSTEM_BOOTING);
2438		printk("Failed to start kswapd on node %d\n",nid);
2439		ret = -1;
2440	}
2441	return ret;
2442}
2443
2444static int __init kswapd_init(void)
2445{
2446	int nid;
2447
2448	swap_setup();
2449	for_each_node_state(nid, N_HIGH_MEMORY)
2450 		kswapd_run(nid);
2451	hotcpu_notifier(cpu_callback, 0);
2452	return 0;
2453}
2454
2455module_init(kswapd_init)
2456
2457#ifdef CONFIG_NUMA
2458/*
2459 * Zone reclaim mode
2460 *
2461 * If non-zero call zone_reclaim when the number of free pages falls below
2462 * the watermarks.
2463 */
2464int zone_reclaim_mode __read_mostly;
2465
2466#define RECLAIM_OFF 0
2467#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2468#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2469#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2470
2471/*
2472 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2473 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2474 * a zone.
2475 */
2476#define ZONE_RECLAIM_PRIORITY 4
2477
2478/*
2479 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2480 * occur.
2481 */
2482int sysctl_min_unmapped_ratio = 1;
2483
2484/*
2485 * If the number of slab pages in a zone grows beyond this percentage then
2486 * slab reclaim needs to occur.
2487 */
2488int sysctl_min_slab_ratio = 5;
2489
2490static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2491{
2492	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2493	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2494		zone_page_state(zone, NR_ACTIVE_FILE);
2495
2496	/*
2497	 * It's possible for there to be more file mapped pages than
2498	 * accounted for by the pages on the file LRU lists because
2499	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2500	 */
2501	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2502}
2503
2504/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2505static long zone_pagecache_reclaimable(struct zone *zone)
2506{
2507	long nr_pagecache_reclaimable;
2508	long delta = 0;
2509
2510	/*
2511	 * If RECLAIM_SWAP is set, then all file pages are considered
2512	 * potentially reclaimable. Otherwise, we have to worry about
2513	 * pages like swapcache and zone_unmapped_file_pages() provides
2514	 * a better estimate
2515	 */
2516	if (zone_reclaim_mode & RECLAIM_SWAP)
2517		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2518	else
2519		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2520
2521	/* If we can't clean pages, remove dirty pages from consideration */
2522	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2523		delta += zone_page_state(zone, NR_FILE_DIRTY);
2524
2525	/* Watch for any possible underflows due to delta */
2526	if (unlikely(delta > nr_pagecache_reclaimable))
2527		delta = nr_pagecache_reclaimable;
2528
2529	return nr_pagecache_reclaimable - delta;
2530}
2531
2532/*
2533 * Try to free up some pages from this zone through reclaim.
2534 */
2535static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2536{
2537	/* Minimum pages needed in order to stay on node */
2538	const unsigned long nr_pages = 1 << order;
2539	struct task_struct *p = current;
2540	struct reclaim_state reclaim_state;
2541	int priority;
2542	struct scan_control sc = {
2543		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2544		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2545		.may_swap = 1,
2546		.swap_cluster_max = max_t(unsigned long, nr_pages,
2547					SWAP_CLUSTER_MAX),
2548		.gfp_mask = gfp_mask,
2549		.swappiness = vm_swappiness,
2550		.order = order,
2551		.isolate_pages = isolate_pages_global,
2552	};
2553	unsigned long slab_reclaimable;
2554
2555	disable_swap_token();
2556	cond_resched();
2557	/*
2558	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2559	 * and we also need to be able to write out pages for RECLAIM_WRITE
2560	 * and RECLAIM_SWAP.
2561	 */
2562	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2563	reclaim_state.reclaimed_slab = 0;
2564	p->reclaim_state = &reclaim_state;
2565
2566	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2567		/*
2568		 * Free memory by calling shrink zone with increasing
2569		 * priorities until we have enough memory freed.
2570		 */
2571		priority = ZONE_RECLAIM_PRIORITY;
2572		do {
2573			note_zone_scanning_priority(zone, priority);
2574			shrink_zone(priority, zone, &sc);
2575			priority--;
2576		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2577	}
2578
2579	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2580	if (slab_reclaimable > zone->min_slab_pages) {
2581		/*
2582		 * shrink_slab() does not currently allow us to determine how
2583		 * many pages were freed in this zone. So we take the current
2584		 * number of slab pages and shake the slab until it is reduced
2585		 * by the same nr_pages that we used for reclaiming unmapped
2586		 * pages.
2587		 *
2588		 * Note that shrink_slab will free memory on all zones and may
2589		 * take a long time.
