vmscan.c revision 6c0b13519d1c755d874e82c8fb8a6dcef0ee402c
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51struct scan_control {
52	/* Incremented by the number of inactive pages that were scanned */
53	unsigned long nr_scanned;
54
55	/* Number of pages freed so far during a call to shrink_zones() */
56	unsigned long nr_reclaimed;
57
58	/* This context's GFP mask */
59	gfp_t gfp_mask;
60
61	int may_writepage;
62
63	/* Can mapped pages be reclaimed? */
64	int may_unmap;
65
66	/* Can pages be swapped as part of reclaim? */
67	int may_swap;
68
69	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71	 * In this context, it doesn't matter that we scan the
72	 * whole list at once. */
73	int swap_cluster_max;
74
75	int swappiness;
76
77	int all_unreclaimable;
78
79	int order;
80
81	/* Which cgroup do we reclaim from */
82	struct mem_cgroup *mem_cgroup;
83
84	/*
85	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86	 * are scanned.
87	 */
88	nodemask_t	*nodemask;
89
90	/* Pluggable isolate pages callback */
91	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92			unsigned long *scanned, int order, int mode,
93			struct zone *z, struct mem_cgroup *mem_cont,
94			int active, int file);
95};
96
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field)			\
101	do {								\
102		if ((_page)->lru.prev != _base) {			\
103			struct page *prev;				\
104									\
105			prev = lru_to_page(&(_page->lru));		\
106			prefetch(&prev->_field);			\
107		}							\
108	} while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field)			\
115	do {								\
116		if ((_page)->lru.prev != _base) {			\
117			struct page *prev;				\
118									\
119			prev = lru_to_page(&(_page->lru));		\
120			prefetchw(&prev->_field);			\
121		}							\
122	} while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100.  Higher means more swappy.
129 */
130int vm_swappiness = 60;
131long vm_total_pages;	/* The total number of pages which the VM controls */
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138#else
139#define scanning_global_lru(sc)	(1)
140#endif
141
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143						  struct scan_control *sc)
144{
145	if (!scanning_global_lru(sc))
146		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148	return &zone->reclaim_stat;
149}
150
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152				   enum lru_list lru)
153{
154	if (!scanning_global_lru(sc))
155		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157	return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
161/*
162 * Add a shrinker callback to be called from the vm
163 */
164void register_shrinker(struct shrinker *shrinker)
165{
166	shrinker->nr = 0;
167	down_write(&shrinker_rwsem);
168	list_add_tail(&shrinker->list, &shrinker_list);
169	up_write(&shrinker_rwsem);
170}
171EXPORT_SYMBOL(register_shrinker);
172
173/*
174 * Remove one
175 */
176void unregister_shrinker(struct shrinker *shrinker)
177{
178	down_write(&shrinker_rwsem);
179	list_del(&shrinker->list);
180	up_write(&shrinker_rwsem);
181}
182EXPORT_SYMBOL(unregister_shrinker);
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object.  With this in mind we age equal
190 * percentages of the lru and ageable caches.  This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt.  It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205			unsigned long lru_pages)
206{
207	struct shrinker *shrinker;
208	unsigned long ret = 0;
209
210	if (scanned == 0)
211		scanned = SWAP_CLUSTER_MAX;
212
213	if (!down_read_trylock(&shrinker_rwsem))
214		return 1;	/* Assume we'll be able to shrink next time */
215
216	list_for_each_entry(shrinker, &shrinker_list, list) {
217		unsigned long long delta;
218		unsigned long total_scan;
219		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220
221		delta = (4 * scanned) / shrinker->seeks;
222		delta *= max_pass;
223		do_div(delta, lru_pages + 1);
224		shrinker->nr += delta;
225		if (shrinker->nr < 0) {
226			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227			       "delete nr=%ld\n",
228			       shrinker->shrink, shrinker->nr);
229			shrinker->nr = max_pass;
230		}
231
232		/*
233		 * Avoid risking looping forever due to too large nr value:
234		 * never try to free more than twice the estimate number of
235		 * freeable entries.
236		 */
237		if (shrinker->nr > max_pass * 2)
238			shrinker->nr = max_pass * 2;
239
240		total_scan = shrinker->nr;
241		shrinker->nr = 0;
242
243		while (total_scan >= SHRINK_BATCH) {
244			long this_scan = SHRINK_BATCH;
245			int shrink_ret;
246			int nr_before;
247
248			nr_before = (*shrinker->shrink)(0, gfp_mask);
249			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250			if (shrink_ret == -1)
251				break;
252			if (shrink_ret < nr_before)
253				ret += nr_before - shrink_ret;
254			count_vm_events(SLABS_SCANNED, this_scan);
255			total_scan -= this_scan;
256
257			cond_resched();
258		}
259
260		shrinker->nr += total_scan;
261	}
262	up_read(&shrinker_rwsem);
263	return ret;
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269	struct address_space *mapping;
270
271	/* Page is in somebody's page tables. */
272	if (page_mapped(page))
273		return 1;
274
275	/* Be more reluctant to reclaim swapcache than pagecache */
276	if (PageSwapCache(page))
277		return 1;
278
279	mapping = page_mapping(page);
280	if (!mapping)
281		return 0;
282
283	/* File is mmap'd by somebody? */
284	return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
289	return page_count(page) - !!page_has_private(page) == 2;
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
294	if (current->flags & PF_SWAPWRITE)
295		return 1;
296	if (!bdi_write_congested(bdi))
297		return 1;
298	if (bdi == current->backing_dev_info)
299		return 1;
300	return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out.  Probably
305 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up.  But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316				struct page *page, int error)
317{
318	lock_page(page);
319	if (page_mapping(page) == mapping)
320		mapping_set_error(mapping, error);
321	unlock_page(page);
322}
323
324/* Request for sync pageout. */
325enum pageout_io {
326	PAGEOUT_IO_ASYNC,
327	PAGEOUT_IO_SYNC,
328};
329
330/* possible outcome of pageout() */
331typedef enum {
332	/* failed to write page out, page is locked */
333	PAGE_KEEP,
334	/* move page to the active list, page is locked */
335	PAGE_ACTIVATE,
336	/* page has been sent to the disk successfully, page is unlocked */
337	PAGE_SUCCESS,
338	/* page is clean and locked */
339	PAGE_CLEAN,
340} pageout_t;
341
342/*
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
345 */
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347						enum pageout_io sync_writeback)
348{
349	/*
350	 * If the page is dirty, only perform writeback if that write
351	 * will be non-blocking.  To prevent this allocation from being
352	 * stalled by pagecache activity.  But note that there may be
353	 * stalls if we need to run get_block().  We could test
354	 * PagePrivate for that.
355	 *
356	 * If this process is currently in generic_file_write() against
357	 * this page's queue, we can perform writeback even if that
358	 * will block.
359	 *
360	 * If the page is swapcache, write it back even if that would
361	 * block, for some throttling. This happens by accident, because
362	 * swap_backing_dev_info is bust: it doesn't reflect the
363	 * congestion state of the swapdevs.  Easy to fix, if needed.
364	 * See swapfile.c:page_queue_congested().
365	 */
366	if (!is_page_cache_freeable(page))
367		return PAGE_KEEP;
368	if (!mapping) {
369		/*
370		 * Some data journaling orphaned pages can have
371		 * page->mapping == NULL while being dirty with clean buffers.
372		 */
373		if (page_has_private(page)) {
374			if (try_to_free_buffers(page)) {
375				ClearPageDirty(page);
376				printk("%s: orphaned page\n", __func__);
377				return PAGE_CLEAN;
378			}
379		}
380		return PAGE_KEEP;
381	}
382	if (mapping->a_ops->writepage == NULL)
383		return PAGE_ACTIVATE;
384	if (!may_write_to_queue(mapping->backing_dev_info))
385		return PAGE_KEEP;
386
387	if (clear_page_dirty_for_io(page)) {
388		int res;
389		struct writeback_control wbc = {
390			.sync_mode = WB_SYNC_NONE,
391			.nr_to_write = SWAP_CLUSTER_MAX,
392			.range_start = 0,
393			.range_end = LLONG_MAX,
394			.nonblocking = 1,
395			.for_reclaim = 1,
396		};
397
398		SetPageReclaim(page);
399		res = mapping->a_ops->writepage(page, &wbc);
400		if (res < 0)
401			handle_write_error(mapping, page, res);
402		if (res == AOP_WRITEPAGE_ACTIVATE) {
403			ClearPageReclaim(page);
404			return PAGE_ACTIVATE;
405		}
406
407		/*
408		 * Wait on writeback if requested to. This happens when
409		 * direct reclaiming a large contiguous area and the
410		 * first attempt to free a range of pages fails.
411		 */
412		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413			wait_on_page_writeback(page);
414
415		if (!PageWriteback(page)) {
416			/* synchronous write or broken a_ops? */
417			ClearPageReclaim(page);
418		}
419		inc_zone_page_state(page, NR_VMSCAN_WRITE);
420		return PAGE_SUCCESS;
421	}
422
423	return PAGE_CLEAN;
424}
425
426/*
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
429 */
430static int __remove_mapping(struct address_space *mapping, struct page *page)
431{
432	BUG_ON(!PageLocked(page));
433	BUG_ON(mapping != page_mapping(page));
434
435	spin_lock_irq(&mapping->tree_lock);
436	/*
437	 * The non racy check for a busy page.
438	 *
439	 * Must be careful with the order of the tests. When someone has
440	 * a ref to the page, it may be possible that they dirty it then
441	 * drop the reference. So if PageDirty is tested before page_count
442	 * here, then the following race may occur:
443	 *
444	 * get_user_pages(&page);
445	 * [user mapping goes away]
446	 * write_to(page);
447	 *				!PageDirty(page)    [good]
448	 * SetPageDirty(page);
449	 * put_page(page);
450	 *				!page_count(page)   [good, discard it]
451	 *
452	 * [oops, our write_to data is lost]
453	 *
454	 * Reversing the order of the tests ensures such a situation cannot
455	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456	 * load is not satisfied before that of page->_count.
457	 *
458	 * Note that if SetPageDirty is always performed via set_page_dirty,
459	 * and thus under tree_lock, then this ordering is not required.
