vmscan.c revision 5660048ccac8735d9bc0a46325a02e6a6518b5b2
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/*
107	 * The memory cgroup that hit its limit and as a result is the
108	 * primary target of this reclaim invocation.
109	 */
110	struct mem_cgroup *target_mem_cgroup;
111
112	/*
113	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114	 * are scanned.
115	 */
116	nodemask_t	*nodemask;
117};
118
119struct mem_cgroup_zone {
120	struct mem_cgroup *mem_cgroup;
121	struct zone *zone;
122};
123
124#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126#ifdef ARCH_HAS_PREFETCH
127#define prefetch_prev_lru_page(_page, _base, _field)			\
128	do {								\
129		if ((_page)->lru.prev != _base) {			\
130			struct page *prev;				\
131									\
132			prev = lru_to_page(&(_page->lru));		\
133			prefetch(&prev->_field);			\
134		}							\
135	} while (0)
136#else
137#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138#endif
139
140#ifdef ARCH_HAS_PREFETCHW
141#define prefetchw_prev_lru_page(_page, _base, _field)			\
142	do {								\
143		if ((_page)->lru.prev != _base) {			\
144			struct page *prev;				\
145									\
146			prev = lru_to_page(&(_page->lru));		\
147			prefetchw(&prev->_field);			\
148		}							\
149	} while (0)
150#else
151#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152#endif
153
154/*
155 * From 0 .. 100.  Higher means more swappy.
156 */
157int vm_swappiness = 60;
158long vm_total_pages;	/* The total number of pages which the VM controls */
159
160static LIST_HEAD(shrinker_list);
161static DECLARE_RWSEM(shrinker_rwsem);
162
163#ifdef CONFIG_CGROUP_MEM_RES_CTLR
164static bool global_reclaim(struct scan_control *sc)
165{
166	return !sc->target_mem_cgroup;
167}
168
169static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170{
171	return !mz->mem_cgroup;
172}
173#else
174static bool global_reclaim(struct scan_control *sc)
175{
176	return true;
177}
178
179static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180{
181	return true;
182}
183#endif
184
185static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186{
187	if (!scanning_global_lru(mz))
188		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190	return &mz->zone->reclaim_stat;
191}
192
193static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194				       enum lru_list lru)
195{
196	if (!scanning_global_lru(mz))
197		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198						    zone_to_nid(mz->zone),
199						    zone_idx(mz->zone),
200						    BIT(lru));
201
202	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203}
204
205
206/*
207 * Add a shrinker callback to be called from the vm
208 */
209void register_shrinker(struct shrinker *shrinker)
210{
211	atomic_long_set(&shrinker->nr_in_batch, 0);
212	down_write(&shrinker_rwsem);
213	list_add_tail(&shrinker->list, &shrinker_list);
214	up_write(&shrinker_rwsem);
215}
216EXPORT_SYMBOL(register_shrinker);
217
218/*
219 * Remove one
220 */
221void unregister_shrinker(struct shrinker *shrinker)
222{
223	down_write(&shrinker_rwsem);
224	list_del(&shrinker->list);
225	up_write(&shrinker_rwsem);
226}
227EXPORT_SYMBOL(unregister_shrinker);
228
229static inline int do_shrinker_shrink(struct shrinker *shrinker,
230				     struct shrink_control *sc,
231				     unsigned long nr_to_scan)
232{
233	sc->nr_to_scan = nr_to_scan;
234	return (*shrinker->shrink)(shrinker, sc);
235}
236
237#define SHRINK_BATCH 128
238/*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object.  With this in mind we age equal
243 * percentages of the lru and ageable caches.  This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt.  It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257unsigned long shrink_slab(struct shrink_control *shrink,
258			  unsigned long nr_pages_scanned,
259			  unsigned long lru_pages)
260{
261	struct shrinker *shrinker;
262	unsigned long ret = 0;
263
264	if (nr_pages_scanned == 0)
265		nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267	if (!down_read_trylock(&shrinker_rwsem)) {
268		/* Assume we'll be able to shrink next time */
269		ret = 1;
270		goto out;
271	}
272
273	list_for_each_entry(shrinker, &shrinker_list, list) {
274		unsigned long long delta;
275		long total_scan;
276		long max_pass;
277		int shrink_ret = 0;
278		long nr;
279		long new_nr;
280		long batch_size = shrinker->batch ? shrinker->batch
281						  : SHRINK_BATCH;
282
283		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284		if (max_pass <= 0)
285			continue;
286
287		/*
288		 * copy the current shrinker scan count into a local variable
289		 * and zero it so that other concurrent shrinker invocations
290		 * don't also do this scanning work.
291		 */
292		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294		total_scan = nr;
295		delta = (4 * nr_pages_scanned) / shrinker->seeks;
296		delta *= max_pass;
297		do_div(delta, lru_pages + 1);
298		total_scan += delta;
299		if (total_scan < 0) {
300			printk(KERN_ERR "shrink_slab: %pF negative objects to "
301			       "delete nr=%ld\n",
302			       shrinker->shrink, total_scan);
303			total_scan = max_pass;
304		}
305
306		/*
307		 * We need to avoid excessive windup on filesystem shrinkers
308		 * due to large numbers of GFP_NOFS allocations causing the
309		 * shrinkers to return -1 all the time. This results in a large
310		 * nr being built up so when a shrink that can do some work
311		 * comes along it empties the entire cache due to nr >>>
312		 * max_pass.  This is bad for sustaining a working set in
313		 * memory.
314		 *
315		 * Hence only allow the shrinker to scan the entire cache when
316		 * a large delta change is calculated directly.
317		 */
318		if (delta < max_pass / 4)
319			total_scan = min(total_scan, max_pass / 2);
320
321		/*
322		 * Avoid risking looping forever due to too large nr value:
323		 * never try to free more than twice the estimate number of
324		 * freeable entries.
325		 */
326		if (total_scan > max_pass * 2)
327			total_scan = max_pass * 2;
328
329		trace_mm_shrink_slab_start(shrinker, shrink, nr,
330					nr_pages_scanned, lru_pages,
331					max_pass, delta, total_scan);
332
333		while (total_scan >= batch_size) {
334			int nr_before;
335
336			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337			shrink_ret = do_shrinker_shrink(shrinker, shrink,
338							batch_size);
339			if (shrink_ret == -1)
340				break;
341			if (shrink_ret < nr_before)
342				ret += nr_before - shrink_ret;
343			count_vm_events(SLABS_SCANNED, batch_size);
344			total_scan -= batch_size;
345
346			cond_resched();
347		}
348
349		/*
350		 * move the unused scan count back into the shrinker in a
351		 * manner that handles concurrent updates. If we exhausted the
352		 * scan, there is no need to do an update.
353		 */
354		if (total_scan > 0)
355			new_nr = atomic_long_add_return(total_scan,
356					&shrinker->nr_in_batch);
357		else
358			new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361	}
362	up_read(&shrinker_rwsem);
363out:
364	cond_resched();
365	return ret;
366}
367
368static void set_reclaim_mode(int priority, struct scan_control *sc,
369				   bool sync)
370{
371	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373	/*
374	 * Initially assume we are entering either lumpy reclaim or
375	 * reclaim/compaction.Depending on the order, we will either set the
376	 * sync mode or just reclaim order-0 pages later.
377	 */
378	if (COMPACTION_BUILD)
379		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380	else
381		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383	/*
384	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385	 * restricting when its set to either costly allocations or when
386	 * under memory pressure
387	 */
388	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389		sc->reclaim_mode |= syncmode;
390	else if (sc->order && priority < DEF_PRIORITY - 2)
391		sc->reclaim_mode |= syncmode;
392	else
393		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394}
395
396static void reset_reclaim_mode(struct scan_control *sc)
397{
398	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399}
400
401static inline int is_page_cache_freeable(struct page *page)
402{
403	/*
404	 * A freeable page cache page is referenced only by the caller
405	 * that isolated the page, the page cache radix tree and
406	 * optional buffer heads at page->private.
407	 */
408	return page_count(page) - page_has_private(page) == 2;
409}
410
411static int may_write_to_queue(struct backing_dev_info *bdi,
412			      struct scan_control *sc)
413{
414	if (current->flags & PF_SWAPWRITE)
415		return 1;
416	if (!bdi_write_congested(bdi))
417		return 1;
418	if (bdi == current->backing_dev_info)
419		return 1;
420
421	/* lumpy reclaim for hugepage often need a lot of write */
422	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423		return 1;
424	return 0;
425}
426
427/*
428 * We detected a synchronous write error writing a page out.  Probably
429 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up.  But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439static void handle_write_error(struct address_space *mapping,
440				struct page *page, int error)
441{
442	lock_page(page);
443	if (page_mapping(page) == mapping)
444		mapping_set_error(mapping, error);
445	unlock_page(page);
446}
447
448/* possible outcome of pageout() */
449typedef enum {
450	/* failed to write page out, page is locked */
451	PAGE_KEEP,
452	/* move page to the active list, page is locked */
453	PAGE_ACTIVATE,
454	/* page has been sent to the disk successfully, page is unlocked */
455	PAGE_SUCCESS,
456	/* page is clean and locked */
457	PAGE_CLEAN,
458} pageout_t;
459
460/*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464static pageout_t pageout(struct page *page, struct address_space *mapping,
465			 struct scan_control *sc)
466{
467	/*
468	 * If the page is dirty, only perform writeback if that write
469	 * will be non-blocking.  To prevent this allocation from being
470	 * stalled by pagecache activity.  But note that there may be
471	 * stalls if we need to run get_block().  We could test
472	 * PagePrivate for that.
473	 *
474	 * If this process is currently in __generic_file_aio_write() against
475	 * this page's queue, we can perform writeback even if that
476	 * will block.
477	 *
478	 * If the page is swapcache, write it back even if that would
479	 * block, for some throttling. This happens by accident, because
480	 * swap_backing_dev_info is bust: it doesn't reflect the
481	 * congestion state of the swapdevs.  Easy to fix, if needed.
482	 */
483	if (!is_page_cache_freeable(page))
484		return PAGE_KEEP;
485	if (!mapping) {
486		/*
487		 * Some data journaling orphaned pages can have
488		 * page->mapping == NULL while being dirty with clean buffers.
489		 */
490		if (page_has_private(page)) {
491			if (try_to_free_buffers(page)) {
492				ClearPageDirty(page);
493				printk("%s: orphaned page\n", __func__);
494				return PAGE_CLEAN;
495			}
496		}
497		return PAGE_KEEP;
498	}
499	if (mapping->a_ops->writepage == NULL)
500		return PAGE_ACTIVATE;
501	if (!may_write_to_queue(mapping->backing_dev_info, sc))
502		return PAGE_KEEP;
503
504	if (clear_page_dirty_for_io(page)) {
505		int res;
506		struct writeback_control wbc = {
507			.sync_mode = WB_SYNC_NONE,
508			.nr_to_write = SWAP_CLUSTER_MAX,
509			.range_start = 0,
510			.range_end = LLONG_MAX,
511			.for_reclaim = 1,
512		};
513
514		SetPageReclaim(page);
515		res = mapping->a_ops->writepage(page, &wbc);
516		if (res < 0)
517			handle_write_error(mapping, page, res);
518		if (res == AOP_WRITEPAGE_ACTIVATE) {
519			ClearPageReclaim(page);
520			return PAGE_ACTIVATE;
521		}
522
523		if (!PageWriteback(page)) {
524			/* synchronous write or broken a_ops? */
525			ClearPageReclaim(page);
526		}
527		trace_mm_vmscan_writepage(page,
528			trace_reclaim_flags(page, sc->reclaim_mode));
529		inc_zone_page_state(page, NR_VMSCAN_WRITE);
530		return PAGE_SUCCESS;
531	}
532
533	return PAGE_CLEAN;
534}
535
536/*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540static int __remove_mapping(struct address_space *mapping, struct page *page)
541{
542	BUG_ON(!PageLocked(page));
543	BUG_ON(mapping != page_mapping(page));
544
545	spin_lock_irq(&mapping->tree_lock);
546	/*
547	 * The non racy check for a busy page.
548	 *
549	 * Must be careful with the order of the tests. When someone has
550	 * a ref to the page, it may be possible that they dirty it then
551	 * drop the reference. So if PageDirty is tested before page_count
552	 * here, then the following race may occur:
553	 *
554	 * get_user_pages(&page);
555	 * [user mapping goes away]
556	 * write_to(page);
557	 *				!PageDirty(page)    [good]
558	 * SetPageDirty(page);
559	 * put_page(page);
560	 *				!page_count(page)   [good, discard it]
561	 *
562	 * [oops, our write_to data is lost]
563	 *
564	 * Reversing the order of the tests ensures such a situation cannot
565	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566	 * load is not satisfied before that of page->_count.
567	 *
568	 * Note that if SetPageDirty is always performed via set_page_dirty,
569	 * and thus under tree_lock, then this ordering is not required.