2590		 */
2591		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2592			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2593				slab_reclaimable - nr_pages)
2594			;
2595
2596		/*
2597		 * Update nr_reclaimed by the number of slab pages we
2598		 * reclaimed from this zone.
2599		 */
2600		sc.nr_reclaimed += slab_reclaimable -
2601			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2602	}
2603
2604	p->reclaim_state = NULL;
2605	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2606	return sc.nr_reclaimed >= nr_pages;
2607}
2608
2609int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2610{
2611	int node_id;
2612	int ret;
2613
2614	/*
2615	 * Zone reclaim reclaims unmapped file backed pages and
2616	 * slab pages if we are over the defined limits.
2617	 *
2618	 * A small portion of unmapped file backed pages is needed for
2619	 * file I/O otherwise pages read by file I/O will be immediately
2620	 * thrown out if the zone is overallocated. So we do not reclaim
2621	 * if less than a specified percentage of the zone is used by
2622	 * unmapped file backed pages.
2623	 */
2624	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2625	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2626		return ZONE_RECLAIM_FULL;
2627
2628	if (zone_is_all_unreclaimable(zone))
2629		return ZONE_RECLAIM_FULL;
2630
2631	/*
2632	 * Do not scan if the allocation should not be delayed.
2633	 */
2634	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2635		return ZONE_RECLAIM_NOSCAN;
2636
2637	/*
2638	 * Only run zone reclaim on the local zone or on zones that do not
2639	 * have associated processors. This will favor the local processor
2640	 * over remote processors and spread off node memory allocations
2641	 * as wide as possible.
2642	 */
2643	node_id = zone_to_nid(zone);
2644	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2645		return ZONE_RECLAIM_NOSCAN;
2646
2647	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2648		return ZONE_RECLAIM_NOSCAN;
2649
2650	ret = __zone_reclaim(zone, gfp_mask, order);
2651	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2652
2653	if (!ret)
2654		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2655
2656	return ret;
2657}
2658#endif
2659
2660/*
2661 * page_evictable - test whether a page is evictable
2662 * @page: the page to test
2663 * @vma: the VMA in which the page is or will be mapped, may be NULL
2664 *
2665 * Test whether page is evictable--i.e., should be placed on active/inactive
2666 * lists vs unevictable list.  The vma argument is !NULL when called from the
2667 * fault path to determine how to instantate a new page.
2668 *
2669 * Reasons page might not be evictable:
2670 * (1) page's mapping marked unevictable
2671 * (2) page is part of an mlocked VMA
2672 *
2673 */
2674int page_evictable(struct page *page, struct vm_area_struct *vma)
2675{
2676
2677	if (mapping_unevictable(page_mapping(page)))
2678		return 0;
2679
2680	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2681		return 0;
2682
2683	return 1;
2684}
2685
2686/**
2687 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2688 * @page: page to check evictability and move to appropriate lru list
2689 * @zone: zone page is in
2690 *
2691 * Checks a page for evictability and moves the page to the appropriate
2692 * zone lru list.
2693 *
2694 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2695 * have PageUnevictable set.
2696 */
2697static void check_move_unevictable_page(struct page *page, struct zone *zone)
2698{
2699	VM_BUG_ON(PageActive(page));
2700
2701retry:
2702	ClearPageUnevictable(page);
2703	if (page_evictable(page, NULL)) {
2704		enum lru_list l = page_lru_base_type(page);
2705
2706		__dec_zone_state(zone, NR_UNEVICTABLE);
2707		list_move(&page->lru, &zone->lru[l].list);
2708		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2709		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2710		__count_vm_event(UNEVICTABLE_PGRESCUED);
2711	} else {
2712		/*
2713		 * rotate unevictable list
2714		 */
2715		SetPageUnevictable(page);
2716		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2717		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2718		if (page_evictable(page, NULL))
2719			goto retry;
2720	}
2721}
2722
2723/**
2724 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2725 * @mapping: struct address_space to scan for evictable pages
2726 *
2727 * Scan all pages in mapping.  Check unevictable pages for
2728 * evictability and move them to the appropriate zone lru list.
