vmscan.c revision 6fe6b7e35785e3232ffe7f81d3893f1316710a02
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51struct scan_control {
52	/* Incremented by the number of inactive pages that were scanned */
53	unsigned long nr_scanned;
54
55	/* Number of pages freed so far during a call to shrink_zones() */
56	unsigned long nr_reclaimed;
57
58	/* This context's GFP mask */
59	gfp_t gfp_mask;
60
61	int may_writepage;
62
63	/* Can mapped pages be reclaimed? */
64	int may_unmap;
65
66	/* Can pages be swapped as part of reclaim? */
67	int may_swap;
68
69	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71	 * In this context, it doesn't matter that we scan the
72	 * whole list at once. */
73	int swap_cluster_max;
74
75	int swappiness;
76
77	int all_unreclaimable;
78
79	int order;
80
81	/* Which cgroup do we reclaim from */
82	struct mem_cgroup *mem_cgroup;
83
84	/*
85	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86	 * are scanned.
87	 */
88	nodemask_t	*nodemask;
89
90	/* Pluggable isolate pages callback */
91	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92			unsigned long *scanned, int order, int mode,
93			struct zone *z, struct mem_cgroup *mem_cont,
94			int active, int file);
95};
96
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field)			\
101	do {								\
102		if ((_page)->lru.prev != _base) {			\
103			struct page *prev;				\
104									\
105			prev = lru_to_page(&(_page->lru));		\
106			prefetch(&prev->_field);			\
107		}							\
108	} while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field)			\
115	do {								\
116		if ((_page)->lru.prev != _base) {			\
117			struct page *prev;				\
118									\
119			prev = lru_to_page(&(_page->lru));		\
120			prefetchw(&prev->_field);			\
121		}							\
122	} while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100.  Higher means more swappy.
129 */
130int vm_swappiness = 60;
131long vm_total_pages;	/* The total number of pages which the VM controls */
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138#else
139#define scanning_global_lru(sc)	(1)
140#endif
141
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143						  struct scan_control *sc)
144{
145	if (!scanning_global_lru(sc))
146		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148	return &zone->reclaim_stat;
149}
150
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152				   enum lru_list lru)
153{
154	if (!scanning_global_lru(sc))
155		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157	return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
161/*
162 * Add a shrinker callback to be called from the vm
163 */
164void register_shrinker(struct shrinker *shrinker)
165{
166	shrinker->nr = 0;
167	down_write(&shrinker_rwsem);
168	list_add_tail(&shrinker->list, &shrinker_list);
169	up_write(&shrinker_rwsem);
170}
171EXPORT_SYMBOL(register_shrinker);
172
173/*
174 * Remove one
175 */
176void unregister_shrinker(struct shrinker *shrinker)
177{
178	down_write(&shrinker_rwsem);
179	list_del(&shrinker->list);
180	up_write(&shrinker_rwsem);
181}
182EXPORT_SYMBOL(unregister_shrinker);
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object.  With this in mind we age equal
190 * percentages of the lru and ageable caches.  This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt.  It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205			unsigned long lru_pages)
206{
207	struct shrinker *shrinker;
208	unsigned long ret = 0;
209
210	if (scanned == 0)
211		scanned = SWAP_CLUSTER_MAX;
212
213	if (!down_read_trylock(&shrinker_rwsem))
214		return 1;	/* Assume we'll be able to shrink next time */
215
216	list_for_each_entry(shrinker, &shrinker_list, list) {
217		unsigned long long delta;
218		unsigned long total_scan;
219		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220
221		delta = (4 * scanned) / shrinker->seeks;
222		delta *= max_pass;
223		do_div(delta, lru_pages + 1);
224		shrinker->nr += delta;
225		if (shrinker->nr < 0) {
226			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227			       "delete nr=%ld\n",
228			       shrinker->shrink, shrinker->nr);
229			shrinker->nr = max_pass;
230		}
231
232		/*
233		 * Avoid risking looping forever due to too large nr value:
234		 * never try to free more than twice the estimate number of
235		 * freeable entries.
236		 */
237		if (shrinker->nr > max_pass * 2)
238			shrinker->nr = max_pass * 2;
239
240		total_scan = shrinker->nr;
241		shrinker->nr = 0;
242
243		while (total_scan >= SHRINK_BATCH) {
244			long this_scan = SHRINK_BATCH;
245			int shrink_ret;
246			int nr_before;
247
248			nr_before = (*shrinker->shrink)(0, gfp_mask);
249			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250			if (shrink_ret == -1)
251				break;
252			if (shrink_ret < nr_before)
253				ret += nr_before - shrink_ret;
254			count_vm_events(SLABS_SCANNED, this_scan);
255			total_scan -= this_scan;
256
257			cond_resched();
258		}
259
260		shrinker->nr += total_scan;
261	}
262	up_read(&shrinker_rwsem);
263	return ret;
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269	struct address_space *mapping;
270
271	/* Page is in somebody's page tables. */
272	if (page_mapped(page))
273		return 1;
274
275	/* Be more reluctant to reclaim swapcache than pagecache */
276	if (PageSwapCache(page))
277		return 1;
278
279	mapping = page_mapping(page);
280	if (!mapping)
281		return 0;
282
283	/* File is mmap'd by somebody? */
284	return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
289	return page_count(page) - !!page_has_private(page) == 2;
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
294	if (current->flags & PF_SWAPWRITE)
295		return 1;
296	if (!bdi_write_congested(bdi))
297		return 1;
298	if (bdi == current->backing_dev_info)
299		return 1;
300	return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out.  Probably
305 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up.  But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316				struct page *page, int error)
317{
318	lock_page(page);
319	if (page_mapping(page) == mapping)
320		mapping_set_error(mapping, error);
321	unlock_page(page);
322}
323
324/* Request for sync pageout. */
325enum pageout_io {
326	PAGEOUT_IO_ASYNC,
327	PAGEOUT_IO_SYNC,
328};
329
330/* possible outcome of pageout() */
331typedef enum {
332	/* failed to write page out, page is locked */
333	PAGE_KEEP,
334	/* move page to the active list, page is locked */
335	PAGE_ACTIVATE,
336	/* page has been sent to the disk successfully, page is unlocked */
337	PAGE_SUCCESS,
338	/* page is clean and locked */
339	PAGE_CLEAN,
340} pageout_t;
341
342/*
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
345 */
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347						enum pageout_io sync_writeback)
348{
349	/*
350	 * If the page is dirty, only perform writeback if that write
351	 * will be non-blocking.  To prevent this allocation from being
352	 * stalled by pagecache activity.  But note that there may be
353	 * stalls if we need to run get_block().  We could test
354	 * PagePrivate for that.
355	 *
356	 * If this process is currently in generic_file_write() against
357	 * this page's queue, we can perform writeback even if that
358	 * will block.
359	 *
360	 * If the page is swapcache, write it back even if that would
361	 * block, for some throttling. This happens by accident, because
362	 * swap_backing_dev_info is bust: it doesn't reflect the
363	 * congestion state of the swapdevs.  Easy to fix, if needed.
364	 * See swapfile.c:page_queue_congested().
365	 */
366	if (!is_page_cache_freeable(page))
367		return PAGE_KEEP;
368	if (!mapping) {
369		/*
370		 * Some data journaling orphaned pages can have
371		 * page->mapping == NULL while being dirty with clean buffers.
372		 */
373		if (page_has_private(page)) {
374			if (try_to_free_buffers(page)) {
375				ClearPageDirty(page);
376				printk("%s: orphaned page\n", __func__);
377				return PAGE_CLEAN;
378			}
379		}
380		return PAGE_KEEP;
381	}
382	if (mapping->a_ops->writepage == NULL)
383		return PAGE_ACTIVATE;
384	if (!may_write_to_queue(mapping->backing_dev_info))
385		return PAGE_KEEP;
386
387	if (clear_page_dirty_for_io(page)) {
388		int res;
389		struct writeback_control wbc = {
390			.sync_mode = WB_SYNC_NONE,
391			.nr_to_write = SWAP_CLUSTER_MAX,
392			.range_start = 0,
393			.range_end = LLONG_MAX,
394			.nonblocking = 1,
395			.for_reclaim = 1,
396		};
397
398		SetPageReclaim(page);
399		res = mapping->a_ops->writepage(page, &wbc);
400		if (res < 0)
401			handle_write_error(mapping, page, res);
402		if (res == AOP_WRITEPAGE_ACTIVATE) {
403			ClearPageReclaim(page);
404			return PAGE_ACTIVATE;
405		}
406
407		/*
408		 * Wait on writeback if requested to. This happens when
409		 * direct reclaiming a large contiguous area and the
410		 * first attempt to free a range of pages fails.
411		 */
412		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413			wait_on_page_writeback(page);
414
415		if (!PageWriteback(page)) {
416			/* synchronous write or broken a_ops? */
417			ClearPageReclaim(page);
418		}
419		inc_zone_page_state(page, NR_VMSCAN_WRITE);
420		return PAGE_SUCCESS;
421	}
422
423	return PAGE_CLEAN;
424}
425
426/*
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
429 */
430static int __remove_mapping(struct address_space *mapping, struct page *page)
431{
432	BUG_ON(!PageLocked(page));
433	BUG_ON(mapping != page_mapping(page));
434
435	spin_lock_irq(&mapping->tree_lock);
436	/*
437	 * The non racy check for a busy page.
438	 *
439	 * Must be careful with the order of the tests. When someone has
440	 * a ref to the page, it may be possible that they dirty it then
441	 * drop the reference. So if PageDirty is tested before page_count
442	 * here, then the following race may occur:
443	 *
444	 * get_user_pages(&page);
445	 * [user mapping goes away]
446	 * write_to(page);
447	 *				!PageDirty(page)    [good]
448	 * SetPageDirty(page);
449	 * put_page(page);
450	 *				!page_count(page)   [good, discard it]
451	 *
452	 * [oops, our write_to data is lost]
453	 *
454	 * Reversing the order of the tests ensures such a situation cannot
455	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456	 * load is not satisfied before that of page->_count.