570	 */
571	if (!page_freeze_refs(page, 2))
572		goto cannot_free;
573	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574	if (unlikely(PageDirty(page))) {
575		page_unfreeze_refs(page, 2);
576		goto cannot_free;
577	}
578
579	if (PageSwapCache(page)) {
580		swp_entry_t swap = { .val = page_private(page) };
581		__delete_from_swap_cache(page);
582		spin_unlock_irq(&mapping->tree_lock);
583		swapcache_free(swap, page);
584	} else {
585		void (*freepage)(struct page *);
586
587		freepage = mapping->a_ops->freepage;
588
589		__delete_from_page_cache(page);
590		spin_unlock_irq(&mapping->tree_lock);
591		mem_cgroup_uncharge_cache_page(page);
592
593		if (freepage != NULL)
594			freepage(page);
595	}
596
597	return 1;
598
599cannot_free:
600	spin_unlock_irq(&mapping->tree_lock);
601	return 0;
602}
603
604/*
605 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
606 * someone else has a ref on the page, abort and return 0.  If it was
607 * successfully detached, return 1.  Assumes the caller has a single ref on
608 * this page.
609 */
610int remove_mapping(struct address_space *mapping, struct page *page)
611{
612	if (__remove_mapping(mapping, page)) {
613		/*
614		 * Unfreezing the refcount with 1 rather than 2 effectively
615		 * drops the pagecache ref for us without requiring another
616		 * atomic operation.
617		 */
618		page_unfreeze_refs(page, 1);
619		return 1;
620	}
621	return 0;
622}
623
624/**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633void putback_lru_page(struct page *page)
634{
635	int lru;
636	int active = !!TestClearPageActive(page);
637	int was_unevictable = PageUnevictable(page);
638
639	VM_BUG_ON(PageLRU(page));
640
641redo:
642	ClearPageUnevictable(page);
643
644	if (page_evictable(page, NULL)) {
645		/*
646		 * For evictable pages, we can use the cache.
647		 * In event of a race, worst case is we end up with an
648		 * unevictable page on [in]active list.
649		 * We know how to handle that.
650		 */
651		lru = active + page_lru_base_type(page);
652		lru_cache_add_lru(page, lru);
653	} else {
654		/*
655		 * Put unevictable pages directly on zone's unevictable
656		 * list.
657		 */
658		lru = LRU_UNEVICTABLE;
659		add_page_to_unevictable_list(page);
660		/*
661		 * When racing with an mlock or AS_UNEVICTABLE clearing
662		 * (page is unlocked) make sure that if the other thread
663		 * does not observe our setting of PG_lru and fails
664		 * isolation/check_move_unevictable_page,
665		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666		 * the page back to the evictable list.
667		 *
668		 * The other side is TestClearPageMlocked() or shmem_lock().
669		 */
670		smp_mb();
671	}
672
673	/*
674	 * page's status can change while we move it among lru. If an evictable
675	 * page is on unevictable list, it never be freed. To avoid that,
676	 * check after we added it to the list, again.
677	 */
678	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679		if (!isolate_lru_page(page)) {
680			put_page(page);
681			goto redo;
682		}
683		/* This means someone else dropped this page from LRU
684		 * So, it will be freed or putback to LRU again. There is
685		 * nothing to do here.
686		 */
687	}
688
689	if (was_unevictable && lru != LRU_UNEVICTABLE)
690		count_vm_event(UNEVICTABLE_PGRESCUED);
691	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692		count_vm_event(UNEVICTABLE_PGCULLED);
693
694	put_page(page);		/* drop ref from isolate */
695}
696
697enum page_references {
698	PAGEREF_RECLAIM,
699	PAGEREF_RECLAIM_CLEAN,
700	PAGEREF_KEEP,
701	PAGEREF_ACTIVATE,
702};
703
704static enum page_references page_check_references(struct page *page,
705						  struct mem_cgroup_zone *mz,
706						  struct scan_control *sc)
707{
708	int referenced_ptes, referenced_page;
709	unsigned long vm_flags;
710
711	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712	referenced_page = TestClearPageReferenced(page);
713
714	/* Lumpy reclaim - ignore references */
715	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716		return PAGEREF_RECLAIM;
717
718	/*
719	 * Mlock lost the isolation race with us.  Let try_to_unmap()
720	 * move the page to the unevictable list.
721	 */
722	if (vm_flags & VM_LOCKED)
723		return PAGEREF_RECLAIM;
724
725	if (referenced_ptes) {
726		if (PageAnon(page))
727			return PAGEREF_ACTIVATE;
728		/*
729		 * All mapped pages start out with page table
730		 * references from the instantiating fault, so we need
731		 * to look twice if a mapped file page is used more
732		 * than once.
733		 *
734		 * Mark it and spare it for another trip around the
735		 * inactive list.  Another page table reference will
736		 * lead to its activation.
737		 *
738		 * Note: the mark is set for activated pages as well
739		 * so that recently deactivated but used pages are
740		 * quickly recovered.
741		 */
742		SetPageReferenced(page);
743
744		if (referenced_page || referenced_ptes > 1)
745			return PAGEREF_ACTIVATE;
746
747		/*
748		 * Activate file-backed executable pages after first usage.
749		 */
750		if (vm_flags & VM_EXEC)
751			return PAGEREF_ACTIVATE;
752
753		return PAGEREF_KEEP;
754	}
755
756	/* Reclaim if clean, defer dirty pages to writeback */
757	if (referenced_page && !PageSwapBacked(page))
758		return PAGEREF_RECLAIM_CLEAN;
759
760	return PAGEREF_RECLAIM;
761}
762
763/*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766static unsigned long shrink_page_list(struct list_head *page_list,
767				      struct mem_cgroup_zone *mz,
768				      struct scan_control *sc,
769				      int priority,
770				      unsigned long *ret_nr_dirty,
771				      unsigned long *ret_nr_writeback)
772{
773	LIST_HEAD(ret_pages);
774	LIST_HEAD(free_pages);
775	int pgactivate = 0;
776	unsigned long nr_dirty = 0;
777	unsigned long nr_congested = 0;
778	unsigned long nr_reclaimed = 0;
779	unsigned long nr_writeback = 0;
780
781	cond_resched();
782
783	while (!list_empty(page_list)) {
784		enum page_references references;
785		struct address_space *mapping;
786		struct page *page;
787		int may_enter_fs;
788
789		cond_resched();
790
791		page = lru_to_page(page_list);
792		list_del(&page->lru);
793
794		if (!trylock_page(page))
795			goto keep;
796
797		VM_BUG_ON(PageActive(page));
798		VM_BUG_ON(page_zone(page) != mz->zone);
799
800		sc->nr_scanned++;
801
802		if (unlikely(!page_evictable(page, NULL)))
803			goto cull_mlocked;
804
805		if (!sc->may_unmap && page_mapped(page))
806			goto keep_locked;
807
808		/* Double the slab pressure for mapped and swapcache pages */
809		if (page_mapped(page) || PageSwapCache(page))
810			sc->nr_scanned++;
811
812		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815		if (PageWriteback(page)) {
816			nr_writeback++;
817			/*
818			 * Synchronous reclaim cannot queue pages for
819			 * writeback due to the possibility of stack overflow
820			 * but if it encounters a page under writeback, wait
821			 * for the IO to complete.
822			 */
823			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824			    may_enter_fs)
825				wait_on_page_writeback(page);
826			else {
827				unlock_page(page);
828				goto keep_lumpy;
829			}
830		}
831
832		references = page_check_references(page, mz, sc);
833		switch (references) {
834		case PAGEREF_ACTIVATE:
835			goto activate_locked;
836		case PAGEREF_KEEP:
837			goto keep_locked;
838		case PAGEREF_RECLAIM:
839		case PAGEREF_RECLAIM_CLEAN:
840			; /* try to reclaim the page below */
841		}
842
843		/*
844		 * Anonymous process memory has backing store?
845		 * Try to allocate it some swap space here.
846		 */
847		if (PageAnon(page) && !PageSwapCache(page)) {
848			if (!(sc->gfp_mask & __GFP_IO))
849				goto keep_locked;
850			if (!add_to_swap(page))
851				goto activate_locked;
852			may_enter_fs = 1;
853		}
854
855		mapping = page_mapping(page);
856
857		/*
858		 * The page is mapped into the page tables of one or more
859		 * processes. Try to unmap it here.
860		 */
861		if (page_mapped(page) && mapping) {
862			switch (try_to_unmap(page, TTU_UNMAP)) {
863			case SWAP_FAIL:
864				goto activate_locked;
865			case SWAP_AGAIN:
866				goto keep_locked;
867			case SWAP_MLOCK:
868				goto cull_mlocked;
869			case SWAP_SUCCESS:
870				; /* try to free the page below */
871			}
872		}
873
874		if (PageDirty(page)) {
875			nr_dirty++;
876
877			/*
878			 * Only kswapd can writeback filesystem pages to
879			 * avoid risk of stack overflow but do not writeback
880			 * unless under significant pressure.
881			 */
882			if (page_is_file_cache(page) &&
883					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884				/*
885				 * Immediately reclaim when written back.
886				 * Similar in principal to deactivate_page()
887				 * except we already have the page isolated
888				 * and know it's dirty
889				 */
890				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891				SetPageReclaim(page);
892
893				goto keep_locked;
894			}
895
896			if (references == PAGEREF_RECLAIM_CLEAN)
897				goto keep_locked;
898			if (!may_enter_fs)
899				goto keep_locked;
900			if (!sc->may_writepage)
901				goto keep_locked;
902
903			/* Page is dirty, try to write it out here */
904			switch (pageout(page, mapping, sc)) {
905			case PAGE_KEEP:
906				nr_congested++;
907				goto keep_locked;
908			case PAGE_ACTIVATE:
909				goto activate_locked;
910			case PAGE_SUCCESS:
911				if (PageWriteback(page))
912					goto keep_lumpy;
913				if (PageDirty(page))
914					goto keep;
915
916				/*
917				 * A synchronous write - probably a ramdisk.  Go
918				 * ahead and try to reclaim the page.
919				 */
920				if (!trylock_page(page))
921					goto keep;
922				if (PageDirty(page) || PageWriteback(page))
923					goto keep_locked;
924				mapping = page_mapping(page);
925			case PAGE_CLEAN:
926				; /* try to free the page below */
927			}
928		}
929
930		/*
931		 * If the page has buffers, try to free the buffer mappings
932		 * associated with this page. If we succeed we try to free
933		 * the page as well.
934		 *
935		 * We do this even if the page is PageDirty().
936		 * try_to_release_page() does not perform I/O, but it is
937		 * possible for a page to have PageDirty set, but it is actually
938		 * clean (all its buffers are clean).  This happens if the
939		 * buffers were written out directly, with submit_bh(). ext3
940		 * will do this, as well as the blockdev mapping.
941		 * try_to_release_page() will discover that cleanness and will
942		 * drop the buffers and mark the page clean - it can be freed.
943		 *
944		 * Rarely, pages can have buffers and no ->mapping.  These are
945		 * the pages which were not successfully invalidated in
946		 * truncate_complete_page().  We try to drop those buffers here
947		 * and if that worked, and the page is no longer mapped into
948		 * process address space (page_count == 1) it can be freed.
949		 * Otherwise, leave the page on the LRU so it is swappable.
950		 */
951		if (page_has_private(page)) {
952			if (!try_to_release_page(page, sc->gfp_mask))
953				goto activate_locked;
954			if (!mapping && page_count(page) == 1) {
955				unlock_page(page);
956				if (put_page_testzero(page))
957					goto free_it;
958				else {
959					/*
960					 * rare race with speculative reference.
961					 * the speculative reference will free
962					 * this page shortly, so we may
963					 * increment nr_reclaimed here (and
964					 * leave it off the LRU).
965					 */
966					nr_reclaimed++;
967					continue;
968				}
969			}
970		}
971
972		if (!mapping || !__remove_mapping(mapping, page))
973			goto keep_locked;
974
975		/*
976		 * At this point, we have no other references and there is
977		 * no way to pick any more up (removed from LRU, removed
978		 * from pagecache). Can use non-atomic bitops now (and
979		 * we obviously don't have to worry about waking up a process
980		 * waiting on the page lock, because there are no references.
981		 */
982		__clear_page_locked(page);
983free_it:
984		nr_reclaimed++;
985
986		/*
987		 * Is there need to periodically free_page_list? It would
988		 * appear not as the counts should be low
989		 */
990		list_add(&page->lru, &free_pages);
991		continue;
992
993cull_mlocked:
994		if (PageSwapCache(page))
995			try_to_free_swap(page);
996		unlock_page(page);
997		putback_lru_page(page);
998		reset_reclaim_mode(sc);
999		continue;
1000
1001activate_locked:
1002		/* Not a candidate for swapping, so reclaim swap space. */
1003		if (PageSwapCache(page) && vm_swap_full())
1004			try_to_free_swap(page);
1005		VM_BUG_ON(PageActive(page));
1006		SetPageActive(page);
1007		pgactivate++;
1008keep_locked:
1009		unlock_page(page);
1010keep:
1011		reset_reclaim_mode(sc);
1012keep_lumpy:
1013		list_add(&page->lru, &ret_pages);
1014		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015	}
1016
1017	/*
1018	 * Tag a zone as congested if all the dirty pages encountered were
1019	 * backed by a congested BDI. In this case, reclaimers should just
1020	 * back off and wait for congestion to clear because further reclaim
1021	 * will encounter the same problem
1022	 */
1023	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024		zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026	free_hot_cold_page_list(&free_pages, 1);
1027
1028	list_splice(&ret_pages, page_list);
1029	count_vm_events(PGACTIVATE, pgactivate);
1030	*ret_nr_dirty += nr_dirty;
1031	*ret_nr_writeback += nr_writeback;
1032	return nr_reclaimed;
1033}
1034
1035/*
1036 * Attempt to remove the specified page from its LRU.  Only take this page
1037 * if it is of the appropriate PageActive status.  Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page:	page to consider
1041 * mode:	one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046{
1047	bool all_lru_mode;
1048	int ret = -EINVAL;
1049
1050	/* Only take pages on the LRU. */
1051	if (!PageLRU(page))
1052		return ret;
1053
1054	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057	/*
1058	 * When checking the active state, we need to be sure we are
1059	 * dealing with comparible boolean values.  Take the logical not
1060	 * of each.