460	 */
461	if (!page_freeze_refs(page, 2))
462		goto cannot_free;
463	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464	if (unlikely(PageDirty(page))) {
465		page_unfreeze_refs(page, 2);
466		goto cannot_free;
467	}
468
469	if (PageSwapCache(page)) {
470		swp_entry_t swap = { .val = page_private(page) };
471		__delete_from_swap_cache(page);
472		spin_unlock_irq(&mapping->tree_lock);
473		swapcache_free(swap, page);
474	} else {
475		__remove_from_page_cache(page);
476		spin_unlock_irq(&mapping->tree_lock);
477		mem_cgroup_uncharge_cache_page(page);
478	}
479
480	return 1;
481
482cannot_free:
483	spin_unlock_irq(&mapping->tree_lock);
484	return 0;
485}
486
487/*
488 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
489 * someone else has a ref on the page, abort and return 0.  If it was
490 * successfully detached, return 1.  Assumes the caller has a single ref on
491 * this page.
492 */
493int remove_mapping(struct address_space *mapping, struct page *page)
494{
495	if (__remove_mapping(mapping, page)) {
496		/*
497		 * Unfreezing the refcount with 1 rather than 2 effectively
498		 * drops the pagecache ref for us without requiring another
499		 * atomic operation.
500		 */
501		page_unfreeze_refs(page, 1);
502		return 1;
503	}
504	return 0;
505}
506
507/**
508 * putback_lru_page - put previously isolated page onto appropriate LRU list
509 * @page: page to be put back to appropriate lru list
510 *
511 * Add previously isolated @page to appropriate LRU list.
512 * Page may still be unevictable for other reasons.
513 *
514 * lru_lock must not be held, interrupts must be enabled.
515 */
516void putback_lru_page(struct page *page)
517{
518	int lru;
519	int active = !!TestClearPageActive(page);
520	int was_unevictable = PageUnevictable(page);
521
522	VM_BUG_ON(PageLRU(page));
523
524redo:
525	ClearPageUnevictable(page);
526
527	if (page_evictable(page, NULL)) {
528		/*
529		 * For evictable pages, we can use the cache.
530		 * In event of a race, worst case is we end up with an
531		 * unevictable page on [in]active list.
532		 * We know how to handle that.
533		 */
534		lru = active + page_lru_base_type(page);
535		lru_cache_add_lru(page, lru);
536	} else {
537		/*
538		 * Put unevictable pages directly on zone's unevictable
539		 * list.
540		 */
541		lru = LRU_UNEVICTABLE;
542		add_page_to_unevictable_list(page);
543	}
544
545	/*
546	 * page's status can change while we move it among lru. If an evictable
547	 * page is on unevictable list, it never be freed. To avoid that,
548	 * check after we added it to the list, again.
549	 */
550	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551		if (!isolate_lru_page(page)) {
552			put_page(page);
553			goto redo;
554		}
555		/* This means someone else dropped this page from LRU
556		 * So, it will be freed or putback to LRU again. There is
557		 * nothing to do here.
558		 */
559	}
560
561	if (was_unevictable && lru != LRU_UNEVICTABLE)
562		count_vm_event(UNEVICTABLE_PGRESCUED);
563	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564		count_vm_event(UNEVICTABLE_PGCULLED);
565
566	put_page(page);		/* drop ref from isolate */
567}
568
569/*
570 * shrink_page_list() returns the number of reclaimed pages
571 */
572static unsigned long shrink_page_list(struct list_head *page_list,
573					struct scan_control *sc,
574					enum pageout_io sync_writeback)
575{
576	LIST_HEAD(ret_pages);
577	struct pagevec freed_pvec;
578	int pgactivate = 0;
579	unsigned long nr_reclaimed = 0;
580	unsigned long vm_flags;
581
582	cond_resched();
583
584	pagevec_init(&freed_pvec, 1);
585	while (!list_empty(page_list)) {
586		struct address_space *mapping;
587		struct page *page;
588		int may_enter_fs;
589		int referenced;
590
591		cond_resched();
592
593		page = lru_to_page(page_list);
594		list_del(&page->lru);
595
596		if (!trylock_page(page))
597			goto keep;
598
599		VM_BUG_ON(PageActive(page));
600
601		sc->nr_scanned++;
602
603		if (unlikely(!page_evictable(page, NULL)))
604			goto cull_mlocked;
605
606		if (!sc->may_unmap && page_mapped(page))
607			goto keep_locked;
608
609		/* Double the slab pressure for mapped and swapcache pages */
610		if (page_mapped(page) || PageSwapCache(page))
611			sc->nr_scanned++;
612
613		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615
616		if (PageWriteback(page)) {
617			/*
618			 * Synchronous reclaim is performed in two passes,
619			 * first an asynchronous pass over the list to
620			 * start parallel writeback, and a second synchronous
621			 * pass to wait for the IO to complete.  Wait here
622			 * for any page for which writeback has already
623			 * started.
624			 */
625			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626				wait_on_page_writeback(page);
627			else
628				goto keep_locked;
629		}
630
631		referenced = page_referenced(page, 1,
632						sc->mem_cgroup, &vm_flags);
633		/*
634		 * In active use or really unfreeable?  Activate it.
635		 * If page which have PG_mlocked lost isoltation race,
636		 * try_to_unmap moves it to unevictable list
637		 */
638		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
639					referenced && page_mapping_inuse(page)
640					&& !(vm_flags & VM_LOCKED))
641			goto activate_locked;
642
643		/*
644		 * Anonymous process memory has backing store?
645		 * Try to allocate it some swap space here.
646		 */
647		if (PageAnon(page) && !PageSwapCache(page)) {
648			if (!(sc->gfp_mask & __GFP_IO))
649				goto keep_locked;
650			if (!add_to_swap(page))
651				goto activate_locked;
652			may_enter_fs = 1;
653		}
654
655		mapping = page_mapping(page);
656
657		/*
658		 * The page is mapped into the page tables of one or more
659		 * processes. Try to unmap it here.
660		 */
661		if (page_mapped(page) && mapping) {
662			switch (try_to_unmap(page, 0)) {
663			case SWAP_FAIL:
664				goto activate_locked;
665			case SWAP_AGAIN:
666				goto keep_locked;
667			case SWAP_MLOCK:
668				goto cull_mlocked;
669			case SWAP_SUCCESS:
670				; /* try to free the page below */
671			}
672		}
673
674		if (PageDirty(page)) {
675			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
676				goto keep_locked;
677			if (!may_enter_fs)
678				goto keep_locked;
679			if (!sc->may_writepage)
680				goto keep_locked;
681
682			/* Page is dirty, try to write it out here */
683			switch (pageout(page, mapping, sync_writeback)) {
684			case PAGE_KEEP:
685				goto keep_locked;
686			case PAGE_ACTIVATE:
687				goto activate_locked;
688			case PAGE_SUCCESS:
689				if (PageWriteback(page) || PageDirty(page))
690					goto keep;
691				/*
692				 * A synchronous write - probably a ramdisk.  Go
693				 * ahead and try to reclaim the page.
694				 */
695				if (!trylock_page(page))
696					goto keep;
697				if (PageDirty(page) || PageWriteback(page))
698					goto keep_locked;
699				mapping = page_mapping(page);
700			case PAGE_CLEAN:
701				; /* try to free the page below */
702			}
703		}
704
705		/*
706		 * If the page has buffers, try to free the buffer mappings
707		 * associated with this page. If we succeed we try to free
708		 * the page as well.
709		 *
710		 * We do this even if the page is PageDirty().
711		 * try_to_release_page() does not perform I/O, but it is
712		 * possible for a page to have PageDirty set, but it is actually
713		 * clean (all its buffers are clean).  This happens if the
714		 * buffers were written out directly, with submit_bh(). ext3
715		 * will do this, as well as the blockdev mapping.
716		 * try_to_release_page() will discover that cleanness and will
717		 * drop the buffers and mark the page clean - it can be freed.
718		 *
719		 * Rarely, pages can have buffers and no ->mapping.  These are
720		 * the pages which were not successfully invalidated in
721		 * truncate_complete_page().  We try to drop those buffers here
722		 * and if that worked, and the page is no longer mapped into
723		 * process address space (page_count == 1) it can be freed.
724		 * Otherwise, leave the page on the LRU so it is swappable.
725		 */
726		if (page_has_private(page)) {
727			if (!try_to_release_page(page, sc->gfp_mask))
728				goto activate_locked;
729			if (!mapping && page_count(page) == 1) {
730				unlock_page(page);
731				if (put_page_testzero(page))
732					goto free_it;
733				else {
734					/*
735					 * rare race with speculative reference.
736					 * the speculative reference will free
737					 * this page shortly, so we may
738					 * increment nr_reclaimed here (and
739					 * leave it off the LRU).
740					 */
741					nr_reclaimed++;
742					continue;
743				}
744			}
745		}
746
747		if (!mapping || !__remove_mapping(mapping, page))
748			goto keep_locked;
749
750		/*
751		 * At this point, we have no other references and there is
752		 * no way to pick any more up (removed from LRU, removed
753		 * from pagecache). Can use non-atomic bitops now (and
754		 * we obviously don't have to worry about waking up a process
755		 * waiting on the page lock, because there are no references.
756		 */
757		__clear_page_locked(page);
758free_it:
759		nr_reclaimed++;
760		if (!pagevec_add(&freed_pvec, page)) {
761			__pagevec_free(&freed_pvec);
762			pagevec_reinit(&freed_pvec);
763		}
764		continue;
765
766cull_mlocked:
767		if (PageSwapCache(page))
768			try_to_free_swap(page);
769		unlock_page(page);
770		putback_lru_page(page);
771		continue;
772
773activate_locked:
774		/* Not a candidate for swapping, so reclaim swap space. */
775		if (PageSwapCache(page) && vm_swap_full())
776			try_to_free_swap(page);
777		VM_BUG_ON(PageActive(page));
778		SetPageActive(page);
779		pgactivate++;
780keep_locked:
781		unlock_page(page);
782keep:
783		list_add(&page->lru, &ret_pages);
784		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
785	}
786	list_splice(&ret_pages, page_list);
787	if (pagevec_count(&freed_pvec))
788		__pagevec_free(&freed_pvec);
789	count_vm_events(PGACTIVATE, pgactivate);
790	return nr_reclaimed;
791}
792
793/* LRU Isolation modes. */
794#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
795#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
796#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
797
798/*
799 * Attempt to remove the specified page from its LRU.  Only take this page
800 * if it is of the appropriate PageActive status.  Pages which are being
801 * freed elsewhere are also ignored.
802 *
803 * page:	page to consider
804 * mode:	one of the LRU isolation modes defined above
805 *
806 * returns 0 on success, -ve errno on failure.