457	 *
458	 * Note that if SetPageDirty is always performed via set_page_dirty,
459	 * and thus under tree_lock, then this ordering is not required.
460	 */
461	if (!page_freeze_refs(page, 2))
462		goto cannot_free;
463	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464	if (unlikely(PageDirty(page))) {
465		page_unfreeze_refs(page, 2);
466		goto cannot_free;
467	}
468
469	if (PageSwapCache(page)) {
470		swp_entry_t swap = { .val = page_private(page) };
471		__delete_from_swap_cache(page);
472		spin_unlock_irq(&mapping->tree_lock);
473		swapcache_free(swap, page);
474	} else {
475		__remove_from_page_cache(page);
476		spin_unlock_irq(&mapping->tree_lock);
477		mem_cgroup_uncharge_cache_page(page);
478	}
479
480	return 1;
481
482cannot_free:
483	spin_unlock_irq(&mapping->tree_lock);
484	return 0;
485}
486
487/*
488 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
489 * someone else has a ref on the page, abort and return 0.  If it was
490 * successfully detached, return 1.  Assumes the caller has a single ref on
491 * this page.
492 */
493int remove_mapping(struct address_space *mapping, struct page *page)
494{
495	if (__remove_mapping(mapping, page)) {
496		/*
497		 * Unfreezing the refcount with 1 rather than 2 effectively
498		 * drops the pagecache ref for us without requiring another
499		 * atomic operation.
500		 */
501		page_unfreeze_refs(page, 1);
502		return 1;
503	}
504	return 0;
505}
506
507/**
508 * putback_lru_page - put previously isolated page onto appropriate LRU list
509 * @page: page to be put back to appropriate lru list
510 *
511 * Add previously isolated @page to appropriate LRU list.
512 * Page may still be unevictable for other reasons.
513 *
514 * lru_lock must not be held, interrupts must be enabled.
515 */
516void putback_lru_page(struct page *page)
517{
518	int lru;
519	int active = !!TestClearPageActive(page);
520	int was_unevictable = PageUnevictable(page);
521
522	VM_BUG_ON(PageLRU(page));
523
524redo:
525	ClearPageUnevictable(page);
526
527	if (page_evictable(page, NULL)) {
528		/*
529		 * For evictable pages, we can use the cache.
530		 * In event of a race, worst case is we end up with an
531		 * unevictable page on [in]active list.
532		 * We know how to handle that.
533		 */
534		lru = active + page_is_file_cache(page);
535		lru_cache_add_lru(page, lru);
536	} else {
537		/*
538		 * Put unevictable pages directly on zone's unevictable
539		 * list.
540		 */
541		lru = LRU_UNEVICTABLE;
542		add_page_to_unevictable_list(page);
543	}
544
545	/*
546	 * page's status can change while we move it among lru. If an evictable
547	 * page is on unevictable list, it never be freed. To avoid that,
548	 * check after we added it to the list, again.
549	 */
550	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551		if (!isolate_lru_page(page)) {
552			put_page(page);
553			goto redo;
554		}
555		/* This means someone else dropped this page from LRU
556		 * So, it will be freed or putback to LRU again. There is
557		 * nothing to do here.
558		 */
559	}
560
561	if (was_unevictable && lru != LRU_UNEVICTABLE)
562		count_vm_event(UNEVICTABLE_PGRESCUED);
563	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564		count_vm_event(UNEVICTABLE_PGCULLED);
565
566	put_page(page);		/* drop ref from isolate */
567}
568
569/*
570 * shrink_page_list() returns the number of reclaimed pages
571 */
572static unsigned long shrink_page_list(struct list_head *page_list,
573					struct scan_control *sc,
574					enum pageout_io sync_writeback)
575{
576	LIST_HEAD(ret_pages);
577	struct pagevec freed_pvec;
578	int pgactivate = 0;
579	unsigned long nr_reclaimed = 0;
580	unsigned long vm_flags;
581
582	cond_resched();
583
584	pagevec_init(&freed_pvec, 1);
585	while (!list_empty(page_list)) {
586		struct address_space *mapping;
587		struct page *page;
588		int may_enter_fs;
589		int referenced;
590
591		cond_resched();
592
593		page = lru_to_page(page_list);
594		list_del(&page->lru);
595
596		if (!trylock_page(page))
597			goto keep;
598
599		VM_BUG_ON(PageActive(page));
600
601		sc->nr_scanned++;
602
603		if (unlikely(!page_evictable(page, NULL)))
604			goto cull_mlocked;
605
606		if (!sc->may_unmap && page_mapped(page))
607			goto keep_locked;
608
609		/* Double the slab pressure for mapped and swapcache pages */
610		if (page_mapped(page) || PageSwapCache(page))
611			sc->nr_scanned++;
612
613		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615
616		if (PageWriteback(page)) {
617			/*
618			 * Synchronous reclaim is performed in two passes,
619			 * first an asynchronous pass over the list to
620			 * start parallel writeback, and a second synchronous
621			 * pass to wait for the IO to complete.  Wait here
622			 * for any page for which writeback has already
623			 * started.
624			 */
625			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626				wait_on_page_writeback(page);
627			else
628				goto keep_locked;
629		}
630
631		referenced = page_referenced(page, 1,
632						sc->mem_cgroup, &vm_flags);
633		/* In active use or really unfreeable?  Activate it. */
634		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
635					referenced && page_mapping_inuse(page))
636			goto activate_locked;
637
638		/*
639		 * Anonymous process memory has backing store?
640		 * Try to allocate it some swap space here.
641		 */
642		if (PageAnon(page) && !PageSwapCache(page)) {
643			if (!(sc->gfp_mask & __GFP_IO))
644				goto keep_locked;
645			if (!add_to_swap(page))
646				goto activate_locked;
647			may_enter_fs = 1;
648		}
649
650		mapping = page_mapping(page);
651
652		/*
653		 * The page is mapped into the page tables of one or more
654		 * processes. Try to unmap it here.
655		 */
656		if (page_mapped(page) && mapping) {
657			switch (try_to_unmap(page, 0)) {
658			case SWAP_FAIL:
659				goto activate_locked;
660			case SWAP_AGAIN:
661				goto keep_locked;
662			case SWAP_MLOCK:
663				goto cull_mlocked;
664			case SWAP_SUCCESS:
665				; /* try to free the page below */
666			}
667		}
668
669		if (PageDirty(page)) {
670			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
671				goto keep_locked;
672			if (!may_enter_fs)
673				goto keep_locked;
674			if (!sc->may_writepage)
675				goto keep_locked;
676
677			/* Page is dirty, try to write it out here */
678			switch (pageout(page, mapping, sync_writeback)) {
679			case PAGE_KEEP:
680				goto keep_locked;
681			case PAGE_ACTIVATE:
682				goto activate_locked;
683			case PAGE_SUCCESS:
684				if (PageWriteback(page) || PageDirty(page))
685					goto keep;
686				/*
687				 * A synchronous write - probably a ramdisk.  Go
688				 * ahead and try to reclaim the page.
689				 */
690				if (!trylock_page(page))
691					goto keep;
692				if (PageDirty(page) || PageWriteback(page))
693					goto keep_locked;
694				mapping = page_mapping(page);
695			case PAGE_CLEAN:
696				; /* try to free the page below */
697			}
698		}
699
700		/*
701		 * If the page has buffers, try to free the buffer mappings
702		 * associated with this page. If we succeed we try to free
703		 * the page as well.
704		 *
705		 * We do this even if the page is PageDirty().
706		 * try_to_release_page() does not perform I/O, but it is
707		 * possible for a page to have PageDirty set, but it is actually
708		 * clean (all its buffers are clean).  This happens if the
709		 * buffers were written out directly, with submit_bh(). ext3
710		 * will do this, as well as the blockdev mapping.
711		 * try_to_release_page() will discover that cleanness and will
712		 * drop the buffers and mark the page clean - it can be freed.
713		 *
714		 * Rarely, pages can have buffers and no ->mapping.  These are
715		 * the pages which were not successfully invalidated in
716		 * truncate_complete_page().  We try to drop those buffers here
717		 * and if that worked, and the page is no longer mapped into
718		 * process address space (page_count == 1) it can be freed.
719		 * Otherwise, leave the page on the LRU so it is swappable.
720		 */
721		if (page_has_private(page)) {
722			if (!try_to_release_page(page, sc->gfp_mask))
723				goto activate_locked;
724			if (!mapping && page_count(page) == 1) {
725				unlock_page(page);
726				if (put_page_testzero(page))
727					goto free_it;
728				else {
729					/*
730					 * rare race with speculative reference.
731					 * the speculative reference will free
732					 * this page shortly, so we may
733					 * increment nr_reclaimed here (and
734					 * leave it off the LRU).
735					 */
736					nr_reclaimed++;
737					continue;
738				}
739			}
740		}
741
742		if (!mapping || !__remove_mapping(mapping, page))
743			goto keep_locked;
744
745		/*
746		 * At this point, we have no other references and there is
747		 * no way to pick any more up (removed from LRU, removed
748		 * from pagecache). Can use non-atomic bitops now (and
749		 * we obviously don't have to worry about waking up a process
750		 * waiting on the page lock, because there are no references.
751		 */
752		__clear_page_locked(page);
753free_it:
754		nr_reclaimed++;
755		if (!pagevec_add(&freed_pvec, page)) {
756			__pagevec_free(&freed_pvec);
757			pagevec_reinit(&freed_pvec);
758		}
759		continue;
760
761cull_mlocked:
762		if (PageSwapCache(page))
763			try_to_free_swap(page);
764		unlock_page(page);
765		putback_lru_page(page);
766		continue;
767
768activate_locked:
769		/* Not a candidate for swapping, so reclaim swap space. */
770		if (PageSwapCache(page) && vm_swap_full())
771			try_to_free_swap(page);
772		VM_BUG_ON(PageActive(page));
773		SetPageActive(page);
774		pgactivate++;
775keep_locked:
776		unlock_page(page);
777keep:
778		list_add(&page->lru, &ret_pages);
779		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
780	}
781	list_splice(&ret_pages, page_list);
782	if (pagevec_count(&freed_pvec))
783		__pagevec_free(&freed_pvec);
784	count_vm_events(PGACTIVATE, pgactivate);
785	return nr_reclaimed;
786}
787
788/* LRU Isolation modes. */
789#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
790#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
791#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
792
793/*
794 * Attempt to remove the specified page from its LRU.  Only take this page
795 * if it is of the appropriate PageActive status.  Pages which are being
796 * freed elsewhere are also ignored.