1061	 */
1062	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063		return ret;
1064
1065	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066		return ret;
1067
1068	/*
1069	 * When this function is being called for lumpy reclaim, we
1070	 * initially look into all LRU pages, active, inactive and
1071	 * unevictable; only give shrink_page_list evictable pages.
1072	 */
1073	if (PageUnevictable(page))
1074		return ret;
1075
1076	ret = -EBUSY;
1077
1078	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1079		return ret;
1080
1081	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1082		return ret;
1083
1084	if (likely(get_page_unless_zero(page))) {
1085		/*
1086		 * Be careful not to clear PageLRU until after we're
1087		 * sure the page is not being freed elsewhere -- the
1088		 * page release code relies on it.
1089		 */
1090		ClearPageLRU(page);
1091		ret = 0;
1092	}
1093
1094	return ret;
1095}
1096
1097/*
1098 * zone->lru_lock is heavily contended.  Some of the functions that
1099 * shrink the lists perform better by taking out a batch of pages
1100 * and working on them outside the LRU lock.
1101 *
1102 * For pagecache intensive workloads, this function is the hottest
1103 * spot in the kernel (apart from copy_*_user functions).
1104 *
1105 * Appropriate locks must be held before calling this function.
1106 *
1107 * @nr_to_scan:	The number of pages to look through on the list.
1108 * @src:	The LRU list to pull pages off.
1109 * @dst:	The temp list to put pages on to.
1110 * @scanned:	The number of pages that were scanned.
1111 * @order:	The caller's attempted allocation order
1112 * @mode:	One of the LRU isolation modes
1113 * @file:	True [1] if isolating file [!anon] pages
1114 *
1115 * returns how many pages were moved onto *@dst.
1116 */
1117static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1118		struct list_head *src, struct list_head *dst,
1119		unsigned long *scanned, int order, isolate_mode_t mode,
1120		int file)
1121{
1122	unsigned long nr_taken = 0;
1123	unsigned long nr_lumpy_taken = 0;
1124	unsigned long nr_lumpy_dirty = 0;
1125	unsigned long nr_lumpy_failed = 0;
1126	unsigned long scan;
1127
1128	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1129		struct page *page;
1130		unsigned long pfn;
1131		unsigned long end_pfn;
1132		unsigned long page_pfn;
1133		int zone_id;
1134
1135		page = lru_to_page(src);
1136		prefetchw_prev_lru_page(page, src, flags);
1137
1138		VM_BUG_ON(!PageLRU(page));
1139
1140		switch (__isolate_lru_page(page, mode, file)) {
1141		case 0:
1142			list_move(&page->lru, dst);
1143			mem_cgroup_del_lru(page);
1144			nr_taken += hpage_nr_pages(page);
1145			break;
1146
1147		case -EBUSY:
1148			/* else it is being freed elsewhere */
1149			list_move(&page->lru, src);
1150			mem_cgroup_rotate_lru_list(page, page_lru(page));
1151			continue;
1152
1153		default:
1154			BUG();
1155		}
1156
1157		if (!order)
1158			continue;
1159
1160		/*
1161		 * Attempt to take all pages in the order aligned region
1162		 * surrounding the tag page.  Only take those pages of
1163		 * the same active state as that tag page.  We may safely
1164		 * round the target page pfn down to the requested order
1165		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1166		 * where that page is in a different zone we will detect
1167		 * it from its zone id and abort this block scan.
1168		 */
1169		zone_id = page_zone_id(page);
1170		page_pfn = page_to_pfn(page);
1171		pfn = page_pfn & ~((1 << order) - 1);
1172		end_pfn = pfn + (1 << order);
1173		for (; pfn < end_pfn; pfn++) {
1174			struct page *cursor_page;
1175
1176			/* The target page is in the block, ignore it. */
1177			if (unlikely(pfn == page_pfn))
1178				continue;
1179
1180			/* Avoid holes within the zone. */
1181			if (unlikely(!pfn_valid_within(pfn)))
1182				break;
1183
1184			cursor_page = pfn_to_page(pfn);
1185
1186			/* Check that we have not crossed a zone boundary. */
1187			if (unlikely(page_zone_id(cursor_page) != zone_id))
1188				break;
1189
1190			/*
1191			 * If we don't have enough swap space, reclaiming of
1192			 * anon page which don't already have a swap slot is
1193			 * pointless.
1194			 */
1195			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1196			    !PageSwapCache(cursor_page))
1197				break;
1198
1199			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1200				list_move(&cursor_page->lru, dst);
1201				mem_cgroup_del_lru(cursor_page);
1202				nr_taken += hpage_nr_pages(cursor_page);
1203				nr_lumpy_taken++;
1204				if (PageDirty(cursor_page))
1205					nr_lumpy_dirty++;
1206				scan++;
1207			} else {
1208				/*
1209				 * Check if the page is freed already.
1210				 *
1211				 * We can't use page_count() as that
1212				 * requires compound_head and we don't
1213				 * have a pin on the page here. If a
1214				 * page is tail, we may or may not
1215				 * have isolated the head, so assume
1216				 * it's not free, it'd be tricky to
1217				 * track the head status without a
1218				 * page pin.
1219				 */
1220				if (!PageTail(cursor_page) &&
1221				    !atomic_read(&cursor_page->_count))
1222					continue;
1223				break;
1224			}
1225		}
1226
1227		/* If we break out of the loop above, lumpy reclaim failed */
1228		if (pfn < end_pfn)
1229			nr_lumpy_failed++;
1230	}
1231
1232	*scanned = scan;
1233
1234	trace_mm_vmscan_lru_isolate(order,
1235			nr_to_scan, scan,
1236			nr_taken,
1237			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1238			mode);
1239	return nr_taken;
1240}
1241
1242static unsigned long isolate_pages_global(unsigned long nr,
1243					struct list_head *dst,
1244					unsigned long *scanned, int order,
1245					isolate_mode_t mode,
1246					struct zone *z,	int active, int file)
1247{
1248	int lru = LRU_BASE;
1249	if (active)
1250		lru += LRU_ACTIVE;
1251	if (file)
1252		lru += LRU_FILE;
1253	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1254								mode, file);
1255}
1256
1257/*
1258 * clear_active_flags() is a helper for shrink_active_list(), clearing
1259 * any active bits from the pages in the list.
1260 */
1261static unsigned long clear_active_flags(struct list_head *page_list,
1262					unsigned int *count)
1263{
1264	int nr_active = 0;
1265	int lru;
1266	struct page *page;
1267
1268	list_for_each_entry(page, page_list, lru) {
1269		int numpages = hpage_nr_pages(page);
1270		lru = page_lru_base_type(page);
1271		if (PageActive(page)) {
1272			lru += LRU_ACTIVE;
1273			ClearPageActive(page);
1274			nr_active += numpages;
1275		}
1276		if (count)
1277			count[lru] += numpages;
1278	}
1279
1280	return nr_active;
1281}
1282
1283/**
1284 * isolate_lru_page - tries to isolate a page from its LRU list
1285 * @page: page to isolate from its LRU list
1286 *
1287 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1288 * vmstat statistic corresponding to whatever LRU list the page was on.
1289 *
1290 * Returns 0 if the page was removed from an LRU list.
1291 * Returns -EBUSY if the page was not on an LRU list.
1292 *
1293 * The returned page will have PageLRU() cleared.  If it was found on
1294 * the active list, it will have PageActive set.  If it was found on
1295 * the unevictable list, it will have the PageUnevictable bit set. That flag
1296 * may need to be cleared by the caller before letting the page go.
1297 *
1298 * The vmstat statistic corresponding to the list on which the page was
1299 * found will be decremented.
1300 *
1301 * Restrictions:
1302 * (1) Must be called with an elevated refcount on the page. This is a
1303 *     fundamentnal difference from isolate_lru_pages (which is called
1304 *     without a stable reference).
1305 * (2) the lru_lock must not be held.
1306 * (3) interrupts must be enabled.
1307 */
1308int isolate_lru_page(struct page *page)
1309{
1310	int ret = -EBUSY;
1311
1312	VM_BUG_ON(!page_count(page));
1313
1314	if (PageLRU(page)) {
1315		struct zone *zone = page_zone(page);
1316
1317		spin_lock_irq(&zone->lru_lock);
1318		if (PageLRU(page)) {
1319			int lru = page_lru(page);
1320			ret = 0;
1321			get_page(page);
1322			ClearPageLRU(page);
1323
1324			del_page_from_lru_list(zone, page, lru);
1325		}
1326		spin_unlock_irq(&zone->lru_lock);
1327	}
1328	return ret;
1329}
1330
1331/*
1332 * Are there way too many processes in the direct reclaim path already?
1333 */
1334static int too_many_isolated(struct zone *zone, int file,
1335		struct scan_control *sc)
1336{
1337	unsigned long inactive, isolated;
1338
1339	if (current_is_kswapd())
1340		return 0;
1341
1342	if (!global_reclaim(sc))
1343		return 0;
1344
1345	if (file) {
1346		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1347		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1348	} else {
1349		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1350		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1351	}
1352
1353	return isolated > inactive;
1354}
1355
1356/*
1357 * TODO: Try merging with migrations version of putback_lru_pages
1358 */
1359static noinline_for_stack void
1360putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1361		  unsigned long nr_anon, unsigned long nr_file,
1362		  struct list_head *page_list)
1363{
1364	struct page *page;
1365	struct pagevec pvec;
1366	struct zone *zone = mz->zone;
1367	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1368
1369	pagevec_init(&pvec, 1);
1370
1371	/*
1372	 * Put back any unfreeable pages.
1373	 */
1374	spin_lock(&zone->lru_lock);
1375	while (!list_empty(page_list)) {
1376		int lru;
1377		page = lru_to_page(page_list);
1378		VM_BUG_ON(PageLRU(page));
1379		list_del(&page->lru);
1380		if (unlikely(!page_evictable(page, NULL))) {
1381			spin_unlock_irq(&zone->lru_lock);
1382			putback_lru_page(page);
1383			spin_lock_irq(&zone->lru_lock);
1384			continue;
1385		}
1386		SetPageLRU(page);
1387		lru = page_lru(page);
1388		add_page_to_lru_list(zone, page, lru);
1389		if (is_active_lru(lru)) {
1390			int file = is_file_lru(lru);
1391			int numpages = hpage_nr_pages(page);
1392			reclaim_stat->recent_rotated[file] += numpages;
1393		}
1394		if (!pagevec_add(&pvec, page)) {
1395			spin_unlock_irq(&zone->lru_lock);
1396			__pagevec_release(&pvec);
1397			spin_lock_irq(&zone->lru_lock);
1398		}
1399	}
1400	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1401	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1402
1403	spin_unlock_irq(&zone->lru_lock);
1404	pagevec_release(&pvec);
1405}
1406
1407static noinline_for_stack void
1408update_isolated_counts(struct mem_cgroup_zone *mz,
1409		       struct scan_control *sc,
1410		       unsigned long *nr_anon,
1411		       unsigned long *nr_file,
1412		       struct list_head *isolated_list)
1413{
1414	unsigned long nr_active;
1415	struct zone *zone = mz->zone;
1416	unsigned int count[NR_LRU_LISTS] = { 0, };
1417	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1418
1419	nr_active = clear_active_flags(isolated_list, count);
1420	__count_vm_events(PGDEACTIVATE, nr_active);
1421
1422	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1423			      -count[LRU_ACTIVE_FILE]);
1424	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1425			      -count[LRU_INACTIVE_FILE]);
1426	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1427			      -count[LRU_ACTIVE_ANON]);
1428	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1429			      -count[LRU_INACTIVE_ANON]);
1430
1431	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1432	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1433	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1434	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1435
1436	reclaim_stat->recent_scanned[0] += *nr_anon;
1437	reclaim_stat->recent_scanned[1] += *nr_file;
1438}
1439
1440/*
1441 * Returns true if a direct reclaim should wait on pages under writeback.
1442 *
1443 * If we are direct reclaiming for contiguous pages and we do not reclaim
1444 * everything in the list, try again and wait for writeback IO to complete.
1445 * This will stall high-order allocations noticeably. Only do that when really
1446 * need to free the pages under high memory pressure.