807 */
808int __isolate_lru_page(struct page *page, int mode, int file)
809{
810	int ret = -EINVAL;
811
812	/* Only take pages on the LRU. */
813	if (!PageLRU(page))
814		return ret;
815
816	/*
817	 * When checking the active state, we need to be sure we are
818	 * dealing with comparible boolean values.  Take the logical not
819	 * of each.
820	 */
821	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
822		return ret;
823
824	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
825		return ret;
826
827	/*
828	 * When this function is being called for lumpy reclaim, we
829	 * initially look into all LRU pages, active, inactive and
830	 * unevictable; only give shrink_page_list evictable pages.
831	 */
832	if (PageUnevictable(page))
833		return ret;
834
835	ret = -EBUSY;
836
837	if (likely(get_page_unless_zero(page))) {
838		/*
839		 * Be careful not to clear PageLRU until after we're
840		 * sure the page is not being freed elsewhere -- the
841		 * page release code relies on it.
842		 */
843		ClearPageLRU(page);
844		ret = 0;
845	}
846
847	return ret;
848}
849
850/*
851 * zone->lru_lock is heavily contended.  Some of the functions that
852 * shrink the lists perform better by taking out a batch of pages
853 * and working on them outside the LRU lock.
854 *
855 * For pagecache intensive workloads, this function is the hottest
856 * spot in the kernel (apart from copy_*_user functions).
857 *
858 * Appropriate locks must be held before calling this function.
859 *
860 * @nr_to_scan:	The number of pages to look through on the list.
861 * @src:	The LRU list to pull pages off.
862 * @dst:	The temp list to put pages on to.
863 * @scanned:	The number of pages that were scanned.
864 * @order:	The caller's attempted allocation order
865 * @mode:	One of the LRU isolation modes
866 * @file:	True [1] if isolating file [!anon] pages
867 *
868 * returns how many pages were moved onto *@dst.
869 */
870static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
871		struct list_head *src, struct list_head *dst,
872		unsigned long *scanned, int order, int mode, int file)
873{
874	unsigned long nr_taken = 0;
875	unsigned long scan;
876
877	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
878		struct page *page;
879		unsigned long pfn;
880		unsigned long end_pfn;
881		unsigned long page_pfn;
882		int zone_id;
883
884		page = lru_to_page(src);
885		prefetchw_prev_lru_page(page, src, flags);
886
887		VM_BUG_ON(!PageLRU(page));
888
889		switch (__isolate_lru_page(page, mode, file)) {
890		case 0:
891			list_move(&page->lru, dst);
892			mem_cgroup_del_lru(page);
893			nr_taken++;
894			break;
895
896		case -EBUSY:
897			/* else it is being freed elsewhere */
898			list_move(&page->lru, src);
899			mem_cgroup_rotate_lru_list(page, page_lru(page));
900			continue;
901
902		default:
903			BUG();
904		}
905
906		if (!order)
907			continue;
908
909		/*
910		 * Attempt to take all pages in the order aligned region
911		 * surrounding the tag page.  Only take those pages of
912		 * the same active state as that tag page.  We may safely
913		 * round the target page pfn down to the requested order
914		 * as the mem_map is guarenteed valid out to MAX_ORDER,
915		 * where that page is in a different zone we will detect
916		 * it from its zone id and abort this block scan.
917		 */
918		zone_id = page_zone_id(page);
919		page_pfn = page_to_pfn(page);
920		pfn = page_pfn & ~((1 << order) - 1);
921		end_pfn = pfn + (1 << order);
922		for (; pfn < end_pfn; pfn++) {
923			struct page *cursor_page;
924
925			/* The target page is in the block, ignore it. */
926			if (unlikely(pfn == page_pfn))
927				continue;
928
929			/* Avoid holes within the zone. */
930			if (unlikely(!pfn_valid_within(pfn)))
931				break;
932
933			cursor_page = pfn_to_page(pfn);
934
935			/* Check that we have not crossed a zone boundary. */
936			if (unlikely(page_zone_id(cursor_page) != zone_id))
937				continue;
938
939			/*
940			 * If we don't have enough swap space, reclaiming of
941			 * anon page which don't already have a swap slot is
942			 * pointless.
943			 */
944			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
945					!PageSwapCache(cursor_page))
946				continue;
947
948			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
949				list_move(&cursor_page->lru, dst);
950				mem_cgroup_del_lru(cursor_page);
951				nr_taken++;
952				scan++;
953			}
954		}
955	}
956
957	*scanned = scan;
958	return nr_taken;
959}
960
961static unsigned long isolate_pages_global(unsigned long nr,
962					struct list_head *dst,
963					unsigned long *scanned, int order,
964					int mode, struct zone *z,
965					struct mem_cgroup *mem_cont,
966					int active, int file)
967{
968	int lru = LRU_BASE;
969	if (active)
970		lru += LRU_ACTIVE;
971	if (file)
972		lru += LRU_FILE;
973	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
974								mode, file);
975}
976
977/*
978 * clear_active_flags() is a helper for shrink_active_list(), clearing
979 * any active bits from the pages in the list.
980 */
981static unsigned long clear_active_flags(struct list_head *page_list,
982					unsigned int *count)
983{
984	int nr_active = 0;
985	int lru;
986	struct page *page;
987
988	list_for_each_entry(page, page_list, lru) {
989		lru = page_lru_base_type(page);
990		if (PageActive(page)) {
991			lru += LRU_ACTIVE;
992			ClearPageActive(page);
993			nr_active++;
994		}
995		count[lru]++;
996	}
997
998	return nr_active;
999}
1000
1001/**
1002 * isolate_lru_page - tries to isolate a page from its LRU list
1003 * @page: page to isolate from its LRU list
1004 *
1005 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1006 * vmstat statistic corresponding to whatever LRU list the page was on.
1007 *
1008 * Returns 0 if the page was removed from an LRU list.
1009 * Returns -EBUSY if the page was not on an LRU list.
1010 *
1011 * The returned page will have PageLRU() cleared.  If it was found on
1012 * the active list, it will have PageActive set.  If it was found on
1013 * the unevictable list, it will have the PageUnevictable bit set. That flag
1014 * may need to be cleared by the caller before letting the page go.
1015 *
1016 * The vmstat statistic corresponding to the list on which the page was
1017 * found will be decremented.
1018 *
1019 * Restrictions:
1020 * (1) Must be called with an elevated refcount on the page. This is a
1021 *     fundamentnal difference from isolate_lru_pages (which is called
1022 *     without a stable reference).
1023 * (2) the lru_lock must not be held.
1024 * (3) interrupts must be enabled.
1025 */
1026int isolate_lru_page(struct page *page)
1027{
1028	int ret = -EBUSY;
1029
1030	if (PageLRU(page)) {
1031		struct zone *zone = page_zone(page);
1032
1033		spin_lock_irq(&zone->lru_lock);
1034		if (PageLRU(page) && get_page_unless_zero(page)) {
1035			int lru = page_lru(page);
1036			ret = 0;
1037			ClearPageLRU(page);
1038
1039			del_page_from_lru_list(zone, page, lru);
1040		}
1041		spin_unlock_irq(&zone->lru_lock);
1042	}
1043	return ret;
1044}
1045
1046/*
1047 * Are there way too many processes in the direct reclaim path already?
1048 */
1049static int too_many_isolated(struct zone *zone, int file,
1050		struct scan_control *sc)
1051{
1052	unsigned long inactive, isolated;
1053
1054	if (current_is_kswapd())
1055		return 0;
1056
1057	if (!scanning_global_lru(sc))
1058		return 0;
1059
1060	if (file) {
1061		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1062		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1063	} else {
1064		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1065		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1066	}
1067
1068	return isolated > inactive;
1069}
1070
1071/*
1072 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1073 * of reclaimed pages
1074 */
1075static unsigned long shrink_inactive_list(unsigned long max_scan,
1076			struct zone *zone, struct scan_control *sc,
1077			int priority, int file)
1078{
1079	LIST_HEAD(page_list);
1080	struct pagevec pvec;
1081	unsigned long nr_scanned = 0;
1082	unsigned long nr_reclaimed = 0;
1083	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1084	int lumpy_reclaim = 0;
1085
1086	while (unlikely(too_many_isolated(zone, file, sc))) {
1087		congestion_wait(WRITE, HZ/10);
1088
1089		/* We are about to die and free our memory. Return now. */
1090		if (fatal_signal_pending(current))
1091			return SWAP_CLUSTER_MAX;
1092	}
1093
1094	/*
1095	 * If we need a large contiguous chunk of memory, or have
1096	 * trouble getting a small set of contiguous pages, we
1097	 * will reclaim both active and inactive pages.
1098	 *
1099	 * We use the same threshold as pageout congestion_wait below.
1100	 */
1101	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1102		lumpy_reclaim = 1;
1103	else if (sc->order && priority < DEF_PRIORITY - 2)
1104		lumpy_reclaim = 1;
1105
1106	pagevec_init(&pvec, 1);
1107
1108	lru_add_drain();
1109	spin_lock_irq(&zone->lru_lock);
1110	do {
1111		struct page *page;
1112		unsigned long nr_taken;
1113		unsigned long nr_scan;
1114		unsigned long nr_freed;
1115		unsigned long nr_active;
1116		unsigned int count[NR_LRU_LISTS] = { 0, };
1117		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1118		unsigned long nr_anon;
1119		unsigned long nr_file;
1120
1121		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1122			     &page_list, &nr_scan, sc->order, mode,
1123				zone, sc->mem_cgroup, 0, file);
1124
1125		if (scanning_global_lru(sc)) {
1126			zone->pages_scanned += nr_scan;
1127			if (current_is_kswapd())
1128				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1129						       nr_scan);
1130			else
1131				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1132						       nr_scan);
1133		}
1134
1135		if (nr_taken == 0)
1136			goto done;
1137
1138		nr_active = clear_active_flags(&page_list, count);
1139		__count_vm_events(PGDEACTIVATE, nr_active);
1140
1141		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1142						-count[LRU_ACTIVE_FILE]);
1143		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1144						-count[LRU_INACTIVE_FILE]);
1145		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1146						-count[LRU_ACTIVE_ANON]);
1147		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1148						-count[LRU_INACTIVE_ANON]);
1149
1150		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1151		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1152		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1153		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1154
1155		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1156		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1157		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1158		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1159
1160		spin_unlock_irq(&zone->lru_lock);
1161
1162		nr_scanned += nr_scan;
1163		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1164
1165		/*
1166		 * If we are direct reclaiming for contiguous pages and we do
1167		 * not reclaim everything in the list, try again and wait
1168		 * for IO to complete. This will stall high-order allocations
1169		 * but that should be acceptable to the caller
1170		 */
1171		if (nr_freed < nr_taken && !current_is_kswapd() &&
1172		    lumpy_reclaim) {
1173			congestion_wait(BLK_RW_ASYNC, HZ/10);
1174
1175			/*
1176			 * The attempt at page out may have made some
1177			 * of the pages active, mark them inactive again.
