vmscan.c revision 66e1707bc34609f626e2e7b4fe7e454c9748bad5
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41
42#include <asm/tlbflush.h>
43#include <asm/div64.h>
44
45#include <linux/swapops.h>
46
47#include "internal.h"
48
49struct scan_control {
50	/* Incremented by the number of inactive pages that were scanned */
51	unsigned long nr_scanned;
52
53	/* This context's GFP mask */
54	gfp_t gfp_mask;
55
56	int may_writepage;
57
58	/* Can pages be swapped as part of reclaim? */
59	int may_swap;
60
61	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
62	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63	 * In this context, it doesn't matter that we scan the
64	 * whole list at once. */
65	int swap_cluster_max;
66
67	int swappiness;
68
69	int all_unreclaimable;
70
71	int order;
72
73	/* Which cgroup do we reclaim from */
74	struct mem_cgroup *mem_cgroup;
75
76	/* Pluggable isolate pages callback */
77	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
78			unsigned long *scanned, int order, int mode,
79			struct zone *z, struct mem_cgroup *mem_cont,
80			int active);
81};
82
83#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84
85#ifdef ARCH_HAS_PREFETCH
86#define prefetch_prev_lru_page(_page, _base, _field)			\
87	do {								\
88		if ((_page)->lru.prev != _base) {			\
89			struct page *prev;				\
90									\
91			prev = lru_to_page(&(_page->lru));		\
92			prefetch(&prev->_field);			\
93		}							\
94	} while (0)
95#else
96#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
97#endif
98
99#ifdef ARCH_HAS_PREFETCHW
100#define prefetchw_prev_lru_page(_page, _base, _field)			\
101	do {								\
102		if ((_page)->lru.prev != _base) {			\
103			struct page *prev;				\
104									\
105			prev = lru_to_page(&(_page->lru));		\
106			prefetchw(&prev->_field);			\
107		}							\
108	} while (0)
109#else
110#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113/*
114 * From 0 .. 100.  Higher means more swappy.
115 */
116int vm_swappiness = 60;
117long vm_total_pages;	/* The total number of pages which the VM controls */
118
119static LIST_HEAD(shrinker_list);
120static DECLARE_RWSEM(shrinker_rwsem);
121
122/*
123 * Add a shrinker callback to be called from the vm
124 */
125void register_shrinker(struct shrinker *shrinker)
126{
127	shrinker->nr = 0;
128	down_write(&shrinker_rwsem);
129	list_add_tail(&shrinker->list, &shrinker_list);
130	up_write(&shrinker_rwsem);
131}
132EXPORT_SYMBOL(register_shrinker);
133
134/*
135 * Remove one
136 */
137void unregister_shrinker(struct shrinker *shrinker)
138{
139	down_write(&shrinker_rwsem);
140	list_del(&shrinker->list);
141	up_write(&shrinker_rwsem);
142}
143EXPORT_SYMBOL(unregister_shrinker);
144
145#define SHRINK_BATCH 128
146/*
147 * Call the shrink functions to age shrinkable caches
148 *
149 * Here we assume it costs one seek to replace a lru page and that it also
150 * takes a seek to recreate a cache object.  With this in mind we age equal
151 * percentages of the lru and ageable caches.  This should balance the seeks
152 * generated by these structures.
153 *
154 * If the vm encountered mapped pages on the LRU it increase the pressure on
155 * slab to avoid swapping.
156 *
157 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
158 *
159 * `lru_pages' represents the number of on-LRU pages in all the zones which
160 * are eligible for the caller's allocation attempt.  It is used for balancing
161 * slab reclaim versus page reclaim.
162 *
163 * Returns the number of slab objects which we shrunk.
164 */
165unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
166			unsigned long lru_pages)
167{
168	struct shrinker *shrinker;
169	unsigned long ret = 0;
170
171	if (scanned == 0)
172		scanned = SWAP_CLUSTER_MAX;
173
174	if (!down_read_trylock(&shrinker_rwsem))
175		return 1;	/* Assume we'll be able to shrink next time */
176
177	list_for_each_entry(shrinker, &shrinker_list, list) {
178		unsigned long long delta;
179		unsigned long total_scan;
180		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
181
182		delta = (4 * scanned) / shrinker->seeks;
183		delta *= max_pass;
184		do_div(delta, lru_pages + 1);
185		shrinker->nr += delta;
186		if (shrinker->nr < 0) {
187			printk(KERN_ERR "%s: nr=%ld\n",
188					__FUNCTION__, shrinker->nr);
189			shrinker->nr = max_pass;
190		}
191
192		/*
193		 * Avoid risking looping forever due to too large nr value:
194		 * never try to free more than twice the estimate number of
195		 * freeable entries.
196		 */
197		if (shrinker->nr > max_pass * 2)
198			shrinker->nr = max_pass * 2;
199
200		total_scan = shrinker->nr;
201		shrinker->nr = 0;
202
203		while (total_scan >= SHRINK_BATCH) {
204			long this_scan = SHRINK_BATCH;
205			int shrink_ret;
206			int nr_before;
207
208			nr_before = (*shrinker->shrink)(0, gfp_mask);
209			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
210			if (shrink_ret == -1)
211				break;
212			if (shrink_ret < nr_before)
213				ret += nr_before - shrink_ret;
214			count_vm_events(SLABS_SCANNED, this_scan);
215			total_scan -= this_scan;
216
217			cond_resched();
218		}
219
220		shrinker->nr += total_scan;
221	}
222	up_read(&shrinker_rwsem);
223	return ret;
224}
225
226/* Called without lock on whether page is mapped, so answer is unstable */
227static inline int page_mapping_inuse(struct page *page)
228{
229	struct address_space *mapping;
230
231	/* Page is in somebody's page tables. */
232	if (page_mapped(page))
233		return 1;
234
235	/* Be more reluctant to reclaim swapcache than pagecache */
236	if (PageSwapCache(page))
237		return 1;
238
239	mapping = page_mapping(page);
240	if (!mapping)
241		return 0;
242
243	/* File is mmap'd by somebody? */
244	return mapping_mapped(mapping);
245}
246
247static inline int is_page_cache_freeable(struct page *page)
248{
249	return page_count(page) - !!PagePrivate(page) == 2;
250}
251
252static int may_write_to_queue(struct backing_dev_info *bdi)
253{
254	if (current->flags & PF_SWAPWRITE)
255		return 1;
256	if (!bdi_write_congested(bdi))
257		return 1;
258	if (bdi == current->backing_dev_info)
259		return 1;
260	return 0;
261}
262
263/*
264 * We detected a synchronous write error writing a page out.  Probably
265 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
266 * fsync(), msync() or close().
267 *
268 * The tricky part is that after writepage we cannot touch the mapping: nothing
269 * prevents it from being freed up.  But we have a ref on the page and once
270 * that page is locked, the mapping is pinned.
271 *
272 * We're allowed to run sleeping lock_page() here because we know the caller has
273 * __GFP_FS.
274 */
275static void handle_write_error(struct address_space *mapping,
276				struct page *page, int error)
277{
278	lock_page(page);
279	if (page_mapping(page) == mapping)
280		mapping_set_error(mapping, error);
281	unlock_page(page);
282}
283
284/* Request for sync pageout. */
285enum pageout_io {
286	PAGEOUT_IO_ASYNC,
287	PAGEOUT_IO_SYNC,
288};
289
290/* possible outcome of pageout() */
291typedef enum {
292	/* failed to write page out, page is locked */
293	PAGE_KEEP,
294	/* move page to the active list, page is locked */
295	PAGE_ACTIVATE,
296	/* page has been sent to the disk successfully, page is unlocked */
297	PAGE_SUCCESS,
298	/* page is clean and locked */
299	PAGE_CLEAN,
300} pageout_t;
301
302/*
303 * pageout is called by shrink_page_list() for each dirty page.
304 * Calls ->writepage().