1447 */
1448static inline bool should_reclaim_stall(unsigned long nr_taken,
1449					unsigned long nr_freed,
1450					int priority,
1451					struct scan_control *sc)
1452{
1453	int lumpy_stall_priority;
1454
1455	/* kswapd should not stall on sync IO */
1456	if (current_is_kswapd())
1457		return false;
1458
1459	/* Only stall on lumpy reclaim */
1460	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1461		return false;
1462
1463	/* If we have reclaimed everything on the isolated list, no stall */
1464	if (nr_freed == nr_taken)
1465		return false;
1466
1467	/*
1468	 * For high-order allocations, there are two stall thresholds.
1469	 * High-cost allocations stall immediately where as lower
1470	 * order allocations such as stacks require the scanning
1471	 * priority to be much higher before stalling.
1472	 */
1473	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1474		lumpy_stall_priority = DEF_PRIORITY;
1475	else
1476		lumpy_stall_priority = DEF_PRIORITY / 3;
1477
1478	return priority <= lumpy_stall_priority;
1479}
1480
1481/*
1482 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1483 * of reclaimed pages
1484 */
1485static noinline_for_stack unsigned long
1486shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1487		     struct scan_control *sc, int priority, int file)
1488{
1489	LIST_HEAD(page_list);
1490	unsigned long nr_scanned;
1491	unsigned long nr_reclaimed = 0;
1492	unsigned long nr_taken;
1493	unsigned long nr_anon;
1494	unsigned long nr_file;
1495	unsigned long nr_dirty = 0;
1496	unsigned long nr_writeback = 0;
1497	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1498	struct zone *zone = mz->zone;
1499
1500	while (unlikely(too_many_isolated(zone, file, sc))) {
1501		congestion_wait(BLK_RW_ASYNC, HZ/10);
1502
1503		/* We are about to die and free our memory. Return now. */
1504		if (fatal_signal_pending(current))
1505			return SWAP_CLUSTER_MAX;
1506	}
1507
1508	set_reclaim_mode(priority, sc, false);
1509	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1510		reclaim_mode |= ISOLATE_ACTIVE;
1511
1512	lru_add_drain();
1513
1514	if (!sc->may_unmap)
1515		reclaim_mode |= ISOLATE_UNMAPPED;
1516	if (!sc->may_writepage)
1517		reclaim_mode |= ISOLATE_CLEAN;
1518
1519	spin_lock_irq(&zone->lru_lock);
1520
1521	if (scanning_global_lru(mz)) {
1522		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1523			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1524	} else {
1525		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1526			&nr_scanned, sc->order, reclaim_mode, zone,
1527			mz->mem_cgroup, 0, file);
1528	}
1529	if (global_reclaim(sc)) {
1530		zone->pages_scanned += nr_scanned;
1531		if (current_is_kswapd())
1532			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1533					       nr_scanned);
1534		else
1535			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1536					       nr_scanned);
1537	}
1538
1539	if (nr_taken == 0) {
1540		spin_unlock_irq(&zone->lru_lock);
1541		return 0;
1542	}
1543
1544	update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1545
1546	spin_unlock_irq(&zone->lru_lock);
1547
1548	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1549						&nr_dirty, &nr_writeback);
1550
1551	/* Check if we should syncronously wait for writeback */
1552	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1553		set_reclaim_mode(priority, sc, true);
1554		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1555					priority, &nr_dirty, &nr_writeback);
1556	}
1557
1558	local_irq_disable();
1559	if (current_is_kswapd())
1560		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1561	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1562
1563	putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1564
1565	/*
1566	 * If reclaim is isolating dirty pages under writeback, it implies
1567	 * that the long-lived page allocation rate is exceeding the page
1568	 * laundering rate. Either the global limits are not being effective
1569	 * at throttling processes due to the page distribution throughout
1570	 * zones or there is heavy usage of a slow backing device. The
1571	 * only option is to throttle from reclaim context which is not ideal
1572	 * as there is no guarantee the dirtying process is throttled in the
1573	 * same way balance_dirty_pages() manages.
1574	 *
1575	 * This scales the number of dirty pages that must be under writeback
1576	 * before throttling depending on priority. It is a simple backoff
1577	 * function that has the most effect in the range DEF_PRIORITY to
1578	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1579	 * in trouble and reclaim is considered to be in trouble.
1580	 *
1581	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1582	 * DEF_PRIORITY-1  50% must be PageWriteback
1583	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1584	 * ...
1585	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1586	 *                     isolated page is PageWriteback
1587	 */
1588	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1589		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1590
1591	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1592		zone_idx(zone),
1593		nr_scanned, nr_reclaimed,
1594		priority,
1595		trace_shrink_flags(file, sc->reclaim_mode));
1596	return nr_reclaimed;
1597}
1598
1599/*
1600 * This moves pages from the active list to the inactive list.
1601 *
1602 * We move them the other way if the page is referenced by one or more
1603 * processes, from rmap.
1604 *
1605 * If the pages are mostly unmapped, the processing is fast and it is
1606 * appropriate to hold zone->lru_lock across the whole operation.  But if
1607 * the pages are mapped, the processing is slow (page_referenced()) so we
1608 * should drop zone->lru_lock around each page.  It's impossible to balance
1609 * this, so instead we remove the pages from the LRU while processing them.
1610 * It is safe to rely on PG_active against the non-LRU pages in here because
1611 * nobody will play with that bit on a non-LRU page.
1612 *
1613 * The downside is that we have to touch page->_count against each page.
1614 * But we had to alter page->flags anyway.
1615 */
1616
1617static void move_active_pages_to_lru(struct zone *zone,
1618				     struct list_head *list,
1619				     enum lru_list lru)
1620{
1621	unsigned long pgmoved = 0;
1622	struct pagevec pvec;
1623	struct page *page;
1624
1625	pagevec_init(&pvec, 1);
1626
1627	while (!list_empty(list)) {
1628		page = lru_to_page(list);
1629
1630		VM_BUG_ON(PageLRU(page));
1631		SetPageLRU(page);
1632
1633		list_move(&page->lru, &zone->lru[lru].list);
1634		mem_cgroup_add_lru_list(page, lru);
1635		pgmoved += hpage_nr_pages(page);
1636
1637		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1638			spin_unlock_irq(&zone->lru_lock);
1639			if (buffer_heads_over_limit)
1640				pagevec_strip(&pvec);
1641			__pagevec_release(&pvec);
1642			spin_lock_irq(&zone->lru_lock);
1643		}
1644	}
1645	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1646	if (!is_active_lru(lru))
1647		__count_vm_events(PGDEACTIVATE, pgmoved);
1648}
1649
1650static void shrink_active_list(unsigned long nr_pages,
1651			       struct mem_cgroup_zone *mz,
1652			       struct scan_control *sc,
1653			       int priority, int file)
1654{
1655	unsigned long nr_taken;
1656	unsigned long pgscanned;
1657	unsigned long vm_flags;
1658	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1659	LIST_HEAD(l_active);
1660	LIST_HEAD(l_inactive);
1661	struct page *page;
1662	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1663	unsigned long nr_rotated = 0;
1664	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1665	struct zone *zone = mz->zone;
1666
1667	lru_add_drain();
1668
1669	if (!sc->may_unmap)
1670		reclaim_mode |= ISOLATE_UNMAPPED;
1671	if (!sc->may_writepage)
1672		reclaim_mode |= ISOLATE_CLEAN;
1673
1674	spin_lock_irq(&zone->lru_lock);
1675	if (scanning_global_lru(mz)) {
1676		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1677						&pgscanned, sc->order,
1678						reclaim_mode, zone,
1679						1, file);
1680	} else {
1681		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1682						&pgscanned, sc->order,
1683						reclaim_mode, zone,
1684						mz->mem_cgroup, 1, file);
1685	}
1686
1687	if (global_reclaim(sc))
1688		zone->pages_scanned += pgscanned;
1689
1690	reclaim_stat->recent_scanned[file] += nr_taken;
1691
1692	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1693	if (file)
1694		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1695	else
1696		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1697	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1698	spin_unlock_irq(&zone->lru_lock);
1699
1700	while (!list_empty(&l_hold)) {
1701		cond_resched();
1702		page = lru_to_page(&l_hold);
1703		list_del(&page->lru);
1704
1705		if (unlikely(!page_evictable(page, NULL))) {
1706			putback_lru_page(page);
1707			continue;
1708		}
1709
1710		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1711			nr_rotated += hpage_nr_pages(page);
1712			/*
1713			 * Identify referenced, file-backed active pages and
1714			 * give them one more trip around the active list. So
1715			 * that executable code get better chances to stay in
1716			 * memory under moderate memory pressure.  Anon pages
1717			 * are not likely to be evicted by use-once streaming
1718			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1719			 * so we ignore them here.
1720			 */
1721			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1722				list_add(&page->lru, &l_active);
1723				continue;
1724			}
1725		}
1726
1727		ClearPageActive(page);	/* we are de-activating */
1728		list_add(&page->lru, &l_inactive);
1729	}
1730
1731	/*
1732	 * Move pages back to the lru list.
1733	 */
1734	spin_lock_irq(&zone->lru_lock);
1735	/*
1736	 * Count referenced pages from currently used mappings as rotated,
1737	 * even though only some of them are actually re-activated.  This
1738	 * helps balance scan pressure between file and anonymous pages in
1739	 * get_scan_ratio.
1740	 */
1741	reclaim_stat->recent_rotated[file] += nr_rotated;
1742
1743	move_active_pages_to_lru(zone, &l_active,
1744						LRU_ACTIVE + file * LRU_FILE);
1745	move_active_pages_to_lru(zone, &l_inactive,
1746						LRU_BASE   + file * LRU_FILE);
1747	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1748	spin_unlock_irq(&zone->lru_lock);
1749}
1750
1751#ifdef CONFIG_SWAP
1752static int inactive_anon_is_low_global(struct zone *zone)
1753{
1754	unsigned long active, inactive;
1755
1756	active = zone_page_state(zone, NR_ACTIVE_ANON);
1757	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1758
1759	if (inactive * zone->inactive_ratio < active)
1760		return 1;
1761
1762	return 0;
1763}
1764
1765/**
1766 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1767 * @zone: zone to check
1768 * @sc:   scan control of this context
1769 *
1770 * Returns true if the zone does not have enough inactive anon pages,
1771 * meaning some active anon pages need to be deactivated.
1772 */
1773static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1774{
1775	/*
1776	 * If we don't have swap space, anonymous page deactivation
1777	 * is pointless.
1778	 */
1779	if (!total_swap_pages)
1780		return 0;
1781
1782	if (!scanning_global_lru(mz))
1783		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1784						       mz->zone);
1785
1786	return inactive_anon_is_low_global(mz->zone);
1787}
1788#else
1789static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1790{
1791	return 0;
1792}
1793#endif
1794
1795static int inactive_file_is_low_global(struct zone *zone)
1796{
1797	unsigned long active, inactive;
1798
1799	active = zone_page_state(zone, NR_ACTIVE_FILE);
1800	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1801
1802	return (active > inactive);
1803}
1804
1805/**
1806 * inactive_file_is_low - check if file pages need to be deactivated
1807 * @mz: memory cgroup and zone to check
1808 *
1809 * When the system is doing streaming IO, memory pressure here
1810 * ensures that active file pages get deactivated, until more
1811 * than half of the file pages are on the inactive list.
1812 *
1813 * Once we get to that situation, protect the system's working
1814 * set from being evicted by disabling active file page aging.
1815 *
1816 * This uses a different ratio than the anonymous pages, because
1817 * the page cache uses a use-once replacement algorithm.
1818 */
1819static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1820{
1821	if (!scanning_global_lru(mz))
1822		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1823						       mz->zone);
1824
1825	return inactive_file_is_low_global(mz->zone);
1826}
1827
1828static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1829{
1830	if (file)
1831		return inactive_file_is_low(mz);
1832	else
1833		return inactive_anon_is_low(mz);
1834}
1835
1836static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1837				 struct mem_cgroup_zone *mz,
1838				 struct scan_control *sc, int priority)
1839{
1840	int file = is_file_lru(lru);
1841
1842	if (is_active_lru(lru)) {
1843		if (inactive_list_is_low(mz, file))
1844			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1845		return 0;
1846	}
1847
1848	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1849}
1850
1851static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1852			     struct scan_control *sc)
1853{
1854	if (global_reclaim(sc))
1855		return vm_swappiness;
1856	return mem_cgroup_swappiness(mz->mem_cgroup);
1857}
1858
1859/*
1860 * Determine how aggressively the anon and file LRU lists should be
1861 * scanned.  The relative value of each set of LRU lists is determined
1862 * by looking at the fraction of the pages scanned we did rotate back
1863 * onto the active list instead of evict.
1864 *
1865 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1866 */
1867static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1868			   unsigned long *nr, int priority)
1869{
1870	unsigned long anon, file, free;
1871	unsigned long anon_prio, file_prio;
1872	unsigned long ap, fp;
1873	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1874	u64 fraction[2], denominator;
1875	enum lru_list l;
1876	int noswap = 0;
1877	bool force_scan = false;
1878
1879	/*
1880	 * If the zone or memcg is small, nr[l] can be 0.  This
1881	 * results in no scanning on this priority and a potential
1882	 * priority drop.  Global direct reclaim can go to the next
1883	 * zone and tends to have no problems. Global kswapd is for
1884	 * zone balancing and it needs to scan a minimum amount. When
1885	 * reclaiming for a memcg, a priority drop can cause high
1886	 * latencies, so it's better to scan a minimum amount there as
1887	 * well.
