vmscan.c revision 7335084d446b83cbcb15da80497d03f0c1dc9e21
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/*
107	 * The memory cgroup that hit its limit and as a result is the
108	 * primary target of this reclaim invocation.
109	 */
110	struct mem_cgroup *target_mem_cgroup;
111
112	/*
113	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114	 * are scanned.
115	 */
116	nodemask_t	*nodemask;
117};
118
119struct mem_cgroup_zone {
120	struct mem_cgroup *mem_cgroup;
121	struct zone *zone;
122};
123
124#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126#ifdef ARCH_HAS_PREFETCH
127#define prefetch_prev_lru_page(_page, _base, _field)			\
128	do {								\
129		if ((_page)->lru.prev != _base) {			\
130			struct page *prev;				\
131									\
132			prev = lru_to_page(&(_page->lru));		\
133			prefetch(&prev->_field);			\
134		}							\
135	} while (0)
136#else
137#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138#endif
139
140#ifdef ARCH_HAS_PREFETCHW
141#define prefetchw_prev_lru_page(_page, _base, _field)			\
142	do {								\
143		if ((_page)->lru.prev != _base) {			\
144			struct page *prev;				\
145									\
146			prev = lru_to_page(&(_page->lru));		\
147			prefetchw(&prev->_field);			\
148		}							\
149	} while (0)
150#else
151#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152#endif
153
154/*
155 * From 0 .. 100.  Higher means more swappy.
156 */
157int vm_swappiness = 60;
158long vm_total_pages;	/* The total number of pages which the VM controls */
159
160static LIST_HEAD(shrinker_list);
161static DECLARE_RWSEM(shrinker_rwsem);
162
163#ifdef CONFIG_CGROUP_MEM_RES_CTLR
164static bool global_reclaim(struct scan_control *sc)
165{
166	return !sc->target_mem_cgroup;
167}
168
169static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170{
171	return !mz->mem_cgroup;
172}
173#else
174static bool global_reclaim(struct scan_control *sc)
175{
176	return true;
177}
178
179static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180{
181	return true;
182}
183#endif
184
185static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186{
187	if (!scanning_global_lru(mz))
188		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190	return &mz->zone->reclaim_stat;
191}
192
193static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194				       enum lru_list lru)
195{
196	if (!scanning_global_lru(mz))
197		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198						    zone_to_nid(mz->zone),
199						    zone_idx(mz->zone),
200						    BIT(lru));
201
202	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203}
204
205
206/*
207 * Add a shrinker callback to be called from the vm
208 */
209void register_shrinker(struct shrinker *shrinker)
210{
211	atomic_long_set(&shrinker->nr_in_batch, 0);
212	down_write(&shrinker_rwsem);
213	list_add_tail(&shrinker->list, &shrinker_list);
214	up_write(&shrinker_rwsem);
215}
216EXPORT_SYMBOL(register_shrinker);
217
218/*
219 * Remove one
220 */
221void unregister_shrinker(struct shrinker *shrinker)
222{
223	down_write(&shrinker_rwsem);
224	list_del(&shrinker->list);
225	up_write(&shrinker_rwsem);
226}
227EXPORT_SYMBOL(unregister_shrinker);
228
229static inline int do_shrinker_shrink(struct shrinker *shrinker,
230				     struct shrink_control *sc,
231				     unsigned long nr_to_scan)
232{
233	sc->nr_to_scan = nr_to_scan;
234	return (*shrinker->shrink)(shrinker, sc);
235}
236
237#define SHRINK_BATCH 128
238/*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object.  With this in mind we age equal
243 * percentages of the lru and ageable caches.  This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt.  It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257unsigned long shrink_slab(struct shrink_control *shrink,
258			  unsigned long nr_pages_scanned,
259			  unsigned long lru_pages)
260{
261	struct shrinker *shrinker;
262	unsigned long ret = 0;
263
264	if (nr_pages_scanned == 0)
265		nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267	if (!down_read_trylock(&shrinker_rwsem)) {
268		/* Assume we'll be able to shrink next time */
269		ret = 1;
270		goto out;
271	}
272
273	list_for_each_entry(shrinker, &shrinker_list, list) {
274		unsigned long long delta;
275		long total_scan;
276		long max_pass;
277		int shrink_ret = 0;
278		long nr;
279		long new_nr;
280		long batch_size = shrinker->batch ? shrinker->batch
281						  : SHRINK_BATCH;
282
283		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284		if (max_pass <= 0)
285			continue;
286
287		/*
288		 * copy the current shrinker scan count into a local variable
289		 * and zero it so that other concurrent shrinker invocations
290		 * don't also do this scanning work.
291		 */
292		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294		total_scan = nr;
295		delta = (4 * nr_pages_scanned) / shrinker->seeks;
296		delta *= max_pass;
297		do_div(delta, lru_pages + 1);
298		total_scan += delta;
299		if (total_scan < 0) {
300			printk(KERN_ERR "shrink_slab: %pF negative objects to "
301			       "delete nr=%ld\n",
302			       shrinker->shrink, total_scan);
303			total_scan = max_pass;
304		}
305
306		/*
307		 * We need to avoid excessive windup on filesystem shrinkers
308		 * due to large numbers of GFP_NOFS allocations causing the
309		 * shrinkers to return -1 all the time. This results in a large
310		 * nr being built up so when a shrink that can do some work
311		 * comes along it empties the entire cache due to nr >>>
312		 * max_pass.  This is bad for sustaining a working set in
313		 * memory.
314		 *
315		 * Hence only allow the shrinker to scan the entire cache when
316		 * a large delta change is calculated directly.
317		 */
318		if (delta < max_pass / 4)
319			total_scan = min(total_scan, max_pass / 2);
320
321		/*
322		 * Avoid risking looping forever due to too large nr value:
323		 * never try to free more than twice the estimate number of
324		 * freeable entries.
325		 */
326		if (total_scan > max_pass * 2)
327			total_scan = max_pass * 2;
328
329		trace_mm_shrink_slab_start(shrinker, shrink, nr,
330					nr_pages_scanned, lru_pages,
331					max_pass, delta, total_scan);
332
333		while (total_scan >= batch_size) {
334			int nr_before;
335
336			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337			shrink_ret = do_shrinker_shrink(shrinker, shrink,
338							batch_size);
339			if (shrink_ret == -1)
340				break;
341			if (shrink_ret < nr_before)
342				ret += nr_before - shrink_ret;
343			count_vm_events(SLABS_SCANNED, batch_size);
344			total_scan -= batch_size;
345
346			cond_resched();
347		}
348
349		/*
350		 * move the unused scan count back into the shrinker in a
351		 * manner that handles concurrent updates. If we exhausted the
352		 * scan, there is no need to do an update.
353		 */
354		if (total_scan > 0)
355			new_nr = atomic_long_add_return(total_scan,
356					&shrinker->nr_in_batch);
357		else
358			new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361	}
362	up_read(&shrinker_rwsem);
363out:
364	cond_resched();
365	return ret;
366}
367
368static void set_reclaim_mode(int priority, struct scan_control *sc,
369				   bool sync)
370{
371	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373	/*
374	 * Initially assume we are entering either lumpy reclaim or
375	 * reclaim/compaction.Depending on the order, we will either set the
376	 * sync mode or just reclaim order-0 pages later.
377	 */
378	if (COMPACTION_BUILD)
379		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380	else
381		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383	/*
384	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385	 * restricting when its set to either costly allocations or when
386	 * under memory pressure
387	 */
388	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389		sc->reclaim_mode |= syncmode;
390	else if (sc->order && priority < DEF_PRIORITY - 2)
391		sc->reclaim_mode |= syncmode;
392	else
393		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394}
395
396static void reset_reclaim_mode(struct scan_control *sc)
397{
398	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399}
400
401static inline int is_page_cache_freeable(struct page *page)
402{
403	/*
404	 * A freeable page cache page is referenced only by the caller
405	 * that isolated the page, the page cache radix tree and
406	 * optional buffer heads at page->private.
407	 */
408	return page_count(page) - page_has_private(page) == 2;
409}
410
411static int may_write_to_queue(struct backing_dev_info *bdi,
412			      struct scan_control *sc)
413{
414	if (current->flags & PF_SWAPWRITE)
415		return 1;
416	if (!bdi_write_congested(bdi))
417		return 1;
418	if (bdi == current->backing_dev_info)
419		return 1;
420
421	/* lumpy reclaim for hugepage often need a lot of write */
422	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423		return 1;
424	return 0;
425}
426
427/*
428 * We detected a synchronous write error writing a page out.  Probably
429 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up.  But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439static void handle_write_error(struct address_space *mapping,
440				struct page *page, int error)
441{
442	lock_page(page);
443	if (page_mapping(page) == mapping)
444		mapping_set_error(mapping, error);
445	unlock_page(page);
446}
447
448/* possible outcome of pageout() */
449typedef enum {
450	/* failed to write page out, page is locked */
451	PAGE_KEEP,
452	/* move page to the active list, page is locked */
453	PAGE_ACTIVATE,
454	/* page has been sent to the disk successfully, page is unlocked */
455	PAGE_SUCCESS,
456	/* page is clean and locked */
457	PAGE_CLEAN,
458} pageout_t;
459
460/*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464static pageout_t pageout(struct page *page, struct address_space *mapping,
465			 struct scan_control *sc)
466{
467	/*
468	 * If the page is dirty, only perform writeback if that write
469	 * will be non-blocking.  To prevent this allocation from being
470	 * stalled by pagecache activity.  But note that there may be
471	 * stalls if we need to run get_block().  We could test
472	 * PagePrivate for that.
473	 *
474	 * If this process is currently in __generic_file_aio_write() against
475	 * this page's queue, we can perform writeback even if that
476	 * will block.
477	 *
478	 * If the page is swapcache, write it back even if that would
479	 * block, for some throttling. This happens by accident, because
480	 * swap_backing_dev_info is bust: it doesn't reflect the
481	 * congestion state of the swapdevs.  Easy to fix, if needed.
482	 */
483	if (!is_page_cache_freeable(page))
484		return PAGE_KEEP;
485	if (!mapping) {
486		/*
487		 * Some data journaling orphaned pages can have
488		 * page->mapping == NULL while being dirty with clean buffers.
489		 */
490		if (page_has_private(page)) {
491			if (try_to_free_buffers(page)) {
492				ClearPageDirty(page);
493				printk("%s: orphaned page\n", __func__);
494				return PAGE_CLEAN;
495			}
496		}
497		return PAGE_KEEP;
498	}
499	if (mapping->a_ops->writepage == NULL)
500		return PAGE_ACTIVATE;
501	if (!may_write_to_queue(mapping->backing_dev_info, sc))
502		return PAGE_KEEP;
503
504	if (clear_page_dirty_for_io(page)) {
505		int res;
506		struct writeback_control wbc = {
507			.sync_mode = WB_SYNC_NONE,
508			.nr_to_write = SWAP_CLUSTER_MAX,
509			.range_start = 0,
510			.range_end = LLONG_MAX,
511			.for_reclaim = 1,
512		};
513
514		SetPageReclaim(page);
515		res = mapping->a_ops->writepage(page, &wbc);
516		if (res < 0)
517			handle_write_error(mapping, page, res);
518		if (res == AOP_WRITEPAGE_ACTIVATE) {
519			ClearPageReclaim(page);
520			return PAGE_ACTIVATE;
521		}
522
523		if (!PageWriteback(page)) {
524			/* synchronous write or broken a_ops? */
525			ClearPageReclaim(page);
526		}
527		trace_mm_vmscan_writepage(page,
528			trace_reclaim_flags(page, sc->reclaim_mode));
529		inc_zone_page_state(page, NR_VMSCAN_WRITE);
530		return PAGE_SUCCESS;
531	}
532
533	return PAGE_CLEAN;
534}
535
536/*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540static int __remove_mapping(struct address_space *mapping, struct page *page)
541{
542	BUG_ON(!PageLocked(page));
543	BUG_ON(mapping != page_mapping(page));
544
545	spin_lock_irq(&mapping->tree_lock);
546	/*
547	 * The non racy check for a busy page.
548	 *
549	 * Must be careful with the order of the tests. When someone has
550	 * a ref to the page, it may be possible that they dirty it then
551	 * drop the reference. So if PageDirty is tested before page_count
552	 * here, then the following race may occur:
553	 *
554	 * get_user_pages(&page);
555	 * [user mapping goes away]
556	 * write_to(page);
557	 *				!PageDirty(page)    [good]
558	 * SetPageDirty(page);
559	 * put_page(page);
560	 *				!page_count(page)   [good, discard it]
561	 *
562	 * [oops, our write_to data is lost]
563	 *
564	 * Reversing the order of the tests ensures such a situation cannot
565	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566	 * load is not satisfied before that of page->_count.
567	 *
568	 * Note that if SetPageDirty is always performed via set_page_dirty,
569	 * and thus under tree_lock, then this ordering is not required.
