vmscan.c revision 81d66c70b546e7be5d7e1f1ca9676fd17c5973af
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int swappiness;
99
100	int order;
101
102	/*
103	 * Intend to reclaim enough continuous memory rather than reclaim
104	 * enough amount of memory. i.e, mode for high order allocation.
105	 */
106	reclaim_mode_t reclaim_mode;
107
108	/* Which cgroup do we reclaim from */
109	struct mem_cgroup *mem_cgroup;
110
111	/*
112	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113	 * are scanned.
114	 */
115	nodemask_t	*nodemask;
116};
117
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field)			\
122	do {								\
123		if ((_page)->lru.prev != _base) {			\
124			struct page *prev;				\
125									\
126			prev = lru_to_page(&(_page->lru));		\
127			prefetch(&prev->_field);			\
128		}							\
129	} while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field)			\
136	do {								\
137		if ((_page)->lru.prev != _base) {			\
138			struct page *prev;				\
139									\
140			prev = lru_to_page(&(_page->lru));		\
141			prefetchw(&prev->_field);			\
142		}							\
143	} while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100.  Higher means more swappy.
150 */
151int vm_swappiness = 60;
152long vm_total_pages;	/* The total number of pages which the VM controls */
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159#else
160#define scanning_global_lru(sc)	(1)
161#endif
162
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164						  struct scan_control *sc)
165{
166	if (!scanning_global_lru(sc))
167		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169	return &zone->reclaim_stat;
170}
171
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173				struct scan_control *sc, enum lru_list lru)
174{
175	if (!scanning_global_lru(sc))
176		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178	return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
182/*
183 * Add a shrinker callback to be called from the vm
184 */
185void register_shrinker(struct shrinker *shrinker)
186{
187	shrinker->nr = 0;
188	down_write(&shrinker_rwsem);
189	list_add_tail(&shrinker->list, &shrinker_list);
190	up_write(&shrinker_rwsem);
191}
192EXPORT_SYMBOL(register_shrinker);
193
194/*
195 * Remove one
196 */
197void unregister_shrinker(struct shrinker *shrinker)
198{
199	down_write(&shrinker_rwsem);
200	list_del(&shrinker->list);
201	up_write(&shrinker_rwsem);
202}
203EXPORT_SYMBOL(unregister_shrinker);
204
205static inline int do_shrinker_shrink(struct shrinker *shrinker,
206				     struct shrink_control *sc,
207				     unsigned long nr_to_scan)
208{
209	sc->nr_to_scan = nr_to_scan;
210	return (*shrinker->shrink)(shrinker, sc);
211}
212
213#define SHRINK_BATCH 128
214/*
215 * Call the shrink functions to age shrinkable caches
216 *
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object.  With this in mind we age equal
219 * percentages of the lru and ageable caches.  This should balance the seeks
220 * generated by these structures.
221 *
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
224 *
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 *
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt.  It is used for balancing
229 * slab reclaim versus page reclaim.
230 *
231 * Returns the number of slab objects which we shrunk.
232 */
233unsigned long shrink_slab(struct shrink_control *shrink,
234			  unsigned long nr_pages_scanned,
235			  unsigned long lru_pages)
236{
237	struct shrinker *shrinker;
238	unsigned long ret = 0;
239
240	if (nr_pages_scanned == 0)
241		nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243	if (!down_read_trylock(&shrinker_rwsem)) {
244		/* Assume we'll be able to shrink next time */
245		ret = 1;
246		goto out;
247	}
248
249	list_for_each_entry(shrinker, &shrinker_list, list) {
250		unsigned long long delta;
251		unsigned long total_scan;
252		unsigned long max_pass;
253		int shrink_ret = 0;
254		long nr;
255		long new_nr;
256		long batch_size = shrinker->batch ? shrinker->batch
257						  : SHRINK_BATCH;
258
259		/*
260		 * copy the current shrinker scan count into a local variable
261		 * and zero it so that other concurrent shrinker invocations
262		 * don't also do this scanning work.
263		 */
264		do {
265			nr = shrinker->nr;
266		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268		total_scan = nr;
269		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270		delta = (4 * nr_pages_scanned) / shrinker->seeks;
271		delta *= max_pass;
272		do_div(delta, lru_pages + 1);
273		total_scan += delta;
274		if (total_scan < 0) {
275			printk(KERN_ERR "shrink_slab: %pF negative objects to "
276			       "delete nr=%ld\n",
277			       shrinker->shrink, total_scan);
278			total_scan = max_pass;
279		}
280
281		/*
282		 * We need to avoid excessive windup on filesystem shrinkers
283		 * due to large numbers of GFP_NOFS allocations causing the
284		 * shrinkers to return -1 all the time. This results in a large
285		 * nr being built up so when a shrink that can do some work
286		 * comes along it empties the entire cache due to nr >>>
287		 * max_pass.  This is bad for sustaining a working set in
288		 * memory.
