vmscan.c revision 635697c663f38106063d5659f0cf2e45afcd4bb5
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/* Which cgroup do we reclaim from */
107	struct mem_cgroup *mem_cgroup;
108
109	/*
110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111	 * are scanned.
112	 */
113	nodemask_t	*nodemask;
114};
115
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field)			\
120	do {								\
121		if ((_page)->lru.prev != _base) {			\
122			struct page *prev;				\
123									\
124			prev = lru_to_page(&(_page->lru));		\
125			prefetch(&prev->_field);			\
126		}							\
127	} while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field)			\
134	do {								\
135		if ((_page)->lru.prev != _base) {			\
136			struct page *prev;				\
137									\
138			prev = lru_to_page(&(_page->lru));		\
139			prefetchw(&prev->_field);			\
140		}							\
141	} while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100.  Higher means more swappy.
148 */
149int vm_swappiness = 60;
150long vm_total_pages;	/* The total number of pages which the VM controls */
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157#else
158#define scanning_global_lru(sc)	(1)
159#endif
160
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162						  struct scan_control *sc)
163{
164	if (!scanning_global_lru(sc))
165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167	return &zone->reclaim_stat;
168}
169
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171				struct scan_control *sc, enum lru_list lru)
172{
173	if (!scanning_global_lru(sc))
174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177	return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
181/*
182 * Add a shrinker callback to be called from the vm
183 */
184void register_shrinker(struct shrinker *shrinker)
185{
186	shrinker->nr = 0;
187	down_write(&shrinker_rwsem);
188	list_add_tail(&shrinker->list, &shrinker_list);
189	up_write(&shrinker_rwsem);
190}
191EXPORT_SYMBOL(register_shrinker);
192
193/*
194 * Remove one
195 */
196void unregister_shrinker(struct shrinker *shrinker)
197{
198	down_write(&shrinker_rwsem);
199	list_del(&shrinker->list);
200	up_write(&shrinker_rwsem);
201}
202EXPORT_SYMBOL(unregister_shrinker);
203
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205				     struct shrink_control *sc,
206				     unsigned long nr_to_scan)
207{
208	sc->nr_to_scan = nr_to_scan;
209	return (*shrinker->shrink)(shrinker, sc);
210}
211
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object.  With this in mind we age equal
218 * percentages of the lru and ageable caches.  This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt.  It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232unsigned long shrink_slab(struct shrink_control *shrink,
233			  unsigned long nr_pages_scanned,
234			  unsigned long lru_pages)
235{
236	struct shrinker *shrinker;
237	unsigned long ret = 0;
238
239	if (nr_pages_scanned == 0)
240		nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242	if (!down_read_trylock(&shrinker_rwsem)) {
243		/* Assume we'll be able to shrink next time */
244		ret = 1;
245		goto out;
246	}
247
248	list_for_each_entry(shrinker, &shrinker_list, list) {
249		unsigned long long delta;
250		long total_scan;
251		long max_pass;
252		int shrink_ret = 0;
253		long nr;
254		long new_nr;
255		long batch_size = shrinker->batch ? shrinker->batch
256						  : SHRINK_BATCH;
257
258		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259		if (max_pass <= 0)
260			continue;
261
262		/*
263		 * copy the current shrinker scan count into a local variable
264		 * and zero it so that other concurrent shrinker invocations
265		 * don't also do this scanning work.
266		 */
267		do {
268			nr = shrinker->nr;
269		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
270
271		total_scan = nr;
272		delta = (4 * nr_pages_scanned) / shrinker->seeks;
273		delta *= max_pass;
274		do_div(delta, lru_pages + 1);
275		total_scan += delta;
276		if (total_scan < 0) {
277			printk(KERN_ERR "shrink_slab: %pF negative objects to "
278			       "delete nr=%ld\n",
279			       shrinker->shrink, total_scan);
280			total_scan = max_pass;
281		}
282
283		/*
284		 * We need to avoid excessive windup on filesystem shrinkers
285		 * due to large numbers of GFP_NOFS allocations causing the
286		 * shrinkers to return -1 all the time. This results in a large
287		 * nr being built up so when a shrink that can do some work
288		 * comes along it empties the entire cache due to nr >>>
289		 * max_pass.  This is bad for sustaining a working set in
290		 * memory.
291		 *
292		 * Hence only allow the shrinker to scan the entire cache when
293		 * a large delta change is calculated directly.
294		 */
295		if (delta < max_pass / 4)
296			total_scan = min(total_scan, max_pass / 2);
297
298		/*
299		 * Avoid risking looping forever due to too large nr value:
300		 * never try to free more than twice the estimate number of
301		 * freeable entries.
302		 */
303		if (total_scan > max_pass * 2)
304			total_scan = max_pass * 2;
305
306		trace_mm_shrink_slab_start(shrinker, shrink, nr,
307					nr_pages_scanned, lru_pages,
308					max_pass, delta, total_scan);
309
310		while (total_scan >= batch_size) {
311			int nr_before;
312
313			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
314			shrink_ret = do_shrinker_shrink(shrinker, shrink,
315							batch_size);
316			if (shrink_ret == -1)
317				break;
318			if (shrink_ret < nr_before)
319				ret += nr_before - shrink_ret;
320			count_vm_events(SLABS_SCANNED, batch_size);
321			total_scan -= batch_size;
322
323			cond_resched();
324		}
325
326		/*
327		 * move the unused scan count back into the shrinker in a
328		 * manner that handles concurrent updates. If we exhausted the
329		 * scan, there is no need to do an update.
330		 */
331		do {
332			nr = shrinker->nr;
333			new_nr = total_scan + nr;
334			if (total_scan <= 0)
335				break;
336		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
337
338		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
339	}
340	up_read(&shrinker_rwsem);
341out:
342	cond_resched();
343	return ret;
344}
345
346static void set_reclaim_mode(int priority, struct scan_control *sc,
347				   bool sync)
348{
349	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
350
351	/*
352	 * Initially assume we are entering either lumpy reclaim or
353	 * reclaim/compaction.Depending on the order, we will either set the
354	 * sync mode or just reclaim order-0 pages later.
355	 */
356	if (COMPACTION_BUILD)
357		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
358	else
359		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
360
361	/*
362	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
363	 * restricting when its set to either costly allocations or when
364	 * under memory pressure
365	 */
366	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
367		sc->reclaim_mode |= syncmode;
368	else if (sc->order && priority < DEF_PRIORITY - 2)
369		sc->reclaim_mode |= syncmode;
370	else
371		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
372}
373
374static void reset_reclaim_mode(struct scan_control *sc)
375{
376	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
377}
378
379static inline int is_page_cache_freeable(struct page *page)
380{
381	/*
382	 * A freeable page cache page is referenced only by the caller
383	 * that isolated the page, the page cache radix tree and
384	 * optional buffer heads at page->private.
385	 */
386	return page_count(page) - page_has_private(page) == 2;
387}
388
389static int may_write_to_queue(struct backing_dev_info *bdi,
390			      struct scan_control *sc)
391{
392	if (current->flags & PF_SWAPWRITE)
393		return 1;
394	if (!bdi_write_congested(bdi))
395		return 1;
396	if (bdi == current->backing_dev_info)
397		return 1;
398
399	/* lumpy reclaim for hugepage often need a lot of write */
400	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
401		return 1;
402	return 0;
403}
404
405/*
406 * We detected a synchronous write error writing a page out.  Probably
407 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
408 * fsync(), msync() or close().
409 *
410 * The tricky part is that after writepage we cannot touch the mapping: nothing
411 * prevents it from being freed up.  But we have a ref on the page and once
412 * that page is locked, the mapping is pinned.
413 *
414 * We're allowed to run sleeping lock_page() here because we know the caller has
415 * __GFP_FS.
416 */
417static void handle_write_error(struct address_space *mapping,
418				struct page *page, int error)
419{
420	lock_page(page);
421	if (page_mapping(page) == mapping)
422		mapping_set_error(mapping, error);
423	unlock_page(page);
424}
425
426/* possible outcome of pageout() */
427typedef enum {
428	/* failed to write page out, page is locked */
429	PAGE_KEEP,
430	/* move page to the active list, page is locked */
431	PAGE_ACTIVATE,
432	/* page has been sent to the disk successfully, page is unlocked */
433	PAGE_SUCCESS,
434	/* page is clean and locked */
435	PAGE_CLEAN,
436} pageout_t;
437
438/*
439 * pageout is called by shrink_page_list() for each dirty page.
440 * Calls ->writepage().
441 */
442static pageout_t pageout(struct page *page, struct address_space *mapping,
443			 struct scan_control *sc)
444{
445	/*
446	 * If the page is dirty, only perform writeback if that write
447	 * will be non-blocking.  To prevent this allocation from being
448	 * stalled by pagecache activity.  But note that there may be
449	 * stalls if we need to run get_block().  We could test
450	 * PagePrivate for that.
451	 *
452	 * If this process is currently in __generic_file_aio_write() against
453	 * this page's queue, we can perform writeback even if that
454	 * will block.
455	 *
456	 * If the page is swapcache, write it back even if that would
457	 * block, for some throttling. This happens by accident, because
458	 * swap_backing_dev_info is bust: it doesn't reflect the
459	 * congestion state of the swapdevs.  Easy to fix, if needed.
460	 */
461	if (!is_page_cache_freeable(page))
462		return PAGE_KEEP;
463	if (!mapping) {
464		/*
465		 * Some data journaling orphaned pages can have
466		 * page->mapping == NULL while being dirty with clean buffers.
467		 */
468		if (page_has_private(page)) {
469			if (try_to_free_buffers(page)) {
470				ClearPageDirty(page);
471				printk("%s: orphaned page\n", __func__);
472				return PAGE_CLEAN;
473			}
474		}
475		return PAGE_KEEP;
476	}
477	if (mapping->a_ops->writepage == NULL)
478		return PAGE_ACTIVATE;
479	if (!may_write_to_queue(mapping->backing_dev_info, sc))
480		return PAGE_KEEP;
481
482	if (clear_page_dirty_for_io(page)) {
483		int res;
484		struct writeback_control wbc = {
485			.sync_mode = WB_SYNC_NONE,
486			.nr_to_write = SWAP_CLUSTER_MAX,
487			.range_start = 0,
488			.range_end = LLONG_MAX,
489			.for_reclaim = 1,
490		};
491
492		SetPageReclaim(page);
493		res = mapping->a_ops->writepage(page, &wbc);
494		if (res < 0)
495			handle_write_error(mapping, page, res);
496		if (res == AOP_WRITEPAGE_ACTIVATE) {
497			ClearPageReclaim(page);
498			return PAGE_ACTIVATE;
499		}
500
501		if (!PageWriteback(page)) {
502			/* synchronous write or broken a_ops? */
503			ClearPageReclaim(page);
504		}
505		trace_mm_vmscan_writepage(page,
506			trace_reclaim_flags(page, sc->reclaim_mode));
507		inc_zone_page_state(page, NR_VMSCAN_WRITE);
508		return PAGE_SUCCESS;
509	}
510
511	return PAGE_CLEAN;
512}
513
514/*
515 * Same as remove_mapping, but if the page is removed from the mapping, it
516 * gets returned with a refcount of 0.
517 */
518static int __remove_mapping(struct address_space *mapping, struct page *page)
519{
520	BUG_ON(!PageLocked(page));
521	BUG_ON(mapping != page_mapping(page));
522
523	spin_lock_irq(&mapping->tree_lock);
524	/*
525	 * The non racy check for a busy page.
526	 *
527	 * Must be careful with the order of the tests. When someone has
528	 * a ref to the page, it may be possible that they dirty it then
529	 * drop the reference. So if PageDirty is tested before page_count
530	 * here, then the following race may occur:
531	 *
532	 * get_user_pages(&page);
533	 * [user mapping goes away]
534	 * write_to(page);
535	 *				!PageDirty(page)    [good]
536	 * SetPageDirty(page);
537	 * put_page(page);
538	 *				!page_count(page)   [good, discard it]
539	 *
540	 * [oops, our write_to data is lost]
541	 *
542	 * Reversing the order of the tests ensures such a situation cannot
543	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
544	 * load is not satisfied before that of page->_count.
545	 *
546	 * Note that if SetPageDirty is always performed via set_page_dirty,
547	 * and thus under tree_lock, then this ordering is not required.
548	 */
549	if (!page_freeze_refs(page, 2))
550		goto cannot_free;
551	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
552	if (unlikely(PageDirty(page))) {
553		page_unfreeze_refs(page, 2);
554		goto cannot_free;
555	}
556
557	if (PageSwapCache(page)) {
558		swp_entry_t swap = { .val = page_private(page) };
559		__delete_from_swap_cache(page);
560		spin_unlock_irq(&mapping->tree_lock);
561		swapcache_free(swap, page);
562	} else {
563		void (*freepage)(struct page *);
564
565		freepage = mapping->a_ops->freepage;
566
567		__delete_from_page_cache(page);
568		spin_unlock_irq(&mapping->tree_lock);
569		mem_cgroup_uncharge_cache_page(page);
570
571		if (freepage != NULL)
572			freepage(page);
573	}
574
575	return 1;
576
577cannot_free:
578	spin_unlock_irq(&mapping->tree_lock);
579	return 0;
580}
581
582/*
583 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
584 * someone else has a ref on the page, abort and return 0.  If it was
585 * successfully detached, return 1.  Assumes the caller has a single ref on
586 * this page.