570	 */
571	if (!page_freeze_refs(page, 2))
572		goto cannot_free;
573	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574	if (unlikely(PageDirty(page))) {
575		page_unfreeze_refs(page, 2);
576		goto cannot_free;
577	}
578
579	if (PageSwapCache(page)) {
580		swp_entry_t swap = { .val = page_private(page) };
581		__delete_from_swap_cache(page);
582		spin_unlock_irq(&mapping->tree_lock);
583		swapcache_free(swap, page);
584	} else {
585		void (*freepage)(struct page *);
586
587		freepage = mapping->a_ops->freepage;
588
589		__delete_from_page_cache(page);
590		spin_unlock_irq(&mapping->tree_lock);
591		mem_cgroup_uncharge_cache_page(page);
592
593		if (freepage != NULL)
594			freepage(page);
595	}
596
597	return 1;
598
599cannot_free:
600	spin_unlock_irq(&mapping->tree_lock);
601	return 0;
602}
603
604/*
605 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
606 * someone else has a ref on the page, abort and return 0.  If it was
607 * successfully detached, return 1.  Assumes the caller has a single ref on
608 * this page.
609 */
610int remove_mapping(struct address_space *mapping, struct page *page)
611{
612	if (__remove_mapping(mapping, page)) {
613		/*
614		 * Unfreezing the refcount with 1 rather than 2 effectively
615		 * drops the pagecache ref for us without requiring another
616		 * atomic operation.
617		 */
618		page_unfreeze_refs(page, 1);
619		return 1;
620	}
621	return 0;
622}
623
624/**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633void putback_lru_page(struct page *page)
634{
635	int lru;
636	int active = !!TestClearPageActive(page);
637	int was_unevictable = PageUnevictable(page);
638
639	VM_BUG_ON(PageLRU(page));
640
641redo:
642	ClearPageUnevictable(page);
643
644	if (page_evictable(page, NULL)) {
645		/*
646		 * For evictable pages, we can use the cache.
647		 * In event of a race, worst case is we end up with an
648		 * unevictable page on [in]active list.
649		 * We know how to handle that.
650		 */
651		lru = active + page_lru_base_type(page);
652		lru_cache_add_lru(page, lru);
653	} else {
654		/*
655		 * Put unevictable pages directly on zone's unevictable
656		 * list.
657		 */
658		lru = LRU_UNEVICTABLE;
659		add_page_to_unevictable_list(page);
660		/*
661		 * When racing with an mlock or AS_UNEVICTABLE clearing
662		 * (page is unlocked) make sure that if the other thread
663		 * does not observe our setting of PG_lru and fails
664		 * isolation/check_move_unevictable_page,
665		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666		 * the page back to the evictable list.
667		 *
668		 * The other side is TestClearPageMlocked() or shmem_lock().
669		 */
670		smp_mb();
671	}
672
673	/*
674	 * page's status can change while we move it among lru. If an evictable
675	 * page is on unevictable list, it never be freed. To avoid that,
676	 * check after we added it to the list, again.
677	 */
678	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679		if (!isolate_lru_page(page)) {
680			put_page(page);
681			goto redo;
682		}
683		/* This means someone else dropped this page from LRU
684		 * So, it will be freed or putback to LRU again. There is
685		 * nothing to do here.
686		 */
687	}
688
689	if (was_unevictable && lru != LRU_UNEVICTABLE)
690		count_vm_event(UNEVICTABLE_PGRESCUED);
691	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692		count_vm_event(UNEVICTABLE_PGCULLED);
693
694	put_page(page);		/* drop ref from isolate */
695}
696
697enum page_references {
698	PAGEREF_RECLAIM,
699	PAGEREF_RECLAIM_CLEAN,
700	PAGEREF_KEEP,
701	PAGEREF_ACTIVATE,
702};
703
704static enum page_references page_check_references(struct page *page,
705						  struct mem_cgroup_zone *mz,
706						  struct scan_control *sc)
707{
708	int referenced_ptes, referenced_page;
709	unsigned long vm_flags;
710
711	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712	referenced_page = TestClearPageReferenced(page);
713
714	/* Lumpy reclaim - ignore references */
715	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716		return PAGEREF_RECLAIM;
717
718	/*
719	 * Mlock lost the isolation race with us.  Let try_to_unmap()
720	 * move the page to the unevictable list.
721	 */
722	if (vm_flags & VM_LOCKED)
723		return PAGEREF_RECLAIM;
724
725	if (referenced_ptes) {
726		if (PageAnon(page))
727			return PAGEREF_ACTIVATE;
728		/*
729		 * All mapped pages start out with page table
730		 * references from the instantiating fault, so we need
731		 * to look twice if a mapped file page is used more
732		 * than once.
733		 *
734		 * Mark it and spare it for another trip around the
735		 * inactive list.  Another page table reference will
736		 * lead to its activation.
737		 *
738		 * Note: the mark is set for activated pages as well
739		 * so that recently deactivated but used pages are
740		 * quickly recovered.
741		 */
742		SetPageReferenced(page);
743
744		if (referenced_page || referenced_ptes > 1)
745			return PAGEREF_ACTIVATE;
746
747		/*
748		 * Activate file-backed executable pages after first usage.
749		 */
750		if (vm_flags & VM_EXEC)
751			return PAGEREF_ACTIVATE;
752
753		return PAGEREF_KEEP;
754	}
755
756	/* Reclaim if clean, defer dirty pages to writeback */
757	if (referenced_page && !PageSwapBacked(page))
758		return PAGEREF_RECLAIM_CLEAN;
759
760	return PAGEREF_RECLAIM;
761}
762
763/*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766static unsigned long shrink_page_list(struct list_head *page_list,
767				      struct mem_cgroup_zone *mz,
768				      struct scan_control *sc,
769				      int priority,
770				      unsigned long *ret_nr_dirty,
771				      unsigned long *ret_nr_writeback)
772{
773	LIST_HEAD(ret_pages);
774	LIST_HEAD(free_pages);
775	int pgactivate = 0;
776	unsigned long nr_dirty = 0;
777	unsigned long nr_congested = 0;
778	unsigned long nr_reclaimed = 0;
779	unsigned long nr_writeback = 0;
780
781	cond_resched();
782
783	while (!list_empty(page_list)) {
784		enum page_references references;
785		struct address_space *mapping;
786		struct page *page;
787		int may_enter_fs;
788
789		cond_resched();
790
791		page = lru_to_page(page_list);
792		list_del(&page->lru);
793
794		if (!trylock_page(page))
795			goto keep;
796
797		VM_BUG_ON(PageActive(page));
798		VM_BUG_ON(page_zone(page) != mz->zone);
799
800		sc->nr_scanned++;
801
802		if (unlikely(!page_evictable(page, NULL)))
803			goto cull_mlocked;
804
805		if (!sc->may_unmap && page_mapped(page))
806			goto keep_locked;
807
808		/* Double the slab pressure for mapped and swapcache pages */
809		if (page_mapped(page) || PageSwapCache(page))
810			sc->nr_scanned++;
811
812		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815		if (PageWriteback(page)) {
816			nr_writeback++;
817			/*
818			 * Synchronous reclaim cannot queue pages for
819			 * writeback due to the possibility of stack overflow
820			 * but if it encounters a page under writeback, wait
821			 * for the IO to complete.
822			 */
823			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824			    may_enter_fs)
825				wait_on_page_writeback(page);
826			else {
827				unlock_page(page);
828				goto keep_lumpy;
829			}
830		}
831
832		references = page_check_references(page, mz, sc);
833		switch (references) {
834		case PAGEREF_ACTIVATE:
835			goto activate_locked;
836		case PAGEREF_KEEP:
837			goto keep_locked;
838		case PAGEREF_RECLAIM:
839		case PAGEREF_RECLAIM_CLEAN:
840			; /* try to reclaim the page below */
841		}
842
843		/*
844		 * Anonymous process memory has backing store?
845		 * Try to allocate it some swap space here.
846		 */
847		if (PageAnon(page) && !PageSwapCache(page)) {
848			if (!(sc->gfp_mask & __GFP_IO))
849				goto keep_locked;
850			if (!add_to_swap(page))
851				goto activate_locked;
852			may_enter_fs = 1;
853		}
854
855		mapping = page_mapping(page);
856
857		/*
858		 * The page is mapped into the page tables of one or more
859		 * processes. Try to unmap it here.
860		 */
861		if (page_mapped(page) && mapping) {
862			switch (try_to_unmap(page, TTU_UNMAP)) {
863			case SWAP_FAIL:
864				goto activate_locked;
865			case SWAP_AGAIN:
866				goto keep_locked;
867			case SWAP_MLOCK:
868				goto cull_mlocked;
869			case SWAP_SUCCESS:
870				; /* try to free the page below */
871			}
872		}
873
874		if (PageDirty(page)) {
875			nr_dirty++;
876
877			/*
878			 * Only kswapd can writeback filesystem pages to
879			 * avoid risk of stack overflow but do not writeback
880			 * unless under significant pressure.
881			 */
882			if (page_is_file_cache(page) &&
883					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884				/*
885				 * Immediately reclaim when written back.
886				 * Similar in principal to deactivate_page()
887				 * except we already have the page isolated
888				 * and know it's dirty
889				 */
890				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891				SetPageReclaim(page);
892
893				goto keep_locked;
894			}
895
896			if (references == PAGEREF_RECLAIM_CLEAN)
897				goto keep_locked;
898			if (!may_enter_fs)
899				goto keep_locked;
900			if (!sc->may_writepage)
901				goto keep_locked;
902
903			/* Page is dirty, try to write it out here */
904			switch (pageout(page, mapping, sc)) {
905			case PAGE_KEEP:
906				nr_congested++;
907				goto keep_locked;
908			case PAGE_ACTIVATE:
909				goto activate_locked;
910			case PAGE_SUCCESS:
911				if (PageWriteback(page))
912					goto keep_lumpy;
913				if (PageDirty(page))
914					goto keep;
915
916				/*
917				 * A synchronous write - probably a ramdisk.  Go
918				 * ahead and try to reclaim the page.
919				 */
920				if (!trylock_page(page))
921					goto keep;
922				if (PageDirty(page) || PageWriteback(page))
923					goto keep_locked;
924				mapping = page_mapping(page);
925			case PAGE_CLEAN:
926				; /* try to free the page below */
927			}
928		}
929
930		/*
931		 * If the page has buffers, try to free the buffer mappings
932		 * associated with this page. If we succeed we try to free
933		 * the page as well.
934		 *
935		 * We do this even if the page is PageDirty().
936		 * try_to_release_page() does not perform I/O, but it is
937		 * possible for a page to have PageDirty set, but it is actually
938		 * clean (all its buffers are clean).  This happens if the
939		 * buffers were written out directly, with submit_bh(). ext3
940		 * will do this, as well as the blockdev mapping.
941		 * try_to_release_page() will discover that cleanness and will
942		 * drop the buffers and mark the page clean - it can be freed.
943		 *
944		 * Rarely, pages can have buffers and no ->mapping.  These are
945		 * the pages which were not successfully invalidated in
946		 * truncate_complete_page().  We try to drop those buffers here
947		 * and if that worked, and the page is no longer mapped into
948		 * process address space (page_count == 1) it can be freed.
949		 * Otherwise, leave the page on the LRU so it is swappable.
950		 */
951		if (page_has_private(page)) {
952			if (!try_to_release_page(page, sc->gfp_mask))
953				goto activate_locked;
954			if (!mapping && page_count(page) == 1) {
955				unlock_page(page);
956				if (put_page_testzero(page))
957					goto free_it;
958				else {
959					/*
960					 * rare race with speculative reference.
961					 * the speculative reference will free
962					 * this page shortly, so we may
963					 * increment nr_reclaimed here (and
964					 * leave it off the LRU).
965					 */
966					nr_reclaimed++;
967					continue;
968				}
969			}
970		}
971
972		if (!mapping || !__remove_mapping(mapping, page))
973			goto keep_locked;
974
975		/*
976		 * At this point, we have no other references and there is
977		 * no way to pick any more up (removed from LRU, removed
978		 * from pagecache). Can use non-atomic bitops now (and
979		 * we obviously don't have to worry about waking up a process
980		 * waiting on the page lock, because there are no references.
981		 */
982		__clear_page_locked(page);
983free_it:
984		nr_reclaimed++;
985
986		/*
987		 * Is there need to periodically free_page_list? It would
988		 * appear not as the counts should be low
989		 */
990		list_add(&page->lru, &free_pages);
991		continue;
992
993cull_mlocked:
994		if (PageSwapCache(page))
995			try_to_free_swap(page);
996		unlock_page(page);
997		putback_lru_page(page);
998		reset_reclaim_mode(sc);
999		continue;
1000
1001activate_locked:
1002		/* Not a candidate for swapping, so reclaim swap space. */
1003		if (PageSwapCache(page) && vm_swap_full())
1004			try_to_free_swap(page);
1005		VM_BUG_ON(PageActive(page));
1006		SetPageActive(page);
1007		pgactivate++;
1008keep_locked:
1009		unlock_page(page);
1010keep:
1011		reset_reclaim_mode(sc);
1012keep_lumpy:
1013		list_add(&page->lru, &ret_pages);
1014		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015	}
1016
1017	/*
1018	 * Tag a zone as congested if all the dirty pages encountered were
1019	 * backed by a congested BDI. In this case, reclaimers should just
1020	 * back off and wait for congestion to clear because further reclaim
1021	 * will encounter the same problem
1022	 */
1023	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024		zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026	free_hot_cold_page_list(&free_pages, 1);
1027
1028	list_splice(&ret_pages, page_list);
1029	count_vm_events(PGACTIVATE, pgactivate);
1030	*ret_nr_dirty += nr_dirty;
1031	*ret_nr_writeback += nr_writeback;
1032	return nr_reclaimed;
1033}
1034
1035/*
1036 * Attempt to remove the specified page from its LRU.  Only take this page
1037 * if it is of the appropriate PageActive status.  Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page:	page to consider
1041 * mode:	one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046{
1047	bool all_lru_mode;
1048	int ret = -EINVAL;
1049
1050	/* Only take pages on the LRU. */
1051	if (!PageLRU(page))
1052		return ret;
1053
1054	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057	/*
1058	 * When checking the active state, we need to be sure we are
1059	 * dealing with comparible boolean values.  Take the logical not
1060	 * of each.