1888	 */
1889	if (current_is_kswapd())
1890		force_scan = true;
1891	if (!global_reclaim(sc))
1892		force_scan = true;
1893
1894	/* If we have no swap space, do not bother scanning anon pages. */
1895	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1896		noswap = 1;
1897		fraction[0] = 0;
1898		fraction[1] = 1;
1899		denominator = 1;
1900		goto out;
1901	}
1902
1903	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1904		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1905	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1906		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1907
1908	if (global_reclaim(sc)) {
1909		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1910		/* If we have very few page cache pages,
1911		   force-scan anon pages. */
1912		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1913			fraction[0] = 1;
1914			fraction[1] = 0;
1915			denominator = 1;
1916			goto out;
1917		}
1918	}
1919
1920	/*
1921	 * With swappiness at 100, anonymous and file have the same priority.
1922	 * This scanning priority is essentially the inverse of IO cost.
1923	 */
1924	anon_prio = vmscan_swappiness(mz, sc);
1925	file_prio = 200 - vmscan_swappiness(mz, sc);
1926
1927	/*
1928	 * OK, so we have swap space and a fair amount of page cache
1929	 * pages.  We use the recently rotated / recently scanned
1930	 * ratios to determine how valuable each cache is.
1931	 *
1932	 * Because workloads change over time (and to avoid overflow)
1933	 * we keep these statistics as a floating average, which ends
1934	 * up weighing recent references more than old ones.
1935	 *
1936	 * anon in [0], file in [1]
1937	 */
1938	spin_lock_irq(&mz->zone->lru_lock);
1939	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1940		reclaim_stat->recent_scanned[0] /= 2;
1941		reclaim_stat->recent_rotated[0] /= 2;
1942	}
1943
1944	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1945		reclaim_stat->recent_scanned[1] /= 2;
1946		reclaim_stat->recent_rotated[1] /= 2;
1947	}
1948
1949	/*
1950	 * The amount of pressure on anon vs file pages is inversely
1951	 * proportional to the fraction of recently scanned pages on
1952	 * each list that were recently referenced and in active use.
1953	 */
1954	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1955	ap /= reclaim_stat->recent_rotated[0] + 1;
1956
1957	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1958	fp /= reclaim_stat->recent_rotated[1] + 1;
1959	spin_unlock_irq(&mz->zone->lru_lock);
1960
1961	fraction[0] = ap;
1962	fraction[1] = fp;
1963	denominator = ap + fp + 1;
1964out:
1965	for_each_evictable_lru(l) {
1966		int file = is_file_lru(l);
1967		unsigned long scan;
1968
1969		scan = zone_nr_lru_pages(mz, l);
1970		if (priority || noswap) {
1971			scan >>= priority;
1972			if (!scan && force_scan)
1973				scan = SWAP_CLUSTER_MAX;
1974			scan = div64_u64(scan * fraction[file], denominator);
1975		}
1976		nr[l] = scan;
1977	}
1978}
1979
1980/*
1981 * Reclaim/compaction depends on a number of pages being freed. To avoid
1982 * disruption to the system, a small number of order-0 pages continue to be
1983 * rotated and reclaimed in the normal fashion. However, by the time we get
1984 * back to the allocator and call try_to_compact_zone(), we ensure that
1985 * there are enough free pages for it to be likely successful
1986 */
1987static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1988					unsigned long nr_reclaimed,
1989					unsigned long nr_scanned,
1990					struct scan_control *sc)
1991{
1992	unsigned long pages_for_compaction;
1993	unsigned long inactive_lru_pages;
1994
1995	/* If not in reclaim/compaction mode, stop */
1996	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1997		return false;
1998
1999	/* Consider stopping depending on scan and reclaim activity */
2000	if (sc->gfp_mask & __GFP_REPEAT) {
2001		/*
2002		 * For __GFP_REPEAT allocations, stop reclaiming if the
2003		 * full LRU list has been scanned and we are still failing
2004		 * to reclaim pages. This full LRU scan is potentially
2005		 * expensive but a __GFP_REPEAT caller really wants to succeed
2006		 */
2007		if (!nr_reclaimed && !nr_scanned)
2008			return false;
2009	} else {
2010		/*
2011		 * For non-__GFP_REPEAT allocations which can presumably
2012		 * fail without consequence, stop if we failed to reclaim
2013		 * any pages from the last SWAP_CLUSTER_MAX number of
2014		 * pages that were scanned. This will return to the
2015		 * caller faster at the risk reclaim/compaction and
2016		 * the resulting allocation attempt fails
2017		 */
2018		if (!nr_reclaimed)
2019			return false;
2020	}
2021
2022	/*
2023	 * If we have not reclaimed enough pages for compaction and the
2024	 * inactive lists are large enough, continue reclaiming
2025	 */
2026	pages_for_compaction = (2UL << sc->order);
2027	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2028	if (nr_swap_pages > 0)
2029		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2030	if (sc->nr_reclaimed < pages_for_compaction &&
2031			inactive_lru_pages > pages_for_compaction)
2032		return true;
2033
2034	/* If compaction would go ahead or the allocation would succeed, stop */
2035	switch (compaction_suitable(mz->zone, sc->order)) {
2036	case COMPACT_PARTIAL:
2037	case COMPACT_CONTINUE:
2038		return false;
2039	default:
2040		return true;
2041	}
2042}
2043
2044/*
2045 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2046 */
2047static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2048				   struct scan_control *sc)
2049{
2050	unsigned long nr[NR_LRU_LISTS];
2051	unsigned long nr_to_scan;
2052	enum lru_list l;
2053	unsigned long nr_reclaimed, nr_scanned;
2054	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2055	struct blk_plug plug;
2056
2057restart:
2058	nr_reclaimed = 0;
2059	nr_scanned = sc->nr_scanned;
2060	get_scan_count(mz, sc, nr, priority);
2061
2062	blk_start_plug(&plug);
2063	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2064					nr[LRU_INACTIVE_FILE]) {
2065		for_each_evictable_lru(l) {
2066			if (nr[l]) {
2067				nr_to_scan = min_t(unsigned long,
2068						   nr[l], SWAP_CLUSTER_MAX);
2069				nr[l] -= nr_to_scan;
2070
2071				nr_reclaimed += shrink_list(l, nr_to_scan,
2072							    mz, sc, priority);
2073			}
2074		}
2075		/*
2076		 * On large memory systems, scan >> priority can become
2077		 * really large. This is fine for the starting priority;
2078		 * we want to put equal scanning pressure on each zone.
2079		 * However, if the VM has a harder time of freeing pages,
2080		 * with multiple processes reclaiming pages, the total
2081		 * freeing target can get unreasonably large.
2082		 */
2083		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2084			break;
2085	}
2086	blk_finish_plug(&plug);
2087	sc->nr_reclaimed += nr_reclaimed;
2088
2089	/*
2090	 * Even if we did not try to evict anon pages at all, we want to
2091	 * rebalance the anon lru active/inactive ratio.
2092	 */
2093	if (inactive_anon_is_low(mz))
2094		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2095
2096	/* reclaim/compaction might need reclaim to continue */
2097	if (should_continue_reclaim(mz, nr_reclaimed,
2098					sc->nr_scanned - nr_scanned, sc))
2099		goto restart;
2100
2101	throttle_vm_writeout(sc->gfp_mask);
2102}
2103
2104static void shrink_zone(int priority, struct zone *zone,
2105			struct scan_control *sc)
2106{
2107	struct mem_cgroup *root = sc->target_mem_cgroup;
2108	struct mem_cgroup_reclaim_cookie reclaim = {
2109		.zone = zone,
2110		.priority = priority,
2111	};
2112	struct mem_cgroup *memcg;
2113
2114	if (global_reclaim(sc)) {
2115		struct mem_cgroup_zone mz = {
2116			.mem_cgroup = NULL,
2117			.zone = zone,
2118		};
2119
2120		shrink_mem_cgroup_zone(priority, &mz, sc);
2121		return;
2122	}
2123
2124	memcg = mem_cgroup_iter(root, NULL, &reclaim);
2125	do {
2126		struct mem_cgroup_zone mz = {
2127			.mem_cgroup = memcg,
2128			.zone = zone,
2129		};
2130
2131		shrink_mem_cgroup_zone(priority, &mz, sc);
2132		/*
2133		 * Limit reclaim has historically picked one memcg and
2134		 * scanned it with decreasing priority levels until
2135		 * nr_to_reclaim had been reclaimed.  This priority
2136		 * cycle is thus over after a single memcg.
2137		 */
2138		if (!global_reclaim(sc)) {
2139			mem_cgroup_iter_break(root, memcg);
2140			break;
2141		}
2142		memcg = mem_cgroup_iter(root, memcg, &reclaim);
2143	} while (memcg);
2144}
2145
2146/*
2147 * This is the direct reclaim path, for page-allocating processes.  We only
2148 * try to reclaim pages from zones which will satisfy the caller's allocation
2149 * request.
2150 *
2151 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2152 * Because:
2153 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2154 *    allocation or
2155 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2156 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2157 *    zone defense algorithm.
2158 *
2159 * If a zone is deemed to be full of pinned pages then just give it a light
2160 * scan then give up on it.
2161 *
2162 * This function returns true if a zone is being reclaimed for a costly
2163 * high-order allocation and compaction is either ready to begin or deferred.
2164 * This indicates to the caller that it should retry the allocation or fail.
2165 */
2166static bool shrink_zones(int priority, struct zonelist *zonelist,
2167					struct scan_control *sc)
2168{
2169	struct zoneref *z;
2170	struct zone *zone;
2171	unsigned long nr_soft_reclaimed;
2172	unsigned long nr_soft_scanned;
2173	bool should_abort_reclaim = false;
2174
2175	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2176					gfp_zone(sc->gfp_mask), sc->nodemask) {
2177		if (!populated_zone(zone))
2178			continue;
2179		/*
2180		 * Take care memory controller reclaiming has small influence
2181		 * to global LRU.
2182		 */
2183		if (global_reclaim(sc)) {
2184			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2185				continue;
2186			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2187				continue;	/* Let kswapd poll it */
2188			if (COMPACTION_BUILD) {
2189				/*
2190				 * If we already have plenty of memory free for
2191				 * compaction in this zone, don't free any more.
2192				 * Even though compaction is invoked for any
2193				 * non-zero order, only frequent costly order
2194				 * reclamation is disruptive enough to become a
2195				 * noticable problem, like transparent huge page
2196				 * allocations.
2197				 */
2198				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2199					(compaction_suitable(zone, sc->order) ||
2200					 compaction_deferred(zone))) {
2201					should_abort_reclaim = true;
2202					continue;
2203				}
2204			}
2205			/*
2206			 * This steals pages from memory cgroups over softlimit
2207			 * and returns the number of reclaimed pages and
2208			 * scanned pages. This works for global memory pressure
2209			 * and balancing, not for a memcg's limit.
2210			 */
2211			nr_soft_scanned = 0;
2212			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2213						sc->order, sc->gfp_mask,
2214						&nr_soft_scanned);
2215			sc->nr_reclaimed += nr_soft_reclaimed;
2216			sc->nr_scanned += nr_soft_scanned;
2217			/* need some check for avoid more shrink_zone() */
2218		}
2219
2220		shrink_zone(priority, zone, sc);
2221	}
2222
2223	return should_abort_reclaim;
2224}
2225
2226static bool zone_reclaimable(struct zone *zone)
2227{
2228	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2229}
2230
2231/* All zones in zonelist are unreclaimable? */
2232static bool all_unreclaimable(struct zonelist *zonelist,
2233		struct scan_control *sc)
2234{
2235	struct zoneref *z;
2236	struct zone *zone;
2237
2238	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2239			gfp_zone(sc->gfp_mask), sc->nodemask) {
2240		if (!populated_zone(zone))
2241			continue;
2242		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2243			continue;
2244		if (!zone->all_unreclaimable)
2245			return false;
2246	}
2247
2248	return true;
2249}
2250
2251/*
2252 * This is the main entry point to direct page reclaim.
2253 *
2254 * If a full scan of the inactive list fails to free enough memory then we
2255 * are "out of memory" and something needs to be killed.
2256 *
2257 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2258 * high - the zone may be full of dirty or under-writeback pages, which this
2259 * caller can't do much about.  We kick the writeback threads and take explicit
2260 * naps in the hope that some of these pages can be written.  But if the
2261 * allocating task holds filesystem locks which prevent writeout this might not
2262 * work, and the allocation attempt will fail.