305 */
306static pageout_t pageout(struct page *page, struct address_space *mapping,
307						enum pageout_io sync_writeback)
308{
309	/*
310	 * If the page is dirty, only perform writeback if that write
311	 * will be non-blocking.  To prevent this allocation from being
312	 * stalled by pagecache activity.  But note that there may be
313	 * stalls if we need to run get_block().  We could test
314	 * PagePrivate for that.
315	 *
316	 * If this process is currently in generic_file_write() against
317	 * this page's queue, we can perform writeback even if that
318	 * will block.
319	 *
320	 * If the page is swapcache, write it back even if that would
321	 * block, for some throttling. This happens by accident, because
322	 * swap_backing_dev_info is bust: it doesn't reflect the
323	 * congestion state of the swapdevs.  Easy to fix, if needed.
324	 * See swapfile.c:page_queue_congested().
325	 */
326	if (!is_page_cache_freeable(page))
327		return PAGE_KEEP;
328	if (!mapping) {
329		/*
330		 * Some data journaling orphaned pages can have
331		 * page->mapping == NULL while being dirty with clean buffers.
332		 */
333		if (PagePrivate(page)) {
334			if (try_to_free_buffers(page)) {
335				ClearPageDirty(page);
336				printk("%s: orphaned page\n", __FUNCTION__);
337				return PAGE_CLEAN;
338			}
339		}
340		return PAGE_KEEP;
341	}
342	if (mapping->a_ops->writepage == NULL)
343		return PAGE_ACTIVATE;
344	if (!may_write_to_queue(mapping->backing_dev_info))
345		return PAGE_KEEP;
346
347	if (clear_page_dirty_for_io(page)) {
348		int res;
349		struct writeback_control wbc = {
350			.sync_mode = WB_SYNC_NONE,
351			.nr_to_write = SWAP_CLUSTER_MAX,
352			.range_start = 0,
353			.range_end = LLONG_MAX,
354			.nonblocking = 1,
355			.for_reclaim = 1,
356		};
357
358		SetPageReclaim(page);
359		res = mapping->a_ops->writepage(page, &wbc);
360		if (res < 0)
361			handle_write_error(mapping, page, res);
362		if (res == AOP_WRITEPAGE_ACTIVATE) {
363			ClearPageReclaim(page);
364			return PAGE_ACTIVATE;
365		}
366
367		/*
368		 * Wait on writeback if requested to. This happens when
369		 * direct reclaiming a large contiguous area and the
370		 * first attempt to free a range of pages fails.
371		 */
372		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
373			wait_on_page_writeback(page);
374
375		if (!PageWriteback(page)) {
376			/* synchronous write or broken a_ops? */
377			ClearPageReclaim(page);
378		}
379		inc_zone_page_state(page, NR_VMSCAN_WRITE);
380		return PAGE_SUCCESS;
381	}
382
383	return PAGE_CLEAN;
384}
385
386/*
387 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
388 * someone else has a ref on the page, abort and return 0.  If it was
389 * successfully detached, return 1.  Assumes the caller has a single ref on
390 * this page.
391 */
392int remove_mapping(struct address_space *mapping, struct page *page)
393{
394	BUG_ON(!PageLocked(page));
395	BUG_ON(mapping != page_mapping(page));
396
397	write_lock_irq(&mapping->tree_lock);
398	/*
399	 * The non racy check for a busy page.
400	 *
401	 * Must be careful with the order of the tests. When someone has
402	 * a ref to the page, it may be possible that they dirty it then
403	 * drop the reference. So if PageDirty is tested before page_count
404	 * here, then the following race may occur:
405	 *
406	 * get_user_pages(&page);
407	 * [user mapping goes away]
408	 * write_to(page);
409	 *				!PageDirty(page)    [good]
410	 * SetPageDirty(page);
411	 * put_page(page);
412	 *				!page_count(page)   [good, discard it]
413	 *
414	 * [oops, our write_to data is lost]
415	 *
416	 * Reversing the order of the tests ensures such a situation cannot
417	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
418	 * load is not satisfied before that of page->_count.
419	 *
420	 * Note that if SetPageDirty is always performed via set_page_dirty,
421	 * and thus under tree_lock, then this ordering is not required.
422	 */
423	if (unlikely(page_count(page) != 2))
424		goto cannot_free;
425	smp_rmb();
426	if (unlikely(PageDirty(page)))
427		goto cannot_free;
428
429	if (PageSwapCache(page)) {
430		swp_entry_t swap = { .val = page_private(page) };
431		__delete_from_swap_cache(page);
432		write_unlock_irq(&mapping->tree_lock);
433		swap_free(swap);
434		__put_page(page);	/* The pagecache ref */
435		return 1;
436	}
437
438	__remove_from_page_cache(page);
439	write_unlock_irq(&mapping->tree_lock);
440	__put_page(page);
441	return 1;
442
443cannot_free:
444	write_unlock_irq(&mapping->tree_lock);
445	return 0;
446}
447
448/*
449 * shrink_page_list() returns the number of reclaimed pages
450 */
451static unsigned long shrink_page_list(struct list_head *page_list,
452					struct scan_control *sc,
453					enum pageout_io sync_writeback)
454{
455	LIST_HEAD(ret_pages);
456	struct pagevec freed_pvec;
457	int pgactivate = 0;
458	unsigned long nr_reclaimed = 0;
459
460	cond_resched();
461
462	pagevec_init(&freed_pvec, 1);
463	while (!list_empty(page_list)) {
464		struct address_space *mapping;
465		struct page *page;
466		int may_enter_fs;
467		int referenced;
468
469		cond_resched();
470
471		page = lru_to_page(page_list);
472		list_del(&page->lru);
473
474		if (TestSetPageLocked(page))
475			goto keep;
476
477		VM_BUG_ON(PageActive(page));
478
479		sc->nr_scanned++;
480
481		if (!sc->may_swap && page_mapped(page))
482			goto keep_locked;
483
484		/* Double the slab pressure for mapped and swapcache pages */
485		if (page_mapped(page) || PageSwapCache(page))
486			sc->nr_scanned++;
487
488		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
489			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
490
491		if (PageWriteback(page)) {
492			/*
493			 * Synchronous reclaim is performed in two passes,
494			 * first an asynchronous pass over the list to
495			 * start parallel writeback, and a second synchronous
496			 * pass to wait for the IO to complete.  Wait here
497			 * for any page for which writeback has already
498			 * started.
499			 */
500			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
501				wait_on_page_writeback(page);
502			else
503				goto keep_locked;
504		}
505
506		referenced = page_referenced(page, 1);
507		/* In active use or really unfreeable?  Activate it. */
508		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
509					referenced && page_mapping_inuse(page))
510			goto activate_locked;
511
512#ifdef CONFIG_SWAP
513		/*
514		 * Anonymous process memory has backing store?
515		 * Try to allocate it some swap space here.
516		 */
517		if (PageAnon(page) && !PageSwapCache(page))
518			if (!add_to_swap(page, GFP_ATOMIC))
519				goto activate_locked;
520#endif /* CONFIG_SWAP */
521
522		mapping = page_mapping(page);
523
524		/*
525		 * The page is mapped into the page tables of one or more
526		 * processes. Try to unmap it here.
527		 */
528		if (page_mapped(page) && mapping) {
529			switch (try_to_unmap(page, 0)) {
530			case SWAP_FAIL:
531				goto activate_locked;
532			case SWAP_AGAIN:
533				goto keep_locked;
534			case SWAP_SUCCESS:
535				; /* try to free the page below */
536			}
537		}
538
539		if (PageDirty(page)) {
540			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
541				goto keep_locked;
542			if (!may_enter_fs)
543				goto keep_locked;
544			if (!sc->may_writepage)
545				goto keep_locked;
546
547			/* Page is dirty, try to write it out here */
548			switch (pageout(page, mapping, sync_writeback)) {
549			case PAGE_KEEP:
550				goto keep_locked;
551			case PAGE_ACTIVATE:
552				goto activate_locked;
553			case PAGE_SUCCESS:
554				if (PageWriteback(page) || PageDirty(page))
555					goto keep;
556				/*
557				 * A synchronous write - probably a ramdisk.  Go
558				 * ahead and try to reclaim the page.