1061	 */
1062	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063		return ret;
1064
1065	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066		return ret;
1067
1068	/*
1069	 * When this function is being called for lumpy reclaim, we
1070	 * initially look into all LRU pages, active, inactive and
1071	 * unevictable; only give shrink_page_list evictable pages.
1072	 */
1073	if (PageUnevictable(page))
1074		return ret;
1075
1076	ret = -EBUSY;
1077
1078	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1079		return ret;
1080
1081	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1082		return ret;
1083
1084	if (likely(get_page_unless_zero(page))) {
1085		/*
1086		 * Be careful not to clear PageLRU until after we're
1087		 * sure the page is not being freed elsewhere -- the
1088		 * page release code relies on it.
1089		 */
1090		ClearPageLRU(page);
1091		ret = 0;
1092	}
1093
1094	return ret;
1095}
1096
1097/*
1098 * zone->lru_lock is heavily contended.  Some of the functions that
1099 * shrink the lists perform better by taking out a batch of pages
1100 * and working on them outside the LRU lock.
1101 *
1102 * For pagecache intensive workloads, this function is the hottest
1103 * spot in the kernel (apart from copy_*_user functions).
1104 *
1105 * Appropriate locks must be held before calling this function.
1106 *
1107 * @nr_to_scan:	The number of pages to look through on the list.
1108 * @src:	The LRU list to pull pages off.
1109 * @dst:	The temp list to put pages on to.
1110 * @scanned:	The number of pages that were scanned.
1111 * @order:	The caller's attempted allocation order
1112 * @mode:	One of the LRU isolation modes
1113 * @file:	True [1] if isolating file [!anon] pages
1114 *
1115 * returns how many pages were moved onto *@dst.
1116 */
1117static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1118		struct list_head *src, struct list_head *dst,
1119		unsigned long *scanned, int order, isolate_mode_t mode,
1120		int file)
1121{
1122	unsigned long nr_taken = 0;
1123	unsigned long nr_lumpy_taken = 0;
1124	unsigned long nr_lumpy_dirty = 0;
1125	unsigned long nr_lumpy_failed = 0;
1126	unsigned long scan;
1127
1128	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1129		struct page *page;
1130		unsigned long pfn;
1131		unsigned long end_pfn;
1132		unsigned long page_pfn;
1133		int zone_id;
1134
1135		page = lru_to_page(src);
1136		prefetchw_prev_lru_page(page, src, flags);
1137
1138		VM_BUG_ON(!PageLRU(page));
1139
1140		switch (__isolate_lru_page(page, mode, file)) {
1141		case 0:
1142			mem_cgroup_lru_del(page);
1143			list_move(&page->lru, dst);
1144			nr_taken += hpage_nr_pages(page);
1145			break;
1146
1147		case -EBUSY:
1148			/* else it is being freed elsewhere */
1149			list_move(&page->lru, src);
1150			continue;
1151
1152		default:
1153			BUG();
1154		}
1155
1156		if (!order)
1157			continue;
1158
1159		/*
1160		 * Attempt to take all pages in the order aligned region
1161		 * surrounding the tag page.  Only take those pages of
1162		 * the same active state as that tag page.  We may safely
1163		 * round the target page pfn down to the requested order
1164		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1165		 * where that page is in a different zone we will detect
1166		 * it from its zone id and abort this block scan.
1167		 */
1168		zone_id = page_zone_id(page);
1169		page_pfn = page_to_pfn(page);
1170		pfn = page_pfn & ~((1 << order) - 1);
1171		end_pfn = pfn + (1 << order);
1172		for (; pfn < end_pfn; pfn++) {
1173			struct page *cursor_page;
1174
1175			/* The target page is in the block, ignore it. */
1176			if (unlikely(pfn == page_pfn))
1177				continue;
1178
1179			/* Avoid holes within the zone. */
1180			if (unlikely(!pfn_valid_within(pfn)))
1181				break;
1182
1183			cursor_page = pfn_to_page(pfn);
1184
1185			/* Check that we have not crossed a zone boundary. */
1186			if (unlikely(page_zone_id(cursor_page) != zone_id))
1187				break;
1188
1189			/*
1190			 * If we don't have enough swap space, reclaiming of
1191			 * anon page which don't already have a swap slot is
1192			 * pointless.
1193			 */
1194			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1195			    !PageSwapCache(cursor_page))
1196				break;
1197
1198			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1199				unsigned int isolated_pages;
1200
1201				mem_cgroup_lru_del(cursor_page);
1202				list_move(&cursor_page->lru, dst);
1203				isolated_pages = hpage_nr_pages(cursor_page);
1204				nr_taken += isolated_pages;
1205				nr_lumpy_taken += isolated_pages;
1206				if (PageDirty(cursor_page))
1207					nr_lumpy_dirty += isolated_pages;
1208				scan++;
1209				pfn += isolated_pages - 1;
1210			} else {
1211				/*
1212				 * Check if the page is freed already.
1213				 *
1214				 * We can't use page_count() as that
1215				 * requires compound_head and we don't
1216				 * have a pin on the page here. If a
1217				 * page is tail, we may or may not
1218				 * have isolated the head, so assume
1219				 * it's not free, it'd be tricky to
1220				 * track the head status without a
1221				 * page pin.
1222				 */
1223				if (!PageTail(cursor_page) &&
1224				    !atomic_read(&cursor_page->_count))
1225					continue;
1226				break;
1227			}
1228		}
1229
1230		/* If we break out of the loop above, lumpy reclaim failed */
1231		if (pfn < end_pfn)
1232			nr_lumpy_failed++;
1233	}
1234
1235	*scanned = scan;
1236
1237	trace_mm_vmscan_lru_isolate(order,
1238			nr_to_scan, scan,
1239			nr_taken,
1240			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1241			mode, file);
1242	return nr_taken;
1243}
1244
1245static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
1246				   struct list_head *dst,
1247				   unsigned long *scanned, int order,
1248				   isolate_mode_t mode, int active, int file)
1249{
1250	struct lruvec *lruvec;
1251	int lru = LRU_BASE;
1252
1253	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1254	if (active)
1255		lru += LRU_ACTIVE;
1256	if (file)
1257		lru += LRU_FILE;
1258	return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1259				 scanned, order, mode, file);
1260}
1261
1262/*
1263 * clear_active_flags() is a helper for shrink_active_list(), clearing
1264 * any active bits from the pages in the list.
1265 */
1266static unsigned long clear_active_flags(struct list_head *page_list,
1267					unsigned int *count)
1268{
1269	int nr_active = 0;
1270	int lru;
1271	struct page *page;
1272
1273	list_for_each_entry(page, page_list, lru) {
1274		int numpages = hpage_nr_pages(page);
1275		lru = page_lru_base_type(page);
1276		if (PageActive(page)) {
1277			lru += LRU_ACTIVE;
1278			ClearPageActive(page);
1279			nr_active += numpages;
1280		}
1281		if (count)
1282			count[lru] += numpages;
1283	}
1284
1285	return nr_active;
1286}
1287
1288/**
1289 * isolate_lru_page - tries to isolate a page from its LRU list
1290 * @page: page to isolate from its LRU list
1291 *
1292 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1293 * vmstat statistic corresponding to whatever LRU list the page was on.
1294 *
1295 * Returns 0 if the page was removed from an LRU list.
1296 * Returns -EBUSY if the page was not on an LRU list.
1297 *
1298 * The returned page will have PageLRU() cleared.  If it was found on
1299 * the active list, it will have PageActive set.  If it was found on
1300 * the unevictable list, it will have the PageUnevictable bit set. That flag
1301 * may need to be cleared by the caller before letting the page go.
1302 *
1303 * The vmstat statistic corresponding to the list on which the page was
1304 * found will be decremented.
1305 *
1306 * Restrictions:
1307 * (1) Must be called with an elevated refcount on the page. This is a
1308 *     fundamentnal difference from isolate_lru_pages (which is called
1309 *     without a stable reference).
1310 * (2) the lru_lock must not be held.
1311 * (3) interrupts must be enabled.
1312 */
1313int isolate_lru_page(struct page *page)
1314{
1315	int ret = -EBUSY;
1316
1317	VM_BUG_ON(!page_count(page));
1318
1319	if (PageLRU(page)) {
1320		struct zone *zone = page_zone(page);
1321
1322		spin_lock_irq(&zone->lru_lock);
1323		if (PageLRU(page)) {
1324			int lru = page_lru(page);
1325			ret = 0;
1326			get_page(page);
1327			ClearPageLRU(page);
1328
1329			del_page_from_lru_list(zone, page, lru);
1330		}
1331		spin_unlock_irq(&zone->lru_lock);
1332	}
1333	return ret;
1334}
1335
1336/*
1337 * Are there way too many processes in the direct reclaim path already?
1338 */
1339static int too_many_isolated(struct zone *zone, int file,
1340		struct scan_control *sc)
1341{
1342	unsigned long inactive, isolated;
1343
1344	if (current_is_kswapd())
1345		return 0;
1346
1347	if (!global_reclaim(sc))
1348		return 0;
1349
1350	if (file) {
1351		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1352		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1353	} else {
1354		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1355		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1356	}
1357
1358	return isolated > inactive;
1359}
1360
1361/*
1362 * TODO: Try merging with migrations version of putback_lru_pages
1363 */
1364static noinline_for_stack void
1365putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1366		  unsigned long nr_anon, unsigned long nr_file,
1367		  struct list_head *page_list)
1368{
1369	struct page *page;
1370	struct pagevec pvec;
1371	struct zone *zone = mz->zone;
1372	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1373
1374	pagevec_init(&pvec, 1);
1375
1376	/*
1377	 * Put back any unfreeable pages.
1378	 */
1379	spin_lock(&zone->lru_lock);
1380	while (!list_empty(page_list)) {
1381		int lru;
1382		page = lru_to_page(page_list);
1383		VM_BUG_ON(PageLRU(page));
1384		list_del(&page->lru);
1385		if (unlikely(!page_evictable(page, NULL))) {
1386			spin_unlock_irq(&zone->lru_lock);
1387			putback_lru_page(page);
1388			spin_lock_irq(&zone->lru_lock);
1389			continue;
1390		}
1391		SetPageLRU(page);
1392		lru = page_lru(page);
1393		add_page_to_lru_list(zone, page, lru);
1394		if (is_active_lru(lru)) {
1395			int file = is_file_lru(lru);
1396			int numpages = hpage_nr_pages(page);
1397			reclaim_stat->recent_rotated[file] += numpages;
1398		}
1399		if (!pagevec_add(&pvec, page)) {
1400			spin_unlock_irq(&zone->lru_lock);
1401			__pagevec_release(&pvec);
1402			spin_lock_irq(&zone->lru_lock);
1403		}
1404	}
1405	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1406	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1407
1408	spin_unlock_irq(&zone->lru_lock);
1409	pagevec_release(&pvec);
1410}
1411
1412static noinline_for_stack void
1413update_isolated_counts(struct mem_cgroup_zone *mz,
1414		       struct scan_control *sc,
1415		       unsigned long *nr_anon,
1416		       unsigned long *nr_file,
1417		       struct list_head *isolated_list)
1418{
1419	unsigned long nr_active;
1420	struct zone *zone = mz->zone;
1421	unsigned int count[NR_LRU_LISTS] = { 0, };
1422	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1423
1424	nr_active = clear_active_flags(isolated_list, count);
1425	__count_vm_events(PGDEACTIVATE, nr_active);
1426
1427	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1428			      -count[LRU_ACTIVE_FILE]);
1429	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1430			      -count[LRU_INACTIVE_FILE]);
1431	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1432			      -count[LRU_ACTIVE_ANON]);
1433	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1434			      -count[LRU_INACTIVE_ANON]);
1435
1436	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1437	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1438	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1439	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1440
1441	reclaim_stat->recent_scanned[0] += *nr_anon;
1442	reclaim_stat->recent_scanned[1] += *nr_file;
1443}
1444
1445/*
1446 * Returns true if a direct reclaim should wait on pages under writeback.
1447 *
1448 * If we are direct reclaiming for contiguous pages and we do not reclaim
1449 * everything in the list, try again and wait for writeback IO to complete.
1450 * This will stall high-order allocations noticeably. Only do that when really
1451 * need to free the pages under high memory pressure.