587 */
588int remove_mapping(struct address_space *mapping, struct page *page)
589{
590	if (__remove_mapping(mapping, page)) {
591		/*
592		 * Unfreezing the refcount with 1 rather than 2 effectively
593		 * drops the pagecache ref for us without requiring another
594		 * atomic operation.
595		 */
596		page_unfreeze_refs(page, 1);
597		return 1;
598	}
599	return 0;
600}
601
602/**
603 * putback_lru_page - put previously isolated page onto appropriate LRU list
604 * @page: page to be put back to appropriate lru list
605 *
606 * Add previously isolated @page to appropriate LRU list.
607 * Page may still be unevictable for other reasons.
608 *
609 * lru_lock must not be held, interrupts must be enabled.
610 */
611void putback_lru_page(struct page *page)
612{
613	int lru;
614	int active = !!TestClearPageActive(page);
615	int was_unevictable = PageUnevictable(page);
616
617	VM_BUG_ON(PageLRU(page));
618
619redo:
620	ClearPageUnevictable(page);
621
622	if (page_evictable(page, NULL)) {
623		/*
624		 * For evictable pages, we can use the cache.
625		 * In event of a race, worst case is we end up with an
626		 * unevictable page on [in]active list.
627		 * We know how to handle that.
628		 */
629		lru = active + page_lru_base_type(page);
630		lru_cache_add_lru(page, lru);
631	} else {
632		/*
633		 * Put unevictable pages directly on zone's unevictable
634		 * list.
635		 */
636		lru = LRU_UNEVICTABLE;
637		add_page_to_unevictable_list(page);
638		/*
639		 * When racing with an mlock or AS_UNEVICTABLE clearing
640		 * (page is unlocked) make sure that if the other thread
641		 * does not observe our setting of PG_lru and fails
642		 * isolation/check_move_unevictable_page,
643		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
644		 * the page back to the evictable list.
645		 *
646		 * The other side is TestClearPageMlocked() or shmem_lock().
647		 */
648		smp_mb();
649	}
650
651	/*
652	 * page's status can change while we move it among lru. If an evictable
653	 * page is on unevictable list, it never be freed. To avoid that,
654	 * check after we added it to the list, again.
655	 */
656	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
657		if (!isolate_lru_page(page)) {
658			put_page(page);
659			goto redo;
660		}
661		/* This means someone else dropped this page from LRU
662		 * So, it will be freed or putback to LRU again. There is
663		 * nothing to do here.
664		 */
665	}
666
667	if (was_unevictable && lru != LRU_UNEVICTABLE)
668		count_vm_event(UNEVICTABLE_PGRESCUED);
669	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
670		count_vm_event(UNEVICTABLE_PGCULLED);
671
672	put_page(page);		/* drop ref from isolate */
673}
674
675enum page_references {
676	PAGEREF_RECLAIM,
677	PAGEREF_RECLAIM_CLEAN,
678	PAGEREF_KEEP,
679	PAGEREF_ACTIVATE,
680};
681
682static enum page_references page_check_references(struct page *page,
683						  struct scan_control *sc)
684{
685	int referenced_ptes, referenced_page;
686	unsigned long vm_flags;
687
688	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
689	referenced_page = TestClearPageReferenced(page);
690
691	/* Lumpy reclaim - ignore references */
692	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
693		return PAGEREF_RECLAIM;
694
695	/*
696	 * Mlock lost the isolation race with us.  Let try_to_unmap()
697	 * move the page to the unevictable list.
698	 */
699	if (vm_flags & VM_LOCKED)
700		return PAGEREF_RECLAIM;
701
702	if (referenced_ptes) {
703		if (PageAnon(page))
704			return PAGEREF_ACTIVATE;
705		/*
706		 * All mapped pages start out with page table
707		 * references from the instantiating fault, so we need
708		 * to look twice if a mapped file page is used more
709		 * than once.
710		 *
711		 * Mark it and spare it for another trip around the
712		 * inactive list.  Another page table reference will
713		 * lead to its activation.
714		 *
715		 * Note: the mark is set for activated pages as well
716		 * so that recently deactivated but used pages are
717		 * quickly recovered.
718		 */
719		SetPageReferenced(page);
720
721		if (referenced_page)
722			return PAGEREF_ACTIVATE;
723
724		return PAGEREF_KEEP;
725	}
726
727	/* Reclaim if clean, defer dirty pages to writeback */
728	if (referenced_page && !PageSwapBacked(page))
729		return PAGEREF_RECLAIM_CLEAN;
730
731	return PAGEREF_RECLAIM;
732}
733
734static noinline_for_stack void free_page_list(struct list_head *free_pages)
735{
736	struct pagevec freed_pvec;
737	struct page *page, *tmp;
738
739	pagevec_init(&freed_pvec, 1);
740
741	list_for_each_entry_safe(page, tmp, free_pages, lru) {
742		list_del(&page->lru);
743		if (!pagevec_add(&freed_pvec, page)) {
744			__pagevec_free(&freed_pvec);
745			pagevec_reinit(&freed_pvec);
746		}
747	}
748
749	pagevec_free(&freed_pvec);
750}
751
752/*
753 * shrink_page_list() returns the number of reclaimed pages
754 */
755static unsigned long shrink_page_list(struct list_head *page_list,
756				      struct zone *zone,
757				      struct scan_control *sc,
758				      int priority,
759				      unsigned long *ret_nr_dirty,
760				      unsigned long *ret_nr_writeback)
761{
762	LIST_HEAD(ret_pages);
763	LIST_HEAD(free_pages);
764	int pgactivate = 0;
765	unsigned long nr_dirty = 0;
766	unsigned long nr_congested = 0;
767	unsigned long nr_reclaimed = 0;
768	unsigned long nr_writeback = 0;
769
770	cond_resched();
771
772	while (!list_empty(page_list)) {
773		enum page_references references;
774		struct address_space *mapping;
775		struct page *page;
776		int may_enter_fs;
777
778		cond_resched();
779
780		page = lru_to_page(page_list);
781		list_del(&page->lru);
782
783		if (!trylock_page(page))
784			goto keep;
785
786		VM_BUG_ON(PageActive(page));
787		VM_BUG_ON(page_zone(page) != zone);
788
789		sc->nr_scanned++;
790
791		if (unlikely(!page_evictable(page, NULL)))
792			goto cull_mlocked;
793
794		if (!sc->may_unmap && page_mapped(page))
795			goto keep_locked;
796
797		/* Double the slab pressure for mapped and swapcache pages */
798		if (page_mapped(page) || PageSwapCache(page))
799			sc->nr_scanned++;
800
801		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
802			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
803
804		if (PageWriteback(page)) {
805			nr_writeback++;
806			/*
807			 * Synchronous reclaim cannot queue pages for
808			 * writeback due to the possibility of stack overflow
809			 * but if it encounters a page under writeback, wait
810			 * for the IO to complete.
811			 */
812			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
813			    may_enter_fs)
814				wait_on_page_writeback(page);
815			else {
816				unlock_page(page);
817				goto keep_lumpy;
818			}
819		}
820
821		references = page_check_references(page, sc);
822		switch (references) {
823		case PAGEREF_ACTIVATE:
824			goto activate_locked;
825		case PAGEREF_KEEP:
826			goto keep_locked;
827		case PAGEREF_RECLAIM:
828		case PAGEREF_RECLAIM_CLEAN:
829			; /* try to reclaim the page below */
830		}
831
832		/*
833		 * Anonymous process memory has backing store?
834		 * Try to allocate it some swap space here.
835		 */
836		if (PageAnon(page) && !PageSwapCache(page)) {
837			if (!(sc->gfp_mask & __GFP_IO))
838				goto keep_locked;
839			if (!add_to_swap(page))
840				goto activate_locked;
841			may_enter_fs = 1;
842		}
843
844		mapping = page_mapping(page);
845
846		/*
847		 * The page is mapped into the page tables of one or more
848		 * processes. Try to unmap it here.
849		 */
850		if (page_mapped(page) && mapping) {
851			switch (try_to_unmap(page, TTU_UNMAP)) {
852			case SWAP_FAIL:
853				goto activate_locked;
854			case SWAP_AGAIN:
855				goto keep_locked;
856			case SWAP_MLOCK:
857				goto cull_mlocked;
858			case SWAP_SUCCESS:
859				; /* try to free the page below */
860			}
861		}
862
863		if (PageDirty(page)) {
864			nr_dirty++;
865
866			/*
867			 * Only kswapd can writeback filesystem pages to
868			 * avoid risk of stack overflow but do not writeback
869			 * unless under significant pressure.
870			 */
871			if (page_is_file_cache(page) &&
872					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
873				/*
874				 * Immediately reclaim when written back.
875				 * Similar in principal to deactivate_page()
876				 * except we already have the page isolated
877				 * and know it's dirty
878				 */
879				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
880				SetPageReclaim(page);
881
882				goto keep_locked;
883			}
884
885			if (references == PAGEREF_RECLAIM_CLEAN)
886				goto keep_locked;
887			if (!may_enter_fs)
888				goto keep_locked;
889			if (!sc->may_writepage)
890				goto keep_locked;
891
892			/* Page is dirty, try to write it out here */
893			switch (pageout(page, mapping, sc)) {
894			case PAGE_KEEP:
895				nr_congested++;
896				goto keep_locked;
897			case PAGE_ACTIVATE:
898				goto activate_locked;
899			case PAGE_SUCCESS:
900				if (PageWriteback(page))
901					goto keep_lumpy;
902				if (PageDirty(page))
903					goto keep;
904
905				/*
906				 * A synchronous write - probably a ramdisk.  Go
907				 * ahead and try to reclaim the page.
908				 */
909				if (!trylock_page(page))
910					goto keep;
911				if (PageDirty(page) || PageWriteback(page))
912					goto keep_locked;
913				mapping = page_mapping(page);
914			case PAGE_CLEAN:
915				; /* try to free the page below */
916			}
917		}
918
919		/*
920		 * If the page has buffers, try to free the buffer mappings
921		 * associated with this page. If we succeed we try to free
922		 * the page as well.
923		 *
924		 * We do this even if the page is PageDirty().
925		 * try_to_release_page() does not perform I/O, but it is
926		 * possible for a page to have PageDirty set, but it is actually
927		 * clean (all its buffers are clean).  This happens if the
928		 * buffers were written out directly, with submit_bh(). ext3
929		 * will do this, as well as the blockdev mapping.
930		 * try_to_release_page() will discover that cleanness and will
931		 * drop the buffers and mark the page clean - it can be freed.
932		 *
933		 * Rarely, pages can have buffers and no ->mapping.  These are
934		 * the pages which were not successfully invalidated in
935		 * truncate_complete_page().  We try to drop those buffers here
936		 * and if that worked, and the page is no longer mapped into
937		 * process address space (page_count == 1) it can be freed.
938		 * Otherwise, leave the page on the LRU so it is swappable.
939		 */
940		if (page_has_private(page)) {
941			if (!try_to_release_page(page, sc->gfp_mask))
942				goto activate_locked;
943			if (!mapping && page_count(page) == 1) {
944				unlock_page(page);
945				if (put_page_testzero(page))
946					goto free_it;
947				else {
948					/*
949					 * rare race with speculative reference.
950					 * the speculative reference will free
951					 * this page shortly, so we may
952					 * increment nr_reclaimed here (and
953					 * leave it off the LRU).
954					 */
955					nr_reclaimed++;
956					continue;
957				}
958			}
959		}
960
961		if (!mapping || !__remove_mapping(mapping, page))
962			goto keep_locked;
963
964		/*
965		 * At this point, we have no other references and there is
966		 * no way to pick any more up (removed from LRU, removed
967		 * from pagecache). Can use non-atomic bitops now (and
968		 * we obviously don't have to worry about waking up a process
969		 * waiting on the page lock, because there are no references.