559				 */
560				if (TestSetPageLocked(page))
561					goto keep;
562				if (PageDirty(page) || PageWriteback(page))
563					goto keep_locked;
564				mapping = page_mapping(page);
565			case PAGE_CLEAN:
566				; /* try to free the page below */
567			}
568		}
569
570		/*
571		 * If the page has buffers, try to free the buffer mappings
572		 * associated with this page. If we succeed we try to free
573		 * the page as well.
574		 *
575		 * We do this even if the page is PageDirty().
576		 * try_to_release_page() does not perform I/O, but it is
577		 * possible for a page to have PageDirty set, but it is actually
578		 * clean (all its buffers are clean).  This happens if the
579		 * buffers were written out directly, with submit_bh(). ext3
580		 * will do this, as well as the blockdev mapping.
581		 * try_to_release_page() will discover that cleanness and will
582		 * drop the buffers and mark the page clean - it can be freed.
583		 *
584		 * Rarely, pages can have buffers and no ->mapping.  These are
585		 * the pages which were not successfully invalidated in
586		 * truncate_complete_page().  We try to drop those buffers here
587		 * and if that worked, and the page is no longer mapped into
588		 * process address space (page_count == 1) it can be freed.
589		 * Otherwise, leave the page on the LRU so it is swappable.
590		 */
591		if (PagePrivate(page)) {
592			if (!try_to_release_page(page, sc->gfp_mask))
593				goto activate_locked;
594			if (!mapping && page_count(page) == 1)
595				goto free_it;
596		}
597
598		if (!mapping || !remove_mapping(mapping, page))
599			goto keep_locked;
600
601free_it:
602		unlock_page(page);
603		nr_reclaimed++;
604		if (!pagevec_add(&freed_pvec, page))
605			__pagevec_release_nonlru(&freed_pvec);
606		continue;
607
608activate_locked:
609		SetPageActive(page);
610		pgactivate++;
611keep_locked:
612		unlock_page(page);
613keep:
614		list_add(&page->lru, &ret_pages);
615		VM_BUG_ON(PageLRU(page));
616	}
617	list_splice(&ret_pages, page_list);
618	if (pagevec_count(&freed_pvec))
619		__pagevec_release_nonlru(&freed_pvec);
620	count_vm_events(PGACTIVATE, pgactivate);
621	return nr_reclaimed;
622}
623
624/* LRU Isolation modes. */
625#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
626#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
627#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
628
629/*
630 * Attempt to remove the specified page from its LRU.  Only take this page
631 * if it is of the appropriate PageActive status.  Pages which are being
632 * freed elsewhere are also ignored.
633 *
634 * page:	page to consider
635 * mode:	one of the LRU isolation modes defined above
636 *
637 * returns 0 on success, -ve errno on failure.
638 */
639int __isolate_lru_page(struct page *page, int mode)
640{
641	int ret = -EINVAL;
642
643	/* Only take pages on the LRU. */
644	if (!PageLRU(page))
645		return ret;
646
647	/*
648	 * When checking the active state, we need to be sure we are
649	 * dealing with comparible boolean values.  Take the logical not
650	 * of each.
651	 */
652	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
653		return ret;
654
655	ret = -EBUSY;
656	if (likely(get_page_unless_zero(page))) {
657		/*
658		 * Be careful not to clear PageLRU until after we're
659		 * sure the page is not being freed elsewhere -- the
660		 * page release code relies on it.
661		 */
662		ClearPageLRU(page);
663		ret = 0;
664	}
665
666	return ret;
667}
668
669/*
670 * zone->lru_lock is heavily contended.  Some of the functions that
671 * shrink the lists perform better by taking out a batch of pages
672 * and working on them outside the LRU lock.
673 *
674 * For pagecache intensive workloads, this function is the hottest
675 * spot in the kernel (apart from copy_*_user functions).
676 *
677 * Appropriate locks must be held before calling this function.
678 *
679 * @nr_to_scan:	The number of pages to look through on the list.
680 * @src:	The LRU list to pull pages off.
681 * @dst:	The temp list to put pages on to.
682 * @scanned:	The number of pages that were scanned.
683 * @order:	The caller's attempted allocation order
684 * @mode:	One of the LRU isolation modes
685 *
686 * returns how many pages were moved onto *@dst.
687 */
688static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
689		struct list_head *src, struct list_head *dst,
690		unsigned long *scanned, int order, int mode)
691{
692	unsigned long nr_taken = 0;
693	unsigned long scan;
694
695	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
696		struct page *page;
697		unsigned long pfn;
698		unsigned long end_pfn;
699		unsigned long page_pfn;
700		int zone_id;
701
702		page = lru_to_page(src);
703		prefetchw_prev_lru_page(page, src, flags);
704
705		VM_BUG_ON(!PageLRU(page));
706
707		switch (__isolate_lru_page(page, mode)) {
708		case 0:
709			list_move(&page->lru, dst);
710			nr_taken++;
711			break;
712
713		case -EBUSY:
714			/* else it is being freed elsewhere */
715			list_move(&page->lru, src);
716			continue;
717
718		default:
719			BUG();
720		}
721
722		if (!order)
723			continue;
724
725		/*
726		 * Attempt to take all pages in the order aligned region
727		 * surrounding the tag page.  Only take those pages of
728		 * the same active state as that tag page.  We may safely
729		 * round the target page pfn down to the requested order
730		 * as the mem_map is guarenteed valid out to MAX_ORDER,
731		 * where that page is in a different zone we will detect
732		 * it from its zone id and abort this block scan.
733		 */
734		zone_id = page_zone_id(page);
735		page_pfn = page_to_pfn(page);
736		pfn = page_pfn & ~((1 << order) - 1);
737		end_pfn = pfn + (1 << order);
738		for (; pfn < end_pfn; pfn++) {
739			struct page *cursor_page;
740
741			/* The target page is in the block, ignore it. */
742			if (unlikely(pfn == page_pfn))
743				continue;
744
745			/* Avoid holes within the zone. */
746			if (unlikely(!pfn_valid_within(pfn)))
747				break;
748
749			cursor_page = pfn_to_page(pfn);
750			/* Check that we have not crossed a zone boundary. */
751			if (unlikely(page_zone_id(cursor_page) != zone_id))
752				continue;
753			switch (__isolate_lru_page(cursor_page, mode)) {
754			case 0:
755				list_move(&cursor_page->lru, dst);
756				nr_taken++;
757				scan++;
758				break;
759
760			case -EBUSY:
761				/* else it is being freed elsewhere */
762				list_move(&cursor_page->lru, src);
763			default:
764				break;
765			}
766		}
767	}
768
769	*scanned = scan;
770	return nr_taken;
771}
772
773static unsigned long isolate_pages_global(unsigned long nr,
774					struct list_head *dst,
775					unsigned long *scanned, int order,
776					int mode, struct zone *z,
777					struct mem_cgroup *mem_cont,
778					int active)
779{
780	if (active)
781		return isolate_lru_pages(nr, &z->active_list, dst,
782						scanned, order, mode);
783	else
784		return isolate_lru_pages(nr, &z->inactive_list, dst,
785						scanned, order, mode);
786}
787
788/*
789 * clear_active_flags() is a helper for shrink_active_list(), clearing
790 * any active bits from the pages in the list.