1452 */
1453static inline bool should_reclaim_stall(unsigned long nr_taken,
1454					unsigned long nr_freed,
1455					int priority,
1456					struct scan_control *sc)
1457{
1458	int lumpy_stall_priority;
1459
1460	/* kswapd should not stall on sync IO */
1461	if (current_is_kswapd())
1462		return false;
1463
1464	/* Only stall on lumpy reclaim */
1465	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1466		return false;
1467
1468	/* If we have reclaimed everything on the isolated list, no stall */
1469	if (nr_freed == nr_taken)
1470		return false;
1471
1472	/*
1473	 * For high-order allocations, there are two stall thresholds.
1474	 * High-cost allocations stall immediately where as lower
1475	 * order allocations such as stacks require the scanning
1476	 * priority to be much higher before stalling.
1477	 */
1478	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1479		lumpy_stall_priority = DEF_PRIORITY;
1480	else
1481		lumpy_stall_priority = DEF_PRIORITY / 3;
1482
1483	return priority <= lumpy_stall_priority;
1484}
1485
1486/*
1487 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1488 * of reclaimed pages
1489 */
1490static noinline_for_stack unsigned long
1491shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1492		     struct scan_control *sc, int priority, int file)
1493{
1494	LIST_HEAD(page_list);
1495	unsigned long nr_scanned;
1496	unsigned long nr_reclaimed = 0;
1497	unsigned long nr_taken;
1498	unsigned long nr_anon;
1499	unsigned long nr_file;
1500	unsigned long nr_dirty = 0;
1501	unsigned long nr_writeback = 0;
1502	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1503	struct zone *zone = mz->zone;
1504
1505	while (unlikely(too_many_isolated(zone, file, sc))) {
1506		congestion_wait(BLK_RW_ASYNC, HZ/10);
1507
1508		/* We are about to die and free our memory. Return now. */
1509		if (fatal_signal_pending(current))
1510			return SWAP_CLUSTER_MAX;
1511	}
1512
1513	set_reclaim_mode(priority, sc, false);
1514	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1515		reclaim_mode |= ISOLATE_ACTIVE;
1516
1517	lru_add_drain();
1518
1519	if (!sc->may_unmap)
1520		reclaim_mode |= ISOLATE_UNMAPPED;
1521	if (!sc->may_writepage)
1522		reclaim_mode |= ISOLATE_CLEAN;
1523
1524	spin_lock_irq(&zone->lru_lock);
1525
1526	nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
1527				 &nr_scanned, sc->order,
1528				 reclaim_mode, 0, file);
1529	if (global_reclaim(sc)) {
1530		zone->pages_scanned += nr_scanned;
1531		if (current_is_kswapd())
1532			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1533					       nr_scanned);
1534		else
1535			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1536					       nr_scanned);
1537	}
1538
1539	if (nr_taken == 0) {
1540		spin_unlock_irq(&zone->lru_lock);
1541		return 0;
1542	}
1543
1544	update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1545
1546	spin_unlock_irq(&zone->lru_lock);
1547
1548	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1549						&nr_dirty, &nr_writeback);
1550
1551	/* Check if we should syncronously wait for writeback */
1552	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1553		set_reclaim_mode(priority, sc, true);
1554		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1555					priority, &nr_dirty, &nr_writeback);
1556	}
1557
1558	local_irq_disable();
1559	if (current_is_kswapd())
1560		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1561	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1562
1563	putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1564
1565	/*
1566	 * If reclaim is isolating dirty pages under writeback, it implies
1567	 * that the long-lived page allocation rate is exceeding the page
1568	 * laundering rate. Either the global limits are not being effective
1569	 * at throttling processes due to the page distribution throughout
1570	 * zones or there is heavy usage of a slow backing device. The
1571	 * only option is to throttle from reclaim context which is not ideal
1572	 * as there is no guarantee the dirtying process is throttled in the
1573	 * same way balance_dirty_pages() manages.
1574	 *
1575	 * This scales the number of dirty pages that must be under writeback
1576	 * before throttling depending on priority. It is a simple backoff
1577	 * function that has the most effect in the range DEF_PRIORITY to
1578	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1579	 * in trouble and reclaim is considered to be in trouble.
1580	 *
1581	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1582	 * DEF_PRIORITY-1  50% must be PageWriteback
1583	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1584	 * ...
1585	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1586	 *                     isolated page is PageWriteback
1587	 */
1588	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1589		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1590
1591	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1592		zone_idx(zone),
1593		nr_scanned, nr_reclaimed,
1594		priority,
1595		trace_shrink_flags(file, sc->reclaim_mode));
1596	return nr_reclaimed;
1597}
1598
1599/*
1600 * This moves pages from the active list to the inactive list.
1601 *
1602 * We move them the other way if the page is referenced by one or more
1603 * processes, from rmap.
1604 *
1605 * If the pages are mostly unmapped, the processing is fast and it is
1606 * appropriate to hold zone->lru_lock across the whole operation.  But if
1607 * the pages are mapped, the processing is slow (page_referenced()) so we
1608 * should drop zone->lru_lock around each page.  It's impossible to balance
1609 * this, so instead we remove the pages from the LRU while processing them.
1610 * It is safe to rely on PG_active against the non-LRU pages in here because
1611 * nobody will play with that bit on a non-LRU page.
1612 *
1613 * The downside is that we have to touch page->_count against each page.
1614 * But we had to alter page->flags anyway.
1615 */
1616
1617static void move_active_pages_to_lru(struct zone *zone,
1618				     struct list_head *list,
1619				     enum lru_list lru)
1620{
1621	unsigned long pgmoved = 0;
1622	struct pagevec pvec;
1623	struct page *page;
1624
1625	pagevec_init(&pvec, 1);
1626
1627	while (!list_empty(list)) {
1628		struct lruvec *lruvec;
1629
1630		page = lru_to_page(list);
1631
1632		VM_BUG_ON(PageLRU(page));
1633		SetPageLRU(page);
1634
1635		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1636		list_move(&page->lru, &lruvec->lists[lru]);
1637		pgmoved += hpage_nr_pages(page);
1638
1639		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1640			spin_unlock_irq(&zone->lru_lock);
1641			if (buffer_heads_over_limit)
1642				pagevec_strip(&pvec);
1643			__pagevec_release(&pvec);
1644			spin_lock_irq(&zone->lru_lock);
1645		}
1646	}
1647	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1648	if (!is_active_lru(lru))
1649		__count_vm_events(PGDEACTIVATE, pgmoved);
1650}
1651
1652static void shrink_active_list(unsigned long nr_pages,
1653			       struct mem_cgroup_zone *mz,
1654			       struct scan_control *sc,
1655			       int priority, int file)
1656{
1657	unsigned long nr_taken;
1658	unsigned long pgscanned;
1659	unsigned long vm_flags;
1660	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1661	LIST_HEAD(l_active);
1662	LIST_HEAD(l_inactive);
1663	struct page *page;
1664	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1665	unsigned long nr_rotated = 0;
1666	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1667	struct zone *zone = mz->zone;
1668
1669	lru_add_drain();
1670
1671	if (!sc->may_unmap)
1672		reclaim_mode |= ISOLATE_UNMAPPED;
1673	if (!sc->may_writepage)
1674		reclaim_mode |= ISOLATE_CLEAN;
1675
1676	spin_lock_irq(&zone->lru_lock);
1677
1678	nr_taken = isolate_pages(nr_pages, mz, &l_hold,
1679				 &pgscanned, sc->order,
1680				 reclaim_mode, 1, file);
1681
1682	if (global_reclaim(sc))
1683		zone->pages_scanned += pgscanned;
1684
1685	reclaim_stat->recent_scanned[file] += nr_taken;
1686
1687	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1688	if (file)
1689		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1690	else
1691		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1692	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1693	spin_unlock_irq(&zone->lru_lock);
1694
1695	while (!list_empty(&l_hold)) {
1696		cond_resched();
1697		page = lru_to_page(&l_hold);
1698		list_del(&page->lru);
1699
1700		if (unlikely(!page_evictable(page, NULL))) {
1701			putback_lru_page(page);
1702			continue;
1703		}
1704
1705		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1706			nr_rotated += hpage_nr_pages(page);
1707			/*
1708			 * Identify referenced, file-backed active pages and
1709			 * give them one more trip around the active list. So
1710			 * that executable code get better chances to stay in
1711			 * memory under moderate memory pressure.  Anon pages
1712			 * are not likely to be evicted by use-once streaming
1713			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1714			 * so we ignore them here.
1715			 */
1716			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717				list_add(&page->lru, &l_active);
1718				continue;
1719			}
1720		}
1721
1722		ClearPageActive(page);	/* we are de-activating */
1723		list_add(&page->lru, &l_inactive);
1724	}
1725
1726	/*
1727	 * Move pages back to the lru list.
1728	 */
1729	spin_lock_irq(&zone->lru_lock);
1730	/*
1731	 * Count referenced pages from currently used mappings as rotated,
1732	 * even though only some of them are actually re-activated.  This
1733	 * helps balance scan pressure between file and anonymous pages in
1734	 * get_scan_ratio.
1735	 */
1736	reclaim_stat->recent_rotated[file] += nr_rotated;
1737
1738	move_active_pages_to_lru(zone, &l_active,
1739						LRU_ACTIVE + file * LRU_FILE);
1740	move_active_pages_to_lru(zone, &l_inactive,
1741						LRU_BASE   + file * LRU_FILE);
1742	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1743	spin_unlock_irq(&zone->lru_lock);
1744}
1745
1746#ifdef CONFIG_SWAP
1747static int inactive_anon_is_low_global(struct zone *zone)
1748{
1749	unsigned long active, inactive;
1750
1751	active = zone_page_state(zone, NR_ACTIVE_ANON);
1752	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753
1754	if (inactive * zone->inactive_ratio < active)
1755		return 1;
1756
1757	return 0;
1758}
1759
1760/**
1761 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762 * @zone: zone to check
1763 * @sc:   scan control of this context
1764 *
1765 * Returns true if the zone does not have enough inactive anon pages,
1766 * meaning some active anon pages need to be deactivated.
1767 */
1768static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1769{
1770	/*
1771	 * If we don't have swap space, anonymous page deactivation
1772	 * is pointless.
1773	 */
1774	if (!total_swap_pages)
1775		return 0;
1776
1777	if (!scanning_global_lru(mz))
1778		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1779						       mz->zone);
1780
1781	return inactive_anon_is_low_global(mz->zone);
1782}
1783#else
1784static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1785{
1786	return 0;
1787}
1788#endif
1789
1790static int inactive_file_is_low_global(struct zone *zone)
1791{
1792	unsigned long active, inactive;
1793
1794	active = zone_page_state(zone, NR_ACTIVE_FILE);
1795	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1796
1797	return (active > inactive);
1798}
1799
1800/**
1801 * inactive_file_is_low - check if file pages need to be deactivated
1802 * @mz: memory cgroup and zone to check
1803 *
1804 * When the system is doing streaming IO, memory pressure here
1805 * ensures that active file pages get deactivated, until more
1806 * than half of the file pages are on the inactive list.
1807 *
1808 * Once we get to that situation, protect the system's working
1809 * set from being evicted by disabling active file page aging.
1810 *
1811 * This uses a different ratio than the anonymous pages, because
1812 * the page cache uses a use-once replacement algorithm.
1813 */
1814static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1815{
1816	if (!scanning_global_lru(mz))
1817		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1818						       mz->zone);
1819
1820	return inactive_file_is_low_global(mz->zone);
1821}
1822
1823static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1824{
1825	if (file)
1826		return inactive_file_is_low(mz);
1827	else
1828		return inactive_anon_is_low(mz);
1829}
1830
1831static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1832				 struct mem_cgroup_zone *mz,
1833				 struct scan_control *sc, int priority)
1834{
1835	int file = is_file_lru(lru);
1836
1837	if (is_active_lru(lru)) {
1838		if (inactive_list_is_low(mz, file))
1839			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1840		return 0;
1841	}
1842
1843	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1844}
1845
1846static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1847			     struct scan_control *sc)
1848{
1849	if (global_reclaim(sc))
1850		return vm_swappiness;
1851	return mem_cgroup_swappiness(mz->mem_cgroup);
1852}
1853
1854/*
1855 * Determine how aggressively the anon and file LRU lists should be
1856 * scanned.  The relative value of each set of LRU lists is determined
1857 * by looking at the fraction of the pages scanned we did rotate back
1858 * onto the active list instead of evict.
1859 *
1860 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1861 */
1862static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1863			   unsigned long *nr, int priority)
1864{
1865	unsigned long anon, file, free;
1866	unsigned long anon_prio, file_prio;
1867	unsigned long ap, fp;
1868	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1869	u64 fraction[2], denominator;
1870	enum lru_list l;
1871	int noswap = 0;
1872	bool force_scan = false;
1873
1874	/*
1875	 * If the zone or memcg is small, nr[l] can be 0.  This
1876	 * results in no scanning on this priority and a potential
1877	 * priority drop.  Global direct reclaim can go to the next
1878	 * zone and tends to have no problems. Global kswapd is for
1879	 * zone balancing and it needs to scan a minimum amount. When
1880	 * reclaiming for a memcg, a priority drop can cause high
1881	 * latencies, so it's better to scan a minimum amount there as
1882	 * well.