970		 */
971		__clear_page_locked(page);
972free_it:
973		nr_reclaimed++;
974
975		/*
976		 * Is there need to periodically free_page_list? It would
977		 * appear not as the counts should be low
978		 */
979		list_add(&page->lru, &free_pages);
980		continue;
981
982cull_mlocked:
983		if (PageSwapCache(page))
984			try_to_free_swap(page);
985		unlock_page(page);
986		putback_lru_page(page);
987		reset_reclaim_mode(sc);
988		continue;
989
990activate_locked:
991		/* Not a candidate for swapping, so reclaim swap space. */
992		if (PageSwapCache(page) && vm_swap_full())
993			try_to_free_swap(page);
994		VM_BUG_ON(PageActive(page));
995		SetPageActive(page);
996		pgactivate++;
997keep_locked:
998		unlock_page(page);
999keep:
1000		reset_reclaim_mode(sc);
1001keep_lumpy:
1002		list_add(&page->lru, &ret_pages);
1003		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1004	}
1005
1006	/*
1007	 * Tag a zone as congested if all the dirty pages encountered were
1008	 * backed by a congested BDI. In this case, reclaimers should just
1009	 * back off and wait for congestion to clear because further reclaim
1010	 * will encounter the same problem
1011	 */
1012	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1013		zone_set_flag(zone, ZONE_CONGESTED);
1014
1015	free_page_list(&free_pages);
1016
1017	list_splice(&ret_pages, page_list);
1018	count_vm_events(PGACTIVATE, pgactivate);
1019	*ret_nr_dirty += nr_dirty;
1020	*ret_nr_writeback += nr_writeback;
1021	return nr_reclaimed;
1022}
1023
1024/*
1025 * Attempt to remove the specified page from its LRU.  Only take this page
1026 * if it is of the appropriate PageActive status.  Pages which are being
1027 * freed elsewhere are also ignored.
1028 *
1029 * page:	page to consider
1030 * mode:	one of the LRU isolation modes defined above
1031 *
1032 * returns 0 on success, -ve errno on failure.
1033 */
1034int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1035{
1036	bool all_lru_mode;
1037	int ret = -EINVAL;
1038
1039	/* Only take pages on the LRU. */
1040	if (!PageLRU(page))
1041		return ret;
1042
1043	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1044		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1045
1046	/*
1047	 * When checking the active state, we need to be sure we are
1048	 * dealing with comparible boolean values.  Take the logical not
1049	 * of each.
1050	 */
1051	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1052		return ret;
1053
1054	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1055		return ret;
1056
1057	/*
1058	 * When this function is being called for lumpy reclaim, we
1059	 * initially look into all LRU pages, active, inactive and
1060	 * unevictable; only give shrink_page_list evictable pages.
1061	 */
1062	if (PageUnevictable(page))
1063		return ret;
1064
1065	ret = -EBUSY;
1066
1067	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1068		return ret;
1069
1070	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1071		return ret;
1072
1073	if (likely(get_page_unless_zero(page))) {
1074		/*
1075		 * Be careful not to clear PageLRU until after we're
1076		 * sure the page is not being freed elsewhere -- the
1077		 * page release code relies on it.
1078		 */
1079		ClearPageLRU(page);
1080		ret = 0;
1081	}
1082
1083	return ret;
1084}
1085
1086/*
1087 * zone->lru_lock is heavily contended.  Some of the functions that
1088 * shrink the lists perform better by taking out a batch of pages
1089 * and working on them outside the LRU lock.
1090 *
1091 * For pagecache intensive workloads, this function is the hottest
1092 * spot in the kernel (apart from copy_*_user functions).
1093 *
1094 * Appropriate locks must be held before calling this function.
1095 *
1096 * @nr_to_scan:	The number of pages to look through on the list.
1097 * @src:	The LRU list to pull pages off.
1098 * @dst:	The temp list to put pages on to.
1099 * @scanned:	The number of pages that were scanned.
1100 * @order:	The caller's attempted allocation order
1101 * @mode:	One of the LRU isolation modes
1102 * @file:	True [1] if isolating file [!anon] pages
1103 *
1104 * returns how many pages were moved onto *@dst.
1105 */
1106static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1107		struct list_head *src, struct list_head *dst,
1108		unsigned long *scanned, int order, isolate_mode_t mode,
1109		int file)
1110{
1111	unsigned long nr_taken = 0;
1112	unsigned long nr_lumpy_taken = 0;
1113	unsigned long nr_lumpy_dirty = 0;
1114	unsigned long nr_lumpy_failed = 0;
1115	unsigned long scan;
1116
1117	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1118		struct page *page;
1119		unsigned long pfn;
1120		unsigned long end_pfn;
1121		unsigned long page_pfn;
1122		int zone_id;
1123
1124		page = lru_to_page(src);
1125		prefetchw_prev_lru_page(page, src, flags);
1126
1127		VM_BUG_ON(!PageLRU(page));
1128
1129		switch (__isolate_lru_page(page, mode, file)) {
1130		case 0:
1131			list_move(&page->lru, dst);
1132			mem_cgroup_del_lru(page);
1133			nr_taken += hpage_nr_pages(page);
1134			break;
1135
1136		case -EBUSY:
1137			/* else it is being freed elsewhere */
1138			list_move(&page->lru, src);
1139			mem_cgroup_rotate_lru_list(page, page_lru(page));
1140			continue;
1141
1142		default:
1143			BUG();
1144		}
1145
1146		if (!order)
1147			continue;
1148
1149		/*
1150		 * Attempt to take all pages in the order aligned region
1151		 * surrounding the tag page.  Only take those pages of
1152		 * the same active state as that tag page.  We may safely
1153		 * round the target page pfn down to the requested order
1154		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1155		 * where that page is in a different zone we will detect
1156		 * it from its zone id and abort this block scan.
1157		 */
1158		zone_id = page_zone_id(page);
1159		page_pfn = page_to_pfn(page);
1160		pfn = page_pfn & ~((1 << order) - 1);
1161		end_pfn = pfn + (1 << order);
1162		for (; pfn < end_pfn; pfn++) {
1163			struct page *cursor_page;
1164
1165			/* The target page is in the block, ignore it. */
1166			if (unlikely(pfn == page_pfn))
1167				continue;
1168
1169			/* Avoid holes within the zone. */
1170			if (unlikely(!pfn_valid_within(pfn)))
1171				break;
1172
1173			cursor_page = pfn_to_page(pfn);
1174
1175			/* Check that we have not crossed a zone boundary. */
1176			if (unlikely(page_zone_id(cursor_page) != zone_id))
1177				break;
1178
1179			/*
1180			 * If we don't have enough swap space, reclaiming of
1181			 * anon page which don't already have a swap slot is
1182			 * pointless.
1183			 */
1184			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1185			    !PageSwapCache(cursor_page))
1186				break;
1187
1188			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1189				list_move(&cursor_page->lru, dst);
1190				mem_cgroup_del_lru(cursor_page);
1191				nr_taken += hpage_nr_pages(page);
1192				nr_lumpy_taken++;
1193				if (PageDirty(cursor_page))
1194					nr_lumpy_dirty++;
1195				scan++;
1196			} else {
1197				/*
1198				 * Check if the page is freed already.
1199				 *
1200				 * We can't use page_count() as that
1201				 * requires compound_head and we don't
1202				 * have a pin on the page here. If a
1203				 * page is tail, we may or may not
1204				 * have isolated the head, so assume
1205				 * it's not free, it'd be tricky to
1206				 * track the head status without a
1207				 * page pin.
1208				 */
1209				if (!PageTail(cursor_page) &&
1210				    !atomic_read(&cursor_page->_count))
1211					continue;
1212				break;
1213			}
1214		}
1215
1216		/* If we break out of the loop above, lumpy reclaim failed */
1217		if (pfn < end_pfn)
1218			nr_lumpy_failed++;
1219	}
1220
1221	*scanned = scan;
1222
1223	trace_mm_vmscan_lru_isolate(order,
1224			nr_to_scan, scan,
1225			nr_taken,
1226			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1227			mode);
1228	return nr_taken;
1229}
1230
1231static unsigned long isolate_pages_global(unsigned long nr,
1232					struct list_head *dst,
1233					unsigned long *scanned, int order,
1234					isolate_mode_t mode,
1235					struct zone *z,	int active, int file)
1236{
1237	int lru = LRU_BASE;
1238	if (active)
1239		lru += LRU_ACTIVE;
1240	if (file)
1241		lru += LRU_FILE;
1242	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1243								mode, file);
1244}
1245
1246/*
1247 * clear_active_flags() is a helper for shrink_active_list(), clearing
1248 * any active bits from the pages in the list.
1249 */
1250static unsigned long clear_active_flags(struct list_head *page_list,
1251					unsigned int *count)
1252{
1253	int nr_active = 0;
1254	int lru;
1255	struct page *page;
1256
1257	list_for_each_entry(page, page_list, lru) {
1258		int numpages = hpage_nr_pages(page);
1259		lru = page_lru_base_type(page);
1260		if (PageActive(page)) {
1261			lru += LRU_ACTIVE;
1262			ClearPageActive(page);
1263			nr_active += numpages;
1264		}
1265		if (count)
1266			count[lru] += numpages;
1267	}
1268
1269	return nr_active;
1270}
1271
1272/**
1273 * isolate_lru_page - tries to isolate a page from its LRU list
1274 * @page: page to isolate from its LRU list
1275 *
1276 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1277 * vmstat statistic corresponding to whatever LRU list the page was on.
1278 *
1279 * Returns 0 if the page was removed from an LRU list.
1280 * Returns -EBUSY if the page was not on an LRU list.
1281 *
1282 * The returned page will have PageLRU() cleared.  If it was found on
1283 * the active list, it will have PageActive set.  If it was found on
1284 * the unevictable list, it will have the PageUnevictable bit set. That flag
1285 * may need to be cleared by the caller before letting the page go.
1286 *
1287 * The vmstat statistic corresponding to the list on which the page was
1288 * found will be decremented.
1289 *
1290 * Restrictions:
1291 * (1) Must be called with an elevated refcount on the page. This is a
1292 *     fundamentnal difference from isolate_lru_pages (which is called
1293 *     without a stable reference).
1294 * (2) the lru_lock must not be held.
1295 * (3) interrupts must be enabled.
1296 */
1297int isolate_lru_page(struct page *page)
1298{
1299	int ret = -EBUSY;
1300
1301	VM_BUG_ON(!page_count(page));
1302
1303	if (PageLRU(page)) {
1304		struct zone *zone = page_zone(page);
1305
1306		spin_lock_irq(&zone->lru_lock);
1307		if (PageLRU(page)) {
1308			int lru = page_lru(page);
1309			ret = 0;
1310			get_page(page);
1311			ClearPageLRU(page);
1312
1313			del_page_from_lru_list(zone, page, lru);
1314		}
1315		spin_unlock_irq(&zone->lru_lock);
1316	}
1317	return ret;
1318}
1319
1320/*
1321 * Are there way too many processes in the direct reclaim path already?
1322 */
1323static int too_many_isolated(struct zone *zone, int file,
1324		struct scan_control *sc)
1325{
1326	unsigned long inactive, isolated;
1327
1328	if (current_is_kswapd())
1329		return 0;
1330
1331	if (!scanning_global_lru(sc))
1332		return 0;
1333
1334	if (file) {
1335		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1336		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1337	} else {
1338		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1339		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1340	}
1341
1342	return isolated > inactive;
1343}
1344
1345/*
1346 * TODO: Try merging with migrations version of putback_lru_pages
1347 */
1348static noinline_for_stack void
1349putback_lru_pages(struct zone *zone, struct scan_control *sc,
1350				unsigned long nr_anon, unsigned long nr_file,
1351				struct list_head *page_list)
1352{
1353	struct page *page;
1354	struct pagevec pvec;
1355	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1356
1357	pagevec_init(&pvec, 1);
1358
1359	/*
1360	 * Put back any unfreeable pages.
1361	 */
1362	spin_lock(&zone->lru_lock);
1363	while (!list_empty(page_list)) {
1364		int lru;
1365		page = lru_to_page(page_list);
1366		VM_BUG_ON(PageLRU(page));
1367		list_del(&page->lru);
1368		if (unlikely(!page_evictable(page, NULL))) {
1369			spin_unlock_irq(&zone->lru_lock);
1370			putback_lru_page(page);
1371			spin_lock_irq(&zone->lru_lock);
1372			continue;
1373		}
1374		SetPageLRU(page);
1375		lru = page_lru(page);
1376		add_page_to_lru_list(zone, page, lru);
1377		if (is_active_lru(lru)) {
1378			int file = is_file_lru(lru);
1379			int numpages = hpage_nr_pages(page);
1380			reclaim_stat->recent_rotated[file] += numpages;
1381		}
1382		if (!pagevec_add(&pvec, page)) {
1383			spin_unlock_irq(&zone->lru_lock);
1384			__pagevec_release(&pvec);
1385			spin_lock_irq(&zone->lru_lock);
1386		}
1387	}
1388	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1389	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1390
1391	spin_unlock_irq(&zone->lru_lock);
1392	pagevec_release(&pvec);
1393}
1394
1395static noinline_for_stack void update_isolated_counts(struct zone *zone,
1396					struct scan_control *sc,
1397					unsigned long *nr_anon,
1398					unsigned long *nr_file,
1399					struct list_head *isolated_list)
1400{
1401	unsigned long nr_active;
1402	unsigned int count[NR_LRU_LISTS] = { 0, };
1403	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1404
1405	nr_active = clear_active_flags(isolated_list, count);
1406	__count_vm_events(PGDEACTIVATE, nr_active);
1407
1408	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1409			      -count[LRU_ACTIVE_FILE]);
1410	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1411			      -count[LRU_INACTIVE_FILE]);
1412	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1413			      -count[LRU_ACTIVE_ANON]);
1414	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1415			      -count[LRU_INACTIVE_ANON]);
1416
1417	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1418	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1419	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1420	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1421
1422	reclaim_stat->recent_scanned[0] += *nr_anon;
1423	reclaim_stat->recent_scanned[1] += *nr_file;
1424}
1425
1426/*
1427 * Returns true if a direct reclaim should wait on pages under writeback.