791 */
792static unsigned long clear_active_flags(struct list_head *page_list)
793{
794	int nr_active = 0;
795	struct page *page;
796
797	list_for_each_entry(page, page_list, lru)
798		if (PageActive(page)) {
799			ClearPageActive(page);
800			nr_active++;
801		}
802
803	return nr_active;
804}
805
806/*
807 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
808 * of reclaimed pages
809 */
810static unsigned long shrink_inactive_list(unsigned long max_scan,
811				struct zone *zone, struct scan_control *sc)
812{
813	LIST_HEAD(page_list);
814	struct pagevec pvec;
815	unsigned long nr_scanned = 0;
816	unsigned long nr_reclaimed = 0;
817
818	pagevec_init(&pvec, 1);
819
820	lru_add_drain();
821	spin_lock_irq(&zone->lru_lock);
822	do {
823		struct page *page;
824		unsigned long nr_taken;
825		unsigned long nr_scan;
826		unsigned long nr_freed;
827		unsigned long nr_active;
828
829		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
830			     &page_list, &nr_scan, sc->order,
831			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
832					     ISOLATE_BOTH : ISOLATE_INACTIVE,
833				zone, sc->mem_cgroup, 0);
834		nr_active = clear_active_flags(&page_list);
835		__count_vm_events(PGDEACTIVATE, nr_active);
836
837		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
838		__mod_zone_page_state(zone, NR_INACTIVE,
839						-(nr_taken - nr_active));
840		zone->pages_scanned += nr_scan;
841		spin_unlock_irq(&zone->lru_lock);
842
843		nr_scanned += nr_scan;
844		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
845
846		/*
847		 * If we are direct reclaiming for contiguous pages and we do
848		 * not reclaim everything in the list, try again and wait
849		 * for IO to complete. This will stall high-order allocations
850		 * but that should be acceptable to the caller
851		 */
852		if (nr_freed < nr_taken && !current_is_kswapd() &&
853					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
854			congestion_wait(WRITE, HZ/10);
855
856			/*
857			 * The attempt at page out may have made some
858			 * of the pages active, mark them inactive again.
859			 */
860			nr_active = clear_active_flags(&page_list);
861			count_vm_events(PGDEACTIVATE, nr_active);
862
863			nr_freed += shrink_page_list(&page_list, sc,
864							PAGEOUT_IO_SYNC);
865		}
866
867		nr_reclaimed += nr_freed;
868		local_irq_disable();
869		if (current_is_kswapd()) {
870			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
871			__count_vm_events(KSWAPD_STEAL, nr_freed);
872		} else
873			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
874		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
875
876		if (nr_taken == 0)
877			goto done;
878
879		spin_lock(&zone->lru_lock);
880		/*
881		 * Put back any unfreeable pages.
882		 */
883		while (!list_empty(&page_list)) {
884			page = lru_to_page(&page_list);
885			VM_BUG_ON(PageLRU(page));
886			SetPageLRU(page);
887			list_del(&page->lru);
888			if (PageActive(page))
889				add_page_to_active_list(zone, page);
890			else
891				add_page_to_inactive_list(zone, page);
892			if (!pagevec_add(&pvec, page)) {
893				spin_unlock_irq(&zone->lru_lock);
894				__pagevec_release(&pvec);
895				spin_lock_irq(&zone->lru_lock);
896			}
897		}
898  	} while (nr_scanned < max_scan);
899	spin_unlock(&zone->lru_lock);
900done:
901	local_irq_enable();
902	pagevec_release(&pvec);
903	return nr_reclaimed;
904}
905
906/*
907 * We are about to scan this zone at a certain priority level.  If that priority
908 * level is smaller (ie: more urgent) than the previous priority, then note
909 * that priority level within the zone.  This is done so that when the next
910 * process comes in to scan this zone, it will immediately start out at this
911 * priority level rather than having to build up its own scanning priority.
912 * Here, this priority affects only the reclaim-mapped threshold.
913 */
914static inline void note_zone_scanning_priority(struct zone *zone, int priority)
915{
916	if (priority < zone->prev_priority)
917		zone->prev_priority = priority;
918}
919
920static inline int zone_is_near_oom(struct zone *zone)
921{
922	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
923				+ zone_page_state(zone, NR_INACTIVE))*3;
924}
925
926/*
927 * This moves pages from the active list to the inactive list.
928 *
929 * We move them the other way if the page is referenced by one or more
930 * processes, from rmap.
931 *
932 * If the pages are mostly unmapped, the processing is fast and it is
933 * appropriate to hold zone->lru_lock across the whole operation.  But if
934 * the pages are mapped, the processing is slow (page_referenced()) so we
935 * should drop zone->lru_lock around each page.  It's impossible to balance
936 * this, so instead we remove the pages from the LRU while processing them.
937 * It is safe to rely on PG_active against the non-LRU pages in here because
938 * nobody will play with that bit on a non-LRU page.
939 *
940 * The downside is that we have to touch page->_count against each page.
941 * But we had to alter page->flags anyway.
942 */
943static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
944				struct scan_control *sc, int priority)
945{
946	unsigned long pgmoved;
947	int pgdeactivate = 0;
948	unsigned long pgscanned;
949	LIST_HEAD(l_hold);	/* The pages which were snipped off */
950	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
951	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
952	struct page *page;
953	struct pagevec pvec;
954	int reclaim_mapped = 0;
955
956	if (sc->may_swap) {
957		long mapped_ratio;
958		long distress;
959		long swap_tendency;
960		long imbalance;
961
962		if (zone_is_near_oom(zone))
963			goto force_reclaim_mapped;
964
965		/*
966		 * `distress' is a measure of how much trouble we're having
967		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
968		 */
969		distress = 100 >> min(zone->prev_priority, priority);
970
971		/*
972		 * The point of this algorithm is to decide when to start
973		 * reclaiming mapped memory instead of just pagecache.  Work out
974		 * how much memory
975		 * is mapped.
976		 */
977		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
978				global_page_state(NR_ANON_PAGES)) * 100) /
979					vm_total_pages;
980
981		/*
982		 * Now decide how much we really want to unmap some pages.  The
983		 * mapped ratio is downgraded - just because there's a lot of
984		 * mapped memory doesn't necessarily mean that page reclaim
985		 * isn't succeeding.
986		 *
987		 * The distress ratio is important - we don't want to start
988		 * going oom.
989		 *
990		 * A 100% value of vm_swappiness overrides this algorithm
991		 * altogether.
992		 */
993		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
994
995		/*
996		 * If there's huge imbalance between active and inactive
997		 * (think active 100 times larger than inactive) we should
998		 * become more permissive, or the system will take too much
999		 * cpu before it start swapping during memory pressure.
1000		 * Distress is about avoiding early-oom, this is about
1001		 * making swappiness graceful despite setting it to low
1002		 * values.
1003		 *
1004		 * Avoid div by zero with nr_inactive+1, and max resulting
1005		 * value is vm_total_pages.
1006		 */
1007		imbalance  = zone_page_state(zone, NR_ACTIVE);
1008		imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1009
1010		/*
1011		 * Reduce the effect of imbalance if swappiness is low,
1012		 * this means for a swappiness very low, the imbalance
1013		 * must be much higher than 100 for this logic to make
1014		 * the difference.
1015		 *
1016		 * Max temporary value is vm_total_pages*100.
1017		 */
1018		imbalance *= (vm_swappiness + 1);
1019		imbalance /= 100;
1020
1021		/*
1022		 * If not much of the ram is mapped, makes the imbalance
1023		 * less relevant, it's high priority we refill the inactive
1024		 * list with mapped pages only in presence of high ratio of
1025		 * mapped pages.
1026		 *
1027		 * Max temporary value is vm_total_pages*100.
1028		 */
1029		imbalance *= mapped_ratio;
1030		imbalance /= 100;
1031
1032		/* apply imbalance feedback to swap_tendency */
1033		swap_tendency += imbalance;
1034
1035		/*
1036		 * Now use this metric to decide whether to start moving mapped
1037		 * memory onto the inactive list.