1883	 */
1884	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1885		force_scan = true;
1886	if (!global_reclaim(sc))
1887		force_scan = true;
1888
1889	/* If we have no swap space, do not bother scanning anon pages. */
1890	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1891		noswap = 1;
1892		fraction[0] = 0;
1893		fraction[1] = 1;
1894		denominator = 1;
1895		goto out;
1896	}
1897
1898	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1899		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1900	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1901		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1902
1903	if (global_reclaim(sc)) {
1904		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1905		/* If we have very few page cache pages,
1906		   force-scan anon pages. */
1907		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1908			fraction[0] = 1;
1909			fraction[1] = 0;
1910			denominator = 1;
1911			goto out;
1912		}
1913	}
1914
1915	/*
1916	 * With swappiness at 100, anonymous and file have the same priority.
1917	 * This scanning priority is essentially the inverse of IO cost.
1918	 */
1919	anon_prio = vmscan_swappiness(mz, sc);
1920	file_prio = 200 - vmscan_swappiness(mz, sc);
1921
1922	/*
1923	 * OK, so we have swap space and a fair amount of page cache
1924	 * pages.  We use the recently rotated / recently scanned
1925	 * ratios to determine how valuable each cache is.
1926	 *
1927	 * Because workloads change over time (and to avoid overflow)
1928	 * we keep these statistics as a floating average, which ends
1929	 * up weighing recent references more than old ones.
1930	 *
1931	 * anon in [0], file in [1]
1932	 */
1933	spin_lock_irq(&mz->zone->lru_lock);
1934	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1935		reclaim_stat->recent_scanned[0] /= 2;
1936		reclaim_stat->recent_rotated[0] /= 2;
1937	}
1938
1939	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1940		reclaim_stat->recent_scanned[1] /= 2;
1941		reclaim_stat->recent_rotated[1] /= 2;
1942	}
1943
1944	/*
1945	 * The amount of pressure on anon vs file pages is inversely
1946	 * proportional to the fraction of recently scanned pages on
1947	 * each list that were recently referenced and in active use.
1948	 */
1949	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1950	ap /= reclaim_stat->recent_rotated[0] + 1;
1951
1952	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1953	fp /= reclaim_stat->recent_rotated[1] + 1;
1954	spin_unlock_irq(&mz->zone->lru_lock);
1955
1956	fraction[0] = ap;
1957	fraction[1] = fp;
1958	denominator = ap + fp + 1;
1959out:
1960	for_each_evictable_lru(l) {
1961		int file = is_file_lru(l);
1962		unsigned long scan;
1963
1964		scan = zone_nr_lru_pages(mz, l);
1965		if (priority || noswap) {
1966			scan >>= priority;
1967			if (!scan && force_scan)
1968				scan = SWAP_CLUSTER_MAX;
1969			scan = div64_u64(scan * fraction[file], denominator);
1970		}
1971		nr[l] = scan;
1972	}
1973}
1974
1975/*
1976 * Reclaim/compaction depends on a number of pages being freed. To avoid
1977 * disruption to the system, a small number of order-0 pages continue to be
1978 * rotated and reclaimed in the normal fashion. However, by the time we get
1979 * back to the allocator and call try_to_compact_zone(), we ensure that
1980 * there are enough free pages for it to be likely successful
1981 */
1982static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1983					unsigned long nr_reclaimed,
1984					unsigned long nr_scanned,
1985					struct scan_control *sc)
1986{
1987	unsigned long pages_for_compaction;
1988	unsigned long inactive_lru_pages;
1989
1990	/* If not in reclaim/compaction mode, stop */
1991	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1992		return false;
1993
1994	/* Consider stopping depending on scan and reclaim activity */
1995	if (sc->gfp_mask & __GFP_REPEAT) {
1996		/*
1997		 * For __GFP_REPEAT allocations, stop reclaiming if the
1998		 * full LRU list has been scanned and we are still failing
1999		 * to reclaim pages. This full LRU scan is potentially
2000		 * expensive but a __GFP_REPEAT caller really wants to succeed
2001		 */
2002		if (!nr_reclaimed && !nr_scanned)
2003			return false;
2004	} else {
2005		/*
2006		 * For non-__GFP_REPEAT allocations which can presumably
2007		 * fail without consequence, stop if we failed to reclaim
2008		 * any pages from the last SWAP_CLUSTER_MAX number of
2009		 * pages that were scanned. This will return to the
2010		 * caller faster at the risk reclaim/compaction and
2011		 * the resulting allocation attempt fails
2012		 */
2013		if (!nr_reclaimed)
2014			return false;
2015	}
2016
2017	/*
2018	 * If we have not reclaimed enough pages for compaction and the
2019	 * inactive lists are large enough, continue reclaiming
2020	 */
2021	pages_for_compaction = (2UL << sc->order);
2022	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2023	if (nr_swap_pages > 0)
2024		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2025	if (sc->nr_reclaimed < pages_for_compaction &&
2026			inactive_lru_pages > pages_for_compaction)
2027		return true;
2028
2029	/* If compaction would go ahead or the allocation would succeed, stop */
2030	switch (compaction_suitable(mz->zone, sc->order)) {
2031	case COMPACT_PARTIAL:
2032	case COMPACT_CONTINUE:
2033		return false;
2034	default:
2035		return true;
2036	}
2037}
2038
2039/*
2040 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2041 */
2042static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2043				   struct scan_control *sc)
2044{
2045	unsigned long nr[NR_LRU_LISTS];
2046	unsigned long nr_to_scan;
2047	enum lru_list l;
2048	unsigned long nr_reclaimed, nr_scanned;
2049	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2050	struct blk_plug plug;
2051
2052restart:
2053	nr_reclaimed = 0;
2054	nr_scanned = sc->nr_scanned;
2055	get_scan_count(mz, sc, nr, priority);
2056
2057	blk_start_plug(&plug);
2058	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2059					nr[LRU_INACTIVE_FILE]) {
2060		for_each_evictable_lru(l) {
2061			if (nr[l]) {
2062				nr_to_scan = min_t(unsigned long,
2063						   nr[l], SWAP_CLUSTER_MAX);
2064				nr[l] -= nr_to_scan;
2065
2066				nr_reclaimed += shrink_list(l, nr_to_scan,
2067							    mz, sc, priority);
2068			}
2069		}
2070		/*
2071		 * On large memory systems, scan >> priority can become
2072		 * really large. This is fine for the starting priority;
2073		 * we want to put equal scanning pressure on each zone.
2074		 * However, if the VM has a harder time of freeing pages,
2075		 * with multiple processes reclaiming pages, the total
2076		 * freeing target can get unreasonably large.
2077		 */
2078		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2079			break;
2080	}
2081	blk_finish_plug(&plug);
2082	sc->nr_reclaimed += nr_reclaimed;
2083
2084	/*
2085	 * Even if we did not try to evict anon pages at all, we want to
2086	 * rebalance the anon lru active/inactive ratio.
2087	 */
2088	if (inactive_anon_is_low(mz))
2089		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2090
2091	/* reclaim/compaction might need reclaim to continue */
2092	if (should_continue_reclaim(mz, nr_reclaimed,
2093					sc->nr_scanned - nr_scanned, sc))
2094		goto restart;
2095
2096	throttle_vm_writeout(sc->gfp_mask);
2097}
2098
2099static void shrink_zone(int priority, struct zone *zone,
2100			struct scan_control *sc)
2101{
2102	struct mem_cgroup *root = sc->target_mem_cgroup;
2103	struct mem_cgroup_reclaim_cookie reclaim = {
2104		.zone = zone,
2105		.priority = priority,
2106	};
2107	struct mem_cgroup *memcg;
2108
2109	memcg = mem_cgroup_iter(root, NULL, &reclaim);
2110	do {
2111		struct mem_cgroup_zone mz = {
2112			.mem_cgroup = memcg,
2113			.zone = zone,
2114		};
2115
2116		shrink_mem_cgroup_zone(priority, &mz, sc);
2117		/*
2118		 * Limit reclaim has historically picked one memcg and
2119		 * scanned it with decreasing priority levels until
2120		 * nr_to_reclaim had been reclaimed.  This priority
2121		 * cycle is thus over after a single memcg.
2122		 *
2123		 * Direct reclaim and kswapd, on the other hand, have
2124		 * to scan all memory cgroups to fulfill the overall
2125		 * scan target for the zone.
2126		 */
2127		if (!global_reclaim(sc)) {
2128			mem_cgroup_iter_break(root, memcg);
2129			break;
2130		}
2131		memcg = mem_cgroup_iter(root, memcg, &reclaim);
2132	} while (memcg);
2133}
2134
2135/*
2136 * This is the direct reclaim path, for page-allocating processes.  We only
2137 * try to reclaim pages from zones which will satisfy the caller's allocation
2138 * request.
2139 *
2140 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2141 * Because:
2142 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2143 *    allocation or
2144 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2145 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2146 *    zone defense algorithm.
2147 *
2148 * If a zone is deemed to be full of pinned pages then just give it a light
2149 * scan then give up on it.
2150 *
2151 * This function returns true if a zone is being reclaimed for a costly
2152 * high-order allocation and compaction is either ready to begin or deferred.
2153 * This indicates to the caller that it should retry the allocation or fail.
2154 */
2155static bool shrink_zones(int priority, struct zonelist *zonelist,
2156					struct scan_control *sc)
2157{
2158	struct zoneref *z;
2159	struct zone *zone;
2160	unsigned long nr_soft_reclaimed;
2161	unsigned long nr_soft_scanned;
2162	bool should_abort_reclaim = false;
2163
2164	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2165					gfp_zone(sc->gfp_mask), sc->nodemask) {
2166		if (!populated_zone(zone))
2167			continue;
2168		/*
2169		 * Take care memory controller reclaiming has small influence
2170		 * to global LRU.
2171		 */
2172		if (global_reclaim(sc)) {
2173			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2174				continue;
2175			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2176				continue;	/* Let kswapd poll it */
2177			if (COMPACTION_BUILD) {
2178				/*
2179				 * If we already have plenty of memory free for
2180				 * compaction in this zone, don't free any more.
2181				 * Even though compaction is invoked for any
2182				 * non-zero order, only frequent costly order
2183				 * reclamation is disruptive enough to become a
2184				 * noticable problem, like transparent huge page
2185				 * allocations.
2186				 */
2187				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2188					(compaction_suitable(zone, sc->order) ||
2189					 compaction_deferred(zone))) {
2190					should_abort_reclaim = true;
2191					continue;
2192				}
2193			}
2194			/*
2195			 * This steals pages from memory cgroups over softlimit
2196			 * and returns the number of reclaimed pages and
2197			 * scanned pages. This works for global memory pressure
2198			 * and balancing, not for a memcg's limit.
2199			 */
2200			nr_soft_scanned = 0;
2201			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2202						sc->order, sc->gfp_mask,
2203						&nr_soft_scanned);
2204			sc->nr_reclaimed += nr_soft_reclaimed;
2205			sc->nr_scanned += nr_soft_scanned;
2206			/* need some check for avoid more shrink_zone() */
2207		}
2208
2209		shrink_zone(priority, zone, sc);
2210	}
2211
2212	return should_abort_reclaim;
2213}
2214
2215static bool zone_reclaimable(struct zone *zone)
2216{
2217	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2218}
2219
2220/* All zones in zonelist are unreclaimable? */
2221static bool all_unreclaimable(struct zonelist *zonelist,
2222		struct scan_control *sc)
2223{
2224	struct zoneref *z;
2225	struct zone *zone;
2226
2227	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2228			gfp_zone(sc->gfp_mask), sc->nodemask) {
2229		if (!populated_zone(zone))
2230			continue;
2231		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2232			continue;
2233		if (!zone->all_unreclaimable)
2234			return false;
2235	}
2236
2237	return true;
2238}
2239
2240/*
2241 * This is the main entry point to direct page reclaim.
2242 *
2243 * If a full scan of the inactive list fails to free enough memory then we
2244 * are "out of memory" and something needs to be killed.
2245 *
2246 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2247 * high - the zone may be full of dirty or under-writeback pages, which this
2248 * caller can't do much about.  We kick the writeback threads and take explicit
2249 * naps in the hope that some of these pages can be written.  But if the
2250 * allocating task holds filesystem locks which prevent writeout this might not
2251 * work, and the allocation attempt will fail.