1178			 */
1179			nr_active = clear_active_flags(&page_list, count);
1180			count_vm_events(PGDEACTIVATE, nr_active);
1181
1182			nr_freed += shrink_page_list(&page_list, sc,
1183							PAGEOUT_IO_SYNC);
1184		}
1185
1186		nr_reclaimed += nr_freed;
1187
1188		local_irq_disable();
1189		if (current_is_kswapd())
1190			__count_vm_events(KSWAPD_STEAL, nr_freed);
1191		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1192
1193		spin_lock(&zone->lru_lock);
1194		/*
1195		 * Put back any unfreeable pages.
1196		 */
1197		while (!list_empty(&page_list)) {
1198			int lru;
1199			page = lru_to_page(&page_list);
1200			VM_BUG_ON(PageLRU(page));
1201			list_del(&page->lru);
1202			if (unlikely(!page_evictable(page, NULL))) {
1203				spin_unlock_irq(&zone->lru_lock);
1204				putback_lru_page(page);
1205				spin_lock_irq(&zone->lru_lock);
1206				continue;
1207			}
1208			SetPageLRU(page);
1209			lru = page_lru(page);
1210			add_page_to_lru_list(zone, page, lru);
1211			if (is_active_lru(lru)) {
1212				int file = is_file_lru(lru);
1213				reclaim_stat->recent_rotated[file]++;
1214			}
1215			if (!pagevec_add(&pvec, page)) {
1216				spin_unlock_irq(&zone->lru_lock);
1217				__pagevec_release(&pvec);
1218				spin_lock_irq(&zone->lru_lock);
1219			}
1220		}
1221		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1222		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1223
1224  	} while (nr_scanned < max_scan);
1225
1226done:
1227	spin_unlock_irq(&zone->lru_lock);
1228	pagevec_release(&pvec);
1229	return nr_reclaimed;
1230}
1231
1232/*
1233 * We are about to scan this zone at a certain priority level.  If that priority
1234 * level is smaller (ie: more urgent) than the previous priority, then note
1235 * that priority level within the zone.  This is done so that when the next
1236 * process comes in to scan this zone, it will immediately start out at this
1237 * priority level rather than having to build up its own scanning priority.
1238 * Here, this priority affects only the reclaim-mapped threshold.
1239 */
1240static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1241{
1242	if (priority < zone->prev_priority)
1243		zone->prev_priority = priority;
1244}
1245
1246/*
1247 * This moves pages from the active list to the inactive list.
1248 *
1249 * We move them the other way if the page is referenced by one or more
1250 * processes, from rmap.
1251 *
1252 * If the pages are mostly unmapped, the processing is fast and it is
1253 * appropriate to hold zone->lru_lock across the whole operation.  But if
1254 * the pages are mapped, the processing is slow (page_referenced()) so we
1255 * should drop zone->lru_lock around each page.  It's impossible to balance
1256 * this, so instead we remove the pages from the LRU while processing them.
1257 * It is safe to rely on PG_active against the non-LRU pages in here because
1258 * nobody will play with that bit on a non-LRU page.
1259 *
1260 * The downside is that we have to touch page->_count against each page.
1261 * But we had to alter page->flags anyway.
1262 */
1263
1264static void move_active_pages_to_lru(struct zone *zone,
1265				     struct list_head *list,
1266				     enum lru_list lru)
1267{
1268	unsigned long pgmoved = 0;
1269	struct pagevec pvec;
1270	struct page *page;
1271
1272	pagevec_init(&pvec, 1);
1273
1274	while (!list_empty(list)) {
1275		page = lru_to_page(list);
1276
1277		VM_BUG_ON(PageLRU(page));
1278		SetPageLRU(page);
1279
1280		list_move(&page->lru, &zone->lru[lru].list);
1281		mem_cgroup_add_lru_list(page, lru);
1282		pgmoved++;
1283
1284		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1285			spin_unlock_irq(&zone->lru_lock);
1286			if (buffer_heads_over_limit)
1287				pagevec_strip(&pvec);
1288			__pagevec_release(&pvec);
1289			spin_lock_irq(&zone->lru_lock);
1290		}
1291	}
1292	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1293	if (!is_active_lru(lru))
1294		__count_vm_events(PGDEACTIVATE, pgmoved);
1295}
1296
1297static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1298			struct scan_control *sc, int priority, int file)
1299{
1300	unsigned long nr_taken;
1301	unsigned long pgscanned;
1302	unsigned long vm_flags;
1303	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1304	LIST_HEAD(l_active);
1305	LIST_HEAD(l_inactive);
1306	struct page *page;
1307	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1308	unsigned long nr_rotated = 0;
1309
1310	lru_add_drain();
1311	spin_lock_irq(&zone->lru_lock);
1312	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1313					ISOLATE_ACTIVE, zone,
1314					sc->mem_cgroup, 1, file);
1315	/*
1316	 * zone->pages_scanned is used for detect zone's oom
1317	 * mem_cgroup remembers nr_scan by itself.
1318	 */
1319	if (scanning_global_lru(sc)) {
1320		zone->pages_scanned += pgscanned;
1321	}
1322	reclaim_stat->recent_scanned[file] += nr_taken;
1323
1324	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1325	if (file)
1326		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1327	else
1328		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1329	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1330	spin_unlock_irq(&zone->lru_lock);
1331
1332	while (!list_empty(&l_hold)) {
1333		cond_resched();
1334		page = lru_to_page(&l_hold);
1335		list_del(&page->lru);
1336
1337		if (unlikely(!page_evictable(page, NULL))) {
1338			putback_lru_page(page);
1339			continue;
1340		}
1341
1342		/* page_referenced clears PageReferenced */
1343		if (page_mapping_inuse(page) &&
1344		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1345			nr_rotated++;
1346			/*
1347			 * Identify referenced, file-backed active pages and
1348			 * give them one more trip around the active list. So
1349			 * that executable code get better chances to stay in
1350			 * memory under moderate memory pressure.  Anon pages
1351			 * are not likely to be evicted by use-once streaming
1352			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1353			 * so we ignore them here.
1354			 */
1355			if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1356				list_add(&page->lru, &l_active);
1357				continue;
1358			}
1359		}
1360
1361		ClearPageActive(page);	/* we are de-activating */
1362		list_add(&page->lru, &l_inactive);
1363	}
1364
1365	/*
1366	 * Move pages back to the lru list.
1367	 */
1368	spin_lock_irq(&zone->lru_lock);
1369	/*
1370	 * Count referenced pages from currently used mappings as rotated,
1371	 * even though only some of them are actually re-activated.  This
1372	 * helps balance scan pressure between file and anonymous pages in
1373	 * get_scan_ratio.
1374	 */
1375	reclaim_stat->recent_rotated[file] += nr_rotated;
1376
1377	move_active_pages_to_lru(zone, &l_active,
1378						LRU_ACTIVE + file * LRU_FILE);
1379	move_active_pages_to_lru(zone, &l_inactive,
1380						LRU_BASE   + file * LRU_FILE);
1381	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1382	spin_unlock_irq(&zone->lru_lock);
1383}
1384
1385static int inactive_anon_is_low_global(struct zone *zone)
1386{
1387	unsigned long active, inactive;
1388
1389	active = zone_page_state(zone, NR_ACTIVE_ANON);
1390	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1391
1392	if (inactive * zone->inactive_ratio < active)
1393		return 1;
1394
1395	return 0;
1396}
1397
1398/**
1399 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1400 * @zone: zone to check
1401 * @sc:   scan control of this context
1402 *
1403 * Returns true if the zone does not have enough inactive anon pages,
1404 * meaning some active anon pages need to be deactivated.
1405 */
1406static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1407{
1408	int low;
1409
1410	if (scanning_global_lru(sc))
1411		low = inactive_anon_is_low_global(zone);
1412	else
1413		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1414	return low;
1415}
1416
1417static int inactive_file_is_low_global(struct zone *zone)
1418{
1419	unsigned long active, inactive;
1420
1421	active = zone_page_state(zone, NR_ACTIVE_FILE);
1422	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1423
1424	return (active > inactive);
1425}
1426
1427/**
1428 * inactive_file_is_low - check if file pages need to be deactivated
1429 * @zone: zone to check
1430 * @sc:   scan control of this context
1431 *
1432 * When the system is doing streaming IO, memory pressure here
1433 * ensures that active file pages get deactivated, until more
1434 * than half of the file pages are on the inactive list.
1435 *
1436 * Once we get to that situation, protect the system's working
1437 * set from being evicted by disabling active file page aging.
1438 *
1439 * This uses a different ratio than the anonymous pages, because
1440 * the page cache uses a use-once replacement algorithm.
1441 */
1442static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1443{
1444	int low;
1445
1446	if (scanning_global_lru(sc))
1447		low = inactive_file_is_low_global(zone);
1448	else
1449		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1450	return low;
1451}
1452
1453static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1454	struct zone *zone, struct scan_control *sc, int priority)
1455{
1456	int file = is_file_lru(lru);
1457
1458	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1459		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1460		return 0;
1461	}
1462
1463	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1464		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1465		return 0;
1466	}
1467	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1468}
1469
1470/*
1471 * Determine how aggressively the anon and file LRU lists should be
1472 * scanned.  The relative value of each set of LRU lists is determined
1473 * by looking at the fraction of the pages scanned we did rotate back
1474 * onto the active list instead of evict.
1475 *
1476 * percent[0] specifies how much pressure to put on ram/swap backed
1477 * memory, while percent[1] determines pressure on the file LRUs.
1478 */
1479static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1480					unsigned long *percent)
1481{
1482	unsigned long anon, file, free;
1483	unsigned long anon_prio, file_prio;
1484	unsigned long ap, fp;
1485	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1486
1487	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1488		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1489	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1490		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1491
1492	if (scanning_global_lru(sc)) {
1493		free  = zone_page_state(zone, NR_FREE_PAGES);
1494		/* If we have very few page cache pages,
1495		   force-scan anon pages. */
1496		if (unlikely(file + free <= high_wmark_pages(zone))) {
1497			percent[0] = 100;
1498			percent[1] = 0;
1499			return;
1500		}
1501	}
1502
1503	/*
1504	 * OK, so we have swap space and a fair amount of page cache
1505	 * pages.  We use the recently rotated / recently scanned
1506	 * ratios to determine how valuable each cache is.