2729 */
2730void scan_mapping_unevictable_pages(struct address_space *mapping)
2731{
2732	pgoff_t next = 0;
2733	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2734			 PAGE_CACHE_SHIFT;
2735	struct zone *zone;
2736	struct pagevec pvec;
2737
2738	if (mapping->nrpages == 0)
2739		return;
2740
2741	pagevec_init(&pvec, 0);
2742	while (next < end &&
2743		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2744		int i;
2745		int pg_scanned = 0;
2746
2747		zone = NULL;
2748
2749		for (i = 0; i < pagevec_count(&pvec); i++) {
2750			struct page *page = pvec.pages[i];
2751			pgoff_t page_index = page->index;
2752			struct zone *pagezone = page_zone(page);
2753
2754			pg_scanned++;
2755			if (page_index > next)
2756				next = page_index;
2757			next++;
2758
2759			if (pagezone != zone) {
2760				if (zone)
2761					spin_unlock_irq(&zone->lru_lock);
2762				zone = pagezone;
2763				spin_lock_irq(&zone->lru_lock);
2764			}
2765
2766			if (PageLRU(page) && PageUnevictable(page))
2767				check_move_unevictable_page(page, zone);
2768		}
2769		if (zone)
2770			spin_unlock_irq(&zone->lru_lock);
2771		pagevec_release(&pvec);
2772
2773		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2774	}
2775
2776}
2777
2778/**
2779 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2780 * @zone - zone of which to scan the unevictable list
2781 *
2782 * Scan @zone's unevictable LRU lists to check for pages that have become
2783 * evictable.  Move those that have to @zone's inactive list where they
2784 * become candidates for reclaim, unless shrink_inactive_zone() decides
2785 * to reactivate them.  Pages that are still unevictable are rotated
2786 * back onto @zone's unevictable list.
2787 */
2788#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2789static void scan_zone_unevictable_pages(struct zone *zone)
2790{
2791	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2792	unsigned long scan;
2793	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2794
2795	while (nr_to_scan > 0) {
2796		unsigned long batch_size = min(nr_to_scan,
2797						SCAN_UNEVICTABLE_BATCH_SIZE);
2798
2799		spin_lock_irq(&zone->lru_lock);
2800		for (scan = 0;  scan < batch_size; scan++) {
2801			struct page *page = lru_to_page(l_unevictable);
2802
2803			if (!trylock_page(page))
2804				continue;
2805
2806			prefetchw_prev_lru_page(page, l_unevictable, flags);
2807
2808			if (likely(PageLRU(page) && PageUnevictable(page)))
2809				check_move_unevictable_page(page, zone);
2810
2811			unlock_page(page);
2812		}
2813		spin_unlock_irq(&zone->lru_lock);
2814
2815		nr_to_scan -= batch_size;
2816	}
2817}
2818
2819
2820/**
2821 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2822 *
2823 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2824 * pages that have become evictable.  Move those back to the zones'
2825 * inactive list where they become candidates for reclaim.
2826 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2827 * and we add swap to the system.  As such, it runs in the context of a task
2828 * that has possibly/probably made some previously unevictable pages
2829 * evictable.
2830 */
2831static void scan_all_zones_unevictable_pages(void)
2832{
2833	struct zone *zone;
2834
2835	for_each_zone(zone) {
2836		scan_zone_unevictable_pages(zone);
2837	}
2838}
2839
2840/*
2841 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2842 * all nodes' unevictable lists for evictable pages
2843 */
2844unsigned long scan_unevictable_pages;
2845
2846int scan_unevictable_handler(struct ctl_table *table, int write,
2847			   struct file *file, void __user *buffer,
2848			   size_t *length, loff_t *ppos)
2849{
2850	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2851
2852	if (write && *(unsigned long *)table->data)
2853		scan_all_zones_unevictable_pages();
2854
2855	scan_unevictable_pages = 0;
2856	return 0;
2857}
2858
2859/*
2860 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2861 * a specified node's per zone unevictable lists for evictable pages.
2862 */
2863
2864static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2865					  struct sysdev_attribute *attr,
2866					  char *buf)
2867{
2868	return sprintf(buf, "0\n");	/* always zero; should fit... */
2869}
2870
2871static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2872					   struct sysdev_attribute *attr,
2873					const char *buf, size_t count)
2874{
2875	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2876	struct zone *zone;
2877	unsigned long res;
2878	unsigned long req = strict_strtoul(buf, 10, &res);
2879
2880	if (!req)
2881		return 1;	/* zero is no-op */
2882
2883	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2884		if (!populated_zone(zone))
2885			continue;
2886		scan_zone_unevictable_pages(zone);
2887	}
2888	return 1;
2889}
2890
2891
2892static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2893			read_scan_unevictable_node,
2894			write_scan_unevictable_node);
2895
2896int scan_unevictable_register_node(struct node *node)
2897{
2898	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2899}
2900
2901void scan_unevictable_unregister_node(struct node *node)
2902{
2903	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2904}
2905
2906