2252 *
2253 * returns:	0, if no pages reclaimed
2254 * 		else, the number of pages reclaimed
2255 */
2256static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2257					struct scan_control *sc,
2258					struct shrink_control *shrink)
2259{
2260	int priority;
2261	unsigned long total_scanned = 0;
2262	struct reclaim_state *reclaim_state = current->reclaim_state;
2263	struct zoneref *z;
2264	struct zone *zone;
2265	unsigned long writeback_threshold;
2266	bool should_abort_reclaim;
2267
2268	get_mems_allowed();
2269	delayacct_freepages_start();
2270
2271	if (global_reclaim(sc))
2272		count_vm_event(ALLOCSTALL);
2273
2274	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2275		sc->nr_scanned = 0;
2276		if (!priority)
2277			disable_swap_token(sc->target_mem_cgroup);
2278		should_abort_reclaim = shrink_zones(priority, zonelist, sc);
2279		if (should_abort_reclaim)
2280			break;
2281
2282		/*
2283		 * Don't shrink slabs when reclaiming memory from
2284		 * over limit cgroups
2285		 */
2286		if (global_reclaim(sc)) {
2287			unsigned long lru_pages = 0;
2288			for_each_zone_zonelist(zone, z, zonelist,
2289					gfp_zone(sc->gfp_mask)) {
2290				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2291					continue;
2292
2293				lru_pages += zone_reclaimable_pages(zone);
2294			}
2295
2296			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2297			if (reclaim_state) {
2298				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2299				reclaim_state->reclaimed_slab = 0;
2300			}
2301		}
2302		total_scanned += sc->nr_scanned;
2303		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2304			goto out;
2305
2306		/*
2307		 * Try to write back as many pages as we just scanned.  This
2308		 * tends to cause slow streaming writers to write data to the
2309		 * disk smoothly, at the dirtying rate, which is nice.   But
2310		 * that's undesirable in laptop mode, where we *want* lumpy
2311		 * writeout.  So in laptop mode, write out the whole world.
2312		 */
2313		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2314		if (total_scanned > writeback_threshold) {
2315			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2316						WB_REASON_TRY_TO_FREE_PAGES);
2317			sc->may_writepage = 1;
2318		}
2319
2320		/* Take a nap, wait for some writeback to complete */
2321		if (!sc->hibernation_mode && sc->nr_scanned &&
2322		    priority < DEF_PRIORITY - 2) {
2323			struct zone *preferred_zone;
2324
2325			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2326						&cpuset_current_mems_allowed,
2327						&preferred_zone);
2328			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2329		}
2330	}
2331
2332out:
2333	delayacct_freepages_end();
2334	put_mems_allowed();
2335
2336	if (sc->nr_reclaimed)
2337		return sc->nr_reclaimed;
2338
2339	/*
2340	 * As hibernation is going on, kswapd is freezed so that it can't mark
2341	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2342	 * check.
2343	 */
2344	if (oom_killer_disabled)
2345		return 0;
2346
2347	/* Aborting reclaim to try compaction? don't OOM, then */
2348	if (should_abort_reclaim)
2349		return 1;
2350
2351	/* top priority shrink_zones still had more to do? don't OOM, then */
2352	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2353		return 1;
2354
2355	return 0;
2356}
2357
2358unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2359				gfp_t gfp_mask, nodemask_t *nodemask)
2360{
2361	unsigned long nr_reclaimed;
2362	struct scan_control sc = {
2363		.gfp_mask = gfp_mask,
2364		.may_writepage = !laptop_mode,
2365		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2366		.may_unmap = 1,
2367		.may_swap = 1,
2368		.order = order,
2369		.target_mem_cgroup = NULL,
2370		.nodemask = nodemask,
2371	};
2372	struct shrink_control shrink = {
2373		.gfp_mask = sc.gfp_mask,
2374	};
2375
2376	trace_mm_vmscan_direct_reclaim_begin(order,
2377				sc.may_writepage,
2378				gfp_mask);
2379
2380	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2381
2382	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2383
2384	return nr_reclaimed;
2385}
2386
2387#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2388
2389unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2390						gfp_t gfp_mask, bool noswap,
2391						struct zone *zone,
2392						unsigned long *nr_scanned)
2393{
2394	struct scan_control sc = {
2395		.nr_scanned = 0,
2396		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2397		.may_writepage = !laptop_mode,
2398		.may_unmap = 1,
2399		.may_swap = !noswap,
2400		.order = 0,
2401		.target_mem_cgroup = memcg,
2402	};
2403	struct mem_cgroup_zone mz = {
2404		.mem_cgroup = memcg,
2405		.zone = zone,
2406	};
2407
2408	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2409			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2410
2411	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2412						      sc.may_writepage,
2413						      sc.gfp_mask);
2414
2415	/*
2416	 * NOTE: Although we can get the priority field, using it
2417	 * here is not a good idea, since it limits the pages we can scan.
2418	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2419	 * will pick up pages from other mem cgroup's as well. We hack
2420	 * the priority and make it zero.
2421	 */
2422	shrink_mem_cgroup_zone(0, &mz, &sc);
2423
2424	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2425
2426	*nr_scanned = sc.nr_scanned;
2427	return sc.nr_reclaimed;
2428}
2429
2430unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2431					   gfp_t gfp_mask,
2432					   bool noswap)
2433{
2434	struct zonelist *zonelist;
2435	unsigned long nr_reclaimed;
2436	int nid;
2437	struct scan_control sc = {
2438		.may_writepage = !laptop_mode,
2439		.may_unmap = 1,
2440		.may_swap = !noswap,
2441		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2442		.order = 0,
2443		.target_mem_cgroup = memcg,
2444		.nodemask = NULL, /* we don't care the placement */
2445		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2446				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2447	};
2448	struct shrink_control shrink = {
2449		.gfp_mask = sc.gfp_mask,
2450	};
2451
2452	/*
2453	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2454	 * take care of from where we get pages. So the node where we start the
2455	 * scan does not need to be the current node.
2456	 */
2457	nid = mem_cgroup_select_victim_node(memcg);
2458
2459	zonelist = NODE_DATA(nid)->node_zonelists;
2460
2461	trace_mm_vmscan_memcg_reclaim_begin(0,
2462					    sc.may_writepage,
2463					    sc.gfp_mask);
2464
2465	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2466
2467	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2468
2469	return nr_reclaimed;
2470}
2471#endif
2472
2473static void age_active_anon(struct zone *zone, struct scan_control *sc,
2474			    int priority)
2475{
2476	struct mem_cgroup *memcg;
2477
2478	if (!total_swap_pages)
2479		return;
2480
2481	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2482	do {
2483		struct mem_cgroup_zone mz = {
2484			.mem_cgroup = memcg,
2485			.zone = zone,
2486		};
2487
2488		if (inactive_anon_is_low(&mz))
2489			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2490					   sc, priority, 0);
2491
2492		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2493	} while (memcg);
2494}
2495
2496/*
2497 * pgdat_balanced is used when checking if a node is balanced for high-order
2498 * allocations. Only zones that meet watermarks and are in a zone allowed
2499 * by the callers classzone_idx are added to balanced_pages. The total of
2500 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2501 * for the node to be considered balanced. Forcing all zones to be balanced
2502 * for high orders can cause excessive reclaim when there are imbalanced zones.
2503 * The choice of 25% is due to
2504 *   o a 16M DMA zone that is balanced will not balance a zone on any
2505 *     reasonable sized machine
2506 *   o On all other machines, the top zone must be at least a reasonable
2507 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2508 *     would need to be at least 256M for it to be balance a whole node.
2509 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2510 *     to balance a node on its own. These seemed like reasonable ratios.
2511 */
2512static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2513						int classzone_idx)
2514{
2515	unsigned long present_pages = 0;
2516	int i;
2517
2518	for (i = 0; i <= classzone_idx; i++)
2519		present_pages += pgdat->node_zones[i].present_pages;
2520
2521	/* A special case here: if zone has no page, we think it's balanced */
2522	return balanced_pages >= (present_pages >> 2);
2523}
2524
2525/* is kswapd sleeping prematurely? */
2526static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2527					int classzone_idx)
2528{
2529	int i;
2530	unsigned long balanced = 0;
2531	bool all_zones_ok = true;
2532
2533	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2534	if (remaining)
2535		return true;
2536
2537	/* Check the watermark levels */
2538	for (i = 0; i <= classzone_idx; i++) {
2539		struct zone *zone = pgdat->node_zones + i;
2540
2541		if (!populated_zone(zone))
2542			continue;
2543
2544		/*
2545		 * balance_pgdat() skips over all_unreclaimable after
2546		 * DEF_PRIORITY. Effectively, it considers them balanced so
2547		 * they must be considered balanced here as well if kswapd
2548		 * is to sleep
2549		 */
2550		if (zone->all_unreclaimable) {
2551			balanced += zone->present_pages;
2552			continue;
2553		}
2554
2555		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2556							i, 0))
2557			all_zones_ok = false;
2558		else
2559			balanced += zone->present_pages;
2560	}
2561
2562	/*
2563	 * For high-order requests, the balanced zones must contain at least
2564	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2565	 * must be balanced
2566	 */
2567	if (order)
2568		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2569	else
2570		return !all_zones_ok;
2571}
2572
2573/*
2574 * For kswapd, balance_pgdat() will work across all this node's zones until
2575 * they are all at high_wmark_pages(zone).
2576 *
2577 * Returns the final order kswapd was reclaiming at
2578 *
2579 * There is special handling here for zones which are full of pinned pages.
2580 * This can happen if the pages are all mlocked, or if they are all used by
2581 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2582 * What we do is to detect the case where all pages in the zone have been
2583 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2584 * dead and from now on, only perform a short scan.  Basically we're polling
2585 * the zone for when the problem goes away.
2586 *
2587 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2588 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2589 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2590 * lower zones regardless of the number of free pages in the lower zones. This
2591 * interoperates with the page allocator fallback scheme to ensure that aging
2592 * of pages is balanced across the zones.
2593 */
2594static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2595							int *classzone_idx)
2596{
2597	int all_zones_ok;
2598	unsigned long balanced;
2599	int priority;
2600	int i;
2601	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2602	unsigned long total_scanned;
2603	struct reclaim_state *reclaim_state = current->reclaim_state;
2604	unsigned long nr_soft_reclaimed;
2605	unsigned long nr_soft_scanned;
2606	struct scan_control sc = {
2607		.gfp_mask = GFP_KERNEL,
2608		.may_unmap = 1,
2609		.may_swap = 1,
2610		/*
2611		 * kswapd doesn't want to be bailed out while reclaim. because
2612		 * we want to put equal scanning pressure on each zone.
2613		 */
2614		.nr_to_reclaim = ULONG_MAX,
2615		.order = order,
2616		.target_mem_cgroup = NULL,
2617	};
2618	struct shrink_control shrink = {
2619		.gfp_mask = sc.gfp_mask,
2620	};
2621loop_again:
2622	total_scanned = 0;
2623	sc.nr_reclaimed = 0;
2624	sc.may_writepage = !laptop_mode;
2625	count_vm_event(PAGEOUTRUN);
2626
2627	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2628		unsigned long lru_pages = 0;
2629		int has_under_min_watermark_zone = 0;
2630
2631		/* The swap token gets in the way of swapout... */
2632		if (!priority)
2633			disable_swap_token(NULL);
2634
2635		all_zones_ok = 1;
2636		balanced = 0;
2637
2638		/*
2639		 * Scan in the highmem->dma direction for the highest
2640		 * zone which needs scanning
2641		 */
2642		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2643			struct zone *zone = pgdat->node_zones + i;
2644
2645			if (!populated_zone(zone))
2646				continue;
2647
2648			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2649				continue;
2650
2651			/*
2652			 * Do some background aging of the anon list, to give
2653			 * pages a chance to be referenced before reclaiming.
2654			 */
2655			age_active_anon(zone, &sc, priority);
2656
2657			if (!zone_watermark_ok_safe(zone, order,
2658					high_wmark_pages(zone), 0, 0)) {
2659				end_zone = i;
2660				break;
2661			} else {
2662				/* If balanced, clear the congested flag */
2663				zone_clear_flag(zone, ZONE_CONGESTED);
2664			}
2665		}
2666		if (i < 0)
2667			goto out;
2668
2669		for (i = 0; i <= end_zone; i++) {
2670			struct zone *zone = pgdat->node_zones + i;
2671
2672			lru_pages += zone_reclaimable_pages(zone);
2673		}
2674
2675		/*
2676		 * Now scan the zone in the dma->highmem direction, stopping
2677		 * at the last zone which needs scanning.
2678		 *
2679		 * We do this because the page allocator works in the opposite
2680		 * direction.  This prevents the page allocator from allocating
2681		 * pages behind kswapd's direction of progress, which would
2682		 * cause too much scanning of the lower zones.
2683		 */
2684		for (i = 0; i <= end_zone; i++) {
2685			struct zone *zone = pgdat->node_zones + i;
2686			int nr_slab;
2687			unsigned long balance_gap;
2688
2689			if (!populated_zone(zone))
2690				continue;
2691
2692			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2693				continue;
2694
2695			sc.nr_scanned = 0;
2696
2697			nr_soft_scanned = 0;
2698			/*
2699			 * Call soft limit reclaim before calling shrink_zone.
2700			 */
2701			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2702							order, sc.gfp_mask,
2703							&nr_soft_scanned);
2704			sc.nr_reclaimed += nr_soft_reclaimed;
2705			total_scanned += nr_soft_scanned;
2706
2707			/*
2708			 * We put equal pressure on every zone, unless
2709			 * one zone has way too many pages free
2710			 * already. The "too many pages" is defined
2711			 * as the high wmark plus a "gap" where the
2712			 * gap is either the low watermark or 1%
2713			 * of the zone, whichever is smaller.