2263 *
2264 * returns:	0, if no pages reclaimed
2265 * 		else, the number of pages reclaimed
2266 */
2267static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2268					struct scan_control *sc,
2269					struct shrink_control *shrink)
2270{
2271	int priority;
2272	unsigned long total_scanned = 0;
2273	struct reclaim_state *reclaim_state = current->reclaim_state;
2274	struct zoneref *z;
2275	struct zone *zone;
2276	unsigned long writeback_threshold;
2277
2278	get_mems_allowed();
2279	delayacct_freepages_start();
2280
2281	if (global_reclaim(sc))
2282		count_vm_event(ALLOCSTALL);
2283
2284	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2285		sc->nr_scanned = 0;
2286		if (!priority)
2287			disable_swap_token(sc->target_mem_cgroup);
2288		if (shrink_zones(priority, zonelist, sc))
2289			break;
2290
2291		/*
2292		 * Don't shrink slabs when reclaiming memory from
2293		 * over limit cgroups
2294		 */
2295		if (global_reclaim(sc)) {
2296			unsigned long lru_pages = 0;
2297			for_each_zone_zonelist(zone, z, zonelist,
2298					gfp_zone(sc->gfp_mask)) {
2299				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2300					continue;
2301
2302				lru_pages += zone_reclaimable_pages(zone);
2303			}
2304
2305			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2306			if (reclaim_state) {
2307				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2308				reclaim_state->reclaimed_slab = 0;
2309			}
2310		}
2311		total_scanned += sc->nr_scanned;
2312		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2313			goto out;
2314
2315		/*
2316		 * Try to write back as many pages as we just scanned.  This
2317		 * tends to cause slow streaming writers to write data to the
2318		 * disk smoothly, at the dirtying rate, which is nice.   But
2319		 * that's undesirable in laptop mode, where we *want* lumpy
2320		 * writeout.  So in laptop mode, write out the whole world.
2321		 */
2322		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2323		if (total_scanned > writeback_threshold) {
2324			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2325						WB_REASON_TRY_TO_FREE_PAGES);
2326			sc->may_writepage = 1;
2327		}
2328
2329		/* Take a nap, wait for some writeback to complete */
2330		if (!sc->hibernation_mode && sc->nr_scanned &&
2331		    priority < DEF_PRIORITY - 2) {
2332			struct zone *preferred_zone;
2333
2334			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2335						&cpuset_current_mems_allowed,
2336						&preferred_zone);
2337			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2338		}
2339	}
2340
2341out:
2342	delayacct_freepages_end();
2343	put_mems_allowed();
2344
2345	if (sc->nr_reclaimed)
2346		return sc->nr_reclaimed;
2347
2348	/*
2349	 * As hibernation is going on, kswapd is freezed so that it can't mark
2350	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2351	 * check.
2352	 */
2353	if (oom_killer_disabled)
2354		return 0;
2355
2356	/* top priority shrink_zones still had more to do? don't OOM, then */
2357	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2358		return 1;
2359
2360	return 0;
2361}
2362
2363unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2364				gfp_t gfp_mask, nodemask_t *nodemask)
2365{
2366	unsigned long nr_reclaimed;
2367	struct scan_control sc = {
2368		.gfp_mask = gfp_mask,
2369		.may_writepage = !laptop_mode,
2370		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2371		.may_unmap = 1,
2372		.may_swap = 1,
2373		.order = order,
2374		.target_mem_cgroup = NULL,
2375		.nodemask = nodemask,
2376	};
2377	struct shrink_control shrink = {
2378		.gfp_mask = sc.gfp_mask,
2379	};
2380
2381	trace_mm_vmscan_direct_reclaim_begin(order,
2382				sc.may_writepage,
2383				gfp_mask);
2384
2385	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2386
2387	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2388
2389	return nr_reclaimed;
2390}
2391
2392#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2393
2394unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2395						gfp_t gfp_mask, bool noswap,
2396						struct zone *zone,
2397						unsigned long *nr_scanned)
2398{
2399	struct scan_control sc = {
2400		.nr_scanned = 0,
2401		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2402		.may_writepage = !laptop_mode,
2403		.may_unmap = 1,
2404		.may_swap = !noswap,
2405		.order = 0,
2406		.target_mem_cgroup = mem,
2407	};
2408	struct mem_cgroup_zone mz = {
2409		.mem_cgroup = mem,
2410		.zone = zone,
2411	};
2412
2413	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2414			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2415
2416	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2417						      sc.may_writepage,
2418						      sc.gfp_mask);
2419
2420	/*
2421	 * NOTE: Although we can get the priority field, using it
2422	 * here is not a good idea, since it limits the pages we can scan.
2423	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2424	 * will pick up pages from other mem cgroup's as well. We hack
2425	 * the priority and make it zero.
2426	 */
2427	shrink_mem_cgroup_zone(0, &mz, &sc);
2428
2429	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2430
2431	*nr_scanned = sc.nr_scanned;
2432	return sc.nr_reclaimed;
2433}
2434
2435unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2436					   gfp_t gfp_mask,
2437					   bool noswap)
2438{
2439	struct zonelist *zonelist;
2440	unsigned long nr_reclaimed;
2441	int nid;
2442	struct scan_control sc = {
2443		.may_writepage = !laptop_mode,
2444		.may_unmap = 1,
2445		.may_swap = !noswap,
2446		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2447		.order = 0,
2448		.target_mem_cgroup = mem_cont,
2449		.nodemask = NULL, /* we don't care the placement */
2450		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2451				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2452	};
2453	struct shrink_control shrink = {
2454		.gfp_mask = sc.gfp_mask,
2455	};
2456
2457	/*
2458	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2459	 * take care of from where we get pages. So the node where we start the
2460	 * scan does not need to be the current node.
2461	 */
2462	nid = mem_cgroup_select_victim_node(mem_cont);
2463
2464	zonelist = NODE_DATA(nid)->node_zonelists;
2465
2466	trace_mm_vmscan_memcg_reclaim_begin(0,
2467					    sc.may_writepage,
2468					    sc.gfp_mask);
2469
2470	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2471
2472	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2473
2474	return nr_reclaimed;
2475}
2476#endif
2477
2478static void age_active_anon(struct zone *zone, struct scan_control *sc,
2479			    int priority)
2480{
2481	struct mem_cgroup_zone mz = {
2482		.mem_cgroup = NULL,
2483		.zone = zone,
2484	};
2485
2486	if (inactive_anon_is_low(&mz))
2487		shrink_active_list(SWAP_CLUSTER_MAX, &mz, sc, priority, 0);
2488}
2489
2490/*
2491 * pgdat_balanced is used when checking if a node is balanced for high-order
2492 * allocations. Only zones that meet watermarks and are in a zone allowed
2493 * by the callers classzone_idx are added to balanced_pages. The total of
2494 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2495 * for the node to be considered balanced. Forcing all zones to be balanced
2496 * for high orders can cause excessive reclaim when there are imbalanced zones.
2497 * The choice of 25% is due to
2498 *   o a 16M DMA zone that is balanced will not balance a zone on any
2499 *     reasonable sized machine
2500 *   o On all other machines, the top zone must be at least a reasonable
2501 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2502 *     would need to be at least 256M for it to be balance a whole node.
2503 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2504 *     to balance a node on its own. These seemed like reasonable ratios.
2505 */
2506static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2507						int classzone_idx)
2508{
2509	unsigned long present_pages = 0;
2510	int i;
2511
2512	for (i = 0; i <= classzone_idx; i++)
2513		present_pages += pgdat->node_zones[i].present_pages;
2514
2515	/* A special case here: if zone has no page, we think it's balanced */
2516	return balanced_pages >= (present_pages >> 2);
2517}
2518
2519/* is kswapd sleeping prematurely? */
2520static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2521					int classzone_idx)
2522{
2523	int i;
2524	unsigned long balanced = 0;
2525	bool all_zones_ok = true;
2526
2527	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2528	if (remaining)
2529		return true;
2530
2531	/* Check the watermark levels */
2532	for (i = 0; i <= classzone_idx; i++) {
2533		struct zone *zone = pgdat->node_zones + i;
2534
2535		if (!populated_zone(zone))
2536			continue;
2537
2538		/*
2539		 * balance_pgdat() skips over all_unreclaimable after
2540		 * DEF_PRIORITY. Effectively, it considers them balanced so
2541		 * they must be considered balanced here as well if kswapd
2542		 * is to sleep
2543		 */
2544		if (zone->all_unreclaimable) {
2545			balanced += zone->present_pages;
2546			continue;
2547		}
2548
2549		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2550							i, 0))
2551			all_zones_ok = false;
2552		else
2553			balanced += zone->present_pages;
2554	}
2555
2556	/*
2557	 * For high-order requests, the balanced zones must contain at least
2558	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2559	 * must be balanced
2560	 */
2561	if (order)
2562		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2563	else
2564		return !all_zones_ok;
2565}
2566
2567/*
2568 * For kswapd, balance_pgdat() will work across all this node's zones until
2569 * they are all at high_wmark_pages(zone).
2570 *
2571 * Returns the final order kswapd was reclaiming at
2572 *
2573 * There is special handling here for zones which are full of pinned pages.
2574 * This can happen if the pages are all mlocked, or if they are all used by
2575 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2576 * What we do is to detect the case where all pages in the zone have been
2577 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2578 * dead and from now on, only perform a short scan.  Basically we're polling
2579 * the zone for when the problem goes away.
2580 *
2581 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2582 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2583 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2584 * lower zones regardless of the number of free pages in the lower zones. This
2585 * interoperates with the page allocator fallback scheme to ensure that aging
2586 * of pages is balanced across the zones.
2587 */
2588static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2589							int *classzone_idx)
2590{
2591	int all_zones_ok;
2592	unsigned long balanced;
2593	int priority;
2594	int i;
2595	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2596	unsigned long total_scanned;
2597	struct reclaim_state *reclaim_state = current->reclaim_state;
2598	unsigned long nr_soft_reclaimed;
2599	unsigned long nr_soft_scanned;
2600	struct scan_control sc = {
2601		.gfp_mask = GFP_KERNEL,
2602		.may_unmap = 1,
2603		.may_swap = 1,
2604		/*
2605		 * kswapd doesn't want to be bailed out while reclaim. because
2606		 * we want to put equal scanning pressure on each zone.
2607		 */
2608		.nr_to_reclaim = ULONG_MAX,
2609		.order = order,
2610		.target_mem_cgroup = NULL,
2611	};
2612	struct shrink_control shrink = {
2613		.gfp_mask = sc.gfp_mask,
2614	};
2615loop_again:
2616	total_scanned = 0;
2617	sc.nr_reclaimed = 0;
2618	sc.may_writepage = !laptop_mode;
2619	count_vm_event(PAGEOUTRUN);
2620
2621	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2622		unsigned long lru_pages = 0;
2623		int has_under_min_watermark_zone = 0;
2624
2625		/* The swap token gets in the way of swapout... */
2626		if (!priority)
2627			disable_swap_token(NULL);
2628
2629		all_zones_ok = 1;
2630		balanced = 0;
2631
2632		/*
2633		 * Scan in the highmem->dma direction for the highest
2634		 * zone which needs scanning
2635		 */
2636		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2637			struct zone *zone = pgdat->node_zones + i;
2638
2639			if (!populated_zone(zone))
2640				continue;
2641
2642			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2643				continue;
2644
2645			/*
2646			 * Do some background aging of the anon list, to give
2647			 * pages a chance to be referenced before reclaiming.
2648			 */
2649			age_active_anon(zone, &sc, priority);
2650
2651			if (!zone_watermark_ok_safe(zone, order,
2652					high_wmark_pages(zone), 0, 0)) {
2653				end_zone = i;
2654				break;
2655			} else {
2656				/* If balanced, clear the congested flag */
2657				zone_clear_flag(zone, ZONE_CONGESTED);
2658			}
2659		}
2660		if (i < 0)
2661			goto out;
2662
2663		for (i = 0; i <= end_zone; i++) {
2664			struct zone *zone = pgdat->node_zones + i;
2665
2666			lru_pages += zone_reclaimable_pages(zone);
2667		}
2668
2669		/*
2670		 * Now scan the zone in the dma->highmem direction, stopping
2671		 * at the last zone which needs scanning.
2672		 *
2673		 * We do this because the page allocator works in the opposite
2674		 * direction.  This prevents the page allocator from allocating
2675		 * pages behind kswapd's direction of progress, which would
2676		 * cause too much scanning of the lower zones.
2677		 */
2678		for (i = 0; i <= end_zone; i++) {
2679			struct zone *zone = pgdat->node_zones + i;
2680			int nr_slab;
2681			unsigned long balance_gap;
2682
2683			if (!populated_zone(zone))
2684				continue;
2685
2686			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2687				continue;
2688
2689			sc.nr_scanned = 0;
2690
2691			nr_soft_scanned = 0;
2692			/*
2693			 * Call soft limit reclaim before calling shrink_zone.
2694			 */
2695			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2696							order, sc.gfp_mask,
2697							&nr_soft_scanned);
2698			sc.nr_reclaimed += nr_soft_reclaimed;
2699			total_scanned += nr_soft_scanned;
2700
2701			/*
2702			 * We put equal pressure on every zone, unless
2703			 * one zone has way too many pages free
2704			 * already. The "too many pages" is defined
2705			 * as the high wmark plus a "gap" where the
2706			 * gap is either the low watermark or 1%
2707			 * of the zone, whichever is smaller.