1038		 */
1039		if (swap_tendency >= 100)
1040force_reclaim_mapped:
1041			reclaim_mapped = 1;
1042	}
1043
1044	lru_add_drain();
1045	spin_lock_irq(&zone->lru_lock);
1046	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1047					ISOLATE_ACTIVE, zone,
1048					sc->mem_cgroup, 1);
1049	zone->pages_scanned += pgscanned;
1050	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1051	spin_unlock_irq(&zone->lru_lock);
1052
1053	while (!list_empty(&l_hold)) {
1054		cond_resched();
1055		page = lru_to_page(&l_hold);
1056		list_del(&page->lru);
1057		if (page_mapped(page)) {
1058			if (!reclaim_mapped ||
1059			    (total_swap_pages == 0 && PageAnon(page)) ||
1060			    page_referenced(page, 0)) {
1061				list_add(&page->lru, &l_active);
1062				continue;
1063			}
1064		}
1065		list_add(&page->lru, &l_inactive);
1066	}
1067
1068	pagevec_init(&pvec, 1);
1069	pgmoved = 0;
1070	spin_lock_irq(&zone->lru_lock);
1071	while (!list_empty(&l_inactive)) {
1072		page = lru_to_page(&l_inactive);
1073		prefetchw_prev_lru_page(page, &l_inactive, flags);
1074		VM_BUG_ON(PageLRU(page));
1075		SetPageLRU(page);
1076		VM_BUG_ON(!PageActive(page));
1077		ClearPageActive(page);
1078
1079		list_move(&page->lru, &zone->inactive_list);
1080		mem_cgroup_move_lists(page_get_page_cgroup(page), false);
1081		pgmoved++;
1082		if (!pagevec_add(&pvec, page)) {
1083			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1084			spin_unlock_irq(&zone->lru_lock);
1085			pgdeactivate += pgmoved;
1086			pgmoved = 0;
1087			if (buffer_heads_over_limit)
1088				pagevec_strip(&pvec);
1089			__pagevec_release(&pvec);
1090			spin_lock_irq(&zone->lru_lock);
1091		}
1092	}
1093	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1094	pgdeactivate += pgmoved;
1095	if (buffer_heads_over_limit) {
1096		spin_unlock_irq(&zone->lru_lock);
1097		pagevec_strip(&pvec);
1098		spin_lock_irq(&zone->lru_lock);
1099	}
1100
1101	pgmoved = 0;
1102	while (!list_empty(&l_active)) {
1103		page = lru_to_page(&l_active);
1104		prefetchw_prev_lru_page(page, &l_active, flags);
1105		VM_BUG_ON(PageLRU(page));
1106		SetPageLRU(page);
1107		VM_BUG_ON(!PageActive(page));
1108		list_move(&page->lru, &zone->active_list);
1109		mem_cgroup_move_lists(page_get_page_cgroup(page), true);
1110		pgmoved++;
1111		if (!pagevec_add(&pvec, page)) {
1112			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1113			pgmoved = 0;
1114			spin_unlock_irq(&zone->lru_lock);
1115			__pagevec_release(&pvec);
1116			spin_lock_irq(&zone->lru_lock);
1117		}
1118	}
1119	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1120
1121	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1122	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1123	spin_unlock_irq(&zone->lru_lock);
1124
1125	pagevec_release(&pvec);
1126}
1127
1128/*
1129 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1130 */
1131static unsigned long shrink_zone(int priority, struct zone *zone,
1132				struct scan_control *sc)
1133{
1134	unsigned long nr_active;
1135	unsigned long nr_inactive;
1136	unsigned long nr_to_scan;
1137	unsigned long nr_reclaimed = 0;
1138
1139	/*
1140	 * Add one to `nr_to_scan' just to make sure that the kernel will
1141	 * slowly sift through the active list.
1142	 */
1143	zone->nr_scan_active +=
1144		(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1145	nr_active = zone->nr_scan_active;
1146	if (nr_active >= sc->swap_cluster_max)
1147		zone->nr_scan_active = 0;
1148	else
1149		nr_active = 0;
1150
1151	zone->nr_scan_inactive +=
1152		(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1153	nr_inactive = zone->nr_scan_inactive;
1154	if (nr_inactive >= sc->swap_cluster_max)
1155		zone->nr_scan_inactive = 0;
1156	else
1157		nr_inactive = 0;
1158
1159	while (nr_active || nr_inactive) {
1160		if (nr_active) {
1161			nr_to_scan = min(nr_active,
1162					(unsigned long)sc->swap_cluster_max);
1163			nr_active -= nr_to_scan;
1164			shrink_active_list(nr_to_scan, zone, sc, priority);
1165		}
1166
1167		if (nr_inactive) {
1168			nr_to_scan = min(nr_inactive,
1169					(unsigned long)sc->swap_cluster_max);
1170			nr_inactive -= nr_to_scan;
1171			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1172								sc);
1173		}
1174	}
1175
1176	throttle_vm_writeout(sc->gfp_mask);
1177	return nr_reclaimed;
1178}
1179
1180/*
1181 * This is the direct reclaim path, for page-allocating processes.  We only
1182 * try to reclaim pages from zones which will satisfy the caller's allocation
1183 * request.
1184 *
1185 * We reclaim from a zone even if that zone is over pages_high.  Because:
1186 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1187 *    allocation or
1188 * b) The zones may be over pages_high but they must go *over* pages_high to
1189 *    satisfy the `incremental min' zone defense algorithm.
1190 *
1191 * Returns the number of reclaimed pages.
1192 *
1193 * If a zone is deemed to be full of pinned pages then just give it a light
1194 * scan then give up on it.
1195 */
1196static unsigned long shrink_zones(int priority, struct zone **zones,
1197					struct scan_control *sc)
1198{
1199	unsigned long nr_reclaimed = 0;
1200	int i;
1201
1202	sc->all_unreclaimable = 1;
1203	for (i = 0; zones[i] != NULL; i++) {
1204		struct zone *zone = zones[i];
1205
1206		if (!populated_zone(zone))
1207			continue;
1208
1209		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1210			continue;
1211
1212		note_zone_scanning_priority(zone, priority);
1213
1214		if (zone_is_all_unreclaimable(zone) && priority != DEF_PRIORITY)
1215			continue;	/* Let kswapd poll it */
1216
1217		sc->all_unreclaimable = 0;
1218
1219		nr_reclaimed += shrink_zone(priority, zone, sc);
1220	}
1221	return nr_reclaimed;
1222}
1223
1224/*
1225 * This is the main entry point to direct page reclaim.
1226 *
1227 * If a full scan of the inactive list fails to free enough memory then we
1228 * are "out of memory" and something needs to be killed.
1229 *
1230 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1231 * high - the zone may be full of dirty or under-writeback pages, which this
1232 * caller can't do much about.  We kick pdflush and take explicit naps in the
1233 * hope that some of these pages can be written.  But if the allocating task
1234 * holds filesystem locks which prevent writeout this might not work, and the
1235 * allocation attempt will fail.
1236 */
1237static unsigned long do_try_to_free_pages(struct zone **zones, gfp_t gfp_mask,
1238					  struct scan_control *sc)
1239{
1240	int priority;
1241	int ret = 0;
1242	unsigned long total_scanned = 0;
1243	unsigned long nr_reclaimed = 0;
1244	struct reclaim_state *reclaim_state = current->reclaim_state;
1245	unsigned long lru_pages = 0;
1246	int i;
1247
1248	count_vm_event(ALLOCSTALL);
1249
1250	for (i = 0; zones[i] != NULL; i++) {
1251		struct zone *zone = zones[i];
1252
1253		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1254			continue;
1255
1256		lru_pages += zone_page_state(zone, NR_ACTIVE)
1257				+ zone_page_state(zone, NR_INACTIVE);
1258	}
1259
1260	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1261		sc->nr_scanned = 0;
1262		if (!priority)
1263			disable_swap_token();
1264		nr_reclaimed += shrink_zones(priority, zones, sc);
1265		/*
1266		 * Don't shrink slabs when reclaiming memory from
1267		 * over limit cgroups
1268		 */
1269		if (sc->mem_cgroup == NULL)
1270			shrink_slab(sc->nr_scanned, gfp_mask, lru_pages);
1271		if (reclaim_state) {
1272			nr_reclaimed += reclaim_state->reclaimed_slab;
1273			reclaim_state->reclaimed_slab = 0;
1274		}
1275		total_scanned += sc->nr_scanned;
1276		if (nr_reclaimed >= sc->swap_cluster_max) {
1277			ret = 1;
1278			goto out;
1279		}
1280
1281		/*
1282		 * Try to write back as many pages as we just scanned.  This
1283		 * tends to cause slow streaming writers to write data to the
1284		 * disk smoothly, at the dirtying rate, which is nice.   But
1285		 * that's undesirable in laptop mode, where we *want* lumpy
1286		 * writeout.  So in laptop mode, write out the whole world.