797 *
798 * page:	page to consider
799 * mode:	one of the LRU isolation modes defined above
800 *
801 * returns 0 on success, -ve errno on failure.
802 */
803int __isolate_lru_page(struct page *page, int mode, int file)
804{
805	int ret = -EINVAL;
806
807	/* Only take pages on the LRU. */
808	if (!PageLRU(page))
809		return ret;
810
811	/*
812	 * When checking the active state, we need to be sure we are
813	 * dealing with comparible boolean values.  Take the logical not
814	 * of each.
815	 */
816	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
817		return ret;
818
819	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
820		return ret;
821
822	/*
823	 * When this function is being called for lumpy reclaim, we
824	 * initially look into all LRU pages, active, inactive and
825	 * unevictable; only give shrink_page_list evictable pages.
826	 */
827	if (PageUnevictable(page))
828		return ret;
829
830	ret = -EBUSY;
831
832	if (likely(get_page_unless_zero(page))) {
833		/*
834		 * Be careful not to clear PageLRU until after we're
835		 * sure the page is not being freed elsewhere -- the
836		 * page release code relies on it.
837		 */
838		ClearPageLRU(page);
839		ret = 0;
840		mem_cgroup_del_lru(page);
841	}
842
843	return ret;
844}
845
846/*
847 * zone->lru_lock is heavily contended.  Some of the functions that
848 * shrink the lists perform better by taking out a batch of pages
849 * and working on them outside the LRU lock.
850 *
851 * For pagecache intensive workloads, this function is the hottest
852 * spot in the kernel (apart from copy_*_user functions).
853 *
854 * Appropriate locks must be held before calling this function.
855 *
856 * @nr_to_scan:	The number of pages to look through on the list.
857 * @src:	The LRU list to pull pages off.
858 * @dst:	The temp list to put pages on to.
859 * @scanned:	The number of pages that were scanned.
860 * @order:	The caller's attempted allocation order
861 * @mode:	One of the LRU isolation modes
862 * @file:	True [1] if isolating file [!anon] pages
863 *
864 * returns how many pages were moved onto *@dst.
865 */
866static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
867		struct list_head *src, struct list_head *dst,
868		unsigned long *scanned, int order, int mode, int file)
869{
870	unsigned long nr_taken = 0;
871	unsigned long scan;
872
873	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
874		struct page *page;
875		unsigned long pfn;
876		unsigned long end_pfn;
877		unsigned long page_pfn;
878		int zone_id;
879
880		page = lru_to_page(src);
881		prefetchw_prev_lru_page(page, src, flags);
882
883		VM_BUG_ON(!PageLRU(page));
884
885		switch (__isolate_lru_page(page, mode, file)) {
886		case 0:
887			list_move(&page->lru, dst);
888			nr_taken++;
889			break;
890
891		case -EBUSY:
892			/* else it is being freed elsewhere */
893			list_move(&page->lru, src);
894			continue;
895
896		default:
897			BUG();
898		}
899
900		if (!order)
901			continue;
902
903		/*
904		 * Attempt to take all pages in the order aligned region
905		 * surrounding the tag page.  Only take those pages of
906		 * the same active state as that tag page.  We may safely
907		 * round the target page pfn down to the requested order
908		 * as the mem_map is guarenteed valid out to MAX_ORDER,
909		 * where that page is in a different zone we will detect
910		 * it from its zone id and abort this block scan.
911		 */
912		zone_id = page_zone_id(page);
913		page_pfn = page_to_pfn(page);
914		pfn = page_pfn & ~((1 << order) - 1);
915		end_pfn = pfn + (1 << order);
916		for (; pfn < end_pfn; pfn++) {
917			struct page *cursor_page;
918
919			/* The target page is in the block, ignore it. */
920			if (unlikely(pfn == page_pfn))
921				continue;
922
923			/* Avoid holes within the zone. */
924			if (unlikely(!pfn_valid_within(pfn)))
925				break;
926
927			cursor_page = pfn_to_page(pfn);
928
929			/* Check that we have not crossed a zone boundary. */
930			if (unlikely(page_zone_id(cursor_page) != zone_id))
931				continue;
932			switch (__isolate_lru_page(cursor_page, mode, file)) {
933			case 0:
934				list_move(&cursor_page->lru, dst);
935				nr_taken++;
936				scan++;
937				break;
938
939			case -EBUSY:
940				/* else it is being freed elsewhere */
941				list_move(&cursor_page->lru, src);
942			default:
943				break;	/* ! on LRU or wrong list */
944			}
945		}
946	}
947
948	*scanned = scan;
949	return nr_taken;
950}
951
952static unsigned long isolate_pages_global(unsigned long nr,
953					struct list_head *dst,
954					unsigned long *scanned, int order,
955					int mode, struct zone *z,
956					struct mem_cgroup *mem_cont,
957					int active, int file)
958{
959	int lru = LRU_BASE;
960	if (active)
961		lru += LRU_ACTIVE;
962	if (file)
963		lru += LRU_FILE;
964	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
965								mode, !!file);
966}
967
968/*
969 * clear_active_flags() is a helper for shrink_active_list(), clearing
970 * any active bits from the pages in the list.
971 */
972static unsigned long clear_active_flags(struct list_head *page_list,
973					unsigned int *count)
974{
975	int nr_active = 0;
976	int lru;
977	struct page *page;
978
979	list_for_each_entry(page, page_list, lru) {
980		lru = page_is_file_cache(page);
981		if (PageActive(page)) {
982			lru += LRU_ACTIVE;
983			ClearPageActive(page);
984			nr_active++;
985		}
986		count[lru]++;
987	}
988
989	return nr_active;
990}
991
992/**
993 * isolate_lru_page - tries to isolate a page from its LRU list
994 * @page: page to isolate from its LRU list
995 *
996 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
997 * vmstat statistic corresponding to whatever LRU list the page was on.
998 *
999 * Returns 0 if the page was removed from an LRU list.
1000 * Returns -EBUSY if the page was not on an LRU list.
1001 *
1002 * The returned page will have PageLRU() cleared.  If it was found on
1003 * the active list, it will have PageActive set.  If it was found on
1004 * the unevictable list, it will have the PageUnevictable bit set. That flag
1005 * may need to be cleared by the caller before letting the page go.
1006 *
1007 * The vmstat statistic corresponding to the list on which the page was
1008 * found will be decremented.
1009 *
1010 * Restrictions:
1011 * (1) Must be called with an elevated refcount on the page. This is a
1012 *     fundamentnal difference from isolate_lru_pages (which is called
1013 *     without a stable reference).
1014 * (2) the lru_lock must not be held.
1015 * (3) interrupts must be enabled.
1016 */
1017int isolate_lru_page(struct page *page)
1018{
1019	int ret = -EBUSY;
1020
1021	if (PageLRU(page)) {
1022		struct zone *zone = page_zone(page);
1023
1024		spin_lock_irq(&zone->lru_lock);
1025		if (PageLRU(page) && get_page_unless_zero(page)) {
1026			int lru = page_lru(page);
1027			ret = 0;
1028			ClearPageLRU(page);
1029
1030			del_page_from_lru_list(zone, page, lru);
1031		}
1032		spin_unlock_irq(&zone->lru_lock);
1033	}
1034	return ret;
1035}
1036
1037/*
1038 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1039 * of reclaimed pages
1040 */
1041static unsigned long shrink_inactive_list(unsigned long max_scan,
1042			struct zone *zone, struct scan_control *sc,
1043			int priority, int file)
1044{
1045	LIST_HEAD(page_list);
1046	struct pagevec pvec;
1047	unsigned long nr_scanned = 0;
1048	unsigned long nr_reclaimed = 0;
1049	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1050	int lumpy_reclaim = 0;
1051
1052	/*
1053	 * If we need a large contiguous chunk of memory, or have
1054	 * trouble getting a small set of contiguous pages, we
1055	 * will reclaim both active and inactive pages.
1056	 *
1057	 * We use the same threshold as pageout congestion_wait below.
1058	 */
1059	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1060		lumpy_reclaim = 1;
1061	else if (sc->order && priority < DEF_PRIORITY - 2)
1062		lumpy_reclaim = 1;
1063
1064	pagevec_init(&pvec, 1);
1065
1066	lru_add_drain();
1067	spin_lock_irq(&zone->lru_lock);
1068	do {
1069		struct page *page;
1070		unsigned long nr_taken;
1071		unsigned long nr_scan;
1072		unsigned long nr_freed;
1073		unsigned long nr_active;
1074		unsigned int count[NR_LRU_LISTS] = { 0, };
1075		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1076
1077		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1078			     &page_list, &nr_scan, sc->order, mode,
1079				zone, sc->mem_cgroup, 0, file);
1080		nr_active = clear_active_flags(&page_list, count);
1081		__count_vm_events(PGDEACTIVATE, nr_active);
1082
1083		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1084						-count[LRU_ACTIVE_FILE]);
1085		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1086						-count[LRU_INACTIVE_FILE]);
1087		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1088						-count[LRU_ACTIVE_ANON]);
1089		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1090						-count[LRU_INACTIVE_ANON]);
1091
1092		if (scanning_global_lru(sc))
1093			zone->pages_scanned += nr_scan;
1094
1095		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1096		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1097		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1098		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1099
1100		spin_unlock_irq(&zone->lru_lock);
1101
1102		nr_scanned += nr_scan;
1103		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1104
1105		/*
1106		 * If we are direct reclaiming for contiguous pages and we do
1107		 * not reclaim everything in the list, try again and wait
1108		 * for IO to complete. This will stall high-order allocations
1109		 * but that should be acceptable to the caller
1110		 */
1111		if (nr_freed < nr_taken && !current_is_kswapd() &&
1112		    lumpy_reclaim) {
1113			congestion_wait(WRITE, HZ/10);
1114
1115			/*
1116			 * The attempt at page out may have made some
1117			 * of the pages active, mark them inactive again.