1507	 *
1508	 * Because workloads change over time (and to avoid overflow)
1509	 * we keep these statistics as a floating average, which ends
1510	 * up weighing recent references more than old ones.
1511	 *
1512	 * anon in [0], file in [1]
1513	 */
1514	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1515		spin_lock_irq(&zone->lru_lock);
1516		reclaim_stat->recent_scanned[0] /= 2;
1517		reclaim_stat->recent_rotated[0] /= 2;
1518		spin_unlock_irq(&zone->lru_lock);
1519	}
1520
1521	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1522		spin_lock_irq(&zone->lru_lock);
1523		reclaim_stat->recent_scanned[1] /= 2;
1524		reclaim_stat->recent_rotated[1] /= 2;
1525		spin_unlock_irq(&zone->lru_lock);
1526	}
1527
1528	/*
1529	 * With swappiness at 100, anonymous and file have the same priority.
1530	 * This scanning priority is essentially the inverse of IO cost.
1531	 */
1532	anon_prio = sc->swappiness;
1533	file_prio = 200 - sc->swappiness;
1534
1535	/*
1536	 * The amount of pressure on anon vs file pages is inversely
1537	 * proportional to the fraction of recently scanned pages on
1538	 * each list that were recently referenced and in active use.
1539	 */
1540	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1541	ap /= reclaim_stat->recent_rotated[0] + 1;
1542
1543	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1544	fp /= reclaim_stat->recent_rotated[1] + 1;
1545
1546	/* Normalize to percentages */
1547	percent[0] = 100 * ap / (ap + fp + 1);
1548	percent[1] = 100 - percent[0];
1549}
1550
1551/*
1552 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1553 * until we collected @swap_cluster_max pages to scan.
1554 */
1555static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1556				       unsigned long *nr_saved_scan,
1557				       unsigned long swap_cluster_max)
1558{
1559	unsigned long nr;
1560
1561	*nr_saved_scan += nr_to_scan;
1562	nr = *nr_saved_scan;
1563
1564	if (nr >= swap_cluster_max)
1565		*nr_saved_scan = 0;
1566	else
1567		nr = 0;
1568
1569	return nr;
1570}
1571
1572/*
1573 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1574 */
1575static void shrink_zone(int priority, struct zone *zone,
1576				struct scan_control *sc)
1577{
1578	unsigned long nr[NR_LRU_LISTS];
1579	unsigned long nr_to_scan;
1580	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1581	enum lru_list l;
1582	unsigned long nr_reclaimed = sc->nr_reclaimed;
1583	unsigned long swap_cluster_max = sc->swap_cluster_max;
1584	int noswap = 0;
1585
1586	/* If we have no swap space, do not bother scanning anon pages. */
1587	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1588		noswap = 1;
1589		percent[0] = 0;
1590		percent[1] = 100;
1591	} else
1592		get_scan_ratio(zone, sc, percent);
1593
1594	for_each_evictable_lru(l) {
1595		int file = is_file_lru(l);
1596		unsigned long scan;
1597
1598		scan = zone_nr_pages(zone, sc, l);
1599		if (priority || noswap) {
1600			scan >>= priority;
1601			scan = (scan * percent[file]) / 100;
1602		}
1603		if (scanning_global_lru(sc))
1604			nr[l] = nr_scan_try_batch(scan,
1605						  &zone->lru[l].nr_saved_scan,
1606						  swap_cluster_max);
1607		else
1608			nr[l] = scan;
1609	}
1610
1611	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1612					nr[LRU_INACTIVE_FILE]) {
1613		for_each_evictable_lru(l) {
1614			if (nr[l]) {
1615				nr_to_scan = min(nr[l], swap_cluster_max);
1616				nr[l] -= nr_to_scan;
1617
1618				nr_reclaimed += shrink_list(l, nr_to_scan,
1619							    zone, sc, priority);
1620			}
1621		}
1622		/*
1623		 * On large memory systems, scan >> priority can become
1624		 * really large. This is fine for the starting priority;
1625		 * we want to put equal scanning pressure on each zone.
1626		 * However, if the VM has a harder time of freeing pages,
1627		 * with multiple processes reclaiming pages, the total
1628		 * freeing target can get unreasonably large.
1629		 */
1630		if (nr_reclaimed > swap_cluster_max &&
1631			priority < DEF_PRIORITY && !current_is_kswapd())
1632			break;
1633	}
1634
1635	sc->nr_reclaimed = nr_reclaimed;
1636
1637	/*
1638	 * Even if we did not try to evict anon pages at all, we want to
1639	 * rebalance the anon lru active/inactive ratio.
1640	 */
1641	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1642		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1643
1644	throttle_vm_writeout(sc->gfp_mask);
1645}
1646
1647/*
1648 * This is the direct reclaim path, for page-allocating processes.  We only
1649 * try to reclaim pages from zones which will satisfy the caller's allocation
1650 * request.
1651 *
1652 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1653 * Because:
1654 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1655 *    allocation or
1656 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1657 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1658 *    zone defense algorithm.
1659 *
1660 * If a zone is deemed to be full of pinned pages then just give it a light
1661 * scan then give up on it.
1662 */
1663static void shrink_zones(int priority, struct zonelist *zonelist,
1664					struct scan_control *sc)
1665{
1666	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1667	struct zoneref *z;
1668	struct zone *zone;
1669
1670	sc->all_unreclaimable = 1;
1671	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1672					sc->nodemask) {
1673		if (!populated_zone(zone))
1674			continue;
1675		/*
1676		 * Take care memory controller reclaiming has small influence
1677		 * to global LRU.
1678		 */
1679		if (scanning_global_lru(sc)) {
1680			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1681				continue;
1682			note_zone_scanning_priority(zone, priority);
1683
1684			if (zone_is_all_unreclaimable(zone) &&
1685						priority != DEF_PRIORITY)
1686				continue;	/* Let kswapd poll it */
1687			sc->all_unreclaimable = 0;
1688		} else {
1689			/*
1690			 * Ignore cpuset limitation here. We just want to reduce
1691			 * # of used pages by us regardless of memory shortage.
1692			 */
1693			sc->all_unreclaimable = 0;
1694			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1695							priority);
1696		}
1697
1698		shrink_zone(priority, zone, sc);
1699	}
1700}
1701
1702/*
1703 * This is the main entry point to direct page reclaim.
1704 *
1705 * If a full scan of the inactive list fails to free enough memory then we
1706 * are "out of memory" and something needs to be killed.
1707 *
1708 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1709 * high - the zone may be full of dirty or under-writeback pages, which this
1710 * caller can't do much about.  We kick pdflush and take explicit naps in the
1711 * hope that some of these pages can be written.  But if the allocating task
1712 * holds filesystem locks which prevent writeout this might not work, and the
1713 * allocation attempt will fail.
1714 *
1715 * returns:	0, if no pages reclaimed
1716 * 		else, the number of pages reclaimed
1717 */
1718static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1719					struct scan_control *sc)
1720{
1721	int priority;
1722	unsigned long ret = 0;
1723	unsigned long total_scanned = 0;
1724	struct reclaim_state *reclaim_state = current->reclaim_state;
1725	unsigned long lru_pages = 0;
1726	struct zoneref *z;
1727	struct zone *zone;
1728	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1729
1730	delayacct_freepages_start();
1731
1732	if (scanning_global_lru(sc))
1733		count_vm_event(ALLOCSTALL);
1734	/*
1735	 * mem_cgroup will not do shrink_slab.
1736	 */
1737	if (scanning_global_lru(sc)) {
1738		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1739
1740			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1741				continue;
1742
1743			lru_pages += zone_reclaimable_pages(zone);
1744		}
1745	}
1746
1747	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1748		sc->nr_scanned = 0;
1749		if (!priority)
1750			disable_swap_token();
1751		shrink_zones(priority, zonelist, sc);
1752		/*
1753		 * Don't shrink slabs when reclaiming memory from
1754		 * over limit cgroups
1755		 */
1756		if (scanning_global_lru(sc)) {
1757			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1758			if (reclaim_state) {
1759				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1760				reclaim_state->reclaimed_slab = 0;
1761			}
1762		}
1763		total_scanned += sc->nr_scanned;
1764		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1765			ret = sc->nr_reclaimed;
1766			goto out;
1767		}
1768
1769		/*
1770		 * Try to write back as many pages as we just scanned.  This
1771		 * tends to cause slow streaming writers to write data to the
1772		 * disk smoothly, at the dirtying rate, which is nice.   But
1773		 * that's undesirable in laptop mode, where we *want* lumpy
1774		 * writeout.  So in laptop mode, write out the whole world.
1775		 */
1776		if (total_scanned > sc->swap_cluster_max +
1777					sc->swap_cluster_max / 2) {
1778			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1779			sc->may_writepage = 1;
1780		}
1781
1782		/* Take a nap, wait for some writeback to complete */
1783		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1784			congestion_wait(BLK_RW_ASYNC, HZ/10);
1785	}
1786	/* top priority shrink_zones still had more to do? don't OOM, then */
1787	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1788		ret = sc->nr_reclaimed;
1789out:
1790	/*
1791	 * Now that we've scanned all the zones at this priority level, note
1792	 * that level within the zone so that the next thread which performs
1793	 * scanning of this zone will immediately start out at this priority
1794	 * level.  This affects only the decision whether or not to bring
1795	 * mapped pages onto the inactive list.