1287		 */
1288		if (total_scanned > sc->swap_cluster_max +
1289					sc->swap_cluster_max / 2) {
1290			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1291			sc->may_writepage = 1;
1292		}
1293
1294		/* Take a nap, wait for some writeback to complete */
1295		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1296			congestion_wait(WRITE, HZ/10);
1297	}
1298	/* top priority shrink_caches still had more to do? don't OOM, then */
1299	if (!sc->all_unreclaimable && sc->mem_cgroup == NULL)
1300		ret = 1;
1301out:
1302	/*
1303	 * Now that we've scanned all the zones at this priority level, note
1304	 * that level within the zone so that the next thread which performs
1305	 * scanning of this zone will immediately start out at this priority
1306	 * level.  This affects only the decision whether or not to bring
1307	 * mapped pages onto the inactive list.
1308	 */
1309	if (priority < 0)
1310		priority = 0;
1311	for (i = 0; zones[i] != NULL; i++) {
1312		struct zone *zone = zones[i];
1313
1314		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1315			continue;
1316
1317		zone->prev_priority = priority;
1318	}
1319	return ret;
1320}
1321
1322unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1323{
1324	struct scan_control sc = {
1325		.gfp_mask = gfp_mask,
1326		.may_writepage = !laptop_mode,
1327		.swap_cluster_max = SWAP_CLUSTER_MAX,
1328		.may_swap = 1,
1329		.swappiness = vm_swappiness,
1330		.order = order,
1331		.mem_cgroup = NULL,
1332		.isolate_pages = isolate_pages_global,
1333	};
1334
1335	return do_try_to_free_pages(zones, gfp_mask, &sc);
1336}
1337
1338#ifdef CONFIG_CGROUP_MEM_CONT
1339
1340#ifdef CONFIG_HIGHMEM
1341#define ZONE_USERPAGES ZONE_HIGHMEM
1342#else
1343#define ZONE_USERPAGES ZONE_NORMAL
1344#endif
1345
1346unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont)
1347{
1348	struct scan_control sc = {
1349		.gfp_mask = GFP_KERNEL,
1350		.may_writepage = !laptop_mode,
1351		.may_swap = 1,
1352		.swap_cluster_max = SWAP_CLUSTER_MAX,
1353		.swappiness = vm_swappiness,
1354		.order = 0,
1355		.mem_cgroup = mem_cont,
1356		.isolate_pages = mem_cgroup_isolate_pages,
1357	};
1358	int node;
1359	struct zone **zones;
1360
1361	for_each_online_node(node) {
1362		zones = NODE_DATA(node)->node_zonelists[ZONE_USERPAGES].zones;
1363		if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))
1364			return 1;
1365	}
1366	return 0;
1367}
1368#endif
1369
1370/*
1371 * For kswapd, balance_pgdat() will work across all this node's zones until
1372 * they are all at pages_high.
1373 *
1374 * Returns the number of pages which were actually freed.
1375 *
1376 * There is special handling here for zones which are full of pinned pages.
1377 * This can happen if the pages are all mlocked, or if they are all used by
1378 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1379 * What we do is to detect the case where all pages in the zone have been
1380 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1381 * dead and from now on, only perform a short scan.  Basically we're polling
1382 * the zone for when the problem goes away.
1383 *
1384 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1385 * zones which have free_pages > pages_high, but once a zone is found to have
1386 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1387 * of the number of free pages in the lower zones.  This interoperates with
1388 * the page allocator fallback scheme to ensure that aging of pages is balanced
1389 * across the zones.
1390 */
1391static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1392{
1393	int all_zones_ok;
1394	int priority;
1395	int i;
1396	unsigned long total_scanned;
1397	unsigned long nr_reclaimed;
1398	struct reclaim_state *reclaim_state = current->reclaim_state;
1399	struct scan_control sc = {
1400		.gfp_mask = GFP_KERNEL,
1401		.may_swap = 1,
1402		.swap_cluster_max = SWAP_CLUSTER_MAX,
1403		.swappiness = vm_swappiness,
1404		.order = order,
1405		.mem_cgroup = NULL,
1406		.isolate_pages = isolate_pages_global,
1407	};
1408	/*
1409	 * temp_priority is used to remember the scanning priority at which
1410	 * this zone was successfully refilled to free_pages == pages_high.
1411	 */
1412	int temp_priority[MAX_NR_ZONES];
1413
1414loop_again:
1415	total_scanned = 0;
1416	nr_reclaimed = 0;
1417	sc.may_writepage = !laptop_mode;
1418	count_vm_event(PAGEOUTRUN);
1419
1420	for (i = 0; i < pgdat->nr_zones; i++)
1421		temp_priority[i] = DEF_PRIORITY;
1422
1423	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1424		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1425		unsigned long lru_pages = 0;
1426
1427		/* The swap token gets in the way of swapout... */
1428		if (!priority)
1429			disable_swap_token();
1430
1431		all_zones_ok = 1;
1432
1433		/*
1434		 * Scan in the highmem->dma direction for the highest
1435		 * zone which needs scanning
1436		 */
1437		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1438			struct zone *zone = pgdat->node_zones + i;
1439
1440			if (!populated_zone(zone))
1441				continue;
1442
1443			if (zone_is_all_unreclaimable(zone) &&
1444			    priority != DEF_PRIORITY)
1445				continue;
1446
1447			if (!zone_watermark_ok(zone, order, zone->pages_high,
1448					       0, 0)) {
1449				end_zone = i;
1450				break;
1451			}
1452		}
1453		if (i < 0)
1454			goto out;
1455
1456		for (i = 0; i <= end_zone; i++) {
1457			struct zone *zone = pgdat->node_zones + i;
1458
1459			lru_pages += zone_page_state(zone, NR_ACTIVE)
1460					+ zone_page_state(zone, NR_INACTIVE);
1461		}
1462
1463		/*
1464		 * Now scan the zone in the dma->highmem direction, stopping
1465		 * at the last zone which needs scanning.
1466		 *
1467		 * We do this because the page allocator works in the opposite
1468		 * direction.  This prevents the page allocator from allocating
1469		 * pages behind kswapd's direction of progress, which would
1470		 * cause too much scanning of the lower zones.
1471		 */
1472		for (i = 0; i <= end_zone; i++) {
1473			struct zone *zone = pgdat->node_zones + i;
1474			int nr_slab;
1475
1476			if (!populated_zone(zone))
1477				continue;
1478
1479			if (zone_is_all_unreclaimable(zone) &&
1480					priority != DEF_PRIORITY)
1481				continue;
1482
1483			if (!zone_watermark_ok(zone, order, zone->pages_high,
1484					       end_zone, 0))
1485				all_zones_ok = 0;
1486			temp_priority[i] = priority;
1487			sc.nr_scanned = 0;
1488			note_zone_scanning_priority(zone, priority);
1489			/*
1490			 * We put equal pressure on every zone, unless one
1491			 * zone has way too many pages free already.
1492			 */
1493			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1494						end_zone, 0))
1495				nr_reclaimed += shrink_zone(priority, zone, &sc);
1496			reclaim_state->reclaimed_slab = 0;
1497			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1498						lru_pages);
1499			nr_reclaimed += reclaim_state->reclaimed_slab;
1500			total_scanned += sc.nr_scanned;
1501			if (zone_is_all_unreclaimable(zone))
1502				continue;
1503			if (nr_slab == 0 && zone->pages_scanned >=
1504				(zone_page_state(zone, NR_ACTIVE)
1505				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1506					zone_set_flag(zone,
1507						      ZONE_ALL_UNRECLAIMABLE);
1508			/*
1509			 * If we've done a decent amount of scanning and
1510			 * the reclaim ratio is low, start doing writepage
1511			 * even in laptop mode
1512			 */
1513			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1514			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1515				sc.may_writepage = 1;
1516		}
1517		if (all_zones_ok)
1518			break;		/* kswapd: all done */
1519		/*
1520		 * OK, kswapd is getting into trouble.  Take a nap, then take
1521		 * another pass across the zones.