1118			 */
1119			nr_active = clear_active_flags(&page_list, count);
1120			count_vm_events(PGDEACTIVATE, nr_active);
1121
1122			nr_freed += shrink_page_list(&page_list, sc,
1123							PAGEOUT_IO_SYNC);
1124		}
1125
1126		nr_reclaimed += nr_freed;
1127		local_irq_disable();
1128		if (current_is_kswapd()) {
1129			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1130			__count_vm_events(KSWAPD_STEAL, nr_freed);
1131		} else if (scanning_global_lru(sc))
1132			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1133
1134		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1135
1136		if (nr_taken == 0)
1137			goto done;
1138
1139		spin_lock(&zone->lru_lock);
1140		/*
1141		 * Put back any unfreeable pages.
1142		 */
1143		while (!list_empty(&page_list)) {
1144			int lru;
1145			page = lru_to_page(&page_list);
1146			VM_BUG_ON(PageLRU(page));
1147			list_del(&page->lru);
1148			if (unlikely(!page_evictable(page, NULL))) {
1149				spin_unlock_irq(&zone->lru_lock);
1150				putback_lru_page(page);
1151				spin_lock_irq(&zone->lru_lock);
1152				continue;
1153			}
1154			SetPageLRU(page);
1155			lru = page_lru(page);
1156			add_page_to_lru_list(zone, page, lru);
1157			if (PageActive(page)) {
1158				int file = !!page_is_file_cache(page);
1159				reclaim_stat->recent_rotated[file]++;
1160			}
1161			if (!pagevec_add(&pvec, page)) {
1162				spin_unlock_irq(&zone->lru_lock);
1163				__pagevec_release(&pvec);
1164				spin_lock_irq(&zone->lru_lock);
1165			}
1166		}
1167  	} while (nr_scanned < max_scan);
1168	spin_unlock(&zone->lru_lock);
1169done:
1170	local_irq_enable();
1171	pagevec_release(&pvec);
1172	return nr_reclaimed;
1173}
1174
1175/*
1176 * We are about to scan this zone at a certain priority level.  If that priority
1177 * level is smaller (ie: more urgent) than the previous priority, then note
1178 * that priority level within the zone.  This is done so that when the next
1179 * process comes in to scan this zone, it will immediately start out at this
1180 * priority level rather than having to build up its own scanning priority.
1181 * Here, this priority affects only the reclaim-mapped threshold.
1182 */
1183static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1184{
1185	if (priority < zone->prev_priority)
1186		zone->prev_priority = priority;
1187}
1188
1189/*
1190 * This moves pages from the active list to the inactive list.
1191 *
1192 * We move them the other way if the page is referenced by one or more
1193 * processes, from rmap.
1194 *
1195 * If the pages are mostly unmapped, the processing is fast and it is
1196 * appropriate to hold zone->lru_lock across the whole operation.  But if
1197 * the pages are mapped, the processing is slow (page_referenced()) so we
1198 * should drop zone->lru_lock around each page.  It's impossible to balance
1199 * this, so instead we remove the pages from the LRU while processing them.
1200 * It is safe to rely on PG_active against the non-LRU pages in here because
1201 * nobody will play with that bit on a non-LRU page.
1202 *
1203 * The downside is that we have to touch page->_count against each page.
1204 * But we had to alter page->flags anyway.
1205 */
1206
1207
1208static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1209			struct scan_control *sc, int priority, int file)
1210{
1211	unsigned long pgmoved;
1212	unsigned long pgscanned;
1213	unsigned long vm_flags;
1214	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1215	LIST_HEAD(l_inactive);
1216	struct page *page;
1217	struct pagevec pvec;
1218	enum lru_list lru;
1219	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1220
1221	lru_add_drain();
1222	spin_lock_irq(&zone->lru_lock);
1223	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1224					ISOLATE_ACTIVE, zone,
1225					sc->mem_cgroup, 1, file);
1226	/*
1227	 * zone->pages_scanned is used for detect zone's oom
1228	 * mem_cgroup remembers nr_scan by itself.
1229	 */
1230	if (scanning_global_lru(sc)) {
1231		zone->pages_scanned += pgscanned;
1232	}
1233	reclaim_stat->recent_scanned[!!file] += pgmoved;
1234
1235	if (file)
1236		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1237	else
1238		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1239	spin_unlock_irq(&zone->lru_lock);
1240
1241	pgmoved = 0;  /* count referenced (mapping) mapped pages */
1242	while (!list_empty(&l_hold)) {
1243		cond_resched();
1244		page = lru_to_page(&l_hold);
1245		list_del(&page->lru);
1246
1247		if (unlikely(!page_evictable(page, NULL))) {
1248			putback_lru_page(page);
1249			continue;
1250		}
1251
1252		/* page_referenced clears PageReferenced */
1253		if (page_mapping_inuse(page) &&
1254		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags))
1255			pgmoved++;
1256
1257		list_add(&page->lru, &l_inactive);
1258	}
1259
1260	/*
1261	 * Move the pages to the [file or anon] inactive list.
1262	 */
1263	pagevec_init(&pvec, 1);
1264	lru = LRU_BASE + file * LRU_FILE;
1265
1266	spin_lock_irq(&zone->lru_lock);
1267	/*
1268	 * Count referenced pages from currently used mappings as
1269	 * rotated, even though they are moved to the inactive list.
1270	 * This helps balance scan pressure between file and anonymous
1271	 * pages in get_scan_ratio.
1272	 */
1273	reclaim_stat->recent_rotated[!!file] += pgmoved;
1274
1275	pgmoved = 0;  /* count pages moved to inactive list */
1276	while (!list_empty(&l_inactive)) {
1277		page = lru_to_page(&l_inactive);
1278		prefetchw_prev_lru_page(page, &l_inactive, flags);
1279		VM_BUG_ON(PageLRU(page));
1280		SetPageLRU(page);
1281		VM_BUG_ON(!PageActive(page));
1282		ClearPageActive(page);
1283
1284		list_move(&page->lru, &zone->lru[lru].list);
1285		mem_cgroup_add_lru_list(page, lru);
1286		pgmoved++;
1287		if (!pagevec_add(&pvec, page)) {
1288			spin_unlock_irq(&zone->lru_lock);
1289			if (buffer_heads_over_limit)
1290				pagevec_strip(&pvec);
1291			__pagevec_release(&pvec);
1292			spin_lock_irq(&zone->lru_lock);
1293		}
1294	}
1295	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1296	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1297	__count_vm_events(PGDEACTIVATE, pgmoved);
1298	spin_unlock_irq(&zone->lru_lock);
1299	if (buffer_heads_over_limit)
1300		pagevec_strip(&pvec);
1301	pagevec_release(&pvec);
1302}
1303
1304static int inactive_anon_is_low_global(struct zone *zone)
1305{
1306	unsigned long active, inactive;
1307
1308	active = zone_page_state(zone, NR_ACTIVE_ANON);
1309	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1310
1311	if (inactive * zone->inactive_ratio < active)
1312		return 1;
1313
1314	return 0;
1315}
1316
1317/**
1318 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1319 * @zone: zone to check
1320 * @sc:   scan control of this context
1321 *
1322 * Returns true if the zone does not have enough inactive anon pages,
1323 * meaning some active anon pages need to be deactivated.
1324 */
1325static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1326{
1327	int low;
1328
1329	if (scanning_global_lru(sc))
1330		low = inactive_anon_is_low_global(zone);
1331	else
1332		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1333	return low;
1334}
1335
1336static int inactive_file_is_low_global(struct zone *zone)
1337{
1338	unsigned long active, inactive;
1339
1340	active = zone_page_state(zone, NR_ACTIVE_FILE);
1341	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1342
1343	return (active > inactive);
1344}
1345
1346/**
1347 * inactive_file_is_low - check if file pages need to be deactivated
1348 * @zone: zone to check
1349 * @sc:   scan control of this context
1350 *
1351 * When the system is doing streaming IO, memory pressure here
1352 * ensures that active file pages get deactivated, until more
1353 * than half of the file pages are on the inactive list.
1354 *
1355 * Once we get to that situation, protect the system's working
1356 * set from being evicted by disabling active file page aging.
1357 *
1358 * This uses a different ratio than the anonymous pages, because
1359 * the page cache uses a use-once replacement algorithm.
1360 */
1361static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1362{
1363	int low;
1364
1365	if (scanning_global_lru(sc))
1366		low = inactive_file_is_low_global(zone);
1367	else
1368		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1369	return low;
1370}
1371
1372static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1373	struct zone *zone, struct scan_control *sc, int priority)
1374{
1375	int file = is_file_lru(lru);
1376
1377	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1378		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1379		return 0;
1380	}
1381
1382	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1383		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1384		return 0;
1385	}
1386	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1387}
1388
1389/*
1390 * Determine how aggressively the anon and file LRU lists should be
1391 * scanned.  The relative value of each set of LRU lists is determined
1392 * by looking at the fraction of the pages scanned we did rotate back
1393 * onto the active list instead of evict.
1394 *
1395 * percent[0] specifies how much pressure to put on ram/swap backed
1396 * memory, while percent[1] determines pressure on the file LRUs.