1428 *
1429 * If we are direct reclaiming for contiguous pages and we do not reclaim
1430 * everything in the list, try again and wait for writeback IO to complete.
1431 * This will stall high-order allocations noticeably. Only do that when really
1432 * need to free the pages under high memory pressure.
1433 */
1434static inline bool should_reclaim_stall(unsigned long nr_taken,
1435					unsigned long nr_freed,
1436					int priority,
1437					struct scan_control *sc)
1438{
1439	int lumpy_stall_priority;
1440
1441	/* kswapd should not stall on sync IO */
1442	if (current_is_kswapd())
1443		return false;
1444
1445	/* Only stall on lumpy reclaim */
1446	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1447		return false;
1448
1449	/* If we have reclaimed everything on the isolated list, no stall */
1450	if (nr_freed == nr_taken)
1451		return false;
1452
1453	/*
1454	 * For high-order allocations, there are two stall thresholds.
1455	 * High-cost allocations stall immediately where as lower
1456	 * order allocations such as stacks require the scanning
1457	 * priority to be much higher before stalling.
1458	 */
1459	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1460		lumpy_stall_priority = DEF_PRIORITY;
1461	else
1462		lumpy_stall_priority = DEF_PRIORITY / 3;
1463
1464	return priority <= lumpy_stall_priority;
1465}
1466
1467/*
1468 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1469 * of reclaimed pages
1470 */
1471static noinline_for_stack unsigned long
1472shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1473			struct scan_control *sc, int priority, int file)
1474{
1475	LIST_HEAD(page_list);
1476	unsigned long nr_scanned;
1477	unsigned long nr_reclaimed = 0;
1478	unsigned long nr_taken;
1479	unsigned long nr_anon;
1480	unsigned long nr_file;
1481	unsigned long nr_dirty = 0;
1482	unsigned long nr_writeback = 0;
1483	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1484
1485	while (unlikely(too_many_isolated(zone, file, sc))) {
1486		congestion_wait(BLK_RW_ASYNC, HZ/10);
1487
1488		/* We are about to die and free our memory. Return now. */
1489		if (fatal_signal_pending(current))
1490			return SWAP_CLUSTER_MAX;
1491	}
1492
1493	set_reclaim_mode(priority, sc, false);
1494	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1495		reclaim_mode |= ISOLATE_ACTIVE;
1496
1497	lru_add_drain();
1498
1499	if (!sc->may_unmap)
1500		reclaim_mode |= ISOLATE_UNMAPPED;
1501	if (!sc->may_writepage)
1502		reclaim_mode |= ISOLATE_CLEAN;
1503
1504	spin_lock_irq(&zone->lru_lock);
1505
1506	if (scanning_global_lru(sc)) {
1507		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1508			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1509		zone->pages_scanned += nr_scanned;
1510		if (current_is_kswapd())
1511			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1512					       nr_scanned);
1513		else
1514			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1515					       nr_scanned);
1516	} else {
1517		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1518			&nr_scanned, sc->order, reclaim_mode, zone,
1519			sc->mem_cgroup, 0, file);
1520		/*
1521		 * mem_cgroup_isolate_pages() keeps track of
1522		 * scanned pages on its own.
1523		 */
1524	}
1525
1526	if (nr_taken == 0) {
1527		spin_unlock_irq(&zone->lru_lock);
1528		return 0;
1529	}
1530
1531	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1532
1533	spin_unlock_irq(&zone->lru_lock);
1534
1535	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1536						&nr_dirty, &nr_writeback);
1537
1538	/* Check if we should syncronously wait for writeback */
1539	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1540		set_reclaim_mode(priority, sc, true);
1541		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1542					priority, &nr_dirty, &nr_writeback);
1543	}
1544
1545	local_irq_disable();
1546	if (current_is_kswapd())
1547		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1548	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1549
1550	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1551
1552	/*
1553	 * If reclaim is isolating dirty pages under writeback, it implies
1554	 * that the long-lived page allocation rate is exceeding the page
1555	 * laundering rate. Either the global limits are not being effective
1556	 * at throttling processes due to the page distribution throughout
1557	 * zones or there is heavy usage of a slow backing device. The
1558	 * only option is to throttle from reclaim context which is not ideal
1559	 * as there is no guarantee the dirtying process is throttled in the
1560	 * same way balance_dirty_pages() manages.
1561	 *
1562	 * This scales the number of dirty pages that must be under writeback
1563	 * before throttling depending on priority. It is a simple backoff
1564	 * function that has the most effect in the range DEF_PRIORITY to
1565	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1566	 * in trouble and reclaim is considered to be in trouble.
1567	 *
1568	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1569	 * DEF_PRIORITY-1  50% must be PageWriteback
1570	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1571	 * ...
1572	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1573	 *                     isolated page is PageWriteback
1574	 */
1575	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1576		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1577
1578	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1579		zone_idx(zone),
1580		nr_scanned, nr_reclaimed,
1581		priority,
1582		trace_shrink_flags(file, sc->reclaim_mode));
1583	return nr_reclaimed;
1584}
1585
1586/*
1587 * This moves pages from the active list to the inactive list.
1588 *
1589 * We move them the other way if the page is referenced by one or more
1590 * processes, from rmap.
1591 *
1592 * If the pages are mostly unmapped, the processing is fast and it is
1593 * appropriate to hold zone->lru_lock across the whole operation.  But if
1594 * the pages are mapped, the processing is slow (page_referenced()) so we
1595 * should drop zone->lru_lock around each page.  It's impossible to balance
1596 * this, so instead we remove the pages from the LRU while processing them.
1597 * It is safe to rely on PG_active against the non-LRU pages in here because
1598 * nobody will play with that bit on a non-LRU page.
1599 *
1600 * The downside is that we have to touch page->_count against each page.
1601 * But we had to alter page->flags anyway.
1602 */
1603
1604static void move_active_pages_to_lru(struct zone *zone,
1605				     struct list_head *list,
1606				     enum lru_list lru)
1607{
1608	unsigned long pgmoved = 0;
1609	struct pagevec pvec;
1610	struct page *page;
1611
1612	pagevec_init(&pvec, 1);
1613
1614	while (!list_empty(list)) {
1615		page = lru_to_page(list);
1616
1617		VM_BUG_ON(PageLRU(page));
1618		SetPageLRU(page);
1619
1620		list_move(&page->lru, &zone->lru[lru].list);
1621		mem_cgroup_add_lru_list(page, lru);
1622		pgmoved += hpage_nr_pages(page);
1623
1624		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1625			spin_unlock_irq(&zone->lru_lock);
1626			if (buffer_heads_over_limit)
1627				pagevec_strip(&pvec);
1628			__pagevec_release(&pvec);
1629			spin_lock_irq(&zone->lru_lock);
1630		}
1631	}
1632	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1633	if (!is_active_lru(lru))
1634		__count_vm_events(PGDEACTIVATE, pgmoved);
1635}
1636
1637static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1638			struct scan_control *sc, int priority, int file)
1639{
1640	unsigned long nr_taken;
1641	unsigned long pgscanned;
1642	unsigned long vm_flags;
1643	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1644	LIST_HEAD(l_active);
1645	LIST_HEAD(l_inactive);
1646	struct page *page;
1647	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1648	unsigned long nr_rotated = 0;
1649	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1650
1651	lru_add_drain();
1652
1653	if (!sc->may_unmap)
1654		reclaim_mode |= ISOLATE_UNMAPPED;
1655	if (!sc->may_writepage)
1656		reclaim_mode |= ISOLATE_CLEAN;
1657
1658	spin_lock_irq(&zone->lru_lock);
1659	if (scanning_global_lru(sc)) {
1660		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1661						&pgscanned, sc->order,
1662						reclaim_mode, zone,
1663						1, file);
1664		zone->pages_scanned += pgscanned;
1665	} else {
1666		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1667						&pgscanned, sc->order,
1668						reclaim_mode, zone,
1669						sc->mem_cgroup, 1, file);
1670		/*
1671		 * mem_cgroup_isolate_pages() keeps track of
1672		 * scanned pages on its own.
1673		 */
1674	}
1675
1676	reclaim_stat->recent_scanned[file] += nr_taken;
1677
1678	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1679	if (file)
1680		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1681	else
1682		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1683	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684	spin_unlock_irq(&zone->lru_lock);
1685
1686	while (!list_empty(&l_hold)) {
1687		cond_resched();
1688		page = lru_to_page(&l_hold);
1689		list_del(&page->lru);
1690
1691		if (unlikely(!page_evictable(page, NULL))) {
1692			putback_lru_page(page);
1693			continue;
1694		}
1695
1696		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1697			nr_rotated += hpage_nr_pages(page);
1698			/*
1699			 * Identify referenced, file-backed active pages and
1700			 * give them one more trip around the active list. So
1701			 * that executable code get better chances to stay in
1702			 * memory under moderate memory pressure.  Anon pages
1703			 * are not likely to be evicted by use-once streaming
1704			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1705			 * so we ignore them here.
1706			 */
1707			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1708				list_add(&page->lru, &l_active);
1709				continue;
1710			}
1711		}
1712
1713		ClearPageActive(page);	/* we are de-activating */
1714		list_add(&page->lru, &l_inactive);
1715	}
1716
1717	/*
1718	 * Move pages back to the lru list.
1719	 */
1720	spin_lock_irq(&zone->lru_lock);
1721	/*
1722	 * Count referenced pages from currently used mappings as rotated,
1723	 * even though only some of them are actually re-activated.  This
1724	 * helps balance scan pressure between file and anonymous pages in
1725	 * get_scan_ratio.
1726	 */
1727	reclaim_stat->recent_rotated[file] += nr_rotated;
1728
1729	move_active_pages_to_lru(zone, &l_active,
1730						LRU_ACTIVE + file * LRU_FILE);
1731	move_active_pages_to_lru(zone, &l_inactive,
1732						LRU_BASE   + file * LRU_FILE);
1733	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1734	spin_unlock_irq(&zone->lru_lock);
1735}
1736
1737#ifdef CONFIG_SWAP
1738static int inactive_anon_is_low_global(struct zone *zone)
1739{
1740	unsigned long active, inactive;
1741
1742	active = zone_page_state(zone, NR_ACTIVE_ANON);
1743	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1744
1745	if (inactive * zone->inactive_ratio < active)
1746		return 1;
1747
1748	return 0;
1749}
1750
1751/**
1752 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1753 * @zone: zone to check
1754 * @sc:   scan control of this context
1755 *
1756 * Returns true if the zone does not have enough inactive anon pages,
1757 * meaning some active anon pages need to be deactivated.
1758 */
1759static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1760{
1761	int low;
1762
1763	/*
1764	 * If we don't have swap space, anonymous page deactivation
1765	 * is pointless.
1766	 */
1767	if (!total_swap_pages)
1768		return 0;
1769
1770	if (scanning_global_lru(sc))
1771		low = inactive_anon_is_low_global(zone);
1772	else
1773		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1774	return low;
1775}
1776#else
1777static inline int inactive_anon_is_low(struct zone *zone,
1778					struct scan_control *sc)
1779{
1780	return 0;
1781}
1782#endif
1783
1784static int inactive_file_is_low_global(struct zone *zone)
1785{
1786	unsigned long active, inactive;
1787
1788	active = zone_page_state(zone, NR_ACTIVE_FILE);
1789	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1790
1791	return (active > inactive);
1792}
1793
1794/**
1795 * inactive_file_is_low - check if file pages need to be deactivated
1796 * @zone: zone to check
1797 * @sc:   scan control of this context
1798 *
1799 * When the system is doing streaming IO, memory pressure here
1800 * ensures that active file pages get deactivated, until more
1801 * than half of the file pages are on the inactive list.
1802 *
1803 * Once we get to that situation, protect the system's working
1804 * set from being evicted by disabling active file page aging.
1805 *
1806 * This uses a different ratio than the anonymous pages, because
1807 * the page cache uses a use-once replacement algorithm.
1808 */
1809static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1810{
1811	int low;
1812
1813	if (scanning_global_lru(sc))
1814		low = inactive_file_is_low_global(zone);
1815	else
1816		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1817	return low;
1818}
1819
1820static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1821				int file)
1822{
1823	if (file)
1824		return inactive_file_is_low(zone, sc);
1825	else
1826		return inactive_anon_is_low(zone, sc);
1827}
1828
1829static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1830	struct zone *zone, struct scan_control *sc, int priority)
1831{
1832	int file = is_file_lru(lru);
1833
1834	if (is_active_lru(lru)) {
1835		if (inactive_list_is_low(zone, sc, file))
1836		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1837		return 0;
1838	}
1839
1840	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1841}
1842
1843static int vmscan_swappiness(struct scan_control *sc)
1844{
1845	if (scanning_global_lru(sc))
1846		return vm_swappiness;
1847	return mem_cgroup_swappiness(sc->mem_cgroup);
1848}
1849
1850/*
1851 * Determine how aggressively the anon and file LRU lists should be
1852 * scanned.  The relative value of each set of LRU lists is determined
1853 * by looking at the fraction of the pages scanned we did rotate back
1854 * onto the active list instead of evict.