1522		 */
1523		if (total_scanned && priority < DEF_PRIORITY - 2)
1524			congestion_wait(WRITE, HZ/10);
1525
1526		/*
1527		 * We do this so kswapd doesn't build up large priorities for
1528		 * example when it is freeing in parallel with allocators. It
1529		 * matches the direct reclaim path behaviour in terms of impact
1530		 * on zone->*_priority.
1531		 */
1532		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1533			break;
1534	}
1535out:
1536	/*
1537	 * Note within each zone the priority level at which this zone was
1538	 * brought into a happy state.  So that the next thread which scans this
1539	 * zone will start out at that priority level.
1540	 */
1541	for (i = 0; i < pgdat->nr_zones; i++) {
1542		struct zone *zone = pgdat->node_zones + i;
1543
1544		zone->prev_priority = temp_priority[i];
1545	}
1546	if (!all_zones_ok) {
1547		cond_resched();
1548
1549		try_to_freeze();
1550
1551		goto loop_again;
1552	}
1553
1554	return nr_reclaimed;
1555}
1556
1557/*
1558 * The background pageout daemon, started as a kernel thread
1559 * from the init process.
1560 *
1561 * This basically trickles out pages so that we have _some_
1562 * free memory available even if there is no other activity
1563 * that frees anything up. This is needed for things like routing
1564 * etc, where we otherwise might have all activity going on in
1565 * asynchronous contexts that cannot page things out.
1566 *
1567 * If there are applications that are active memory-allocators
1568 * (most normal use), this basically shouldn't matter.
1569 */
1570static int kswapd(void *p)
1571{
1572	unsigned long order;
1573	pg_data_t *pgdat = (pg_data_t*)p;
1574	struct task_struct *tsk = current;
1575	DEFINE_WAIT(wait);
1576	struct reclaim_state reclaim_state = {
1577		.reclaimed_slab = 0,
1578	};
1579	cpumask_t cpumask;
1580
1581	cpumask = node_to_cpumask(pgdat->node_id);
1582	if (!cpus_empty(cpumask))
1583		set_cpus_allowed(tsk, cpumask);
1584	current->reclaim_state = &reclaim_state;
1585
1586	/*
1587	 * Tell the memory management that we're a "memory allocator",
1588	 * and that if we need more memory we should get access to it
1589	 * regardless (see "__alloc_pages()"). "kswapd" should
1590	 * never get caught in the normal page freeing logic.
1591	 *
1592	 * (Kswapd normally doesn't need memory anyway, but sometimes
1593	 * you need a small amount of memory in order to be able to
1594	 * page out something else, and this flag essentially protects
1595	 * us from recursively trying to free more memory as we're
1596	 * trying to free the first piece of memory in the first place).
1597	 */
1598	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1599	set_freezable();
1600
1601	order = 0;
1602	for ( ; ; ) {
1603		unsigned long new_order;
1604
1605		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1606		new_order = pgdat->kswapd_max_order;
1607		pgdat->kswapd_max_order = 0;
1608		if (order < new_order) {
1609			/*
1610			 * Don't sleep if someone wants a larger 'order'
1611			 * allocation
1612			 */
1613			order = new_order;
1614		} else {
1615			if (!freezing(current))
1616				schedule();
1617
1618			order = pgdat->kswapd_max_order;
1619		}
1620		finish_wait(&pgdat->kswapd_wait, &wait);
1621
1622		if (!try_to_freeze()) {
1623			/* We can speed up thawing tasks if we don't call
1624			 * balance_pgdat after returning from the refrigerator
1625			 */
1626			balance_pgdat(pgdat, order);
1627		}
1628	}
1629	return 0;
1630}
1631
1632/*
1633 * A zone is low on free memory, so wake its kswapd task to service it.
1634 */
1635void wakeup_kswapd(struct zone *zone, int order)
1636{
1637	pg_data_t *pgdat;
1638
1639	if (!populated_zone(zone))
1640		return;
1641
1642	pgdat = zone->zone_pgdat;
1643	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1644		return;
1645	if (pgdat->kswapd_max_order < order)
1646		pgdat->kswapd_max_order = order;
1647	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1648		return;
1649	if (!waitqueue_active(&pgdat->kswapd_wait))
1650		return;
1651	wake_up_interruptible(&pgdat->kswapd_wait);
1652}
1653
1654#ifdef CONFIG_PM
1655/*
1656 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1657 * from LRU lists system-wide, for given pass and priority, and returns the
1658 * number of reclaimed pages
1659 *
1660 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1661 */
1662static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1663				      int pass, struct scan_control *sc)
1664{
1665	struct zone *zone;
1666	unsigned long nr_to_scan, ret = 0;
1667
1668	for_each_zone(zone) {
1669
1670		if (!populated_zone(zone))
1671			continue;
1672
1673		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1674			continue;
1675
1676		/* For pass = 0 we don't shrink the active list */
1677		if (pass > 0) {
1678			zone->nr_scan_active +=
1679				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1680			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1681				zone->nr_scan_active = 0;
1682				nr_to_scan = min(nr_pages,
1683					zone_page_state(zone, NR_ACTIVE));
1684				shrink_active_list(nr_to_scan, zone, sc, prio);
1685			}
1686		}
1687
1688		zone->nr_scan_inactive +=
1689			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1690		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1691			zone->nr_scan_inactive = 0;
1692			nr_to_scan = min(nr_pages,
1693				zone_page_state(zone, NR_INACTIVE));
1694			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1695			if (ret >= nr_pages)
1696				return ret;
1697		}
1698	}
1699
1700	return ret;
1701}
1702
1703static unsigned long count_lru_pages(void)
1704{
1705	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1706}
1707
1708/*
1709 * Try to free `nr_pages' of memory, system-wide, and return the number of
1710 * freed pages.