1397 */
1398static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1399					unsigned long *percent)
1400{
1401	unsigned long anon, file, free;
1402	unsigned long anon_prio, file_prio;
1403	unsigned long ap, fp;
1404	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1405
1406	/* If we have no swap space, do not bother scanning anon pages. */
1407	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1408		percent[0] = 0;
1409		percent[1] = 100;
1410		return;
1411	}
1412
1413	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1414		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1415	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1416		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1417
1418	if (scanning_global_lru(sc)) {
1419		free  = zone_page_state(zone, NR_FREE_PAGES);
1420		/* If we have very few page cache pages,
1421		   force-scan anon pages. */
1422		if (unlikely(file + free <= high_wmark_pages(zone))) {
1423			percent[0] = 100;
1424			percent[1] = 0;
1425			return;
1426		}
1427	}
1428
1429	/*
1430	 * OK, so we have swap space and a fair amount of page cache
1431	 * pages.  We use the recently rotated / recently scanned
1432	 * ratios to determine how valuable each cache is.
1433	 *
1434	 * Because workloads change over time (and to avoid overflow)
1435	 * we keep these statistics as a floating average, which ends
1436	 * up weighing recent references more than old ones.
1437	 *
1438	 * anon in [0], file in [1]
1439	 */
1440	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1441		spin_lock_irq(&zone->lru_lock);
1442		reclaim_stat->recent_scanned[0] /= 2;
1443		reclaim_stat->recent_rotated[0] /= 2;
1444		spin_unlock_irq(&zone->lru_lock);
1445	}
1446
1447	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1448		spin_lock_irq(&zone->lru_lock);
1449		reclaim_stat->recent_scanned[1] /= 2;
1450		reclaim_stat->recent_rotated[1] /= 2;
1451		spin_unlock_irq(&zone->lru_lock);
1452	}
1453
1454	/*
1455	 * With swappiness at 100, anonymous and file have the same priority.
1456	 * This scanning priority is essentially the inverse of IO cost.
1457	 */
1458	anon_prio = sc->swappiness;
1459	file_prio = 200 - sc->swappiness;
1460
1461	/*
1462	 * The amount of pressure on anon vs file pages is inversely
1463	 * proportional to the fraction of recently scanned pages on
1464	 * each list that were recently referenced and in active use.
1465	 */
1466	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1467	ap /= reclaim_stat->recent_rotated[0] + 1;
1468
1469	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1470	fp /= reclaim_stat->recent_rotated[1] + 1;
1471
1472	/* Normalize to percentages */
1473	percent[0] = 100 * ap / (ap + fp + 1);
1474	percent[1] = 100 - percent[0];
1475}
1476
1477/*
1478 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1479 * until we collected @swap_cluster_max pages to scan.
1480 */
1481static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1482				       unsigned long *nr_saved_scan,
1483				       unsigned long swap_cluster_max)
1484{
1485	unsigned long nr;
1486
1487	*nr_saved_scan += nr_to_scan;
1488	nr = *nr_saved_scan;
1489
1490	if (nr >= swap_cluster_max)
1491		*nr_saved_scan = 0;
1492	else
1493		nr = 0;
1494
1495	return nr;
1496}
1497
1498/*
1499 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1500 */
1501static void shrink_zone(int priority, struct zone *zone,
1502				struct scan_control *sc)
1503{
1504	unsigned long nr[NR_LRU_LISTS];
1505	unsigned long nr_to_scan;
1506	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1507	enum lru_list l;
1508	unsigned long nr_reclaimed = sc->nr_reclaimed;
1509	unsigned long swap_cluster_max = sc->swap_cluster_max;
1510
1511	get_scan_ratio(zone, sc, percent);
1512
1513	for_each_evictable_lru(l) {
1514		int file = is_file_lru(l);
1515		unsigned long scan;
1516
1517		scan = zone_nr_pages(zone, sc, l);
1518		if (priority) {
1519			scan >>= priority;
1520			scan = (scan * percent[file]) / 100;
1521		}
1522		if (scanning_global_lru(sc))
1523			nr[l] = nr_scan_try_batch(scan,
1524						  &zone->lru[l].nr_saved_scan,
1525						  swap_cluster_max);
1526		else
1527			nr[l] = scan;
1528	}
1529
1530	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1531					nr[LRU_INACTIVE_FILE]) {
1532		for_each_evictable_lru(l) {
1533			if (nr[l]) {
1534				nr_to_scan = min(nr[l], swap_cluster_max);
1535				nr[l] -= nr_to_scan;
1536
1537				nr_reclaimed += shrink_list(l, nr_to_scan,
1538							    zone, sc, priority);
1539			}
1540		}
1541		/*
1542		 * On large memory systems, scan >> priority can become
1543		 * really large. This is fine for the starting priority;
1544		 * we want to put equal scanning pressure on each zone.
1545		 * However, if the VM has a harder time of freeing pages,
1546		 * with multiple processes reclaiming pages, the total
1547		 * freeing target can get unreasonably large.
1548		 */
1549		if (nr_reclaimed > swap_cluster_max &&
1550			priority < DEF_PRIORITY && !current_is_kswapd())
1551			break;
1552	}
1553
1554	sc->nr_reclaimed = nr_reclaimed;
1555
1556	/*
1557	 * Even if we did not try to evict anon pages at all, we want to
1558	 * rebalance the anon lru active/inactive ratio.
1559	 */
1560	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1561		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1562
1563	throttle_vm_writeout(sc->gfp_mask);
1564}
1565
1566/*
1567 * This is the direct reclaim path, for page-allocating processes.  We only
1568 * try to reclaim pages from zones which will satisfy the caller's allocation
1569 * request.
1570 *
1571 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1572 * Because:
1573 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1574 *    allocation or
1575 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1576 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1577 *    zone defense algorithm.
1578 *
1579 * If a zone is deemed to be full of pinned pages then just give it a light
1580 * scan then give up on it.
1581 */
1582static void shrink_zones(int priority, struct zonelist *zonelist,
1583					struct scan_control *sc)
1584{
1585	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1586	struct zoneref *z;
1587	struct zone *zone;
1588
1589	sc->all_unreclaimable = 1;
1590	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1591					sc->nodemask) {
1592		if (!populated_zone(zone))
1593			continue;
1594		/*
1595		 * Take care memory controller reclaiming has small influence
1596		 * to global LRU.
1597		 */
1598		if (scanning_global_lru(sc)) {
1599			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1600				continue;
1601			note_zone_scanning_priority(zone, priority);
1602
1603			if (zone_is_all_unreclaimable(zone) &&
1604						priority != DEF_PRIORITY)
1605				continue;	/* Let kswapd poll it */
1606			sc->all_unreclaimable = 0;
1607		} else {
1608			/*
1609			 * Ignore cpuset limitation here. We just want to reduce
1610			 * # of used pages by us regardless of memory shortage.
1611			 */
1612			sc->all_unreclaimable = 0;
1613			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1614							priority);
1615		}
1616
1617		shrink_zone(priority, zone, sc);
1618	}
1619}
1620
1621/*
1622 * This is the main entry point to direct page reclaim.
1623 *
1624 * If a full scan of the inactive list fails to free enough memory then we
1625 * are "out of memory" and something needs to be killed.
1626 *
1627 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1628 * high - the zone may be full of dirty or under-writeback pages, which this
1629 * caller can't do much about.  We kick pdflush and take explicit naps in the
1630 * hope that some of these pages can be written.  But if the allocating task
1631 * holds filesystem locks which prevent writeout this might not work, and the
1632 * allocation attempt will fail.
1633 *
1634 * returns:	0, if no pages reclaimed
1635 * 		else, the number of pages reclaimed
1636 */
1637static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1638					struct scan_control *sc)
1639{
1640	int priority;
1641	unsigned long ret = 0;
1642	unsigned long total_scanned = 0;
1643	struct reclaim_state *reclaim_state = current->reclaim_state;
1644	unsigned long lru_pages = 0;
1645	struct zoneref *z;
1646	struct zone *zone;
1647	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1648
1649	delayacct_freepages_start();
1650
1651	if (scanning_global_lru(sc))
1652		count_vm_event(ALLOCSTALL);
1653	/*
1654	 * mem_cgroup will not do shrink_slab.
1655	 */
1656	if (scanning_global_lru(sc)) {
1657		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1658
1659			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1660				continue;
1661
1662			lru_pages += zone_lru_pages(zone);
1663		}
1664	}
1665
1666	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1667		sc->nr_scanned = 0;
1668		if (!priority)
1669			disable_swap_token();
1670		shrink_zones(priority, zonelist, sc);
1671		/*
1672		 * Don't shrink slabs when reclaiming memory from
1673		 * over limit cgroups
1674		 */
1675		if (scanning_global_lru(sc)) {
1676			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1677			if (reclaim_state) {
1678				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1679				reclaim_state->reclaimed_slab = 0;
1680			}
1681		}
1682		total_scanned += sc->nr_scanned;
1683		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1684			ret = sc->nr_reclaimed;
1685			goto out;
1686		}
1687
1688		/*
1689		 * Try to write back as many pages as we just scanned.  This
1690		 * tends to cause slow streaming writers to write data to the
1691		 * disk smoothly, at the dirtying rate, which is nice.   But
1692		 * that's undesirable in laptop mode, where we *want* lumpy
1693		 * writeout.  So in laptop mode, write out the whole world.
1694		 */
1695		if (total_scanned > sc->swap_cluster_max +
1696					sc->swap_cluster_max / 2) {
1697			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1698			sc->may_writepage = 1;
1699		}
1700
1701		/* Take a nap, wait for some writeback to complete */
1702		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1703			congestion_wait(WRITE, HZ/10);
1704	}
1705	/* top priority shrink_zones still had more to do? don't OOM, then */
1706	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1707		ret = sc->nr_reclaimed;
1708out:
1709	/*
1710	 * Now that we've scanned all the zones at this priority level, note
1711	 * that level within the zone so that the next thread which performs
1712	 * scanning of this zone will immediately start out at this priority
1713	 * level.  This affects only the decision whether or not to bring
1714	 * mapped pages onto the inactive list.