1855 *
1856 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1857 */
1858static void get_scan_count(struct zone *zone, struct scan_control *sc,
1859					unsigned long *nr, int priority)
1860{
1861	unsigned long anon, file, free;
1862	unsigned long anon_prio, file_prio;
1863	unsigned long ap, fp;
1864	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1865	u64 fraction[2], denominator;
1866	enum lru_list l;
1867	int noswap = 0;
1868	bool force_scan = false;
1869
1870	/*
1871	 * If the zone or memcg is small, nr[l] can be 0.  This
1872	 * results in no scanning on this priority and a potential
1873	 * priority drop.  Global direct reclaim can go to the next
1874	 * zone and tends to have no problems. Global kswapd is for
1875	 * zone balancing and it needs to scan a minimum amount. When
1876	 * reclaiming for a memcg, a priority drop can cause high
1877	 * latencies, so it's better to scan a minimum amount there as
1878	 * well.
1879	 */
1880	if (scanning_global_lru(sc) && current_is_kswapd())
1881		force_scan = true;
1882	if (!scanning_global_lru(sc))
1883		force_scan = true;
1884
1885	/* If we have no swap space, do not bother scanning anon pages. */
1886	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1887		noswap = 1;
1888		fraction[0] = 0;
1889		fraction[1] = 1;
1890		denominator = 1;
1891		goto out;
1892	}
1893
1894	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1895		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1896	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1897		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1898
1899	if (scanning_global_lru(sc)) {
1900		free  = zone_page_state(zone, NR_FREE_PAGES);
1901		/* If we have very few page cache pages,
1902		   force-scan anon pages. */
1903		if (unlikely(file + free <= high_wmark_pages(zone))) {
1904			fraction[0] = 1;
1905			fraction[1] = 0;
1906			denominator = 1;
1907			goto out;
1908		}
1909	}
1910
1911	/*
1912	 * With swappiness at 100, anonymous and file have the same priority.
1913	 * This scanning priority is essentially the inverse of IO cost.
1914	 */
1915	anon_prio = vmscan_swappiness(sc);
1916	file_prio = 200 - vmscan_swappiness(sc);
1917
1918	/*
1919	 * OK, so we have swap space and a fair amount of page cache
1920	 * pages.  We use the recently rotated / recently scanned
1921	 * ratios to determine how valuable each cache is.
1922	 *
1923	 * Because workloads change over time (and to avoid overflow)
1924	 * we keep these statistics as a floating average, which ends
1925	 * up weighing recent references more than old ones.
1926	 *
1927	 * anon in [0], file in [1]
1928	 */
1929	spin_lock_irq(&zone->lru_lock);
1930	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1931		reclaim_stat->recent_scanned[0] /= 2;
1932		reclaim_stat->recent_rotated[0] /= 2;
1933	}
1934
1935	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1936		reclaim_stat->recent_scanned[1] /= 2;
1937		reclaim_stat->recent_rotated[1] /= 2;
1938	}
1939
1940	/*
1941	 * The amount of pressure on anon vs file pages is inversely
1942	 * proportional to the fraction of recently scanned pages on
1943	 * each list that were recently referenced and in active use.
1944	 */
1945	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1946	ap /= reclaim_stat->recent_rotated[0] + 1;
1947
1948	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1949	fp /= reclaim_stat->recent_rotated[1] + 1;
1950	spin_unlock_irq(&zone->lru_lock);
1951
1952	fraction[0] = ap;
1953	fraction[1] = fp;
1954	denominator = ap + fp + 1;
1955out:
1956	for_each_evictable_lru(l) {
1957		int file = is_file_lru(l);
1958		unsigned long scan;
1959
1960		scan = zone_nr_lru_pages(zone, sc, l);
1961		if (priority || noswap) {
1962			scan >>= priority;
1963			if (!scan && force_scan)
1964				scan = SWAP_CLUSTER_MAX;
1965			scan = div64_u64(scan * fraction[file], denominator);
1966		}
1967		nr[l] = scan;
1968	}
1969}
1970
1971/*
1972 * Reclaim/compaction depends on a number of pages being freed. To avoid
1973 * disruption to the system, a small number of order-0 pages continue to be
1974 * rotated and reclaimed in the normal fashion. However, by the time we get
1975 * back to the allocator and call try_to_compact_zone(), we ensure that
1976 * there are enough free pages for it to be likely successful
1977 */
1978static inline bool should_continue_reclaim(struct zone *zone,
1979					unsigned long nr_reclaimed,
1980					unsigned long nr_scanned,
1981					struct scan_control *sc)
1982{
1983	unsigned long pages_for_compaction;
1984	unsigned long inactive_lru_pages;
1985
1986	/* If not in reclaim/compaction mode, stop */
1987	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1988		return false;
1989
1990	/* Consider stopping depending on scan and reclaim activity */
1991	if (sc->gfp_mask & __GFP_REPEAT) {
1992		/*
1993		 * For __GFP_REPEAT allocations, stop reclaiming if the
1994		 * full LRU list has been scanned and we are still failing
1995		 * to reclaim pages. This full LRU scan is potentially
1996		 * expensive but a __GFP_REPEAT caller really wants to succeed
1997		 */
1998		if (!nr_reclaimed && !nr_scanned)
1999			return false;
2000	} else {
2001		/*
2002		 * For non-__GFP_REPEAT allocations which can presumably
2003		 * fail without consequence, stop if we failed to reclaim
2004		 * any pages from the last SWAP_CLUSTER_MAX number of
2005		 * pages that were scanned. This will return to the
2006		 * caller faster at the risk reclaim/compaction and
2007		 * the resulting allocation attempt fails
2008		 */
2009		if (!nr_reclaimed)
2010			return false;
2011	}
2012
2013	/*
2014	 * If we have not reclaimed enough pages for compaction and the
2015	 * inactive lists are large enough, continue reclaiming
2016	 */
2017	pages_for_compaction = (2UL << sc->order);
2018	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2019				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2020	if (sc->nr_reclaimed < pages_for_compaction &&
2021			inactive_lru_pages > pages_for_compaction)
2022		return true;
2023
2024	/* If compaction would go ahead or the allocation would succeed, stop */
2025	switch (compaction_suitable(zone, sc->order)) {
2026	case COMPACT_PARTIAL:
2027	case COMPACT_CONTINUE:
2028		return false;
2029	default:
2030		return true;
2031	}
2032}
2033
2034/*
2035 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2036 */
2037static void shrink_zone(int priority, struct zone *zone,
2038				struct scan_control *sc)
2039{
2040	unsigned long nr[NR_LRU_LISTS];
2041	unsigned long nr_to_scan;
2042	enum lru_list l;
2043	unsigned long nr_reclaimed, nr_scanned;
2044	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2045	struct blk_plug plug;
2046
2047restart:
2048	nr_reclaimed = 0;
2049	nr_scanned = sc->nr_scanned;
2050	get_scan_count(zone, sc, nr, priority);
2051
2052	blk_start_plug(&plug);
2053	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2054					nr[LRU_INACTIVE_FILE]) {
2055		for_each_evictable_lru(l) {
2056			if (nr[l]) {
2057				nr_to_scan = min_t(unsigned long,
2058						   nr[l], SWAP_CLUSTER_MAX);
2059				nr[l] -= nr_to_scan;
2060
2061				nr_reclaimed += shrink_list(l, nr_to_scan,
2062							    zone, sc, priority);
2063			}
2064		}
2065		/*
2066		 * On large memory systems, scan >> priority can become
2067		 * really large. This is fine for the starting priority;
2068		 * we want to put equal scanning pressure on each zone.
2069		 * However, if the VM has a harder time of freeing pages,
2070		 * with multiple processes reclaiming pages, the total
2071		 * freeing target can get unreasonably large.
2072		 */
2073		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2074			break;
2075	}
2076	blk_finish_plug(&plug);
2077	sc->nr_reclaimed += nr_reclaimed;
2078
2079	/*
2080	 * Even if we did not try to evict anon pages at all, we want to
2081	 * rebalance the anon lru active/inactive ratio.
2082	 */
2083	if (inactive_anon_is_low(zone, sc))
2084		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2085
2086	/* reclaim/compaction might need reclaim to continue */
2087	if (should_continue_reclaim(zone, nr_reclaimed,
2088					sc->nr_scanned - nr_scanned, sc))
2089		goto restart;
2090
2091	throttle_vm_writeout(sc->gfp_mask);
2092}
2093
2094/*
2095 * This is the direct reclaim path, for page-allocating processes.  We only
2096 * try to reclaim pages from zones which will satisfy the caller's allocation
2097 * request.
2098 *
2099 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2100 * Because:
2101 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2102 *    allocation or
2103 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2104 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2105 *    zone defense algorithm.
2106 *
2107 * If a zone is deemed to be full of pinned pages then just give it a light
2108 * scan then give up on it.
2109 *
2110 * This function returns true if a zone is being reclaimed for a costly
2111 * high-order allocation and compaction is either ready to begin or deferred.
2112 * This indicates to the caller that it should retry the allocation or fail.
2113 */
2114static bool shrink_zones(int priority, struct zonelist *zonelist,
2115					struct scan_control *sc)
2116{
2117	struct zoneref *z;
2118	struct zone *zone;
2119	unsigned long nr_soft_reclaimed;
2120	unsigned long nr_soft_scanned;
2121	bool should_abort_reclaim = false;
2122
2123	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2124					gfp_zone(sc->gfp_mask), sc->nodemask) {
2125		if (!populated_zone(zone))
2126			continue;
2127		/*
2128		 * Take care memory controller reclaiming has small influence
2129		 * to global LRU.
2130		 */
2131		if (scanning_global_lru(sc)) {
2132			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2133				continue;
2134			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2135				continue;	/* Let kswapd poll it */
2136			if (COMPACTION_BUILD) {
2137				/*
2138				 * If we already have plenty of memory free for
2139				 * compaction in this zone, don't free any more.
2140				 * Even though compaction is invoked for any
2141				 * non-zero order, only frequent costly order
2142				 * reclamation is disruptive enough to become a
2143				 * noticable problem, like transparent huge page
2144				 * allocations.
2145				 */
2146				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2147					(compaction_suitable(zone, sc->order) ||
2148					 compaction_deferred(zone))) {
2149					should_abort_reclaim = true;
2150					continue;
2151				}
2152			}
2153			/*
2154			 * This steals pages from memory cgroups over softlimit
2155			 * and returns the number of reclaimed pages and
2156			 * scanned pages. This works for global memory pressure
2157			 * and balancing, not for a memcg's limit.
2158			 */
2159			nr_soft_scanned = 0;
2160			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2161						sc->order, sc->gfp_mask,
2162						&nr_soft_scanned);
2163			sc->nr_reclaimed += nr_soft_reclaimed;
2164			sc->nr_scanned += nr_soft_scanned;
2165			/* need some check for avoid more shrink_zone() */
2166		}
2167
2168		shrink_zone(priority, zone, sc);
2169	}
2170
2171	return should_abort_reclaim;
2172}
2173
2174static bool zone_reclaimable(struct zone *zone)
2175{
2176	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2177}
2178
2179/* All zones in zonelist are unreclaimable? */
2180static bool all_unreclaimable(struct zonelist *zonelist,
2181		struct scan_control *sc)
2182{
2183	struct zoneref *z;
2184	struct zone *zone;
2185
2186	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2187			gfp_zone(sc->gfp_mask), sc->nodemask) {
2188		if (!populated_zone(zone))
2189			continue;
2190		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2191			continue;
2192		if (!zone->all_unreclaimable)
2193			return false;
2194	}
2195
2196	return true;
2197}
2198
2199/*
2200 * This is the main entry point to direct page reclaim.
2201 *
2202 * If a full scan of the inactive list fails to free enough memory then we
2203 * are "out of memory" and something needs to be killed.
2204 *
2205 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2206 * high - the zone may be full of dirty or under-writeback pages, which this
2207 * caller can't do much about.  We kick the writeback threads and take explicit
2208 * naps in the hope that some of these pages can be written.  But if the
2209 * allocating task holds filesystem locks which prevent writeout this might not
2210 * work, and the allocation attempt will fail.