289		 *
290		 * Hence only allow the shrinker to scan the entire cache when
291		 * a large delta change is calculated directly.
292		 */
293		if (delta < max_pass / 4)
294			total_scan = min(total_scan, max_pass / 2);
295
296		/*
297		 * Avoid risking looping forever due to too large nr value:
298		 * never try to free more than twice the estimate number of
299		 * freeable entries.
300		 */
301		if (total_scan > max_pass * 2)
302			total_scan = max_pass * 2;
303
304		trace_mm_shrink_slab_start(shrinker, shrink, nr,
305					nr_pages_scanned, lru_pages,
306					max_pass, delta, total_scan);
307
308		while (total_scan >= batch_size) {
309			int nr_before;
310
311			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312			shrink_ret = do_shrinker_shrink(shrinker, shrink,
313							batch_size);
314			if (shrink_ret == -1)
315				break;
316			if (shrink_ret < nr_before)
317				ret += nr_before - shrink_ret;
318			count_vm_events(SLABS_SCANNED, batch_size);
319			total_scan -= batch_size;
320
321			cond_resched();
322		}
323
324		/*
325		 * move the unused scan count back into the shrinker in a
326		 * manner that handles concurrent updates. If we exhausted the
327		 * scan, there is no need to do an update.
328		 */
329		do {
330			nr = shrinker->nr;
331			new_nr = total_scan + nr;
332			if (total_scan <= 0)
333				break;
334		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337	}
338	up_read(&shrinker_rwsem);
339out:
340	cond_resched();
341	return ret;
342}
343
344static void set_reclaim_mode(int priority, struct scan_control *sc,
345				   bool sync)
346{
347	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349	/*
350	 * Initially assume we are entering either lumpy reclaim or
351	 * reclaim/compaction.Depending on the order, we will either set the
352	 * sync mode or just reclaim order-0 pages later.
353	 */
354	if (COMPACTION_BUILD)
355		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356	else
357		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359	/*
360	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
361	 * restricting when its set to either costly allocations or when
362	 * under memory pressure
363	 */
364	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365		sc->reclaim_mode |= syncmode;
366	else if (sc->order && priority < DEF_PRIORITY - 2)
367		sc->reclaim_mode |= syncmode;
368	else
369		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370}
371
372static void reset_reclaim_mode(struct scan_control *sc)
373{
374	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375}
376
377static inline int is_page_cache_freeable(struct page *page)
378{
379	/*
380	 * A freeable page cache page is referenced only by the caller
381	 * that isolated the page, the page cache radix tree and
382	 * optional buffer heads at page->private.
383	 */
384	return page_count(page) - page_has_private(page) == 2;
385}
386
387static int may_write_to_queue(struct backing_dev_info *bdi,
388			      struct scan_control *sc)
389{
390	if (current->flags & PF_SWAPWRITE)
391		return 1;
392	if (!bdi_write_congested(bdi))
393		return 1;
394	if (bdi == current->backing_dev_info)
395		return 1;
396
397	/* lumpy reclaim for hugepage often need a lot of write */
398	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399		return 1;
400	return 0;
401}
402
403/*
404 * We detected a synchronous write error writing a page out.  Probably
405 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406 * fsync(), msync() or close().
407 *
408 * The tricky part is that after writepage we cannot touch the mapping: nothing
409 * prevents it from being freed up.  But we have a ref on the page and once
410 * that page is locked, the mapping is pinned.
411 *
412 * We're allowed to run sleeping lock_page() here because we know the caller has
413 * __GFP_FS.
414 */
415static void handle_write_error(struct address_space *mapping,
416				struct page *page, int error)
417{
418	lock_page(page);
419	if (page_mapping(page) == mapping)
420		mapping_set_error(mapping, error);
421	unlock_page(page);
422}
423
424/* possible outcome of pageout() */
425typedef enum {
426	/* failed to write page out, page is locked */
427	PAGE_KEEP,
428	/* move page to the active list, page is locked */
429	PAGE_ACTIVATE,
430	/* page has been sent to the disk successfully, page is unlocked */
431	PAGE_SUCCESS,
432	/* page is clean and locked */
433	PAGE_CLEAN,
434} pageout_t;
435
436/*
437 * pageout is called by shrink_page_list() for each dirty page.
438 * Calls ->writepage().