1715	 */
1716	if (priority < 0)
1717		priority = 0;
1718
1719	if (scanning_global_lru(sc)) {
1720		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1721
1722			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1723				continue;
1724
1725			zone->prev_priority = priority;
1726		}
1727	} else
1728		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1729
1730	delayacct_freepages_end();
1731
1732	return ret;
1733}
1734
1735unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1736				gfp_t gfp_mask, nodemask_t *nodemask)
1737{
1738	struct scan_control sc = {
1739		.gfp_mask = gfp_mask,
1740		.may_writepage = !laptop_mode,
1741		.swap_cluster_max = SWAP_CLUSTER_MAX,
1742		.may_unmap = 1,
1743		.may_swap = 1,
1744		.swappiness = vm_swappiness,
1745		.order = order,
1746		.mem_cgroup = NULL,
1747		.isolate_pages = isolate_pages_global,
1748		.nodemask = nodemask,
1749	};
1750
1751	return do_try_to_free_pages(zonelist, &sc);
1752}
1753
1754#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1755
1756unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1757					   gfp_t gfp_mask,
1758					   bool noswap,
1759					   unsigned int swappiness)
1760{
1761	struct scan_control sc = {
1762		.may_writepage = !laptop_mode,
1763		.may_unmap = 1,
1764		.may_swap = !noswap,
1765		.swap_cluster_max = SWAP_CLUSTER_MAX,
1766		.swappiness = swappiness,
1767		.order = 0,
1768		.mem_cgroup = mem_cont,
1769		.isolate_pages = mem_cgroup_isolate_pages,
1770		.nodemask = NULL, /* we don't care the placement */
1771	};
1772	struct zonelist *zonelist;
1773
1774	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1775			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1776	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1777	return do_try_to_free_pages(zonelist, &sc);
1778}
1779#endif
1780
1781/*
1782 * For kswapd, balance_pgdat() will work across all this node's zones until
1783 * they are all at high_wmark_pages(zone).
1784 *
1785 * Returns the number of pages which were actually freed.
1786 *
1787 * There is special handling here for zones which are full of pinned pages.
1788 * This can happen if the pages are all mlocked, or if they are all used by
1789 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1790 * What we do is to detect the case where all pages in the zone have been
1791 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1792 * dead and from now on, only perform a short scan.  Basically we're polling
1793 * the zone for when the problem goes away.
1794 *
1795 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1796 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1797 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1798 * lower zones regardless of the number of free pages in the lower zones. This
1799 * interoperates with the page allocator fallback scheme to ensure that aging
1800 * of pages is balanced across the zones.
1801 */
1802static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1803{
1804	int all_zones_ok;
1805	int priority;
1806	int i;
1807	unsigned long total_scanned;
1808	struct reclaim_state *reclaim_state = current->reclaim_state;
1809	struct scan_control sc = {
1810		.gfp_mask = GFP_KERNEL,
1811		.may_unmap = 1,
1812		.may_swap = 1,
1813		.swap_cluster_max = SWAP_CLUSTER_MAX,
1814		.swappiness = vm_swappiness,
1815		.order = order,
1816		.mem_cgroup = NULL,
1817		.isolate_pages = isolate_pages_global,
1818	};
1819	/*
1820	 * temp_priority is used to remember the scanning priority at which
1821	 * this zone was successfully refilled to
1822	 * free_pages == high_wmark_pages(zone).
1823	 */
1824	int temp_priority[MAX_NR_ZONES];
1825
1826loop_again:
1827	total_scanned = 0;
1828	sc.nr_reclaimed = 0;
1829	sc.may_writepage = !laptop_mode;
1830	count_vm_event(PAGEOUTRUN);
1831
1832	for (i = 0; i < pgdat->nr_zones; i++)
1833		temp_priority[i] = DEF_PRIORITY;
1834
1835	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1836		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1837		unsigned long lru_pages = 0;
1838
1839		/* The swap token gets in the way of swapout... */
1840		if (!priority)
1841			disable_swap_token();
1842
1843		all_zones_ok = 1;
1844
1845		/*
1846		 * Scan in the highmem->dma direction for the highest
1847		 * zone which needs scanning
1848		 */
1849		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1850			struct zone *zone = pgdat->node_zones + i;
1851
1852			if (!populated_zone(zone))
1853				continue;
1854
1855			if (zone_is_all_unreclaimable(zone) &&
1856			    priority != DEF_PRIORITY)
1857				continue;
1858
1859			/*
1860			 * Do some background aging of the anon list, to give
1861			 * pages a chance to be referenced before reclaiming.
1862			 */
1863			if (inactive_anon_is_low(zone, &sc))
1864				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1865							&sc, priority, 0);
1866
1867			if (!zone_watermark_ok(zone, order,
1868					high_wmark_pages(zone), 0, 0)) {
1869				end_zone = i;
1870				break;
1871			}
1872		}
1873		if (i < 0)
1874			goto out;
1875
1876		for (i = 0; i <= end_zone; i++) {
1877			struct zone *zone = pgdat->node_zones + i;
1878
1879			lru_pages += zone_lru_pages(zone);
1880		}
1881
1882		/*
1883		 * Now scan the zone in the dma->highmem direction, stopping
1884		 * at the last zone which needs scanning.
1885		 *
1886		 * We do this because the page allocator works in the opposite
1887		 * direction.  This prevents the page allocator from allocating
1888		 * pages behind kswapd's direction of progress, which would
1889		 * cause too much scanning of the lower zones.
1890		 */
1891		for (i = 0; i <= end_zone; i++) {
1892			struct zone *zone = pgdat->node_zones + i;
1893			int nr_slab;
1894
1895			if (!populated_zone(zone))
1896				continue;
1897
1898			if (zone_is_all_unreclaimable(zone) &&
1899					priority != DEF_PRIORITY)
1900				continue;
1901
1902			if (!zone_watermark_ok(zone, order,
1903					high_wmark_pages(zone), end_zone, 0))
1904				all_zones_ok = 0;
1905			temp_priority[i] = priority;
1906			sc.nr_scanned = 0;
1907			note_zone_scanning_priority(zone, priority);
1908			/*
1909			 * We put equal pressure on every zone, unless one
1910			 * zone has way too many pages free already.
1911			 */
1912			if (!zone_watermark_ok(zone, order,
1913					8*high_wmark_pages(zone), end_zone, 0))
1914				shrink_zone(priority, zone, &sc);
1915			reclaim_state->reclaimed_slab = 0;
1916			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1917						lru_pages);
1918			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1919			total_scanned += sc.nr_scanned;
1920			if (zone_is_all_unreclaimable(zone))
1921				continue;
1922			if (nr_slab == 0 && zone->pages_scanned >=
1923						(zone_lru_pages(zone) * 6))
1924					zone_set_flag(zone,
1925						      ZONE_ALL_UNRECLAIMABLE);
1926			/*
1927			 * If we've done a decent amount of scanning and
1928			 * the reclaim ratio is low, start doing writepage
1929			 * even in laptop mode
1930			 */
1931			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1932			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1933				sc.may_writepage = 1;
1934		}
1935		if (all_zones_ok)
1936			break;		/* kswapd: all done */
1937		/*
1938		 * OK, kswapd is getting into trouble.  Take a nap, then take
1939		 * another pass across the zones.
1940		 */
1941		if (total_scanned && priority < DEF_PRIORITY - 2)
1942			congestion_wait(WRITE, HZ/10);
1943
1944		/*
1945		 * We do this so kswapd doesn't build up large priorities for
1946		 * example when it is freeing in parallel with allocators. It
1947		 * matches the direct reclaim path behaviour in terms of impact
1948		 * on zone->*_priority.
1949		 */
1950		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1951			break;
1952	}
1953out:
1954	/*
1955	 * Note within each zone the priority level at which this zone was
1956	 * brought into a happy state.  So that the next thread which scans this
1957	 * zone will start out at that priority level.
1958	 */
1959	for (i = 0; i < pgdat->nr_zones; i++) {
1960		struct zone *zone = pgdat->node_zones + i;
1961
1962		zone->prev_priority = temp_priority[i];
1963	}
1964	if (!all_zones_ok) {
1965		cond_resched();
1966
1967		try_to_freeze();
1968
1969		/*
1970		 * Fragmentation may mean that the system cannot be
1971		 * rebalanced for high-order allocations in all zones.
1972		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1973		 * it means the zones have been fully scanned and are still
1974		 * not balanced. For high-order allocations, there is
1975		 * little point trying all over again as kswapd may
1976		 * infinite loop.
1977		 *
1978		 * Instead, recheck all watermarks at order-0 as they
1979		 * are the most important. If watermarks are ok, kswapd will go
1980		 * back to sleep. High-order users can still perform direct
1981		 * reclaim if they wish.
1982		 */
1983		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1984			order = sc.order = 0;
1985
1986		goto loop_again;
1987	}
1988
1989	return sc.nr_reclaimed;
1990}
1991
1992/*
1993 * The background pageout daemon, started as a kernel thread
1994 * from the init process.
1995 *
1996 * This basically trickles out pages so that we have _some_
1997 * free memory available even if there is no other activity
1998 * that frees anything up. This is needed for things like routing
1999 * etc, where we otherwise might have all activity going on in
2000 * asynchronous contexts that cannot page things out.
2001 *
2002 * If there are applications that are active memory-allocators
2003 * (most normal use), this basically shouldn't matter.
2004 */
2005static int kswapd(void *p)
2006{
2007	unsigned long order;
2008	pg_data_t *pgdat = (pg_data_t*)p;
2009	struct task_struct *tsk = current;
2010	DEFINE_WAIT(wait);
2011	struct reclaim_state reclaim_state = {
2012		.reclaimed_slab = 0,
2013	};
2014	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2015
2016	lockdep_set_current_reclaim_state(GFP_KERNEL);
2017
2018	if (!cpumask_empty(cpumask))
2019		set_cpus_allowed_ptr(tsk, cpumask);
2020	current->reclaim_state = &reclaim_state;
2021
2022	/*
2023	 * Tell the memory management that we're a "memory allocator",
2024	 * and that if we need more memory we should get access to it
2025	 * regardless (see "__alloc_pages()"). "kswapd" should
2026	 * never get caught in the normal page freeing logic.