2211 *
2212 * returns:	0, if no pages reclaimed
2213 * 		else, the number of pages reclaimed
2214 */
2215static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2216					struct scan_control *sc,
2217					struct shrink_control *shrink)
2218{
2219	int priority;
2220	unsigned long total_scanned = 0;
2221	struct reclaim_state *reclaim_state = current->reclaim_state;
2222	struct zoneref *z;
2223	struct zone *zone;
2224	unsigned long writeback_threshold;
2225
2226	get_mems_allowed();
2227	delayacct_freepages_start();
2228
2229	if (scanning_global_lru(sc))
2230		count_vm_event(ALLOCSTALL);
2231
2232	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2233		sc->nr_scanned = 0;
2234		if (!priority)
2235			disable_swap_token(sc->mem_cgroup);
2236		if (shrink_zones(priority, zonelist, sc))
2237			break;
2238
2239		/*
2240		 * Don't shrink slabs when reclaiming memory from
2241		 * over limit cgroups
2242		 */
2243		if (scanning_global_lru(sc)) {
2244			unsigned long lru_pages = 0;
2245			for_each_zone_zonelist(zone, z, zonelist,
2246					gfp_zone(sc->gfp_mask)) {
2247				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2248					continue;
2249
2250				lru_pages += zone_reclaimable_pages(zone);
2251			}
2252
2253			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2254			if (reclaim_state) {
2255				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2256				reclaim_state->reclaimed_slab = 0;
2257			}
2258		}
2259		total_scanned += sc->nr_scanned;
2260		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2261			goto out;
2262
2263		/*
2264		 * Try to write back as many pages as we just scanned.  This
2265		 * tends to cause slow streaming writers to write data to the
2266		 * disk smoothly, at the dirtying rate, which is nice.   But
2267		 * that's undesirable in laptop mode, where we *want* lumpy
2268		 * writeout.  So in laptop mode, write out the whole world.
2269		 */
2270		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2271		if (total_scanned > writeback_threshold) {
2272			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2273						WB_REASON_TRY_TO_FREE_PAGES);
2274			sc->may_writepage = 1;
2275		}
2276
2277		/* Take a nap, wait for some writeback to complete */
2278		if (!sc->hibernation_mode && sc->nr_scanned &&
2279		    priority < DEF_PRIORITY - 2) {
2280			struct zone *preferred_zone;
2281
2282			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2283						&cpuset_current_mems_allowed,
2284						&preferred_zone);
2285			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2286		}
2287	}
2288
2289out:
2290	delayacct_freepages_end();
2291	put_mems_allowed();
2292
2293	if (sc->nr_reclaimed)
2294		return sc->nr_reclaimed;
2295
2296	/*
2297	 * As hibernation is going on, kswapd is freezed so that it can't mark
2298	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2299	 * check.
2300	 */
2301	if (oom_killer_disabled)
2302		return 0;
2303
2304	/* top priority shrink_zones still had more to do? don't OOM, then */
2305	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2306		return 1;
2307
2308	return 0;
2309}
2310
2311unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2312				gfp_t gfp_mask, nodemask_t *nodemask)
2313{
2314	unsigned long nr_reclaimed;
2315	struct scan_control sc = {
2316		.gfp_mask = gfp_mask,
2317		.may_writepage = !laptop_mode,
2318		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2319		.may_unmap = 1,
2320		.may_swap = 1,
2321		.order = order,
2322		.mem_cgroup = NULL,
2323		.nodemask = nodemask,
2324	};
2325	struct shrink_control shrink = {
2326		.gfp_mask = sc.gfp_mask,
2327	};
2328
2329	trace_mm_vmscan_direct_reclaim_begin(order,
2330				sc.may_writepage,
2331				gfp_mask);
2332
2333	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2334
2335	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2336
2337	return nr_reclaimed;
2338}
2339
2340#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2341
2342unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2343						gfp_t gfp_mask, bool noswap,
2344						struct zone *zone,
2345						unsigned long *nr_scanned)
2346{
2347	struct scan_control sc = {
2348		.nr_scanned = 0,
2349		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2350		.may_writepage = !laptop_mode,
2351		.may_unmap = 1,
2352		.may_swap = !noswap,
2353		.order = 0,
2354		.mem_cgroup = mem,
2355	};
2356
2357	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2358			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2359
2360	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2361						      sc.may_writepage,
2362						      sc.gfp_mask);
2363
2364	/*
2365	 * NOTE: Although we can get the priority field, using it
2366	 * here is not a good idea, since it limits the pages we can scan.
2367	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2368	 * will pick up pages from other mem cgroup's as well. We hack
2369	 * the priority and make it zero.
2370	 */
2371	shrink_zone(0, zone, &sc);
2372
2373	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2374
2375	*nr_scanned = sc.nr_scanned;
2376	return sc.nr_reclaimed;
2377}
2378
2379unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2380					   gfp_t gfp_mask,
2381					   bool noswap)
2382{
2383	struct zonelist *zonelist;
2384	unsigned long nr_reclaimed;
2385	int nid;
2386	struct scan_control sc = {
2387		.may_writepage = !laptop_mode,
2388		.may_unmap = 1,
2389		.may_swap = !noswap,
2390		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2391		.order = 0,
2392		.mem_cgroup = mem_cont,
2393		.nodemask = NULL, /* we don't care the placement */
2394		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2395				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2396	};
2397	struct shrink_control shrink = {
2398		.gfp_mask = sc.gfp_mask,
2399	};
2400
2401	/*
2402	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2403	 * take care of from where we get pages. So the node where we start the
2404	 * scan does not need to be the current node.
2405	 */
2406	nid = mem_cgroup_select_victim_node(mem_cont);
2407
2408	zonelist = NODE_DATA(nid)->node_zonelists;
2409
2410	trace_mm_vmscan_memcg_reclaim_begin(0,
2411					    sc.may_writepage,
2412					    sc.gfp_mask);
2413
2414	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2415
2416	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2417
2418	return nr_reclaimed;
2419}
2420#endif
2421
2422/*
2423 * pgdat_balanced is used when checking if a node is balanced for high-order
2424 * allocations. Only zones that meet watermarks and are in a zone allowed
2425 * by the callers classzone_idx are added to balanced_pages. The total of
2426 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2427 * for the node to be considered balanced. Forcing all zones to be balanced
2428 * for high orders can cause excessive reclaim when there are imbalanced zones.
2429 * The choice of 25% is due to
2430 *   o a 16M DMA zone that is balanced will not balance a zone on any
2431 *     reasonable sized machine
2432 *   o On all other machines, the top zone must be at least a reasonable
2433 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2434 *     would need to be at least 256M for it to be balance a whole node.
2435 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2436 *     to balance a node on its own. These seemed like reasonable ratios.
2437 */
2438static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2439						int classzone_idx)
2440{
2441	unsigned long present_pages = 0;
2442	int i;
2443
2444	for (i = 0; i <= classzone_idx; i++)
2445		present_pages += pgdat->node_zones[i].present_pages;
2446
2447	/* A special case here: if zone has no page, we think it's balanced */
2448	return balanced_pages >= (present_pages >> 2);
2449}
2450
2451/* is kswapd sleeping prematurely? */
2452static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2453					int classzone_idx)
2454{
2455	int i;
2456	unsigned long balanced = 0;
2457	bool all_zones_ok = true;
2458
2459	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2460	if (remaining)
2461		return true;
2462
2463	/* Check the watermark levels */
2464	for (i = 0; i <= classzone_idx; i++) {
2465		struct zone *zone = pgdat->node_zones + i;
2466
2467		if (!populated_zone(zone))
2468			continue;
2469
2470		/*
2471		 * balance_pgdat() skips over all_unreclaimable after
2472		 * DEF_PRIORITY. Effectively, it considers them balanced so
2473		 * they must be considered balanced here as well if kswapd
2474		 * is to sleep
2475		 */
2476		if (zone->all_unreclaimable) {
2477			balanced += zone->present_pages;
2478			continue;
2479		}
2480
2481		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2482							i, 0))
2483			all_zones_ok = false;
2484		else
2485			balanced += zone->present_pages;
2486	}
2487
2488	/*
2489	 * For high-order requests, the balanced zones must contain at least
2490	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2491	 * must be balanced
2492	 */
2493	if (order)
2494		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2495	else
2496		return !all_zones_ok;
2497}
2498
2499/*
2500 * For kswapd, balance_pgdat() will work across all this node's zones until
2501 * they are all at high_wmark_pages(zone).
2502 *
2503 * Returns the final order kswapd was reclaiming at
2504 *
2505 * There is special handling here for zones which are full of pinned pages.
2506 * This can happen if the pages are all mlocked, or if they are all used by
2507 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2508 * What we do is to detect the case where all pages in the zone have been
2509 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2510 * dead and from now on, only perform a short scan.  Basically we're polling
2511 * the zone for when the problem goes away.
2512 *
2513 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2514 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2515 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2516 * lower zones regardless of the number of free pages in the lower zones. This
2517 * interoperates with the page allocator fallback scheme to ensure that aging
2518 * of pages is balanced across the zones.
2519 */
2520static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2521							int *classzone_idx)
2522{
2523	int all_zones_ok;
2524	unsigned long balanced;
2525	int priority;
2526	int i;
2527	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2528	unsigned long total_scanned;
2529	struct reclaim_state *reclaim_state = current->reclaim_state;
2530	unsigned long nr_soft_reclaimed;
2531	unsigned long nr_soft_scanned;
2532	struct scan_control sc = {
2533		.gfp_mask = GFP_KERNEL,
2534		.may_unmap = 1,
2535		.may_swap = 1,
2536		/*
2537		 * kswapd doesn't want to be bailed out while reclaim. because
2538		 * we want to put equal scanning pressure on each zone.
2539		 */
2540		.nr_to_reclaim = ULONG_MAX,
2541		.order = order,
2542		.mem_cgroup = NULL,
2543	};
2544	struct shrink_control shrink = {
2545		.gfp_mask = sc.gfp_mask,
2546	};
2547loop_again:
2548	total_scanned = 0;
2549	sc.nr_reclaimed = 0;
2550	sc.may_writepage = !laptop_mode;
2551	count_vm_event(PAGEOUTRUN);
2552
2553	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2554		unsigned long lru_pages = 0;
2555		int has_under_min_watermark_zone = 0;
2556
2557		/* The swap token gets in the way of swapout... */
2558		if (!priority)
2559			disable_swap_token(NULL);
2560
2561		all_zones_ok = 1;
2562		balanced = 0;
2563
2564		/*
2565		 * Scan in the highmem->dma direction for the highest
2566		 * zone which needs scanning
2567		 */
2568		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2569			struct zone *zone = pgdat->node_zones + i;
2570
2571			if (!populated_zone(zone))
2572				continue;
2573
2574			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2575				continue;
2576
2577			/*
2578			 * Do some background aging of the anon list, to give
2579			 * pages a chance to be referenced before reclaiming.
2580			 */
2581			if (inactive_anon_is_low(zone, &sc))
2582				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2583							&sc, priority, 0);
2584
2585			if (!zone_watermark_ok_safe(zone, order,
2586					high_wmark_pages(zone), 0, 0)) {
2587				end_zone = i;
2588				break;
2589			} else {
2590				/* If balanced, clear the congested flag */
2591				zone_clear_flag(zone, ZONE_CONGESTED);
2592			}
2593		}
2594		if (i < 0)
2595			goto out;
2596
2597		for (i = 0; i <= end_zone; i++) {
2598			struct zone *zone = pgdat->node_zones + i;
2599
2600			lru_pages += zone_reclaimable_pages(zone);
2601		}
2602
2603		/*
2604		 * Now scan the zone in the dma->highmem direction, stopping
2605		 * at the last zone which needs scanning.
2606		 *
2607		 * We do this because the page allocator works in the opposite
2608		 * direction.  This prevents the page allocator from allocating
2609		 * pages behind kswapd's direction of progress, which would
2610		 * cause too much scanning of the lower zones.
2611		 */
2612		for (i = 0; i <= end_zone; i++) {
2613			struct zone *zone = pgdat->node_zones + i;
2614			int nr_slab;
2615			unsigned long balance_gap;
2616
2617			if (!populated_zone(zone))
2618				continue;
2619
2620			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2621				continue;
2622
2623			sc.nr_scanned = 0;
2624
2625			nr_soft_scanned = 0;
2626			/*
2627			 * Call soft limit reclaim before calling shrink_zone.
2628			 */
2629			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2630							order, sc.gfp_mask,
2631							&nr_soft_scanned);
2632			sc.nr_reclaimed += nr_soft_reclaimed;
2633			total_scanned += nr_soft_scanned;
2634
2635			/*
2636			 * We put equal pressure on every zone, unless
2637			 * one zone has way too many pages free
2638			 * already. The "too many pages" is defined
2639			 * as the high wmark plus a "gap" where the
2640			 * gap is either the low watermark or 1%
2641			 * of the zone, whichever is smaller.