2714			 */
2715			balance_gap = min(low_wmark_pages(zone),
2716				(zone->present_pages +
2717					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2718				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2719			if (!zone_watermark_ok_safe(zone, order,
2720					high_wmark_pages(zone) + balance_gap,
2721					end_zone, 0)) {
2722				shrink_zone(priority, zone, &sc);
2723
2724				reclaim_state->reclaimed_slab = 0;
2725				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2726				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2727				total_scanned += sc.nr_scanned;
2728
2729				if (nr_slab == 0 && !zone_reclaimable(zone))
2730					zone->all_unreclaimable = 1;
2731			}
2732
2733			/*
2734			 * If we've done a decent amount of scanning and
2735			 * the reclaim ratio is low, start doing writepage
2736			 * even in laptop mode
2737			 */
2738			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2739			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2740				sc.may_writepage = 1;
2741
2742			if (zone->all_unreclaimable) {
2743				if (end_zone && end_zone == i)
2744					end_zone--;
2745				continue;
2746			}
2747
2748			if (!zone_watermark_ok_safe(zone, order,
2749					high_wmark_pages(zone), end_zone, 0)) {
2750				all_zones_ok = 0;
2751				/*
2752				 * We are still under min water mark.  This
2753				 * means that we have a GFP_ATOMIC allocation
2754				 * failure risk. Hurry up!
2755				 */
2756				if (!zone_watermark_ok_safe(zone, order,
2757					    min_wmark_pages(zone), end_zone, 0))
2758					has_under_min_watermark_zone = 1;
2759			} else {
2760				/*
2761				 * If a zone reaches its high watermark,
2762				 * consider it to be no longer congested. It's
2763				 * possible there are dirty pages backed by
2764				 * congested BDIs but as pressure is relieved,
2765				 * spectulatively avoid congestion waits
2766				 */
2767				zone_clear_flag(zone, ZONE_CONGESTED);
2768				if (i <= *classzone_idx)
2769					balanced += zone->present_pages;
2770			}
2771
2772		}
2773		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2774			break;		/* kswapd: all done */
2775		/*
2776		 * OK, kswapd is getting into trouble.  Take a nap, then take
2777		 * another pass across the zones.
2778		 */
2779		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2780			if (has_under_min_watermark_zone)
2781				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2782			else
2783				congestion_wait(BLK_RW_ASYNC, HZ/10);
2784		}
2785
2786		/*
2787		 * We do this so kswapd doesn't build up large priorities for
2788		 * example when it is freeing in parallel with allocators. It
2789		 * matches the direct reclaim path behaviour in terms of impact
2790		 * on zone->*_priority.
2791		 */
2792		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2793			break;
2794	}
2795out:
2796
2797	/*
2798	 * order-0: All zones must meet high watermark for a balanced node
2799	 * high-order: Balanced zones must make up at least 25% of the node
2800	 *             for the node to be balanced
2801	 */
2802	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2803		cond_resched();
2804
2805		try_to_freeze();
2806
2807		/*
2808		 * Fragmentation may mean that the system cannot be
2809		 * rebalanced for high-order allocations in all zones.
2810		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2811		 * it means the zones have been fully scanned and are still
2812		 * not balanced. For high-order allocations, there is
2813		 * little point trying all over again as kswapd may
2814		 * infinite loop.
2815		 *
2816		 * Instead, recheck all watermarks at order-0 as they
2817		 * are the most important. If watermarks are ok, kswapd will go
2818		 * back to sleep. High-order users can still perform direct
2819		 * reclaim if they wish.
2820		 */
2821		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2822			order = sc.order = 0;
2823
2824		goto loop_again;
2825	}
2826
2827	/*
2828	 * If kswapd was reclaiming at a higher order, it has the option of
2829	 * sleeping without all zones being balanced. Before it does, it must
2830	 * ensure that the watermarks for order-0 on *all* zones are met and
2831	 * that the congestion flags are cleared. The congestion flag must
2832	 * be cleared as kswapd is the only mechanism that clears the flag
2833	 * and it is potentially going to sleep here.
2834	 */
2835	if (order) {
2836		for (i = 0; i <= end_zone; i++) {
2837			struct zone *zone = pgdat->node_zones + i;
2838
2839			if (!populated_zone(zone))
2840				continue;
2841
2842			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2843				continue;
2844
2845			/* Confirm the zone is balanced for order-0 */
2846			if (!zone_watermark_ok(zone, 0,
2847					high_wmark_pages(zone), 0, 0)) {
2848				order = sc.order = 0;
2849				goto loop_again;
2850			}
2851
2852			/* If balanced, clear the congested flag */
2853			zone_clear_flag(zone, ZONE_CONGESTED);
2854			if (i <= *classzone_idx)
2855				balanced += zone->present_pages;
2856		}
2857	}
2858
2859	/*
2860	 * Return the order we were reclaiming at so sleeping_prematurely()
2861	 * makes a decision on the order we were last reclaiming at. However,
2862	 * if another caller entered the allocator slow path while kswapd
2863	 * was awake, order will remain at the higher level
2864	 */
2865	*classzone_idx = end_zone;
2866	return order;
2867}
2868
2869static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2870{
2871	long remaining = 0;
2872	DEFINE_WAIT(wait);
2873
2874	if (freezing(current) || kthread_should_stop())
2875		return;
2876
2877	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2878
2879	/* Try to sleep for a short interval */
2880	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2881		remaining = schedule_timeout(HZ/10);
2882		finish_wait(&pgdat->kswapd_wait, &wait);
2883		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2884	}
2885
2886	/*
2887	 * After a short sleep, check if it was a premature sleep. If not, then
2888	 * go fully to sleep until explicitly woken up.
2889	 */
2890	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2891		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2892
2893		/*
2894		 * vmstat counters are not perfectly accurate and the estimated
2895		 * value for counters such as NR_FREE_PAGES can deviate from the
2896		 * true value by nr_online_cpus * threshold. To avoid the zone
2897		 * watermarks being breached while under pressure, we reduce the
2898		 * per-cpu vmstat threshold while kswapd is awake and restore
2899		 * them before going back to sleep.
2900		 */
2901		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2902		schedule();
2903		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2904	} else {
2905		if (remaining)
2906			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2907		else
2908			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2909	}
2910	finish_wait(&pgdat->kswapd_wait, &wait);
2911}
2912
2913/*
2914 * The background pageout daemon, started as a kernel thread
2915 * from the init process.
2916 *
2917 * This basically trickles out pages so that we have _some_
2918 * free memory available even if there is no other activity
2919 * that frees anything up. This is needed for things like routing
2920 * etc, where we otherwise might have all activity going on in
2921 * asynchronous contexts that cannot page things out.
2922 *
2923 * If there are applications that are active memory-allocators
2924 * (most normal use), this basically shouldn't matter.
2925 */
2926static int kswapd(void *p)
2927{
2928	unsigned long order, new_order;
2929	unsigned balanced_order;
2930	int classzone_idx, new_classzone_idx;
2931	int balanced_classzone_idx;
2932	pg_data_t *pgdat = (pg_data_t*)p;
2933	struct task_struct *tsk = current;
2934
2935	struct reclaim_state reclaim_state = {
2936		.reclaimed_slab = 0,
2937	};
2938	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2939
2940	lockdep_set_current_reclaim_state(GFP_KERNEL);
2941
2942	if (!cpumask_empty(cpumask))
2943		set_cpus_allowed_ptr(tsk, cpumask);
2944	current->reclaim_state = &reclaim_state;
2945
2946	/*
2947	 * Tell the memory management that we're a "memory allocator",
2948	 * and that if we need more memory we should get access to it
2949	 * regardless (see "__alloc_pages()"). "kswapd" should
2950	 * never get caught in the normal page freeing logic.
2951	 *
2952	 * (Kswapd normally doesn't need memory anyway, but sometimes
2953	 * you need a small amount of memory in order to be able to
2954	 * page out something else, and this flag essentially protects
2955	 * us from recursively trying to free more memory as we're
2956	 * trying to free the first piece of memory in the first place).
2957	 */
2958	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2959	set_freezable();
2960
2961	order = new_order = 0;
2962	balanced_order = 0;
2963	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2964	balanced_classzone_idx = classzone_idx;
2965	for ( ; ; ) {
2966		int ret;
2967
2968		/*
2969		 * If the last balance_pgdat was unsuccessful it's unlikely a
2970		 * new request of a similar or harder type will succeed soon
2971		 * so consider going to sleep on the basis we reclaimed at
2972		 */
2973		if (balanced_classzone_idx >= new_classzone_idx &&
2974					balanced_order == new_order) {
2975			new_order = pgdat->kswapd_max_order;
2976			new_classzone_idx = pgdat->classzone_idx;
2977			pgdat->kswapd_max_order =  0;
2978			pgdat->classzone_idx = pgdat->nr_zones - 1;
2979		}
2980
2981		if (order < new_order || classzone_idx > new_classzone_idx) {
2982			/*
2983			 * Don't sleep if someone wants a larger 'order'
2984			 * allocation or has tigher zone constraints
2985			 */
2986			order = new_order;
2987			classzone_idx = new_classzone_idx;
2988		} else {
2989			kswapd_try_to_sleep(pgdat, balanced_order,
2990						balanced_classzone_idx);
2991			order = pgdat->kswapd_max_order;
2992			classzone_idx = pgdat->classzone_idx;
2993			new_order = order;
2994			new_classzone_idx = classzone_idx;
2995			pgdat->kswapd_max_order = 0;
2996			pgdat->classzone_idx = pgdat->nr_zones - 1;
2997		}
2998
2999		ret = try_to_freeze();
3000		if (kthread_should_stop())
3001			break;
3002
3003		/*
3004		 * We can speed up thawing tasks if we don't call balance_pgdat
3005		 * after returning from the refrigerator
3006		 */
3007		if (!ret) {
3008			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3009			balanced_classzone_idx = classzone_idx;
3010			balanced_order = balance_pgdat(pgdat, order,
3011						&balanced_classzone_idx);
3012		}
3013	}
3014	return 0;
3015}
3016
3017/*
3018 * A zone is low on free memory, so wake its kswapd task to service it.
3019 */
3020void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3021{
3022	pg_data_t *pgdat;
3023
3024	if (!populated_zone(zone))
3025		return;
3026
3027	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3028		return;
3029	pgdat = zone->zone_pgdat;
3030	if (pgdat->kswapd_max_order < order) {
3031		pgdat->kswapd_max_order = order;
3032		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3033	}
3034	if (!waitqueue_active(&pgdat->kswapd_wait))
3035		return;
3036	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3037		return;
3038
3039	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3040	wake_up_interruptible(&pgdat->kswapd_wait);
3041}
3042
3043/*
3044 * The reclaimable count would be mostly accurate.
3045 * The less reclaimable pages may be
3046 * - mlocked pages, which will be moved to unevictable list when encountered
3047 * - mapped pages, which may require several travels to be reclaimed
3048 * - dirty pages, which is not "instantly" reclaimable
3049 */
3050unsigned long global_reclaimable_pages(void)
3051{
3052	int nr;
3053
3054	nr = global_page_state(NR_ACTIVE_FILE) +
3055	     global_page_state(NR_INACTIVE_FILE);
3056
3057	if (nr_swap_pages > 0)
3058		nr += global_page_state(NR_ACTIVE_ANON) +
3059		      global_page_state(NR_INACTIVE_ANON);
3060
3061	return nr;
3062}
3063
3064unsigned long zone_reclaimable_pages(struct zone *zone)
3065{
3066	int nr;
3067
3068	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3069	     zone_page_state(zone, NR_INACTIVE_FILE);
3070
3071	if (nr_swap_pages > 0)
3072		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3073		      zone_page_state(zone, NR_INACTIVE_ANON);
3074
3075	return nr;
3076}
3077
3078#ifdef CONFIG_HIBERNATION
3079/*
3080 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3081 * freed pages.
3082 *
3083 * Rather than trying to age LRUs the aim is to preserve the overall
3084 * LRU order by reclaiming preferentially
3085 * inactive > active > active referenced > active mapped
3086 */
3087unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3088{
3089	struct reclaim_state reclaim_state;
3090	struct scan_control sc = {
3091		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3092		.may_swap = 1,
3093		.may_unmap = 1,
3094		.may_writepage = 1,
3095		.nr_to_reclaim = nr_to_reclaim,
3096		.hibernation_mode = 1,
3097		.order = 0,
3098	};
3099	struct shrink_control shrink = {
3100		.gfp_mask = sc.gfp_mask,
3101	};
3102	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3103	struct task_struct *p = current;
3104	unsigned long nr_reclaimed;
3105
3106	p->flags |= PF_MEMALLOC;
3107	lockdep_set_current_reclaim_state(sc.gfp_mask);
3108	reclaim_state.reclaimed_slab = 0;
3109	p->reclaim_state = &reclaim_state;
3110
3111	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3112
3113	p->reclaim_state = NULL;
3114	lockdep_clear_current_reclaim_state();
3115	p->flags &= ~PF_MEMALLOC;
3116
3117	return nr_reclaimed;
3118}
3119#endif /* CONFIG_HIBERNATION */
3120
3121/* It's optimal to keep kswapds on the same CPUs as their memory, but
3122   not required for correctness.  So if the last cpu in a node goes
3123   away, we get changed to run anywhere: as the first one comes back,
3124   restore their cpu bindings. */
3125static int __devinit cpu_callback(struct notifier_block *nfb,
3126				  unsigned long action, void *hcpu)
3127{
3128	int nid;
3129
3130	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3131		for_each_node_state(nid, N_HIGH_MEMORY) {
3132			pg_data_t *pgdat = NODE_DATA(nid);
3133			const struct cpumask *mask;
3134
3135			mask = cpumask_of_node(pgdat->node_id);
3136
3137			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3138				/* One of our CPUs online: restore mask */
3139				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3140		}
3141	}
3142	return NOTIFY_OK;
3143}
3144
3145/*
3146 * This kswapd start function will be called by init and node-hot-add.