1796	 */
1797	if (priority < 0)
1798		priority = 0;
1799
1800	if (scanning_global_lru(sc)) {
1801		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1802
1803			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1804				continue;
1805
1806			zone->prev_priority = priority;
1807		}
1808	} else
1809		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1810
1811	delayacct_freepages_end();
1812
1813	return ret;
1814}
1815
1816unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1817				gfp_t gfp_mask, nodemask_t *nodemask)
1818{
1819	struct scan_control sc = {
1820		.gfp_mask = gfp_mask,
1821		.may_writepage = !laptop_mode,
1822		.swap_cluster_max = SWAP_CLUSTER_MAX,
1823		.may_unmap = 1,
1824		.may_swap = 1,
1825		.swappiness = vm_swappiness,
1826		.order = order,
1827		.mem_cgroup = NULL,
1828		.isolate_pages = isolate_pages_global,
1829		.nodemask = nodemask,
1830	};
1831
1832	return do_try_to_free_pages(zonelist, &sc);
1833}
1834
1835#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1836
1837unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1838					   gfp_t gfp_mask,
1839					   bool noswap,
1840					   unsigned int swappiness)
1841{
1842	struct scan_control sc = {
1843		.may_writepage = !laptop_mode,
1844		.may_unmap = 1,
1845		.may_swap = !noswap,
1846		.swap_cluster_max = SWAP_CLUSTER_MAX,
1847		.swappiness = swappiness,
1848		.order = 0,
1849		.mem_cgroup = mem_cont,
1850		.isolate_pages = mem_cgroup_isolate_pages,
1851		.nodemask = NULL, /* we don't care the placement */
1852	};
1853	struct zonelist *zonelist;
1854
1855	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1856			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1857	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1858	return do_try_to_free_pages(zonelist, &sc);
1859}
1860#endif
1861
1862/*
1863 * For kswapd, balance_pgdat() will work across all this node's zones until
1864 * they are all at high_wmark_pages(zone).
1865 *
1866 * Returns the number of pages which were actually freed.
1867 *
1868 * There is special handling here for zones which are full of pinned pages.
1869 * This can happen if the pages are all mlocked, or if they are all used by
1870 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1871 * What we do is to detect the case where all pages in the zone have been
1872 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1873 * dead and from now on, only perform a short scan.  Basically we're polling
1874 * the zone for when the problem goes away.
1875 *
1876 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1877 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1878 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1879 * lower zones regardless of the number of free pages in the lower zones. This
1880 * interoperates with the page allocator fallback scheme to ensure that aging
1881 * of pages is balanced across the zones.
1882 */
1883static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1884{
1885	int all_zones_ok;
1886	int priority;
1887	int i;
1888	unsigned long total_scanned;
1889	struct reclaim_state *reclaim_state = current->reclaim_state;
1890	struct scan_control sc = {
1891		.gfp_mask = GFP_KERNEL,
1892		.may_unmap = 1,
1893		.may_swap = 1,
1894		.swap_cluster_max = SWAP_CLUSTER_MAX,
1895		.swappiness = vm_swappiness,
1896		.order = order,
1897		.mem_cgroup = NULL,
1898		.isolate_pages = isolate_pages_global,
1899	};
1900	/*
1901	 * temp_priority is used to remember the scanning priority at which
1902	 * this zone was successfully refilled to
1903	 * free_pages == high_wmark_pages(zone).
1904	 */
1905	int temp_priority[MAX_NR_ZONES];
1906
1907loop_again:
1908	total_scanned = 0;
1909	sc.nr_reclaimed = 0;
1910	sc.may_writepage = !laptop_mode;
1911	count_vm_event(PAGEOUTRUN);
1912
1913	for (i = 0; i < pgdat->nr_zones; i++)
1914		temp_priority[i] = DEF_PRIORITY;
1915
1916	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1917		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1918		unsigned long lru_pages = 0;
1919
1920		/* The swap token gets in the way of swapout... */
1921		if (!priority)
1922			disable_swap_token();
1923
1924		all_zones_ok = 1;
1925
1926		/*
1927		 * Scan in the highmem->dma direction for the highest
1928		 * zone which needs scanning
1929		 */
1930		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1931			struct zone *zone = pgdat->node_zones + i;
1932
1933			if (!populated_zone(zone))
1934				continue;
1935
1936			if (zone_is_all_unreclaimable(zone) &&
1937			    priority != DEF_PRIORITY)
1938				continue;
1939
1940			/*
1941			 * Do some background aging of the anon list, to give
1942			 * pages a chance to be referenced before reclaiming.
1943			 */
1944			if (inactive_anon_is_low(zone, &sc))
1945				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1946							&sc, priority, 0);
1947
1948			if (!zone_watermark_ok(zone, order,
1949					high_wmark_pages(zone), 0, 0)) {
1950				end_zone = i;
1951				break;
1952			}
1953		}
1954		if (i < 0)
1955			goto out;
1956
1957		for (i = 0; i <= end_zone; i++) {
1958			struct zone *zone = pgdat->node_zones + i;
1959
1960			lru_pages += zone_reclaimable_pages(zone);
1961		}
1962
1963		/*
1964		 * Now scan the zone in the dma->highmem direction, stopping
1965		 * at the last zone which needs scanning.
1966		 *
1967		 * We do this because the page allocator works in the opposite
1968		 * direction.  This prevents the page allocator from allocating
1969		 * pages behind kswapd's direction of progress, which would
1970		 * cause too much scanning of the lower zones.
1971		 */
1972		for (i = 0; i <= end_zone; i++) {
1973			struct zone *zone = pgdat->node_zones + i;
1974			int nr_slab;
1975
1976			if (!populated_zone(zone))
1977				continue;
1978
1979			if (zone_is_all_unreclaimable(zone) &&
1980					priority != DEF_PRIORITY)
1981				continue;
1982
1983			if (!zone_watermark_ok(zone, order,
1984					high_wmark_pages(zone), end_zone, 0))
1985				all_zones_ok = 0;
1986			temp_priority[i] = priority;
1987			sc.nr_scanned = 0;
1988			note_zone_scanning_priority(zone, priority);
1989			/*
1990			 * We put equal pressure on every zone, unless one
1991			 * zone has way too many pages free already.
1992			 */
1993			if (!zone_watermark_ok(zone, order,
1994					8*high_wmark_pages(zone), end_zone, 0))
1995				shrink_zone(priority, zone, &sc);
1996			reclaim_state->reclaimed_slab = 0;
1997			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1998						lru_pages);
1999			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2000			total_scanned += sc.nr_scanned;
2001			if (zone_is_all_unreclaimable(zone))
2002				continue;
2003			if (nr_slab == 0 && zone->pages_scanned >=
2004					(zone_reclaimable_pages(zone) * 6))
2005					zone_set_flag(zone,
2006						      ZONE_ALL_UNRECLAIMABLE);
2007			/*
2008			 * If we've done a decent amount of scanning and
2009			 * the reclaim ratio is low, start doing writepage
2010			 * even in laptop mode
2011			 */
2012			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2013			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2014				sc.may_writepage = 1;
2015		}
2016		if (all_zones_ok)
2017			break;		/* kswapd: all done */
2018		/*
2019		 * OK, kswapd is getting into trouble.  Take a nap, then take
2020		 * another pass across the zones.
2021		 */
2022		if (total_scanned && priority < DEF_PRIORITY - 2)
2023			congestion_wait(BLK_RW_ASYNC, HZ/10);
2024
2025		/*
2026		 * We do this so kswapd doesn't build up large priorities for
2027		 * example when it is freeing in parallel with allocators. It
2028		 * matches the direct reclaim path behaviour in terms of impact
2029		 * on zone->*_priority.
2030		 */
2031		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2032			break;
2033	}
2034out:
2035	/*
2036	 * Note within each zone the priority level at which this zone was
2037	 * brought into a happy state.  So that the next thread which scans this
2038	 * zone will start out at that priority level.
2039	 */
2040	for (i = 0; i < pgdat->nr_zones; i++) {
2041		struct zone *zone = pgdat->node_zones + i;
2042
2043		zone->prev_priority = temp_priority[i];
2044	}
2045	if (!all_zones_ok) {
2046		cond_resched();
2047
2048		try_to_freeze();
2049
2050		/*
2051		 * Fragmentation may mean that the system cannot be
2052		 * rebalanced for high-order allocations in all zones.
2053		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2054		 * it means the zones have been fully scanned and are still
2055		 * not balanced. For high-order allocations, there is
2056		 * little point trying all over again as kswapd may
2057		 * infinite loop.
2058		 *
2059		 * Instead, recheck all watermarks at order-0 as they
2060		 * are the most important. If watermarks are ok, kswapd will go
2061		 * back to sleep. High-order users can still perform direct
2062		 * reclaim if they wish.
2063		 */
2064		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2065			order = sc.order = 0;
2066
2067		goto loop_again;
2068	}
2069
2070	return sc.nr_reclaimed;
2071}
2072
2073/*
2074 * The background pageout daemon, started as a kernel thread
2075 * from the init process.
2076 *
2077 * This basically trickles out pages so that we have _some_
2078 * free memory available even if there is no other activity
2079 * that frees anything up. This is needed for things like routing
2080 * etc, where we otherwise might have all activity going on in
2081 * asynchronous contexts that cannot page things out.
2082 *
2083 * If there are applications that are active memory-allocators
2084 * (most normal use), this basically shouldn't matter.
2085 */
2086static int kswapd(void *p)
2087{
2088	unsigned long order;
2089	pg_data_t *pgdat = (pg_data_t*)p;
2090	struct task_struct *tsk = current;
2091	DEFINE_WAIT(wait);
2092	struct reclaim_state reclaim_state = {
2093		.reclaimed_slab = 0,
2094	};
2095	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2096
2097	lockdep_set_current_reclaim_state(GFP_KERNEL);
2098
2099	if (!cpumask_empty(cpumask))
2100		set_cpus_allowed_ptr(tsk, cpumask);
2101	current->reclaim_state = &reclaim_state;
2102
2103	/*
2104	 * Tell the memory management that we're a "memory allocator",
2105	 * and that if we need more memory we should get access to it
2106	 * regardless (see "__alloc_pages()"). "kswapd" should
2107	 * never get caught in the normal page freeing logic.
2108	 *
2109	 * (Kswapd normally doesn't need memory anyway, but sometimes
2110	 * you need a small amount of memory in order to be able to
2111	 * page out something else, and this flag essentially protects
2112	 * us from recursively trying to free more memory as we're
2113	 * trying to free the first piece of memory in the first place).
2114	 */
2115	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2116	set_freezable();
2117
2118	order = 0;
2119	for ( ; ; ) {
2120		unsigned long new_order;
2121
2122		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2123		new_order = pgdat->kswapd_max_order;
2124		pgdat->kswapd_max_order = 0;
2125		if (order < new_order) {
2126			/*
2127			 * Don't sleep if someone wants a larger 'order'
2128			 * allocation
2129			 */
2130			order = new_order;
2131		} else {
2132			if (!freezing(current))
2133				schedule();
2134
2135			order = pgdat->kswapd_max_order;
2136		}
2137		finish_wait(&pgdat->kswapd_wait, &wait);
2138
2139		if (!try_to_freeze()) {
2140			/* We can speed up thawing tasks if we don't call
2141			 * balance_pgdat after returning from the refrigerator
2142			 */
2143			balance_pgdat(pgdat, order);
2144		}
2145	}
2146	return 0;
2147}
2148
2149/*
2150 * A zone is low on free memory, so wake its kswapd task to service it.