2642			 */
2643			balance_gap = min(low_wmark_pages(zone),
2644				(zone->present_pages +
2645					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2646				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2647			if (!zone_watermark_ok_safe(zone, order,
2648					high_wmark_pages(zone) + balance_gap,
2649					end_zone, 0)) {
2650				shrink_zone(priority, zone, &sc);
2651
2652				reclaim_state->reclaimed_slab = 0;
2653				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2654				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2655				total_scanned += sc.nr_scanned;
2656
2657				if (nr_slab == 0 && !zone_reclaimable(zone))
2658					zone->all_unreclaimable = 1;
2659			}
2660
2661			/*
2662			 * If we've done a decent amount of scanning and
2663			 * the reclaim ratio is low, start doing writepage
2664			 * even in laptop mode
2665			 */
2666			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2667			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2668				sc.may_writepage = 1;
2669
2670			if (zone->all_unreclaimable) {
2671				if (end_zone && end_zone == i)
2672					end_zone--;
2673				continue;
2674			}
2675
2676			if (!zone_watermark_ok_safe(zone, order,
2677					high_wmark_pages(zone), end_zone, 0)) {
2678				all_zones_ok = 0;
2679				/*
2680				 * We are still under min water mark.  This
2681				 * means that we have a GFP_ATOMIC allocation
2682				 * failure risk. Hurry up!
2683				 */
2684				if (!zone_watermark_ok_safe(zone, order,
2685					    min_wmark_pages(zone), end_zone, 0))
2686					has_under_min_watermark_zone = 1;
2687			} else {
2688				/*
2689				 * If a zone reaches its high watermark,
2690				 * consider it to be no longer congested. It's
2691				 * possible there are dirty pages backed by
2692				 * congested BDIs but as pressure is relieved,
2693				 * spectulatively avoid congestion waits
2694				 */
2695				zone_clear_flag(zone, ZONE_CONGESTED);
2696				if (i <= *classzone_idx)
2697					balanced += zone->present_pages;
2698			}
2699
2700		}
2701		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2702			break;		/* kswapd: all done */
2703		/*
2704		 * OK, kswapd is getting into trouble.  Take a nap, then take
2705		 * another pass across the zones.
2706		 */
2707		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2708			if (has_under_min_watermark_zone)
2709				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2710			else
2711				congestion_wait(BLK_RW_ASYNC, HZ/10);
2712		}
2713
2714		/*
2715		 * We do this so kswapd doesn't build up large priorities for
2716		 * example when it is freeing in parallel with allocators. It
2717		 * matches the direct reclaim path behaviour in terms of impact
2718		 * on zone->*_priority.
2719		 */
2720		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2721			break;
2722	}
2723out:
2724
2725	/*
2726	 * order-0: All zones must meet high watermark for a balanced node
2727	 * high-order: Balanced zones must make up at least 25% of the node
2728	 *             for the node to be balanced
2729	 */
2730	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2731		cond_resched();
2732
2733		try_to_freeze();
2734
2735		/*
2736		 * Fragmentation may mean that the system cannot be
2737		 * rebalanced for high-order allocations in all zones.
2738		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2739		 * it means the zones have been fully scanned and are still
2740		 * not balanced. For high-order allocations, there is
2741		 * little point trying all over again as kswapd may
2742		 * infinite loop.
2743		 *
2744		 * Instead, recheck all watermarks at order-0 as they
2745		 * are the most important. If watermarks are ok, kswapd will go
2746		 * back to sleep. High-order users can still perform direct
2747		 * reclaim if they wish.
2748		 */
2749		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2750			order = sc.order = 0;
2751
2752		goto loop_again;
2753	}
2754
2755	/*
2756	 * If kswapd was reclaiming at a higher order, it has the option of
2757	 * sleeping without all zones being balanced. Before it does, it must
2758	 * ensure that the watermarks for order-0 on *all* zones are met and
2759	 * that the congestion flags are cleared. The congestion flag must
2760	 * be cleared as kswapd is the only mechanism that clears the flag
2761	 * and it is potentially going to sleep here.
2762	 */
2763	if (order) {
2764		for (i = 0; i <= end_zone; i++) {
2765			struct zone *zone = pgdat->node_zones + i;
2766
2767			if (!populated_zone(zone))
2768				continue;
2769
2770			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2771				continue;
2772
2773			/* Confirm the zone is balanced for order-0 */
2774			if (!zone_watermark_ok(zone, 0,
2775					high_wmark_pages(zone), 0, 0)) {
2776				order = sc.order = 0;
2777				goto loop_again;
2778			}
2779
2780			/* If balanced, clear the congested flag */
2781			zone_clear_flag(zone, ZONE_CONGESTED);
2782			if (i <= *classzone_idx)
2783				balanced += zone->present_pages;
2784		}
2785	}
2786
2787	/*
2788	 * Return the order we were reclaiming at so sleeping_prematurely()
2789	 * makes a decision on the order we were last reclaiming at. However,
2790	 * if another caller entered the allocator slow path while kswapd
2791	 * was awake, order will remain at the higher level
2792	 */
2793	*classzone_idx = end_zone;
2794	return order;
2795}
2796
2797static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2798{
2799	long remaining = 0;
2800	DEFINE_WAIT(wait);
2801
2802	if (freezing(current) || kthread_should_stop())
2803		return;
2804
2805	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2806
2807	/* Try to sleep for a short interval */
2808	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2809		remaining = schedule_timeout(HZ/10);
2810		finish_wait(&pgdat->kswapd_wait, &wait);
2811		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2812	}
2813
2814	/*
2815	 * After a short sleep, check if it was a premature sleep. If not, then
2816	 * go fully to sleep until explicitly woken up.
2817	 */
2818	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2819		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2820
2821		/*
2822		 * vmstat counters are not perfectly accurate and the estimated
2823		 * value for counters such as NR_FREE_PAGES can deviate from the
2824		 * true value by nr_online_cpus * threshold. To avoid the zone
2825		 * watermarks being breached while under pressure, we reduce the
2826		 * per-cpu vmstat threshold while kswapd is awake and restore
2827		 * them before going back to sleep.
2828		 */
2829		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2830		schedule();
2831		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2832	} else {
2833		if (remaining)
2834			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2835		else
2836			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2837	}
2838	finish_wait(&pgdat->kswapd_wait, &wait);
2839}
2840
2841/*
2842 * The background pageout daemon, started as a kernel thread
2843 * from the init process.
2844 *
2845 * This basically trickles out pages so that we have _some_
2846 * free memory available even if there is no other activity
2847 * that frees anything up. This is needed for things like routing
2848 * etc, where we otherwise might have all activity going on in
2849 * asynchronous contexts that cannot page things out.
2850 *
2851 * If there are applications that are active memory-allocators
2852 * (most normal use), this basically shouldn't matter.
2853 */
2854static int kswapd(void *p)
2855{
2856	unsigned long order, new_order;
2857	unsigned balanced_order;
2858	int classzone_idx, new_classzone_idx;
2859	int balanced_classzone_idx;
2860	pg_data_t *pgdat = (pg_data_t*)p;
2861	struct task_struct *tsk = current;
2862
2863	struct reclaim_state reclaim_state = {
2864		.reclaimed_slab = 0,
2865	};
2866	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2867
2868	lockdep_set_current_reclaim_state(GFP_KERNEL);
2869
2870	if (!cpumask_empty(cpumask))
2871		set_cpus_allowed_ptr(tsk, cpumask);
2872	current->reclaim_state = &reclaim_state;
2873
2874	/*
2875	 * Tell the memory management that we're a "memory allocator",
2876	 * and that if we need more memory we should get access to it
2877	 * regardless (see "__alloc_pages()"). "kswapd" should
2878	 * never get caught in the normal page freeing logic.
2879	 *
2880	 * (Kswapd normally doesn't need memory anyway, but sometimes
2881	 * you need a small amount of memory in order to be able to
2882	 * page out something else, and this flag essentially protects
2883	 * us from recursively trying to free more memory as we're
2884	 * trying to free the first piece of memory in the first place).
2885	 */
2886	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2887	set_freezable();
2888
2889	order = new_order = 0;
2890	balanced_order = 0;
2891	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2892	balanced_classzone_idx = classzone_idx;
2893	for ( ; ; ) {
2894		int ret;
2895
2896		/*
2897		 * If the last balance_pgdat was unsuccessful it's unlikely a
2898		 * new request of a similar or harder type will succeed soon
2899		 * so consider going to sleep on the basis we reclaimed at
2900		 */
2901		if (balanced_classzone_idx >= new_classzone_idx &&
2902					balanced_order == new_order) {
2903			new_order = pgdat->kswapd_max_order;
2904			new_classzone_idx = pgdat->classzone_idx;
2905			pgdat->kswapd_max_order =  0;
2906			pgdat->classzone_idx = pgdat->nr_zones - 1;
2907		}
2908
2909		if (order < new_order || classzone_idx > new_classzone_idx) {
2910			/*
2911			 * Don't sleep if someone wants a larger 'order'
2912			 * allocation or has tigher zone constraints
2913			 */
2914			order = new_order;
2915			classzone_idx = new_classzone_idx;
2916		} else {
2917			kswapd_try_to_sleep(pgdat, balanced_order,
2918						balanced_classzone_idx);
2919			order = pgdat->kswapd_max_order;
2920			classzone_idx = pgdat->classzone_idx;
2921			new_order = order;
2922			new_classzone_idx = classzone_idx;
2923			pgdat->kswapd_max_order = 0;
2924			pgdat->classzone_idx = pgdat->nr_zones - 1;
2925		}
2926
2927		ret = try_to_freeze();
2928		if (kthread_should_stop())
2929			break;
2930
2931		/*
2932		 * We can speed up thawing tasks if we don't call balance_pgdat
2933		 * after returning from the refrigerator
2934		 */
2935		if (!ret) {
2936			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2937			balanced_classzone_idx = classzone_idx;
2938			balanced_order = balance_pgdat(pgdat, order,
2939						&balanced_classzone_idx);
2940		}
2941	}
2942	return 0;
2943}
2944
2945/*
2946 * A zone is low on free memory, so wake its kswapd task to service it.
2947 */
2948void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2949{
2950	pg_data_t *pgdat;
2951
2952	if (!populated_zone(zone))
2953		return;
2954
2955	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2956		return;
2957	pgdat = zone->zone_pgdat;
2958	if (pgdat->kswapd_max_order < order) {
2959		pgdat->kswapd_max_order = order;
2960		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2961	}
2962	if (!waitqueue_active(&pgdat->kswapd_wait))
2963		return;
2964	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2965		return;
2966
2967	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2968	wake_up_interruptible(&pgdat->kswapd_wait);
2969}
2970
2971/*
2972 * The reclaimable count would be mostly accurate.
2973 * The less reclaimable pages may be
2974 * - mlocked pages, which will be moved to unevictable list when encountered
2975 * - mapped pages, which may require several travels to be reclaimed
2976 * - dirty pages, which is not "instantly" reclaimable
2977 */
2978unsigned long global_reclaimable_pages(void)
2979{
2980	int nr;
2981
2982	nr = global_page_state(NR_ACTIVE_FILE) +
2983	     global_page_state(NR_INACTIVE_FILE);
2984
2985	if (nr_swap_pages > 0)
2986		nr += global_page_state(NR_ACTIVE_ANON) +
2987		      global_page_state(NR_INACTIVE_ANON);
2988
2989	return nr;
2990}
2991
2992unsigned long zone_reclaimable_pages(struct zone *zone)
2993{
2994	int nr;
2995
2996	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2997	     zone_page_state(zone, NR_INACTIVE_FILE);
2998
2999	if (nr_swap_pages > 0)
3000		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3001		      zone_page_state(zone, NR_INACTIVE_ANON);
3002
3003	return nr;
3004}
3005
3006#ifdef CONFIG_HIBERNATION
3007/*
3008 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3009 * freed pages.
3010 *
3011 * Rather than trying to age LRUs the aim is to preserve the overall
3012 * LRU order by reclaiming preferentially
3013 * inactive > active > active referenced > active mapped
3014 */
3015unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3016{
3017	struct reclaim_state reclaim_state;
3018	struct scan_control sc = {
3019		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3020		.may_swap = 1,
3021		.may_unmap = 1,
3022		.may_writepage = 1,
3023		.nr_to_reclaim = nr_to_reclaim,
3024		.hibernation_mode = 1,
3025		.order = 0,
3026	};
3027	struct shrink_control shrink = {
3028		.gfp_mask = sc.gfp_mask,
3029	};
3030	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3031	struct task_struct *p = current;
3032	unsigned long nr_reclaimed;
3033
3034	p->flags |= PF_MEMALLOC;
3035	lockdep_set_current_reclaim_state(sc.gfp_mask);
3036	reclaim_state.reclaimed_slab = 0;
3037	p->reclaim_state = &reclaim_state;
3038
3039	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3040
3041	p->reclaim_state = NULL;
3042	lockdep_clear_current_reclaim_state();
3043	p->flags &= ~PF_MEMALLOC;
3044
3045	return nr_reclaimed;
3046}
3047#endif /* CONFIG_HIBERNATION */
3048
3049/* It's optimal to keep kswapds on the same CPUs as their memory, but
3050   not required for correctness.  So if the last cpu in a node goes
3051   away, we get changed to run anywhere: as the first one comes back,
3052   restore their cpu bindings. */
3053static int __devinit cpu_callback(struct notifier_block *nfb,
3054				  unsigned long action, void *hcpu)
3055{
3056	int nid;
3057
3058	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3059		for_each_node_state(nid, N_HIGH_MEMORY) {
3060			pg_data_t *pgdat = NODE_DATA(nid);
3061			const struct cpumask *mask;
3062
3063			mask = cpumask_of_node(pgdat->node_id);
3064
3065			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3066				/* One of our CPUs online: restore mask */
3067				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3068		}
3069	}
3070	return NOTIFY_OK;
3071}
3072
3073/*
3074 * This kswapd start function will be called by init and node-hot-add.