1711 *
1712 * Rather than trying to age LRUs the aim is to preserve the overall
1713 * LRU order by reclaiming preferentially
1714 * inactive > active > active referenced > active mapped
1715 */
1716unsigned long shrink_all_memory(unsigned long nr_pages)
1717{
1718	unsigned long lru_pages, nr_slab;
1719	unsigned long ret = 0;
1720	int pass;
1721	struct reclaim_state reclaim_state;
1722	struct scan_control sc = {
1723		.gfp_mask = GFP_KERNEL,
1724		.may_swap = 0,
1725		.swap_cluster_max = nr_pages,
1726		.may_writepage = 1,
1727		.swappiness = vm_swappiness,
1728		.isolate_pages = isolate_pages_global,
1729	};
1730
1731	current->reclaim_state = &reclaim_state;
1732
1733	lru_pages = count_lru_pages();
1734	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1735	/* If slab caches are huge, it's better to hit them first */
1736	while (nr_slab >= lru_pages) {
1737		reclaim_state.reclaimed_slab = 0;
1738		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1739		if (!reclaim_state.reclaimed_slab)
1740			break;
1741
1742		ret += reclaim_state.reclaimed_slab;
1743		if (ret >= nr_pages)
1744			goto out;
1745
1746		nr_slab -= reclaim_state.reclaimed_slab;
1747	}
1748
1749	/*
1750	 * We try to shrink LRUs in 5 passes:
1751	 * 0 = Reclaim from inactive_list only
1752	 * 1 = Reclaim from active list but don't reclaim mapped
1753	 * 2 = 2nd pass of type 1
1754	 * 3 = Reclaim mapped (normal reclaim)
1755	 * 4 = 2nd pass of type 3
1756	 */
1757	for (pass = 0; pass < 5; pass++) {
1758		int prio;
1759
1760		/* Force reclaiming mapped pages in the passes #3 and #4 */
1761		if (pass > 2) {
1762			sc.may_swap = 1;
1763			sc.swappiness = 100;
1764		}
1765
1766		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1767			unsigned long nr_to_scan = nr_pages - ret;
1768
1769			sc.nr_scanned = 0;
1770			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1771			if (ret >= nr_pages)
1772				goto out;
1773
1774			reclaim_state.reclaimed_slab = 0;
1775			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1776					count_lru_pages());
1777			ret += reclaim_state.reclaimed_slab;
1778			if (ret >= nr_pages)
1779				goto out;
1780
1781			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1782				congestion_wait(WRITE, HZ / 10);
1783		}
1784	}
1785
1786	/*
1787	 * If ret = 0, we could not shrink LRUs, but there may be something
1788	 * in slab caches
1789	 */
1790	if (!ret) {
1791		do {
1792			reclaim_state.reclaimed_slab = 0;
1793			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1794			ret += reclaim_state.reclaimed_slab;
1795		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1796	}
1797
1798out:
1799	current->reclaim_state = NULL;
1800
1801	return ret;
1802}
1803#endif
1804
1805/* It's optimal to keep kswapds on the same CPUs as their memory, but
1806   not required for correctness.  So if the last cpu in a node goes
1807   away, we get changed to run anywhere: as the first one comes back,
1808   restore their cpu bindings. */
1809static int __devinit cpu_callback(struct notifier_block *nfb,
1810				  unsigned long action, void *hcpu)
1811{
1812	pg_data_t *pgdat;
1813	cpumask_t mask;
1814	int nid;
1815
1816	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1817		for_each_node_state(nid, N_HIGH_MEMORY) {
1818			pgdat = NODE_DATA(nid);
1819			mask = node_to_cpumask(pgdat->node_id);
1820			if (any_online_cpu(mask) != NR_CPUS)
1821				/* One of our CPUs online: restore mask */
1822				set_cpus_allowed(pgdat->kswapd, mask);
1823		}
1824	}
1825	return NOTIFY_OK;
1826}
1827
1828/*
1829 * This kswapd start function will be called by init and node-hot-add.
1830 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1831 */
1832int kswapd_run(int nid)
1833{
1834	pg_data_t *pgdat = NODE_DATA(nid);
1835	int ret = 0;
1836
1837	if (pgdat->kswapd)
1838		return 0;
1839
1840	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1841	if (IS_ERR(pgdat->kswapd)) {
1842		/* failure at boot is fatal */
1843		BUG_ON(system_state == SYSTEM_BOOTING);
1844		printk("Failed to start kswapd on node %d\n",nid);
1845		ret = -1;
1846	}
1847	return ret;
1848}
1849
1850static int __init kswapd_init(void)
1851{
1852	int nid;
1853
1854	swap_setup();
1855	for_each_node_state(nid, N_HIGH_MEMORY)
1856 		kswapd_run(nid);
1857	hotcpu_notifier(cpu_callback, 0);
1858	return 0;
1859}
1860
1861module_init(kswapd_init)
1862
1863#ifdef CONFIG_NUMA
1864/*
1865 * Zone reclaim mode
1866 *
1867 * If non-zero call zone_reclaim when the number of free pages falls below
1868 * the watermarks.
1869 */
1870int zone_reclaim_mode __read_mostly;
1871
1872#define RECLAIM_OFF 0
1873#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1874#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1875#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1876
1877/*
1878 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1879 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1880 * a zone.
1881 */
1882#define ZONE_RECLAIM_PRIORITY 4
1883
1884/*
1885 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1886 * occur.
1887 */
1888int sysctl_min_unmapped_ratio = 1;
1889
1890/*
1891 * If the number of slab pages in a zone grows beyond this percentage then
1892 * slab reclaim needs to occur.
1893 */
1894int sysctl_min_slab_ratio = 5;
1895
1896/*
1897 * Try to free up some pages from this zone through reclaim.
1898 */
1899static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1900{
1901	/* Minimum pages needed in order to stay on node */
1902	const unsigned long nr_pages = 1 << order;
1903	struct task_struct *p = current;
1904	struct reclaim_state reclaim_state;
1905	int priority;
1906	unsigned long nr_reclaimed = 0;
1907	struct scan_control sc = {
1908		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1909		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1910		.swap_cluster_max = max_t(unsigned long, nr_pages,
1911					SWAP_CLUSTER_MAX),
1912		.gfp_mask = gfp_mask,
1913		.swappiness = vm_swappiness,
1914		.isolate_pages = isolate_pages_global,
1915	};
1916	unsigned long slab_reclaimable;
1917
1918	disable_swap_token();
1919	cond_resched();
1920	/*
1921	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1922	 * and we also need to be able to write out pages for RECLAIM_WRITE
1923	 * and RECLAIM_SWAP.
1924	 */
1925	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1926	reclaim_state.reclaimed_slab = 0;
1927	p->reclaim_state = &reclaim_state;
1928
1929	if (zone_page_state(zone, NR_FILE_PAGES) -
1930		zone_page_state(zone, NR_FILE_MAPPED) >
1931		zone->min_unmapped_pages) {
1932		/*
1933		 * Free memory by calling shrink zone with increasing
1934		 * priorities until we have enough memory freed.
1935		 */
1936		priority = ZONE_RECLAIM_PRIORITY;
1937		do {
1938			note_zone_scanning_priority(zone, priority);
1939			nr_reclaimed += shrink_zone(priority, zone, &sc);
1940			priority--;
1941		} while (priority >= 0 && nr_reclaimed < nr_pages);
1942	}
1943
1944	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1945	if (slab_reclaimable > zone->min_slab_pages) {
1946		/*
1947		 * shrink_slab() does not currently allow us to determine how
1948		 * many pages were freed in this zone. So we take the current
1949		 * number of slab pages and shake the slab until it is reduced
1950		 * by the same nr_pages that we used for reclaiming unmapped
1951		 * pages.
1952		 *
1953		 * Note that shrink_slab will free memory on all zones and may
1954		 * take a long time.
1955		 */
1956		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1957			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1958				slab_reclaimable - nr_pages)
1959			;
1960
1961		/*
1962		 * Update nr_reclaimed by the number of slab pages we
1963		 * reclaimed from this zone.
1964		 */
1965		nr_reclaimed += slab_reclaimable -
1966			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1967	}
1968
1969	p->reclaim_state = NULL;
1970	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1971	return nr_reclaimed >= nr_pages;
1972}
1973
1974int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1975{
1976	int node_id;
1977	int ret;
1978
1979	/*
1980	 * Zone reclaim reclaims unmapped file backed pages and
1981	 * slab pages if we are over the defined limits.
1982	 *
1983	 * A small portion of unmapped file backed pages is needed for
1984	 * file I/O otherwise pages read by file I/O will be immediately
1985	 * thrown out if the zone is overallocated. So we do not reclaim
1986	 * if less than a specified percentage of the zone is used by
1987	 * unmapped file backed pages.
1988	 */
1989	if (zone_page_state(zone, NR_FILE_PAGES) -
1990	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1991	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1992			<= zone->min_slab_pages)
1993		return 0;
1994
1995	if (zone_is_all_unreclaimable(zone))
1996		return 0;
1997
1998	/*
1999	 * Do not scan if the allocation should not be delayed.
2000	 */
2001	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2002			return 0;
2003
2004	/*
2005	 * Only run zone reclaim on the local zone or on zones that do not
2006	 * have associated processors. This will favor the local processor
2007	 * over remote processors and spread off node memory allocations
2008	 * as wide as possible.
2009	 */
2010	node_id = zone_to_nid(zone);
2011	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2012		return 0;
2013
2014	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2015		return 0;
2016	ret = __zone_reclaim(zone, gfp_mask, order);
2017	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2018
2019	return ret;
2020}
2021#endif
2022