2708			 */
2709			balance_gap = min(low_wmark_pages(zone),
2710				(zone->present_pages +
2711					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2712				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2713			if (!zone_watermark_ok_safe(zone, order,
2714					high_wmark_pages(zone) + balance_gap,
2715					end_zone, 0)) {
2716				shrink_zone(priority, zone, &sc);
2717
2718				reclaim_state->reclaimed_slab = 0;
2719				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2720				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2721				total_scanned += sc.nr_scanned;
2722
2723				if (nr_slab == 0 && !zone_reclaimable(zone))
2724					zone->all_unreclaimable = 1;
2725			}
2726
2727			/*
2728			 * If we've done a decent amount of scanning and
2729			 * the reclaim ratio is low, start doing writepage
2730			 * even in laptop mode
2731			 */
2732			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2733			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2734				sc.may_writepage = 1;
2735
2736			if (zone->all_unreclaimable) {
2737				if (end_zone && end_zone == i)
2738					end_zone--;
2739				continue;
2740			}
2741
2742			if (!zone_watermark_ok_safe(zone, order,
2743					high_wmark_pages(zone), end_zone, 0)) {
2744				all_zones_ok = 0;
2745				/*
2746				 * We are still under min water mark.  This
2747				 * means that we have a GFP_ATOMIC allocation
2748				 * failure risk. Hurry up!
2749				 */
2750				if (!zone_watermark_ok_safe(zone, order,
2751					    min_wmark_pages(zone), end_zone, 0))
2752					has_under_min_watermark_zone = 1;
2753			} else {
2754				/*
2755				 * If a zone reaches its high watermark,
2756				 * consider it to be no longer congested. It's
2757				 * possible there are dirty pages backed by
2758				 * congested BDIs but as pressure is relieved,
2759				 * spectulatively avoid congestion waits
2760				 */
2761				zone_clear_flag(zone, ZONE_CONGESTED);
2762				if (i <= *classzone_idx)
2763					balanced += zone->present_pages;
2764			}
2765
2766		}
2767		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2768			break;		/* kswapd: all done */
2769		/*
2770		 * OK, kswapd is getting into trouble.  Take a nap, then take
2771		 * another pass across the zones.
2772		 */
2773		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2774			if (has_under_min_watermark_zone)
2775				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2776			else
2777				congestion_wait(BLK_RW_ASYNC, HZ/10);
2778		}
2779
2780		/*
2781		 * We do this so kswapd doesn't build up large priorities for
2782		 * example when it is freeing in parallel with allocators. It
2783		 * matches the direct reclaim path behaviour in terms of impact
2784		 * on zone->*_priority.
2785		 */
2786		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2787			break;
2788	}
2789out:
2790
2791	/*
2792	 * order-0: All zones must meet high watermark for a balanced node
2793	 * high-order: Balanced zones must make up at least 25% of the node
2794	 *             for the node to be balanced
2795	 */
2796	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2797		cond_resched();
2798
2799		try_to_freeze();
2800
2801		/*
2802		 * Fragmentation may mean that the system cannot be
2803		 * rebalanced for high-order allocations in all zones.
2804		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2805		 * it means the zones have been fully scanned and are still
2806		 * not balanced. For high-order allocations, there is
2807		 * little point trying all over again as kswapd may
2808		 * infinite loop.
2809		 *
2810		 * Instead, recheck all watermarks at order-0 as they
2811		 * are the most important. If watermarks are ok, kswapd will go
2812		 * back to sleep. High-order users can still perform direct
2813		 * reclaim if they wish.
2814		 */
2815		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2816			order = sc.order = 0;
2817
2818		goto loop_again;
2819	}
2820
2821	/*
2822	 * If kswapd was reclaiming at a higher order, it has the option of
2823	 * sleeping without all zones being balanced. Before it does, it must
2824	 * ensure that the watermarks for order-0 on *all* zones are met and
2825	 * that the congestion flags are cleared. The congestion flag must
2826	 * be cleared as kswapd is the only mechanism that clears the flag
2827	 * and it is potentially going to sleep here.
2828	 */
2829	if (order) {
2830		for (i = 0; i <= end_zone; i++) {
2831			struct zone *zone = pgdat->node_zones + i;
2832
2833			if (!populated_zone(zone))
2834				continue;
2835
2836			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2837				continue;
2838
2839			/* Confirm the zone is balanced for order-0 */
2840			if (!zone_watermark_ok(zone, 0,
2841					high_wmark_pages(zone), 0, 0)) {
2842				order = sc.order = 0;
2843				goto loop_again;
2844			}
2845
2846			/* If balanced, clear the congested flag */
2847			zone_clear_flag(zone, ZONE_CONGESTED);
2848			if (i <= *classzone_idx)
2849				balanced += zone->present_pages;
2850		}
2851	}
2852
2853	/*
2854	 * Return the order we were reclaiming at so sleeping_prematurely()
2855	 * makes a decision on the order we were last reclaiming at. However,
2856	 * if another caller entered the allocator slow path while kswapd
2857	 * was awake, order will remain at the higher level
2858	 */
2859	*classzone_idx = end_zone;
2860	return order;
2861}
2862
2863static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2864{
2865	long remaining = 0;
2866	DEFINE_WAIT(wait);
2867
2868	if (freezing(current) || kthread_should_stop())
2869		return;
2870
2871	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2872
2873	/* Try to sleep for a short interval */
2874	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2875		remaining = schedule_timeout(HZ/10);
2876		finish_wait(&pgdat->kswapd_wait, &wait);
2877		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2878	}
2879
2880	/*
2881	 * After a short sleep, check if it was a premature sleep. If not, then
2882	 * go fully to sleep until explicitly woken up.
2883	 */
2884	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2885		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2886
2887		/*
2888		 * vmstat counters are not perfectly accurate and the estimated
2889		 * value for counters such as NR_FREE_PAGES can deviate from the
2890		 * true value by nr_online_cpus * threshold. To avoid the zone
2891		 * watermarks being breached while under pressure, we reduce the
2892		 * per-cpu vmstat threshold while kswapd is awake and restore
2893		 * them before going back to sleep.
2894		 */
2895		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2896		schedule();
2897		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2898	} else {
2899		if (remaining)
2900			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2901		else
2902			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2903	}
2904	finish_wait(&pgdat->kswapd_wait, &wait);
2905}
2906
2907/*
2908 * The background pageout daemon, started as a kernel thread
2909 * from the init process.
2910 *
2911 * This basically trickles out pages so that we have _some_
2912 * free memory available even if there is no other activity
2913 * that frees anything up. This is needed for things like routing
2914 * etc, where we otherwise might have all activity going on in
2915 * asynchronous contexts that cannot page things out.
2916 *
2917 * If there are applications that are active memory-allocators
2918 * (most normal use), this basically shouldn't matter.
2919 */
2920static int kswapd(void *p)
2921{
2922	unsigned long order, new_order;
2923	unsigned balanced_order;
2924	int classzone_idx, new_classzone_idx;
2925	int balanced_classzone_idx;
2926	pg_data_t *pgdat = (pg_data_t*)p;
2927	struct task_struct *tsk = current;
2928
2929	struct reclaim_state reclaim_state = {
2930		.reclaimed_slab = 0,
2931	};
2932	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2933
2934	lockdep_set_current_reclaim_state(GFP_KERNEL);
2935
2936	if (!cpumask_empty(cpumask))
2937		set_cpus_allowed_ptr(tsk, cpumask);
2938	current->reclaim_state = &reclaim_state;
2939
2940	/*
2941	 * Tell the memory management that we're a "memory allocator",
2942	 * and that if we need more memory we should get access to it
2943	 * regardless (see "__alloc_pages()"). "kswapd" should
2944	 * never get caught in the normal page freeing logic.
2945	 *
2946	 * (Kswapd normally doesn't need memory anyway, but sometimes
2947	 * you need a small amount of memory in order to be able to
2948	 * page out something else, and this flag essentially protects
2949	 * us from recursively trying to free more memory as we're
2950	 * trying to free the first piece of memory in the first place).
2951	 */
2952	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2953	set_freezable();
2954
2955	order = new_order = 0;
2956	balanced_order = 0;
2957	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2958	balanced_classzone_idx = classzone_idx;
2959	for ( ; ; ) {
2960		int ret;
2961
2962		/*
2963		 * If the last balance_pgdat was unsuccessful it's unlikely a
2964		 * new request of a similar or harder type will succeed soon
2965		 * so consider going to sleep on the basis we reclaimed at
2966		 */
2967		if (balanced_classzone_idx >= new_classzone_idx &&
2968					balanced_order == new_order) {
2969			new_order = pgdat->kswapd_max_order;
2970			new_classzone_idx = pgdat->classzone_idx;
2971			pgdat->kswapd_max_order =  0;
2972			pgdat->classzone_idx = pgdat->nr_zones - 1;
2973		}
2974
2975		if (order < new_order || classzone_idx > new_classzone_idx) {
2976			/*
2977			 * Don't sleep if someone wants a larger 'order'
2978			 * allocation or has tigher zone constraints
2979			 */
2980			order = new_order;
2981			classzone_idx = new_classzone_idx;
2982		} else {
2983			kswapd_try_to_sleep(pgdat, balanced_order,
2984						balanced_classzone_idx);
2985			order = pgdat->kswapd_max_order;
2986			classzone_idx = pgdat->classzone_idx;
2987			new_order = order;
2988			new_classzone_idx = classzone_idx;
2989			pgdat->kswapd_max_order = 0;
2990			pgdat->classzone_idx = pgdat->nr_zones - 1;
2991		}
2992
2993		ret = try_to_freeze();
2994		if (kthread_should_stop())
2995			break;
2996
2997		/*
2998		 * We can speed up thawing tasks if we don't call balance_pgdat
2999		 * after returning from the refrigerator
3000		 */
3001		if (!ret) {
3002			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3003			balanced_classzone_idx = classzone_idx;
3004			balanced_order = balance_pgdat(pgdat, order,
3005						&balanced_classzone_idx);
3006		}
3007	}
3008	return 0;
3009}
3010
3011/*
3012 * A zone is low on free memory, so wake its kswapd task to service it.
3013 */
3014void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3015{
3016	pg_data_t *pgdat;
3017
3018	if (!populated_zone(zone))
3019		return;
3020
3021	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3022		return;
3023	pgdat = zone->zone_pgdat;
3024	if (pgdat->kswapd_max_order < order) {
3025		pgdat->kswapd_max_order = order;
3026		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3027	}
3028	if (!waitqueue_active(&pgdat->kswapd_wait))
3029		return;
3030	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3031		return;
3032
3033	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3034	wake_up_interruptible(&pgdat->kswapd_wait);
3035}
3036
3037/*
3038 * The reclaimable count would be mostly accurate.
3039 * The less reclaimable pages may be
3040 * - mlocked pages, which will be moved to unevictable list when encountered
3041 * - mapped pages, which may require several travels to be reclaimed
3042 * - dirty pages, which is not "instantly" reclaimable
3043 */
3044unsigned long global_reclaimable_pages(void)
3045{
3046	int nr;
3047
3048	nr = global_page_state(NR_ACTIVE_FILE) +
3049	     global_page_state(NR_INACTIVE_FILE);
3050
3051	if (nr_swap_pages > 0)
3052		nr += global_page_state(NR_ACTIVE_ANON) +
3053		      global_page_state(NR_INACTIVE_ANON);
3054
3055	return nr;
3056}
3057
3058unsigned long zone_reclaimable_pages(struct zone *zone)
3059{
3060	int nr;
3061
3062	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3063	     zone_page_state(zone, NR_INACTIVE_FILE);
3064
3065	if (nr_swap_pages > 0)
3066		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3067		      zone_page_state(zone, NR_INACTIVE_ANON);
3068
3069	return nr;
3070}
3071
3072#ifdef CONFIG_HIBERNATION
3073/*
3074 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3075 * freed pages.
3076 *
3077 * Rather than trying to age LRUs the aim is to preserve the overall
3078 * LRU order by reclaiming preferentially
3079 * inactive > active > active referenced > active mapped
3080 */
3081unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3082{
3083	struct reclaim_state reclaim_state;
3084	struct scan_control sc = {
3085		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3086		.may_swap = 1,
3087		.may_unmap = 1,
3088		.may_writepage = 1,
3089		.nr_to_reclaim = nr_to_reclaim,
3090		.hibernation_mode = 1,
3091		.order = 0,
3092	};
3093	struct shrink_control shrink = {
3094		.gfp_mask = sc.gfp_mask,
3095	};
3096	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3097	struct task_struct *p = current;
3098	unsigned long nr_reclaimed;
3099
3100	p->flags |= PF_MEMALLOC;
3101	lockdep_set_current_reclaim_state(sc.gfp_mask);
3102	reclaim_state.reclaimed_slab = 0;
3103	p->reclaim_state = &reclaim_state;
3104
3105	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3106
3107	p->reclaim_state = NULL;
3108	lockdep_clear_current_reclaim_state();
3109	p->flags &= ~PF_MEMALLOC;
3110
3111	return nr_reclaimed;
3112}
3113#endif /* CONFIG_HIBERNATION */
3114
3115/* It's optimal to keep kswapds on the same CPUs as their memory, but
3116   not required for correctness.  So if the last cpu in a node goes
3117   away, we get changed to run anywhere: as the first one comes back,
3118   restore their cpu bindings. */
3119static int __devinit cpu_callback(struct notifier_block *nfb,
3120				  unsigned long action, void *hcpu)
3121{
3122	int nid;
3123
3124	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3125		for_each_node_state(nid, N_HIGH_MEMORY) {
3126			pg_data_t *pgdat = NODE_DATA(nid);
3127			const struct cpumask *mask;
3128
3129			mask = cpumask_of_node(pgdat->node_id);
3130
3131			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3132				/* One of our CPUs online: restore mask */
3133				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3134		}
3135	}
3136	return NOTIFY_OK;
3137}
3138
3139/*
3140 * This kswapd start function will be called by init and node-hot-add.