2027	 *
2028	 * (Kswapd normally doesn't need memory anyway, but sometimes
2029	 * you need a small amount of memory in order to be able to
2030	 * page out something else, and this flag essentially protects
2031	 * us from recursively trying to free more memory as we're
2032	 * trying to free the first piece of memory in the first place).
2033	 */
2034	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2035	set_freezable();
2036
2037	order = 0;
2038	for ( ; ; ) {
2039		unsigned long new_order;
2040
2041		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2042		new_order = pgdat->kswapd_max_order;
2043		pgdat->kswapd_max_order = 0;
2044		if (order < new_order) {
2045			/*
2046			 * Don't sleep if someone wants a larger 'order'
2047			 * allocation
2048			 */
2049			order = new_order;
2050		} else {
2051			if (!freezing(current))
2052				schedule();
2053
2054			order = pgdat->kswapd_max_order;
2055		}
2056		finish_wait(&pgdat->kswapd_wait, &wait);
2057
2058		if (!try_to_freeze()) {
2059			/* We can speed up thawing tasks if we don't call
2060			 * balance_pgdat after returning from the refrigerator
2061			 */
2062			balance_pgdat(pgdat, order);
2063		}
2064	}
2065	return 0;
2066}
2067
2068/*
2069 * A zone is low on free memory, so wake its kswapd task to service it.
2070 */
2071void wakeup_kswapd(struct zone *zone, int order)
2072{
2073	pg_data_t *pgdat;
2074
2075	if (!populated_zone(zone))
2076		return;
2077
2078	pgdat = zone->zone_pgdat;
2079	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2080		return;
2081	if (pgdat->kswapd_max_order < order)
2082		pgdat->kswapd_max_order = order;
2083	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2084		return;
2085	if (!waitqueue_active(&pgdat->kswapd_wait))
2086		return;
2087	wake_up_interruptible(&pgdat->kswapd_wait);
2088}
2089
2090unsigned long global_lru_pages(void)
2091{
2092	return global_page_state(NR_ACTIVE_ANON)
2093		+ global_page_state(NR_ACTIVE_FILE)
2094		+ global_page_state(NR_INACTIVE_ANON)
2095		+ global_page_state(NR_INACTIVE_FILE);
2096}
2097
2098#ifdef CONFIG_HIBERNATION
2099/*
2100 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2101 * from LRU lists system-wide, for given pass and priority.
2102 *
2103 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2104 */
2105static void shrink_all_zones(unsigned long nr_pages, int prio,
2106				      int pass, struct scan_control *sc)
2107{
2108	struct zone *zone;
2109	unsigned long nr_reclaimed = 0;
2110
2111	for_each_populated_zone(zone) {
2112		enum lru_list l;
2113
2114		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2115			continue;
2116
2117		for_each_evictable_lru(l) {
2118			enum zone_stat_item ls = NR_LRU_BASE + l;
2119			unsigned long lru_pages = zone_page_state(zone, ls);
2120
2121			/* For pass = 0, we don't shrink the active list */
2122			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2123						l == LRU_ACTIVE_FILE))
2124				continue;
2125
2126			zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2127			if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
2128				unsigned long nr_to_scan;
2129
2130				zone->lru[l].nr_saved_scan = 0;
2131				nr_to_scan = min(nr_pages, lru_pages);
2132				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2133								sc, prio);
2134				if (nr_reclaimed >= nr_pages) {
2135					sc->nr_reclaimed += nr_reclaimed;
2136					return;
2137				}
2138			}
2139		}
2140	}
2141	sc->nr_reclaimed += nr_reclaimed;
2142}
2143
2144/*
2145 * Try to free `nr_pages' of memory, system-wide, and return the number of
2146 * freed pages.
2147 *
2148 * Rather than trying to age LRUs the aim is to preserve the overall
2149 * LRU order by reclaiming preferentially
2150 * inactive > active > active referenced > active mapped
2151 */
2152unsigned long shrink_all_memory(unsigned long nr_pages)
2153{
2154	unsigned long lru_pages, nr_slab;
2155	int pass;
2156	struct reclaim_state reclaim_state;
2157	struct scan_control sc = {
2158		.gfp_mask = GFP_KERNEL,
2159		.may_unmap = 0,
2160		.may_writepage = 1,
2161		.isolate_pages = isolate_pages_global,
2162		.nr_reclaimed = 0,
2163	};
2164
2165	current->reclaim_state = &reclaim_state;
2166
2167	lru_pages = global_lru_pages();
2168	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2169	/* If slab caches are huge, it's better to hit them first */
2170	while (nr_slab >= lru_pages) {
2171		reclaim_state.reclaimed_slab = 0;
2172		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2173		if (!reclaim_state.reclaimed_slab)
2174			break;
2175
2176		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2177		if (sc.nr_reclaimed >= nr_pages)
2178			goto out;
2179
2180		nr_slab -= reclaim_state.reclaimed_slab;
2181	}
2182
2183	/*
2184	 * We try to shrink LRUs in 5 passes:
2185	 * 0 = Reclaim from inactive_list only
2186	 * 1 = Reclaim from active list but don't reclaim mapped
2187	 * 2 = 2nd pass of type 1
2188	 * 3 = Reclaim mapped (normal reclaim)
2189	 * 4 = 2nd pass of type 3
2190	 */
2191	for (pass = 0; pass < 5; pass++) {
2192		int prio;
2193
2194		/* Force reclaiming mapped pages in the passes #3 and #4 */
2195		if (pass > 2)
2196			sc.may_unmap = 1;
2197
2198		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2199			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2200
2201			sc.nr_scanned = 0;
2202			sc.swap_cluster_max = nr_to_scan;
2203			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2204			if (sc.nr_reclaimed >= nr_pages)
2205				goto out;
2206
2207			reclaim_state.reclaimed_slab = 0;
2208			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2209					global_lru_pages());
2210			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2211			if (sc.nr_reclaimed >= nr_pages)
2212				goto out;
2213
2214			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2215				congestion_wait(WRITE, HZ / 10);
2216		}
2217	}
2218
2219	/*
2220	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2221	 * something in slab caches
2222	 */
2223	if (!sc.nr_reclaimed) {
2224		do {
2225			reclaim_state.reclaimed_slab = 0;
2226			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2227			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2228		} while (sc.nr_reclaimed < nr_pages &&
2229				reclaim_state.reclaimed_slab > 0);
2230	}
2231
2232
2233out:
2234	current->reclaim_state = NULL;
2235
2236	return sc.nr_reclaimed;
2237}
2238#endif /* CONFIG_HIBERNATION */
2239
2240/* It's optimal to keep kswapds on the same CPUs as their memory, but
2241   not required for correctness.  So if the last cpu in a node goes
2242   away, we get changed to run anywhere: as the first one comes back,
2243   restore their cpu bindings. */
2244static int __devinit cpu_callback(struct notifier_block *nfb,
2245				  unsigned long action, void *hcpu)
2246{
2247	int nid;
2248
2249	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2250		for_each_node_state(nid, N_HIGH_MEMORY) {
2251			pg_data_t *pgdat = NODE_DATA(nid);
2252			const struct cpumask *mask;
2253
2254			mask = cpumask_of_node(pgdat->node_id);
2255
2256			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2257				/* One of our CPUs online: restore mask */
2258				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2259		}
2260	}
2261	return NOTIFY_OK;
2262}
2263
2264/*
2265 * This kswapd start function will be called by init and node-hot-add.
2266 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2267 */
2268int kswapd_run(int nid)
2269{
2270	pg_data_t *pgdat = NODE_DATA(nid);
2271	int ret = 0;
2272
2273	if (pgdat->kswapd)
2274		return 0;
2275
2276	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2277	if (IS_ERR(pgdat->kswapd)) {
2278		/* failure at boot is fatal */
2279		BUG_ON(system_state == SYSTEM_BOOTING);
2280		printk("Failed to start kswapd on node %d\n",nid);
2281		ret = -1;
2282	}
2283	return ret;
2284}
2285
2286static int __init kswapd_init(void)
2287{
2288	int nid;
2289
2290	swap_setup();
2291	for_each_node_state(nid, N_HIGH_MEMORY)
2292 		kswapd_run(nid);
2293	hotcpu_notifier(cpu_callback, 0);
2294	return 0;
2295}
2296
2297module_init(kswapd_init)
2298
2299#ifdef CONFIG_NUMA
2300/*
2301 * Zone reclaim mode
2302 *
2303 * If non-zero call zone_reclaim when the number of free pages falls below
2304 * the watermarks.
2305 */
2306int zone_reclaim_mode __read_mostly;
2307
2308#define RECLAIM_OFF 0
2309#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2310#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2311#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2312
2313/*
2314 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2315 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2316 * a zone.
2317 */
2318#define ZONE_RECLAIM_PRIORITY 4
2319
2320/*
2321 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2322 * occur.
2323 */
2324int sysctl_min_unmapped_ratio = 1;
2325
2326/*
2327 * If the number of slab pages in a zone grows beyond this percentage then
2328 * slab reclaim needs to occur.
2329 */
2330int sysctl_min_slab_ratio = 5;
2331
2332/*
2333 * Try to free up some pages from this zone through reclaim.
2334 */
2335static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2336{
2337	/* Minimum pages needed in order to stay on node */
2338	const unsigned long nr_pages = 1 << order;
2339	struct task_struct *p = current;
2340	struct reclaim_state reclaim_state;
2341	int priority;
2342	struct scan_control sc = {
2343		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2344		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2345		.may_swap = 1,
2346		.swap_cluster_max = max_t(unsigned long, nr_pages,
2347					SWAP_CLUSTER_MAX),
2348		.gfp_mask = gfp_mask,
2349		.swappiness = vm_swappiness,
2350		.order = order,
2351		.isolate_pages = isolate_pages_global,
2352	};
2353	unsigned long slab_reclaimable;
2354
2355	disable_swap_token();
2356	cond_resched();
2357	/*
2358	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2359	 * and we also need to be able to write out pages for RECLAIM_WRITE
2360	 * and RECLAIM_SWAP.