3075 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3076 */
3077int kswapd_run(int nid)
3078{
3079	pg_data_t *pgdat = NODE_DATA(nid);
3080	int ret = 0;
3081
3082	if (pgdat->kswapd)
3083		return 0;
3084
3085	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3086	if (IS_ERR(pgdat->kswapd)) {
3087		/* failure at boot is fatal */
3088		BUG_ON(system_state == SYSTEM_BOOTING);
3089		printk("Failed to start kswapd on node %d\n",nid);
3090		ret = -1;
3091	}
3092	return ret;
3093}
3094
3095/*
3096 * Called by memory hotplug when all memory in a node is offlined.
3097 */
3098void kswapd_stop(int nid)
3099{
3100	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3101
3102	if (kswapd)
3103		kthread_stop(kswapd);
3104}
3105
3106static int __init kswapd_init(void)
3107{
3108	int nid;
3109
3110	swap_setup();
3111	for_each_node_state(nid, N_HIGH_MEMORY)
3112 		kswapd_run(nid);
3113	hotcpu_notifier(cpu_callback, 0);
3114	return 0;
3115}
3116
3117module_init(kswapd_init)
3118
3119#ifdef CONFIG_NUMA
3120/*
3121 * Zone reclaim mode
3122 *
3123 * If non-zero call zone_reclaim when the number of free pages falls below
3124 * the watermarks.
3125 */
3126int zone_reclaim_mode __read_mostly;
3127
3128#define RECLAIM_OFF 0
3129#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3130#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3131#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3132
3133/*
3134 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3135 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3136 * a zone.
3137 */
3138#define ZONE_RECLAIM_PRIORITY 4
3139
3140/*
3141 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3142 * occur.
3143 */
3144int sysctl_min_unmapped_ratio = 1;
3145
3146/*
3147 * If the number of slab pages in a zone grows beyond this percentage then
3148 * slab reclaim needs to occur.
3149 */
3150int sysctl_min_slab_ratio = 5;
3151
3152static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3153{
3154	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3155	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3156		zone_page_state(zone, NR_ACTIVE_FILE);
3157
3158	/*
3159	 * It's possible for there to be more file mapped pages than
3160	 * accounted for by the pages on the file LRU lists because
3161	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3162	 */
3163	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3164}
3165
3166/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3167static long zone_pagecache_reclaimable(struct zone *zone)
3168{
3169	long nr_pagecache_reclaimable;
3170	long delta = 0;
3171
3172	/*
3173	 * If RECLAIM_SWAP is set, then all file pages are considered
3174	 * potentially reclaimable. Otherwise, we have to worry about
3175	 * pages like swapcache and zone_unmapped_file_pages() provides
3176	 * a better estimate
3177	 */
3178	if (zone_reclaim_mode & RECLAIM_SWAP)
3179		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3180	else
3181		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3182
3183	/* If we can't clean pages, remove dirty pages from consideration */
3184	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3185		delta += zone_page_state(zone, NR_FILE_DIRTY);
3186
3187	/* Watch for any possible underflows due to delta */
3188	if (unlikely(delta > nr_pagecache_reclaimable))
3189		delta = nr_pagecache_reclaimable;
3190
3191	return nr_pagecache_reclaimable - delta;
3192}
3193
3194/*
3195 * Try to free up some pages from this zone through reclaim.
3196 */
3197static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3198{
3199	/* Minimum pages needed in order to stay on node */
3200	const unsigned long nr_pages = 1 << order;
3201	struct task_struct *p = current;
3202	struct reclaim_state reclaim_state;
3203	int priority;
3204	struct scan_control sc = {
3205		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3206		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3207		.may_swap = 1,
3208		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3209				       SWAP_CLUSTER_MAX),
3210		.gfp_mask = gfp_mask,
3211		.order = order,
3212	};
3213	struct shrink_control shrink = {
3214		.gfp_mask = sc.gfp_mask,
3215	};
3216	unsigned long nr_slab_pages0, nr_slab_pages1;
3217
3218	cond_resched();
3219	/*
3220	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3221	 * and we also need to be able to write out pages for RECLAIM_WRITE
3222	 * and RECLAIM_SWAP.
3223	 */
3224	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3225	lockdep_set_current_reclaim_state(gfp_mask);
3226	reclaim_state.reclaimed_slab = 0;
3227	p->reclaim_state = &reclaim_state;
3228
3229	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3230		/*
3231		 * Free memory by calling shrink zone with increasing
3232		 * priorities until we have enough memory freed.
3233		 */
3234		priority = ZONE_RECLAIM_PRIORITY;
3235		do {
3236			shrink_zone(priority, zone, &sc);
3237			priority--;
3238		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3239	}
3240
3241	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3242	if (nr_slab_pages0 > zone->min_slab_pages) {
3243		/*
3244		 * shrink_slab() does not currently allow us to determine how
3245		 * many pages were freed in this zone. So we take the current
3246		 * number of slab pages and shake the slab until it is reduced
3247		 * by the same nr_pages that we used for reclaiming unmapped
3248		 * pages.
3249		 *
3250		 * Note that shrink_slab will free memory on all zones and may
3251		 * take a long time.
3252		 */
3253		for (;;) {
3254			unsigned long lru_pages = zone_reclaimable_pages(zone);
3255
3256			/* No reclaimable slab or very low memory pressure */
3257			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3258				break;
3259
3260			/* Freed enough memory */
3261			nr_slab_pages1 = zone_page_state(zone,
3262							NR_SLAB_RECLAIMABLE);
3263			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3264				break;
3265		}
3266
3267		/*
3268		 * Update nr_reclaimed by the number of slab pages we
3269		 * reclaimed from this zone.
3270		 */
3271		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3272		if (nr_slab_pages1 < nr_slab_pages0)
3273			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3274	}
3275
3276	p->reclaim_state = NULL;
3277	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3278	lockdep_clear_current_reclaim_state();
3279	return sc.nr_reclaimed >= nr_pages;
3280}
3281
3282int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3283{
3284	int node_id;
3285	int ret;
3286
3287	/*
3288	 * Zone reclaim reclaims unmapped file backed pages and
3289	 * slab pages if we are over the defined limits.
3290	 *
3291	 * A small portion of unmapped file backed pages is needed for
3292	 * file I/O otherwise pages read by file I/O will be immediately
3293	 * thrown out if the zone is overallocated. So we do not reclaim
3294	 * if less than a specified percentage of the zone is used by
3295	 * unmapped file backed pages.
3296	 */
3297	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3298	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3299		return ZONE_RECLAIM_FULL;
3300
3301	if (zone->all_unreclaimable)
3302		return ZONE_RECLAIM_FULL;
3303
3304	/*
3305	 * Do not scan if the allocation should not be delayed.
3306	 */
3307	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3308		return ZONE_RECLAIM_NOSCAN;
3309
3310	/*
3311	 * Only run zone reclaim on the local zone or on zones that do not
3312	 * have associated processors. This will favor the local processor
3313	 * over remote processors and spread off node memory allocations
3314	 * as wide as possible.
3315	 */
3316	node_id = zone_to_nid(zone);
3317	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3318		return ZONE_RECLAIM_NOSCAN;
3319
3320	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3321		return ZONE_RECLAIM_NOSCAN;
3322
3323	ret = __zone_reclaim(zone, gfp_mask, order);
3324	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3325
3326	if (!ret)
3327		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3328
3329	return ret;
3330}
3331#endif
3332
3333/*
3334 * page_evictable - test whether a page is evictable
3335 * @page: the page to test
3336 * @vma: the VMA in which the page is or will be mapped, may be NULL
3337 *
3338 * Test whether page is evictable--i.e., should be placed on active/inactive
3339 * lists vs unevictable list.  The vma argument is !NULL when called from the
3340 * fault path to determine how to instantate a new page.
3341 *
3342 * Reasons page might not be evictable:
3343 * (1) page's mapping marked unevictable
3344 * (2) page is part of an mlocked VMA
3345 *
3346 */
3347int page_evictable(struct page *page, struct vm_area_struct *vma)
3348{
3349
3350	if (mapping_unevictable(page_mapping(page)))
3351		return 0;
3352
3353	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3354		return 0;
3355
3356	return 1;
3357}
3358
3359/**
3360 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3361 * @page: page to check evictability and move to appropriate lru list
3362 * @zone: zone page is in
3363 *
3364 * Checks a page for evictability and moves the page to the appropriate
3365 * zone lru list.
3366 *
3367 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3368 * have PageUnevictable set.
3369 */
3370static void check_move_unevictable_page(struct page *page, struct zone *zone)
3371{
3372	VM_BUG_ON(PageActive(page));
3373
3374retry:
3375	ClearPageUnevictable(page);
3376	if (page_evictable(page, NULL)) {
3377		enum lru_list l = page_lru_base_type(page);
3378
3379		__dec_zone_state(zone, NR_UNEVICTABLE);
3380		list_move(&page->lru, &zone->lru[l].list);
3381		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3382		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3383		__count_vm_event(UNEVICTABLE_PGRESCUED);
3384	} else {
3385		/*
3386		 * rotate unevictable list
3387		 */
3388		SetPageUnevictable(page);
3389		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3390		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3391		if (page_evictable(page, NULL))
3392			goto retry;
3393	}
3394}
3395
3396/**
3397 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3398 * @mapping: struct address_space to scan for evictable pages
3399 *
3400 * Scan all pages in mapping.  Check unevictable pages for
3401 * evictability and move them to the appropriate zone lru list.
3402 */
3403void scan_mapping_unevictable_pages(struct address_space *mapping)
3404{
3405	pgoff_t next = 0;
3406	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3407			 PAGE_CACHE_SHIFT;
3408	struct zone *zone;
3409	struct pagevec pvec;
3410
3411	if (mapping->nrpages == 0)
3412		return;
3413
3414	pagevec_init(&pvec, 0);
3415	while (next < end &&
3416		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3417		int i;
3418		int pg_scanned = 0;
3419
3420		zone = NULL;
3421
3422		for (i = 0; i < pagevec_count(&pvec); i++) {
3423			struct page *page = pvec.pages[i];
3424			pgoff_t page_index = page->index;
3425			struct zone *pagezone = page_zone(page);
3426
3427			pg_scanned++;
3428			if (page_index > next)
3429				next = page_index;
3430			next++;
3431
3432			if (pagezone != zone) {
3433				if (zone)
3434					spin_unlock_irq(&zone->lru_lock);
3435				zone = pagezone;
3436				spin_lock_irq(&zone->lru_lock);
3437			}
3438
3439			if (PageLRU(page) && PageUnevictable(page))
3440				check_move_unevictable_page(page, zone);
3441		}
3442		if (zone)
3443			spin_unlock_irq(&zone->lru_lock);
3444		pagevec_release(&pvec);
3445
3446		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3447	}
3448
3449}
3450
3451static void warn_scan_unevictable_pages(void)
3452{
3453	printk_once(KERN_WARNING
3454		    "The scan_unevictable_pages sysctl/node-interface has been "
3455		    "disabled for lack of a legitimate use case.  If you have "
3456		    "one, please send an email to linux-mm@kvack.org.\n");
3457}
3458
3459/*
3460 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3461 * all nodes' unevictable lists for evictable pages
3462 */
3463unsigned long scan_unevictable_pages;
3464
3465int scan_unevictable_handler(struct ctl_table *table, int write,
3466			   void __user *buffer,
3467			   size_t *length, loff_t *ppos)
3468{
3469	warn_scan_unevictable_pages();
3470	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3471	scan_unevictable_pages = 0;
3472	return 0;
3473}
3474
3475#ifdef CONFIG_NUMA
3476/*
3477 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3478 * a specified node's per zone unevictable lists for evictable pages.
3479 */
3480
3481static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3482					  struct sysdev_attribute *attr,
3483					  char *buf)
3484{
3485	warn_scan_unevictable_pages();
3486	return sprintf(buf, "0\n");	/* always zero; should fit... */
3487}
3488
3489static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3490					   struct sysdev_attribute *attr,
3491					const char *buf, size_t count)
3492{
3493	warn_scan_unevictable_pages();
3494	return 1;
3495}
3496
3497
3498static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3499			read_scan_unevictable_node,
3500			write_scan_unevictable_node);
3501
3502int scan_unevictable_register_node(struct node *node)
3503{
3504	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3505}
3506
3507void scan_unevictable_unregister_node(struct node *node)
3508{
3509	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3510}
3511#endif
3512