2151 */
2152void wakeup_kswapd(struct zone *zone, int order)
2153{
2154	pg_data_t *pgdat;
2155
2156	if (!populated_zone(zone))
2157		return;
2158
2159	pgdat = zone->zone_pgdat;
2160	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2161		return;
2162	if (pgdat->kswapd_max_order < order)
2163		pgdat->kswapd_max_order = order;
2164	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2165		return;
2166	if (!waitqueue_active(&pgdat->kswapd_wait))
2167		return;
2168	wake_up_interruptible(&pgdat->kswapd_wait);
2169}
2170
2171/*
2172 * The reclaimable count would be mostly accurate.
2173 * The less reclaimable pages may be
2174 * - mlocked pages, which will be moved to unevictable list when encountered
2175 * - mapped pages, which may require several travels to be reclaimed
2176 * - dirty pages, which is not "instantly" reclaimable
2177 */
2178unsigned long global_reclaimable_pages(void)
2179{
2180	int nr;
2181
2182	nr = global_page_state(NR_ACTIVE_FILE) +
2183	     global_page_state(NR_INACTIVE_FILE);
2184
2185	if (nr_swap_pages > 0)
2186		nr += global_page_state(NR_ACTIVE_ANON) +
2187		      global_page_state(NR_INACTIVE_ANON);
2188
2189	return nr;
2190}
2191
2192unsigned long zone_reclaimable_pages(struct zone *zone)
2193{
2194	int nr;
2195
2196	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2197	     zone_page_state(zone, NR_INACTIVE_FILE);
2198
2199	if (nr_swap_pages > 0)
2200		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2201		      zone_page_state(zone, NR_INACTIVE_ANON);
2202
2203	return nr;
2204}
2205
2206#ifdef CONFIG_HIBERNATION
2207/*
2208 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2209 * from LRU lists system-wide, for given pass and priority.
2210 *
2211 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2212 */
2213static void shrink_all_zones(unsigned long nr_pages, int prio,
2214				      int pass, struct scan_control *sc)
2215{
2216	struct zone *zone;
2217	unsigned long nr_reclaimed = 0;
2218
2219	for_each_populated_zone(zone) {
2220		enum lru_list l;
2221
2222		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2223			continue;
2224
2225		for_each_evictable_lru(l) {
2226			enum zone_stat_item ls = NR_LRU_BASE + l;
2227			unsigned long lru_pages = zone_page_state(zone, ls);
2228
2229			/* For pass = 0, we don't shrink the active list */
2230			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2231						l == LRU_ACTIVE_FILE))
2232				continue;
2233
2234			zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2235			if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
2236				unsigned long nr_to_scan;
2237
2238				zone->lru[l].nr_saved_scan = 0;
2239				nr_to_scan = min(nr_pages, lru_pages);
2240				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2241								sc, prio);
2242				if (nr_reclaimed >= nr_pages) {
2243					sc->nr_reclaimed += nr_reclaimed;
2244					return;
2245				}
2246			}
2247		}
2248	}
2249	sc->nr_reclaimed += nr_reclaimed;
2250}
2251
2252/*
2253 * Try to free `nr_pages' of memory, system-wide, and return the number of
2254 * freed pages.
2255 *
2256 * Rather than trying to age LRUs the aim is to preserve the overall
2257 * LRU order by reclaiming preferentially
2258 * inactive > active > active referenced > active mapped
2259 */
2260unsigned long shrink_all_memory(unsigned long nr_pages)
2261{
2262	unsigned long lru_pages, nr_slab;
2263	int pass;
2264	struct reclaim_state reclaim_state;
2265	struct scan_control sc = {
2266		.gfp_mask = GFP_KERNEL,
2267		.may_unmap = 0,
2268		.may_writepage = 1,
2269		.isolate_pages = isolate_pages_global,
2270		.nr_reclaimed = 0,
2271	};
2272
2273	current->reclaim_state = &reclaim_state;
2274
2275	lru_pages = global_reclaimable_pages();
2276	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2277	/* If slab caches are huge, it's better to hit them first */
2278	while (nr_slab >= lru_pages) {
2279		reclaim_state.reclaimed_slab = 0;
2280		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2281		if (!reclaim_state.reclaimed_slab)
2282			break;
2283
2284		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2285		if (sc.nr_reclaimed >= nr_pages)
2286			goto out;
2287
2288		nr_slab -= reclaim_state.reclaimed_slab;
2289	}
2290
2291	/*
2292	 * We try to shrink LRUs in 5 passes:
2293	 * 0 = Reclaim from inactive_list only
2294	 * 1 = Reclaim from active list but don't reclaim mapped
2295	 * 2 = 2nd pass of type 1
2296	 * 3 = Reclaim mapped (normal reclaim)
2297	 * 4 = 2nd pass of type 3
2298	 */
2299	for (pass = 0; pass < 5; pass++) {
2300		int prio;
2301
2302		/* Force reclaiming mapped pages in the passes #3 and #4 */
2303		if (pass > 2)
2304			sc.may_unmap = 1;
2305
2306		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2307			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2308
2309			sc.nr_scanned = 0;
2310			sc.swap_cluster_max = nr_to_scan;
2311			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2312			if (sc.nr_reclaimed >= nr_pages)
2313				goto out;
2314
2315			reclaim_state.reclaimed_slab = 0;
2316			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2317				    global_reclaimable_pages());
2318			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2319			if (sc.nr_reclaimed >= nr_pages)
2320				goto out;
2321
2322			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2323				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2324		}
2325	}
2326
2327	/*
2328	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2329	 * something in slab caches
2330	 */
2331	if (!sc.nr_reclaimed) {
2332		do {
2333			reclaim_state.reclaimed_slab = 0;
2334			shrink_slab(nr_pages, sc.gfp_mask,
2335				    global_reclaimable_pages());
2336			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2337		} while (sc.nr_reclaimed < nr_pages &&
2338				reclaim_state.reclaimed_slab > 0);
2339	}
2340
2341
2342out:
2343	current->reclaim_state = NULL;
2344
2345	return sc.nr_reclaimed;
2346}
2347#endif /* CONFIG_HIBERNATION */
2348
2349/* It's optimal to keep kswapds on the same CPUs as their memory, but
2350   not required for correctness.  So if the last cpu in a node goes
2351   away, we get changed to run anywhere: as the first one comes back,
2352   restore their cpu bindings. */
2353static int __devinit cpu_callback(struct notifier_block *nfb,
2354				  unsigned long action, void *hcpu)
2355{
2356	int nid;
2357
2358	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2359		for_each_node_state(nid, N_HIGH_MEMORY) {
2360			pg_data_t *pgdat = NODE_DATA(nid);
2361			const struct cpumask *mask;
2362
2363			mask = cpumask_of_node(pgdat->node_id);
2364
2365			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2366				/* One of our CPUs online: restore mask */
2367				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2368		}
2369	}
2370	return NOTIFY_OK;
2371}
2372
2373/*
2374 * This kswapd start function will be called by init and node-hot-add.
2375 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2376 */
2377int kswapd_run(int nid)
2378{
2379	pg_data_t *pgdat = NODE_DATA(nid);
2380	int ret = 0;
2381
2382	if (pgdat->kswapd)
2383		return 0;
2384
2385	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2386	if (IS_ERR(pgdat->kswapd)) {
2387		/* failure at boot is fatal */
2388		BUG_ON(system_state == SYSTEM_BOOTING);
2389		printk("Failed to start kswapd on node %d\n",nid);
2390		ret = -1;
2391	}
2392	return ret;
2393}
2394
2395static int __init kswapd_init(void)
2396{
2397	int nid;
2398
2399	swap_setup();
2400	for_each_node_state(nid, N_HIGH_MEMORY)
2401 		kswapd_run(nid);
2402	hotcpu_notifier(cpu_callback, 0);
2403	return 0;
2404}
2405
2406module_init(kswapd_init)
2407
2408#ifdef CONFIG_NUMA
2409/*
2410 * Zone reclaim mode
2411 *
2412 * If non-zero call zone_reclaim when the number of free pages falls below
2413 * the watermarks.
2414 */
2415int zone_reclaim_mode __read_mostly;
2416
2417#define RECLAIM_OFF 0
2418#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2419#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2420#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2421
2422/*
2423 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2424 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2425 * a zone.
2426 */
2427#define ZONE_RECLAIM_PRIORITY 4
2428
2429/*
2430 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2431 * occur.
2432 */
2433int sysctl_min_unmapped_ratio = 1;
2434
2435/*
2436 * If the number of slab pages in a zone grows beyond this percentage then
2437 * slab reclaim needs to occur.
2438 */
2439int sysctl_min_slab_ratio = 5;
2440
2441static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2442{
2443	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2444	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2445		zone_page_state(zone, NR_ACTIVE_FILE);
2446
2447	/*
2448	 * It's possible for there to be more file mapped pages than
2449	 * accounted for by the pages on the file LRU lists because
2450	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2451	 */
2452	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2453}
2454
2455/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2456static long zone_pagecache_reclaimable(struct zone *zone)
2457{
2458	long nr_pagecache_reclaimable;
2459	long delta = 0;
2460
2461	/*
2462	 * If RECLAIM_SWAP is set, then all file pages are considered
2463	 * potentially reclaimable. Otherwise, we have to worry about
2464	 * pages like swapcache and zone_unmapped_file_pages() provides
2465	 * a better estimate
2466	 */
2467	if (zone_reclaim_mode & RECLAIM_SWAP)
2468		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2469	else
2470		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2471
2472	/* If we can't clean pages, remove dirty pages from consideration */
2473	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2474		delta += zone_page_state(zone, NR_FILE_DIRTY);
2475
2476	/* Watch for any possible underflows due to delta */
2477	if (unlikely(delta > nr_pagecache_reclaimable))
2478		delta = nr_pagecache_reclaimable;
2479
2480	return nr_pagecache_reclaimable - delta;
2481}
2482
2483/*
2484 * Try to free up some pages from this zone through reclaim.