2361	 */
2362	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2363	reclaim_state.reclaimed_slab = 0;
2364	p->reclaim_state = &reclaim_state;
2365
2366	if (zone_page_state(zone, NR_FILE_PAGES) -
2367		zone_page_state(zone, NR_FILE_MAPPED) >
2368		zone->min_unmapped_pages) {
2369		/*
2370		 * Free memory by calling shrink zone with increasing
2371		 * priorities until we have enough memory freed.
2372		 */
2373		priority = ZONE_RECLAIM_PRIORITY;
2374		do {
2375			note_zone_scanning_priority(zone, priority);
2376			shrink_zone(priority, zone, &sc);
2377			priority--;
2378		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2379	}
2380
2381	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2382	if (slab_reclaimable > zone->min_slab_pages) {
2383		/*
2384		 * shrink_slab() does not currently allow us to determine how
2385		 * many pages were freed in this zone. So we take the current
2386		 * number of slab pages and shake the slab until it is reduced
2387		 * by the same nr_pages that we used for reclaiming unmapped
2388		 * pages.
2389		 *
2390		 * Note that shrink_slab will free memory on all zones and may
2391		 * take a long time.
2392		 */
2393		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2394			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2395				slab_reclaimable - nr_pages)
2396			;
2397
2398		/*
2399		 * Update nr_reclaimed by the number of slab pages we
2400		 * reclaimed from this zone.
2401		 */
2402		sc.nr_reclaimed += slab_reclaimable -
2403			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2404	}
2405
2406	p->reclaim_state = NULL;
2407	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2408	return sc.nr_reclaimed >= nr_pages;
2409}
2410
2411int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2412{
2413	int node_id;
2414	int ret;
2415
2416	/*
2417	 * Zone reclaim reclaims unmapped file backed pages and
2418	 * slab pages if we are over the defined limits.
2419	 *
2420	 * A small portion of unmapped file backed pages is needed for
2421	 * file I/O otherwise pages read by file I/O will be immediately
2422	 * thrown out if the zone is overallocated. So we do not reclaim
2423	 * if less than a specified percentage of the zone is used by
2424	 * unmapped file backed pages.
2425	 */
2426	if (zone_page_state(zone, NR_FILE_PAGES) -
2427	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2428	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2429			<= zone->min_slab_pages)
2430		return 0;
2431
2432	if (zone_is_all_unreclaimable(zone))
2433		return 0;
2434
2435	/*
2436	 * Do not scan if the allocation should not be delayed.
2437	 */
2438	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2439			return 0;
2440
2441	/*
2442	 * Only run zone reclaim on the local zone or on zones that do not
2443	 * have associated processors. This will favor the local processor
2444	 * over remote processors and spread off node memory allocations
2445	 * as wide as possible.
2446	 */
2447	node_id = zone_to_nid(zone);
2448	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2449		return 0;
2450
2451	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2452		return 0;
2453	ret = __zone_reclaim(zone, gfp_mask, order);
2454	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2455
2456	return ret;
2457}
2458#endif
2459
2460/*
2461 * page_evictable - test whether a page is evictable
2462 * @page: the page to test
2463 * @vma: the VMA in which the page is or will be mapped, may be NULL
2464 *
2465 * Test whether page is evictable--i.e., should be placed on active/inactive
2466 * lists vs unevictable list.  The vma argument is !NULL when called from the
2467 * fault path to determine how to instantate a new page.
2468 *
2469 * Reasons page might not be evictable:
2470 * (1) page's mapping marked unevictable
2471 * (2) page is part of an mlocked VMA
2472 *
2473 */
2474int page_evictable(struct page *page, struct vm_area_struct *vma)
2475{
2476
2477	if (mapping_unevictable(page_mapping(page)))
2478		return 0;
2479
2480	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2481		return 0;
2482
2483	return 1;
2484}
2485
2486/**
2487 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2488 * @page: page to check evictability and move to appropriate lru list
2489 * @zone: zone page is in
2490 *
2491 * Checks a page for evictability and moves the page to the appropriate
2492 * zone lru list.
2493 *
2494 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2495 * have PageUnevictable set.
2496 */
2497static void check_move_unevictable_page(struct page *page, struct zone *zone)
2498{
2499	VM_BUG_ON(PageActive(page));
2500
2501retry:
2502	ClearPageUnevictable(page);
2503	if (page_evictable(page, NULL)) {
2504		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2505
2506		__dec_zone_state(zone, NR_UNEVICTABLE);
2507		list_move(&page->lru, &zone->lru[l].list);
2508		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2509		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2510		__count_vm_event(UNEVICTABLE_PGRESCUED);
2511	} else {
2512		/*
2513		 * rotate unevictable list
2514		 */
2515		SetPageUnevictable(page);
2516		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2517		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2518		if (page_evictable(page, NULL))
2519			goto retry;
2520	}
2521}
2522
2523/**
2524 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2525 * @mapping: struct address_space to scan for evictable pages
2526 *
2527 * Scan all pages in mapping.  Check unevictable pages for
2528 * evictability and move them to the appropriate zone lru list.
2529 */
2530void scan_mapping_unevictable_pages(struct address_space *mapping)
2531{
2532	pgoff_t next = 0;
2533	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2534			 PAGE_CACHE_SHIFT;
2535	struct zone *zone;
2536	struct pagevec pvec;
2537
2538	if (mapping->nrpages == 0)
2539		return;
2540
2541	pagevec_init(&pvec, 0);
2542	while (next < end &&
2543		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2544		int i;
2545		int pg_scanned = 0;
2546
2547		zone = NULL;
2548
2549		for (i = 0; i < pagevec_count(&pvec); i++) {
2550			struct page *page = pvec.pages[i];
2551			pgoff_t page_index = page->index;
2552			struct zone *pagezone = page_zone(page);
2553
2554			pg_scanned++;
2555			if (page_index > next)
2556				next = page_index;
2557			next++;
2558
2559			if (pagezone != zone) {
2560				if (zone)
2561					spin_unlock_irq(&zone->lru_lock);
2562				zone = pagezone;
2563				spin_lock_irq(&zone->lru_lock);
2564			}
2565
2566			if (PageLRU(page) && PageUnevictable(page))
2567				check_move_unevictable_page(page, zone);
2568		}
2569		if (zone)
2570			spin_unlock_irq(&zone->lru_lock);
2571		pagevec_release(&pvec);
2572
2573		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2574	}
2575
2576}
2577
2578/**
2579 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2580 * @zone - zone of which to scan the unevictable list
2581 *
2582 * Scan @zone's unevictable LRU lists to check for pages that have become
2583 * evictable.  Move those that have to @zone's inactive list where they
2584 * become candidates for reclaim, unless shrink_inactive_zone() decides
2585 * to reactivate them.  Pages that are still unevictable are rotated
2586 * back onto @zone's unevictable list.
2587 */
2588#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2589static void scan_zone_unevictable_pages(struct zone *zone)
2590{
2591	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2592	unsigned long scan;
2593	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2594
2595	while (nr_to_scan > 0) {
2596		unsigned long batch_size = min(nr_to_scan,
2597						SCAN_UNEVICTABLE_BATCH_SIZE);
2598
2599		spin_lock_irq(&zone->lru_lock);
2600		for (scan = 0;  scan < batch_size; scan++) {
2601			struct page *page = lru_to_page(l_unevictable);
2602
2603			if (!trylock_page(page))
2604				continue;
2605
2606			prefetchw_prev_lru_page(page, l_unevictable, flags);
2607
2608			if (likely(PageLRU(page) && PageUnevictable(page)))
2609				check_move_unevictable_page(page, zone);
2610
2611			unlock_page(page);
2612		}
2613		spin_unlock_irq(&zone->lru_lock);
2614
2615		nr_to_scan -= batch_size;
2616	}
2617}
2618
2619
2620/**
2621 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2622 *
2623 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2624 * pages that have become evictable.  Move those back to the zones'
2625 * inactive list where they become candidates for reclaim.
2626 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2627 * and we add swap to the system.  As such, it runs in the context of a task
2628 * that has possibly/probably made some previously unevictable pages
2629 * evictable.
2630 */
2631static void scan_all_zones_unevictable_pages(void)
2632{
2633	struct zone *zone;
2634
2635	for_each_zone(zone) {
2636		scan_zone_unevictable_pages(zone);
2637	}
2638}
2639
2640/*
2641 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2642 * all nodes' unevictable lists for evictable pages
2643 */
2644unsigned long scan_unevictable_pages;
2645
2646int scan_unevictable_handler(struct ctl_table *table, int write,
2647			   struct file *file, void __user *buffer,
2648			   size_t *length, loff_t *ppos)
2649{
2650	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2651
2652	if (write && *(unsigned long *)table->data)
2653		scan_all_zones_unevictable_pages();
2654
2655	scan_unevictable_pages = 0;
2656	return 0;
2657}
2658
2659/*
2660 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2661 * a specified node's per zone unevictable lists for evictable pages.
2662 */
2663
2664static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2665					  struct sysdev_attribute *attr,
2666					  char *buf)
2667{
2668	return sprintf(buf, "0\n");	/* always zero; should fit... */
2669}
2670
2671static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2672					   struct sysdev_attribute *attr,
2673					const char *buf, size_t count)
2674{
2675	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2676	struct zone *zone;
2677	unsigned long res;
2678	unsigned long req = strict_strtoul(buf, 10, &res);
2679
2680	if (!req)
2681		return 1;	/* zero is no-op */
2682
2683	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2684		if (!populated_zone(zone))
2685			continue;
2686		scan_zone_unevictable_pages(zone);
2687	}
2688	return 1;
2689}
2690
2691
2692static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2693			read_scan_unevictable_node,
2694			write_scan_unevictable_node);
2695
2696int scan_unevictable_register_node(struct node *node)
2697{
2698	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2699}
2700
2701void scan_unevictable_unregister_node(struct node *node)
2702{
2703	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2704}
2705
2706