3141 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3142 */
3143int kswapd_run(int nid)
3144{
3145	pg_data_t *pgdat = NODE_DATA(nid);
3146	int ret = 0;
3147
3148	if (pgdat->kswapd)
3149		return 0;
3150
3151	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3152	if (IS_ERR(pgdat->kswapd)) {
3153		/* failure at boot is fatal */
3154		BUG_ON(system_state == SYSTEM_BOOTING);
3155		printk("Failed to start kswapd on node %d\n",nid);
3156		ret = -1;
3157	}
3158	return ret;
3159}
3160
3161/*
3162 * Called by memory hotplug when all memory in a node is offlined.
3163 */
3164void kswapd_stop(int nid)
3165{
3166	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3167
3168	if (kswapd)
3169		kthread_stop(kswapd);
3170}
3171
3172static int __init kswapd_init(void)
3173{
3174	int nid;
3175
3176	swap_setup();
3177	for_each_node_state(nid, N_HIGH_MEMORY)
3178 		kswapd_run(nid);
3179	hotcpu_notifier(cpu_callback, 0);
3180	return 0;
3181}
3182
3183module_init(kswapd_init)
3184
3185#ifdef CONFIG_NUMA
3186/*
3187 * Zone reclaim mode
3188 *
3189 * If non-zero call zone_reclaim when the number of free pages falls below
3190 * the watermarks.
3191 */
3192int zone_reclaim_mode __read_mostly;
3193
3194#define RECLAIM_OFF 0
3195#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3196#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3197#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3198
3199/*
3200 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3201 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3202 * a zone.
3203 */
3204#define ZONE_RECLAIM_PRIORITY 4
3205
3206/*
3207 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3208 * occur.
3209 */
3210int sysctl_min_unmapped_ratio = 1;
3211
3212/*
3213 * If the number of slab pages in a zone grows beyond this percentage then
3214 * slab reclaim needs to occur.
3215 */
3216int sysctl_min_slab_ratio = 5;
3217
3218static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3219{
3220	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3221	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3222		zone_page_state(zone, NR_ACTIVE_FILE);
3223
3224	/*
3225	 * It's possible for there to be more file mapped pages than
3226	 * accounted for by the pages on the file LRU lists because
3227	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3228	 */
3229	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3230}
3231
3232/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3233static long zone_pagecache_reclaimable(struct zone *zone)
3234{
3235	long nr_pagecache_reclaimable;
3236	long delta = 0;
3237
3238	/*
3239	 * If RECLAIM_SWAP is set, then all file pages are considered
3240	 * potentially reclaimable. Otherwise, we have to worry about
3241	 * pages like swapcache and zone_unmapped_file_pages() provides
3242	 * a better estimate
3243	 */
3244	if (zone_reclaim_mode & RECLAIM_SWAP)
3245		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3246	else
3247		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3248
3249	/* If we can't clean pages, remove dirty pages from consideration */
3250	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3251		delta += zone_page_state(zone, NR_FILE_DIRTY);
3252
3253	/* Watch for any possible underflows due to delta */
3254	if (unlikely(delta > nr_pagecache_reclaimable))
3255		delta = nr_pagecache_reclaimable;
3256
3257	return nr_pagecache_reclaimable - delta;
3258}
3259
3260/*
3261 * Try to free up some pages from this zone through reclaim.
3262 */
3263static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3264{
3265	/* Minimum pages needed in order to stay on node */
3266	const unsigned long nr_pages = 1 << order;
3267	struct task_struct *p = current;
3268	struct reclaim_state reclaim_state;
3269	int priority;
3270	struct scan_control sc = {
3271		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3272		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3273		.may_swap = 1,
3274		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3275				       SWAP_CLUSTER_MAX),
3276		.gfp_mask = gfp_mask,
3277		.order = order,
3278	};
3279	struct shrink_control shrink = {
3280		.gfp_mask = sc.gfp_mask,
3281	};
3282	unsigned long nr_slab_pages0, nr_slab_pages1;
3283
3284	cond_resched();
3285	/*
3286	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3287	 * and we also need to be able to write out pages for RECLAIM_WRITE
3288	 * and RECLAIM_SWAP.
3289	 */
3290	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3291	lockdep_set_current_reclaim_state(gfp_mask);
3292	reclaim_state.reclaimed_slab = 0;
3293	p->reclaim_state = &reclaim_state;
3294
3295	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3296		/*
3297		 * Free memory by calling shrink zone with increasing
3298		 * priorities until we have enough memory freed.
3299		 */
3300		priority = ZONE_RECLAIM_PRIORITY;
3301		do {
3302			shrink_zone(priority, zone, &sc);
3303			priority--;
3304		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3305	}
3306
3307	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3308	if (nr_slab_pages0 > zone->min_slab_pages) {
3309		/*
3310		 * shrink_slab() does not currently allow us to determine how
3311		 * many pages were freed in this zone. So we take the current
3312		 * number of slab pages and shake the slab until it is reduced
3313		 * by the same nr_pages that we used for reclaiming unmapped
3314		 * pages.
3315		 *
3316		 * Note that shrink_slab will free memory on all zones and may
3317		 * take a long time.
3318		 */
3319		for (;;) {
3320			unsigned long lru_pages = zone_reclaimable_pages(zone);
3321
3322			/* No reclaimable slab or very low memory pressure */
3323			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3324				break;
3325
3326			/* Freed enough memory */
3327			nr_slab_pages1 = zone_page_state(zone,
3328							NR_SLAB_RECLAIMABLE);
3329			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3330				break;
3331		}
3332
3333		/*
3334		 * Update nr_reclaimed by the number of slab pages we
3335		 * reclaimed from this zone.
3336		 */
3337		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3338		if (nr_slab_pages1 < nr_slab_pages0)
3339			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3340	}
3341
3342	p->reclaim_state = NULL;
3343	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3344	lockdep_clear_current_reclaim_state();
3345	return sc.nr_reclaimed >= nr_pages;
3346}
3347
3348int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3349{
3350	int node_id;
3351	int ret;
3352
3353	/*
3354	 * Zone reclaim reclaims unmapped file backed pages and
3355	 * slab pages if we are over the defined limits.
3356	 *
3357	 * A small portion of unmapped file backed pages is needed for
3358	 * file I/O otherwise pages read by file I/O will be immediately
3359	 * thrown out if the zone is overallocated. So we do not reclaim
3360	 * if less than a specified percentage of the zone is used by
3361	 * unmapped file backed pages.
3362	 */
3363	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3364	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3365		return ZONE_RECLAIM_FULL;
3366
3367	if (zone->all_unreclaimable)
3368		return ZONE_RECLAIM_FULL;
3369
3370	/*
3371	 * Do not scan if the allocation should not be delayed.
3372	 */
3373	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3374		return ZONE_RECLAIM_NOSCAN;
3375
3376	/*
3377	 * Only run zone reclaim on the local zone or on zones that do not
3378	 * have associated processors. This will favor the local processor
3379	 * over remote processors and spread off node memory allocations
3380	 * as wide as possible.
3381	 */
3382	node_id = zone_to_nid(zone);
3383	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3384		return ZONE_RECLAIM_NOSCAN;
3385
3386	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3387		return ZONE_RECLAIM_NOSCAN;
3388
3389	ret = __zone_reclaim(zone, gfp_mask, order);
3390	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3391
3392	if (!ret)
3393		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3394
3395	return ret;
3396}
3397#endif
3398
3399/*
3400 * page_evictable - test whether a page is evictable
3401 * @page: the page to test
3402 * @vma: the VMA in which the page is or will be mapped, may be NULL
3403 *
3404 * Test whether page is evictable--i.e., should be placed on active/inactive
3405 * lists vs unevictable list.  The vma argument is !NULL when called from the
3406 * fault path to determine how to instantate a new page.
3407 *
3408 * Reasons page might not be evictable:
3409 * (1) page's mapping marked unevictable
3410 * (2) page is part of an mlocked VMA
3411 *
3412 */
3413int page_evictable(struct page *page, struct vm_area_struct *vma)
3414{
3415
3416	if (mapping_unevictable(page_mapping(page)))
3417		return 0;
3418
3419	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3420		return 0;
3421
3422	return 1;
3423}
3424
3425/**
3426 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3427 * @page: page to check evictability and move to appropriate lru list
3428 * @zone: zone page is in
3429 *
3430 * Checks a page for evictability and moves the page to the appropriate
3431 * zone lru list.
3432 *
3433 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3434 * have PageUnevictable set.
3435 */
3436static void check_move_unevictable_page(struct page *page, struct zone *zone)
3437{
3438	VM_BUG_ON(PageActive(page));
3439
3440retry:
3441	ClearPageUnevictable(page);
3442	if (page_evictable(page, NULL)) {
3443		enum lru_list l = page_lru_base_type(page);
3444
3445		__dec_zone_state(zone, NR_UNEVICTABLE);
3446		list_move(&page->lru, &zone->lru[l].list);
3447		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3448		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3449		__count_vm_event(UNEVICTABLE_PGRESCUED);
3450	} else {
3451		/*
3452		 * rotate unevictable list
3453		 */
3454		SetPageUnevictable(page);
3455		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3456		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3457		if (page_evictable(page, NULL))
3458			goto retry;
3459	}
3460}
3461
3462/**
3463 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3464 * @mapping: struct address_space to scan for evictable pages
3465 *
3466 * Scan all pages in mapping.  Check unevictable pages for
3467 * evictability and move them to the appropriate zone lru list.
3468 */
3469void scan_mapping_unevictable_pages(struct address_space *mapping)
3470{
3471	pgoff_t next = 0;
3472	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3473			 PAGE_CACHE_SHIFT;
3474	struct zone *zone;
3475	struct pagevec pvec;
3476
3477	if (mapping->nrpages == 0)
3478		return;
3479
3480	pagevec_init(&pvec, 0);
3481	while (next < end &&
3482		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3483		int i;
3484		int pg_scanned = 0;
3485
3486		zone = NULL;
3487
3488		for (i = 0; i < pagevec_count(&pvec); i++) {
3489			struct page *page = pvec.pages[i];
3490			pgoff_t page_index = page->index;
3491			struct zone *pagezone = page_zone(page);
3492
3493			pg_scanned++;
3494			if (page_index > next)
3495				next = page_index;
3496			next++;
3497
3498			if (pagezone != zone) {
3499				if (zone)
3500					spin_unlock_irq(&zone->lru_lock);
3501				zone = pagezone;
3502				spin_lock_irq(&zone->lru_lock);
3503			}
3504
3505			if (PageLRU(page) && PageUnevictable(page))
3506				check_move_unevictable_page(page, zone);
3507		}
3508		if (zone)
3509			spin_unlock_irq(&zone->lru_lock);
3510		pagevec_release(&pvec);
3511
3512		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3513	}
3514
3515}
3516
3517static void warn_scan_unevictable_pages(void)
3518{
3519	printk_once(KERN_WARNING
3520		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3521		    "disabled for lack of a legitimate use case.  If you have "
3522		    "one, please send an email to linux-mm@kvack.org.\n",
3523		    current->comm);
3524}
3525
3526/*
3527 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3528 * all nodes' unevictable lists for evictable pages
3529 */
3530unsigned long scan_unevictable_pages;
3531
3532int scan_unevictable_handler(struct ctl_table *table, int write,
3533			   void __user *buffer,
3534			   size_t *length, loff_t *ppos)
3535{
3536	warn_scan_unevictable_pages();
3537	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3538	scan_unevictable_pages = 0;
3539	return 0;
3540}
3541
3542#ifdef CONFIG_NUMA
3543/*
3544 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3545 * a specified node's per zone unevictable lists for evictable pages.
3546 */
3547
3548static ssize_t read_scan_unevictable_node(struct device *dev,
3549					  struct device_attribute *attr,
3550					  char *buf)
3551{
3552	warn_scan_unevictable_pages();
3553	return sprintf(buf, "0\n");	/* always zero; should fit... */
3554}
3555
3556static ssize_t write_scan_unevictable_node(struct device *dev,
3557					   struct device_attribute *attr,
3558					const char *buf, size_t count)
3559{
3560	warn_scan_unevictable_pages();
3561	return 1;
3562}
3563
3564
3565static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3566			read_scan_unevictable_node,
3567			write_scan_unevictable_node);
3568
3569int scan_unevictable_register_node(struct node *node)
3570{
3571	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3572}
3573
3574void scan_unevictable_unregister_node(struct node *node)
3575{
3576	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3577}
3578#endif
3579