2485 */
2486static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2487{
2488	/* Minimum pages needed in order to stay on node */
2489	const unsigned long nr_pages = 1 << order;
2490	struct task_struct *p = current;
2491	struct reclaim_state reclaim_state;
2492	int priority;
2493	struct scan_control sc = {
2494		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2495		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2496		.may_swap = 1,
2497		.swap_cluster_max = max_t(unsigned long, nr_pages,
2498					SWAP_CLUSTER_MAX),
2499		.gfp_mask = gfp_mask,
2500		.swappiness = vm_swappiness,
2501		.order = order,
2502		.isolate_pages = isolate_pages_global,
2503	};
2504	unsigned long slab_reclaimable;
2505
2506	disable_swap_token();
2507	cond_resched();
2508	/*
2509	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2510	 * and we also need to be able to write out pages for RECLAIM_WRITE
2511	 * and RECLAIM_SWAP.
2512	 */
2513	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2514	reclaim_state.reclaimed_slab = 0;
2515	p->reclaim_state = &reclaim_state;
2516
2517	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2518		/*
2519		 * Free memory by calling shrink zone with increasing
2520		 * priorities until we have enough memory freed.
2521		 */
2522		priority = ZONE_RECLAIM_PRIORITY;
2523		do {
2524			note_zone_scanning_priority(zone, priority);
2525			shrink_zone(priority, zone, &sc);
2526			priority--;
2527		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2528	}
2529
2530	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2531	if (slab_reclaimable > zone->min_slab_pages) {
2532		/*
2533		 * shrink_slab() does not currently allow us to determine how
2534		 * many pages were freed in this zone. So we take the current
2535		 * number of slab pages and shake the slab until it is reduced
2536		 * by the same nr_pages that we used for reclaiming unmapped
2537		 * pages.
2538		 *
2539		 * Note that shrink_slab will free memory on all zones and may
2540		 * take a long time.
2541		 */
2542		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2543			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2544				slab_reclaimable - nr_pages)
2545			;
2546
2547		/*
2548		 * Update nr_reclaimed by the number of slab pages we
2549		 * reclaimed from this zone.
2550		 */
2551		sc.nr_reclaimed += slab_reclaimable -
2552			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2553	}
2554
2555	p->reclaim_state = NULL;
2556	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2557	return sc.nr_reclaimed >= nr_pages;
2558}
2559
2560int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2561{
2562	int node_id;
2563	int ret;
2564
2565	/*
2566	 * Zone reclaim reclaims unmapped file backed pages and
2567	 * slab pages if we are over the defined limits.
2568	 *
2569	 * A small portion of unmapped file backed pages is needed for
2570	 * file I/O otherwise pages read by file I/O will be immediately
2571	 * thrown out if the zone is overallocated. So we do not reclaim
2572	 * if less than a specified percentage of the zone is used by
2573	 * unmapped file backed pages.
2574	 */
2575	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2576	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2577		return ZONE_RECLAIM_FULL;
2578
2579	if (zone_is_all_unreclaimable(zone))
2580		return ZONE_RECLAIM_FULL;
2581
2582	/*
2583	 * Do not scan if the allocation should not be delayed.
2584	 */
2585	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2586		return ZONE_RECLAIM_NOSCAN;
2587
2588	/*
2589	 * Only run zone reclaim on the local zone or on zones that do not
2590	 * have associated processors. This will favor the local processor
2591	 * over remote processors and spread off node memory allocations
2592	 * as wide as possible.
2593	 */
2594	node_id = zone_to_nid(zone);
2595	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2596		return ZONE_RECLAIM_NOSCAN;
2597
2598	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2599		return ZONE_RECLAIM_NOSCAN;
2600
2601	ret = __zone_reclaim(zone, gfp_mask, order);
2602	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2603
2604	if (!ret)
2605		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2606
2607	return ret;
2608}
2609#endif
2610
2611/*
2612 * page_evictable - test whether a page is evictable
2613 * @page: the page to test
2614 * @vma: the VMA in which the page is or will be mapped, may be NULL
2615 *
2616 * Test whether page is evictable--i.e., should be placed on active/inactive
2617 * lists vs unevictable list.  The vma argument is !NULL when called from the
2618 * fault path to determine how to instantate a new page.
2619 *
2620 * Reasons page might not be evictable:
2621 * (1) page's mapping marked unevictable
2622 * (2) page is part of an mlocked VMA
2623 *
2624 */
2625int page_evictable(struct page *page, struct vm_area_struct *vma)
2626{
2627
2628	if (mapping_unevictable(page_mapping(page)))
2629		return 0;
2630
2631	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2632		return 0;
2633
2634	return 1;
2635}
2636
2637/**
2638 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2639 * @page: page to check evictability and move to appropriate lru list
2640 * @zone: zone page is in
2641 *
2642 * Checks a page for evictability and moves the page to the appropriate
2643 * zone lru list.
2644 *
2645 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2646 * have PageUnevictable set.
2647 */
2648static void check_move_unevictable_page(struct page *page, struct zone *zone)
2649{
2650	VM_BUG_ON(PageActive(page));
2651
2652retry:
2653	ClearPageUnevictable(page);
2654	if (page_evictable(page, NULL)) {
2655		enum lru_list l = page_lru_base_type(page);
2656
2657		__dec_zone_state(zone, NR_UNEVICTABLE);
2658		list_move(&page->lru, &zone->lru[l].list);
2659		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2660		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2661		__count_vm_event(UNEVICTABLE_PGRESCUED);
2662	} else {
2663		/*
2664		 * rotate unevictable list
2665		 */
2666		SetPageUnevictable(page);
2667		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2668		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2669		if (page_evictable(page, NULL))
2670			goto retry;
2671	}
2672}
2673
2674/**
2675 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2676 * @mapping: struct address_space to scan for evictable pages
2677 *
2678 * Scan all pages in mapping.  Check unevictable pages for
2679 * evictability and move them to the appropriate zone lru list.
2680 */
2681void scan_mapping_unevictable_pages(struct address_space *mapping)
2682{
2683	pgoff_t next = 0;
2684	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2685			 PAGE_CACHE_SHIFT;
2686	struct zone *zone;
2687	struct pagevec pvec;
2688
2689	if (mapping->nrpages == 0)
2690		return;
2691
2692	pagevec_init(&pvec, 0);
2693	while (next < end &&
2694		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2695		int i;
2696		int pg_scanned = 0;
2697
2698		zone = NULL;
2699
2700		for (i = 0; i < pagevec_count(&pvec); i++) {
2701			struct page *page = pvec.pages[i];
2702			pgoff_t page_index = page->index;
2703			struct zone *pagezone = page_zone(page);
2704
2705			pg_scanned++;
2706			if (page_index > next)
2707				next = page_index;
2708			next++;
2709
2710			if (pagezone != zone) {
2711				if (zone)
2712					spin_unlock_irq(&zone->lru_lock);
2713				zone = pagezone;
2714				spin_lock_irq(&zone->lru_lock);
2715			}
2716
2717			if (PageLRU(page) && PageUnevictable(page))
2718				check_move_unevictable_page(page, zone);
2719		}
2720		if (zone)
2721			spin_unlock_irq(&zone->lru_lock);
2722		pagevec_release(&pvec);
2723
2724		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2725	}
2726
2727}
2728
2729/**
2730 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2731 * @zone - zone of which to scan the unevictable list
2732 *
2733 * Scan @zone's unevictable LRU lists to check for pages that have become
2734 * evictable.  Move those that have to @zone's inactive list where they
2735 * become candidates for reclaim, unless shrink_inactive_zone() decides
2736 * to reactivate them.  Pages that are still unevictable are rotated
2737 * back onto @zone's unevictable list.
2738 */
2739#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2740static void scan_zone_unevictable_pages(struct zone *zone)
2741{
2742	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2743	unsigned long scan;
2744	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2745
2746	while (nr_to_scan > 0) {
2747		unsigned long batch_size = min(nr_to_scan,
2748						SCAN_UNEVICTABLE_BATCH_SIZE);
2749
2750		spin_lock_irq(&zone->lru_lock);
2751		for (scan = 0;  scan < batch_size; scan++) {
2752			struct page *page = lru_to_page(l_unevictable);
2753
2754			if (!trylock_page(page))
2755				continue;
2756
2757			prefetchw_prev_lru_page(page, l_unevictable, flags);
2758
2759			if (likely(PageLRU(page) && PageUnevictable(page)))
2760				check_move_unevictable_page(page, zone);
2761
2762			unlock_page(page);
2763		}
2764		spin_unlock_irq(&zone->lru_lock);
2765
2766		nr_to_scan -= batch_size;
2767	}
2768}
2769
2770
2771/**
2772 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2773 *
2774 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2775 * pages that have become evictable.  Move those back to the zones'
2776 * inactive list where they become candidates for reclaim.
2777 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2778 * and we add swap to the system.  As such, it runs in the context of a task
2779 * that has possibly/probably made some previously unevictable pages
2780 * evictable.
2781 */
2782static void scan_all_zones_unevictable_pages(void)
2783{
2784	struct zone *zone;
2785
2786	for_each_zone(zone) {
2787		scan_zone_unevictable_pages(zone);
2788	}
2789}
2790
2791/*
2792 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2793 * all nodes' unevictable lists for evictable pages
2794 */
2795unsigned long scan_unevictable_pages;
2796
2797int scan_unevictable_handler(struct ctl_table *table, int write,
2798			   struct file *file, void __user *buffer,
2799			   size_t *length, loff_t *ppos)
2800{
2801	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2802
2803	if (write && *(unsigned long *)table->data)
2804		scan_all_zones_unevictable_pages();
2805
2806	scan_unevictable_pages = 0;
2807	return 0;
2808}
2809
2810/*
2811 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2812 * a specified node's per zone unevictable lists for evictable pages.
2813 */
2814
2815static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2816					  struct sysdev_attribute *attr,
2817					  char *buf)
2818{
2819	return sprintf(buf, "0\n");	/* always zero; should fit... */
2820}
2821
2822static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2823					   struct sysdev_attribute *attr,
2824					const char *buf, size_t count)
2825{
2826	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2827	struct zone *zone;
2828	unsigned long res;
2829	unsigned long req = strict_strtoul(buf, 10, &res);
2830
2831	if (!req)
2832		return 1;	/* zero is no-op */
2833
2834	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2835		if (!populated_zone(zone))
2836			continue;
2837		scan_zone_unevictable_pages(zone);
2838	}
2839	return 1;
2840}
2841
2842
2843static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2844			read_scan_unevictable_node,
2845			write_scan_unevictable_node);
2846
2847int scan_unevictable_register_node(struct node *node)
2848{
2849	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2850}
2851
2852void scan_unevictable_unregister_node(struct node *node)
2853{
2854	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2855}
2856
2857