3147 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3148 */
3149int kswapd_run(int nid)
3150{
3151	pg_data_t *pgdat = NODE_DATA(nid);
3152	int ret = 0;
3153
3154	if (pgdat->kswapd)
3155		return 0;
3156
3157	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3158	if (IS_ERR(pgdat->kswapd)) {
3159		/* failure at boot is fatal */
3160		BUG_ON(system_state == SYSTEM_BOOTING);
3161		printk("Failed to start kswapd on node %d\n",nid);
3162		ret = -1;
3163	}
3164	return ret;
3165}
3166
3167/*
3168 * Called by memory hotplug when all memory in a node is offlined.
3169 */
3170void kswapd_stop(int nid)
3171{
3172	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3173
3174	if (kswapd)
3175		kthread_stop(kswapd);
3176}
3177
3178static int __init kswapd_init(void)
3179{
3180	int nid;
3181
3182	swap_setup();
3183	for_each_node_state(nid, N_HIGH_MEMORY)
3184 		kswapd_run(nid);
3185	hotcpu_notifier(cpu_callback, 0);
3186	return 0;
3187}
3188
3189module_init(kswapd_init)
3190
3191#ifdef CONFIG_NUMA
3192/*
3193 * Zone reclaim mode
3194 *
3195 * If non-zero call zone_reclaim when the number of free pages falls below
3196 * the watermarks.
3197 */
3198int zone_reclaim_mode __read_mostly;
3199
3200#define RECLAIM_OFF 0
3201#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3202#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3203#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3204
3205/*
3206 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3207 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3208 * a zone.
3209 */
3210#define ZONE_RECLAIM_PRIORITY 4
3211
3212/*
3213 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3214 * occur.
3215 */
3216int sysctl_min_unmapped_ratio = 1;
3217
3218/*
3219 * If the number of slab pages in a zone grows beyond this percentage then
3220 * slab reclaim needs to occur.
3221 */
3222int sysctl_min_slab_ratio = 5;
3223
3224static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3225{
3226	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3227	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3228		zone_page_state(zone, NR_ACTIVE_FILE);
3229
3230	/*
3231	 * It's possible for there to be more file mapped pages than
3232	 * accounted for by the pages on the file LRU lists because
3233	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3234	 */
3235	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3236}
3237
3238/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3239static long zone_pagecache_reclaimable(struct zone *zone)
3240{
3241	long nr_pagecache_reclaimable;
3242	long delta = 0;
3243
3244	/*
3245	 * If RECLAIM_SWAP is set, then all file pages are considered
3246	 * potentially reclaimable. Otherwise, we have to worry about
3247	 * pages like swapcache and zone_unmapped_file_pages() provides
3248	 * a better estimate
3249	 */
3250	if (zone_reclaim_mode & RECLAIM_SWAP)
3251		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3252	else
3253		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3254
3255	/* If we can't clean pages, remove dirty pages from consideration */
3256	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3257		delta += zone_page_state(zone, NR_FILE_DIRTY);
3258
3259	/* Watch for any possible underflows due to delta */
3260	if (unlikely(delta > nr_pagecache_reclaimable))
3261		delta = nr_pagecache_reclaimable;
3262
3263	return nr_pagecache_reclaimable - delta;
3264}
3265
3266/*
3267 * Try to free up some pages from this zone through reclaim.
3268 */
3269static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3270{
3271	/* Minimum pages needed in order to stay on node */
3272	const unsigned long nr_pages = 1 << order;
3273	struct task_struct *p = current;
3274	struct reclaim_state reclaim_state;
3275	int priority;
3276	struct scan_control sc = {
3277		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3278		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3279		.may_swap = 1,
3280		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3281				       SWAP_CLUSTER_MAX),
3282		.gfp_mask = gfp_mask,
3283		.order = order,
3284	};
3285	struct shrink_control shrink = {
3286		.gfp_mask = sc.gfp_mask,
3287	};
3288	unsigned long nr_slab_pages0, nr_slab_pages1;
3289
3290	cond_resched();
3291	/*
3292	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3293	 * and we also need to be able to write out pages for RECLAIM_WRITE
3294	 * and RECLAIM_SWAP.
3295	 */
3296	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3297	lockdep_set_current_reclaim_state(gfp_mask);
3298	reclaim_state.reclaimed_slab = 0;
3299	p->reclaim_state = &reclaim_state;
3300
3301	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3302		/*
3303		 * Free memory by calling shrink zone with increasing
3304		 * priorities until we have enough memory freed.
3305		 */
3306		priority = ZONE_RECLAIM_PRIORITY;
3307		do {
3308			shrink_zone(priority, zone, &sc);
3309			priority--;
3310		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3311	}
3312
3313	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3314	if (nr_slab_pages0 > zone->min_slab_pages) {
3315		/*
3316		 * shrink_slab() does not currently allow us to determine how
3317		 * many pages were freed in this zone. So we take the current
3318		 * number of slab pages and shake the slab until it is reduced
3319		 * by the same nr_pages that we used for reclaiming unmapped
3320		 * pages.
3321		 *
3322		 * Note that shrink_slab will free memory on all zones and may
3323		 * take a long time.
3324		 */
3325		for (;;) {
3326			unsigned long lru_pages = zone_reclaimable_pages(zone);
3327
3328			/* No reclaimable slab or very low memory pressure */
3329			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3330				break;
3331
3332			/* Freed enough memory */
3333			nr_slab_pages1 = zone_page_state(zone,
3334							NR_SLAB_RECLAIMABLE);
3335			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3336				break;
3337		}
3338
3339		/*
3340		 * Update nr_reclaimed by the number of slab pages we
3341		 * reclaimed from this zone.
3342		 */
3343		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3344		if (nr_slab_pages1 < nr_slab_pages0)
3345			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3346	}
3347
3348	p->reclaim_state = NULL;
3349	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3350	lockdep_clear_current_reclaim_state();
3351	return sc.nr_reclaimed >= nr_pages;
3352}
3353
3354int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3355{
3356	int node_id;
3357	int ret;
3358
3359	/*
3360	 * Zone reclaim reclaims unmapped file backed pages and
3361	 * slab pages if we are over the defined limits.
3362	 *
3363	 * A small portion of unmapped file backed pages is needed for
3364	 * file I/O otherwise pages read by file I/O will be immediately
3365	 * thrown out if the zone is overallocated. So we do not reclaim
3366	 * if less than a specified percentage of the zone is used by
3367	 * unmapped file backed pages.
3368	 */
3369	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3370	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3371		return ZONE_RECLAIM_FULL;
3372
3373	if (zone->all_unreclaimable)
3374		return ZONE_RECLAIM_FULL;
3375
3376	/*
3377	 * Do not scan if the allocation should not be delayed.
3378	 */
3379	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3380		return ZONE_RECLAIM_NOSCAN;
3381
3382	/*
3383	 * Only run zone reclaim on the local zone or on zones that do not
3384	 * have associated processors. This will favor the local processor
3385	 * over remote processors and spread off node memory allocations
3386	 * as wide as possible.
3387	 */
3388	node_id = zone_to_nid(zone);
3389	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3390		return ZONE_RECLAIM_NOSCAN;
3391
3392	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3393		return ZONE_RECLAIM_NOSCAN;
3394
3395	ret = __zone_reclaim(zone, gfp_mask, order);
3396	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3397
3398	if (!ret)
3399		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3400
3401	return ret;
3402}
3403#endif
3404
3405/*
3406 * page_evictable - test whether a page is evictable
3407 * @page: the page to test
3408 * @vma: the VMA in which the page is or will be mapped, may be NULL
3409 *
3410 * Test whether page is evictable--i.e., should be placed on active/inactive
3411 * lists vs unevictable list.  The vma argument is !NULL when called from the
3412 * fault path to determine how to instantate a new page.
3413 *
3414 * Reasons page might not be evictable:
3415 * (1) page's mapping marked unevictable
3416 * (2) page is part of an mlocked VMA
3417 *
3418 */
3419int page_evictable(struct page *page, struct vm_area_struct *vma)
3420{
3421
3422	if (mapping_unevictable(page_mapping(page)))
3423		return 0;
3424
3425	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3426		return 0;
3427
3428	return 1;
3429}
3430
3431/**
3432 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3433 * @page: page to check evictability and move to appropriate lru list
3434 * @zone: zone page is in
3435 *
3436 * Checks a page for evictability and moves the page to the appropriate
3437 * zone lru list.
3438 *
3439 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3440 * have PageUnevictable set.
3441 */
3442static void check_move_unevictable_page(struct page *page, struct zone *zone)
3443{
3444	struct lruvec *lruvec;
3445
3446	VM_BUG_ON(PageActive(page));
3447retry:
3448	ClearPageUnevictable(page);
3449	if (page_evictable(page, NULL)) {
3450		enum lru_list l = page_lru_base_type(page);
3451
3452		__dec_zone_state(zone, NR_UNEVICTABLE);
3453		lruvec = mem_cgroup_lru_move_lists(zone, page,
3454						   LRU_UNEVICTABLE, l);
3455		list_move(&page->lru, &lruvec->lists[l]);
3456		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3457		__count_vm_event(UNEVICTABLE_PGRESCUED);
3458	} else {
3459		/*
3460		 * rotate unevictable list
3461		 */
3462		SetPageUnevictable(page);
3463		lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3464						   LRU_UNEVICTABLE);
3465		list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3466		if (page_evictable(page, NULL))
3467			goto retry;
3468	}
3469}
3470
3471/**
3472 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3473 * @mapping: struct address_space to scan for evictable pages
3474 *
3475 * Scan all pages in mapping.  Check unevictable pages for
3476 * evictability and move them to the appropriate zone lru list.
3477 */
3478void scan_mapping_unevictable_pages(struct address_space *mapping)
3479{
3480	pgoff_t next = 0;
3481	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3482			 PAGE_CACHE_SHIFT;
3483	struct zone *zone;
3484	struct pagevec pvec;
3485
3486	if (mapping->nrpages == 0)
3487		return;
3488
3489	pagevec_init(&pvec, 0);
3490	while (next < end &&
3491		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3492		int i;
3493		int pg_scanned = 0;
3494
3495		zone = NULL;
3496
3497		for (i = 0; i < pagevec_count(&pvec); i++) {
3498			struct page *page = pvec.pages[i];
3499			pgoff_t page_index = page->index;
3500			struct zone *pagezone = page_zone(page);
3501
3502			pg_scanned++;
3503			if (page_index > next)
3504				next = page_index;
3505			next++;
3506
3507			if (pagezone != zone) {
3508				if (zone)
3509					spin_unlock_irq(&zone->lru_lock);
3510				zone = pagezone;
3511				spin_lock_irq(&zone->lru_lock);
3512			}
3513
3514			if (PageLRU(page) && PageUnevictable(page))
3515				check_move_unevictable_page(page, zone);
3516		}
3517		if (zone)
3518			spin_unlock_irq(&zone->lru_lock);
3519		pagevec_release(&pvec);
3520
3521		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3522	}
3523
3524}
3525
3526static void warn_scan_unevictable_pages(void)
3527{
3528	printk_once(KERN_WARNING
3529		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3530		    "disabled for lack of a legitimate use case.  If you have "
3531		    "one, please send an email to linux-mm@kvack.org.\n",
3532		    current->comm);
3533}
3534
3535/*
3536 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3537 * all nodes' unevictable lists for evictable pages
3538 */
3539unsigned long scan_unevictable_pages;
3540
3541int scan_unevictable_handler(struct ctl_table *table, int write,
3542			   void __user *buffer,
3543			   size_t *length, loff_t *ppos)
3544{
3545	warn_scan_unevictable_pages();
3546	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3547	scan_unevictable_pages = 0;
3548	return 0;
3549}
3550
3551#ifdef CONFIG_NUMA
3552/*
3553 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3554 * a specified node's per zone unevictable lists for evictable pages.
3555 */
3556
3557static ssize_t read_scan_unevictable_node(struct device *dev,
3558					  struct device_attribute *attr,
3559					  char *buf)
3560{
3561	warn_scan_unevictable_pages();
3562	return sprintf(buf, "0\n");	/* always zero; should fit... */
3563}
3564
3565static ssize_t write_scan_unevictable_node(struct device *dev,
3566					   struct device_attribute *attr,
3567					const char *buf, size_t count)
3568{
3569	warn_scan_unevictable_pages();
3570	return 1;
3571}
3572
3573
3574static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3575			read_scan_unevictable_node,
3576			write_scan_unevictable_node);
3577
3578int scan_unevictable_register_node(struct node *node)
3579{
3580	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3581}
3582
3583void scan_unevictable_unregister_node(struct node *node)
3584{
3585	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3586}
3587#endif
3588