439 */
440static pageout_t pageout(struct page *page, struct address_space *mapping,
441			 struct scan_control *sc)
442{
443	/*
444	 * If the page is dirty, only perform writeback if that write
445	 * will be non-blocking.  To prevent this allocation from being
446	 * stalled by pagecache activity.  But note that there may be
447	 * stalls if we need to run get_block().  We could test
448	 * PagePrivate for that.
449	 *
450	 * If this process is currently in __generic_file_aio_write() against
451	 * this page's queue, we can perform writeback even if that
452	 * will block.
453	 *
454	 * If the page is swapcache, write it back even if that would
455	 * block, for some throttling. This happens by accident, because
456	 * swap_backing_dev_info is bust: it doesn't reflect the
457	 * congestion state of the swapdevs.  Easy to fix, if needed.
458	 */
459	if (!is_page_cache_freeable(page))
460		return PAGE_KEEP;
461	if (!mapping) {
462		/*
463		 * Some data journaling orphaned pages can have
464		 * page->mapping == NULL while being dirty with clean buffers.
465		 */
466		if (page_has_private(page)) {
467			if (try_to_free_buffers(page)) {
468				ClearPageDirty(page);
469				printk("%s: orphaned page\n", __func__);
470				return PAGE_CLEAN;
471			}
472		}
473		return PAGE_KEEP;
474	}
475	if (mapping->a_ops->writepage == NULL)
476		return PAGE_ACTIVATE;
477	if (!may_write_to_queue(mapping->backing_dev_info, sc))
478		return PAGE_KEEP;
479
480	if (clear_page_dirty_for_io(page)) {
481		int res;
482		struct writeback_control wbc = {
483			.sync_mode = WB_SYNC_NONE,
484			.nr_to_write = SWAP_CLUSTER_MAX,
485			.range_start = 0,
486			.range_end = LLONG_MAX,
487			.for_reclaim = 1,
488		};
489
490		SetPageReclaim(page);
491		res = mapping->a_ops->writepage(page, &wbc);
492		if (res < 0)
493			handle_write_error(mapping, page, res);
494		if (res == AOP_WRITEPAGE_ACTIVATE) {
495			ClearPageReclaim(page);
496			return PAGE_ACTIVATE;
497		}
498
499		/*
500		 * Wait on writeback if requested to. This happens when
501		 * direct reclaiming a large contiguous area and the
502		 * first attempt to free a range of pages fails.
503		 */
504		if (PageWriteback(page) &&
505		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
506			wait_on_page_writeback(page);
507
508		if (!PageWriteback(page)) {
509			/* synchronous write or broken a_ops? */
510			ClearPageReclaim(page);
511		}
512		trace_mm_vmscan_writepage(page,
513			trace_reclaim_flags(page, sc->reclaim_mode));
514		inc_zone_page_state(page, NR_VMSCAN_WRITE);
515		return PAGE_SUCCESS;
516	}
517
518	return PAGE_CLEAN;
519}
520
521/*
522 * Same as remove_mapping, but if the page is removed from the mapping, it
523 * gets returned with a refcount of 0.
524 */
525static int __remove_mapping(struct address_space *mapping, struct page *page)
526{
527	BUG_ON(!PageLocked(page));
528	BUG_ON(mapping != page_mapping(page));
529
530	spin_lock_irq(&mapping->tree_lock);
531	/*
532	 * The non racy check for a busy page.
533	 *
534	 * Must be careful with the order of the tests. When someone has
535	 * a ref to the page, it may be possible that they dirty it then
536	 * drop the reference. So if PageDirty is tested before page_count
537	 * here, then the following race may occur:
538	 *
539	 * get_user_pages(&page);
540	 * [user mapping goes away]
541	 * write_to(page);
542	 *				!PageDirty(page)    [good]
543	 * SetPageDirty(page);
544	 * put_page(page);
545	 *				!page_count(page)   [good, discard it]
546	 *
547	 * [oops, our write_to data is lost]
548	 *
549	 * Reversing the order of the tests ensures such a situation cannot
550	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551	 * load is not satisfied before that of page->_count.
552	 *
553	 * Note that if SetPageDirty is always performed via set_page_dirty,
554	 * and thus under tree_lock, then this ordering is not required.
555	 */
556	if (!page_freeze_refs(page, 2))
557		goto cannot_free;
558	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559	if (unlikely(PageDirty(page))) {
560		page_unfreeze_refs(page, 2);
561		goto cannot_free;
562	}
563
564	if (PageSwapCache(page)) {
565		swp_entry_t swap = { .val = page_private(page) };
566		__delete_from_swap_cache(page);
567		spin_unlock_irq(&mapping->tree_lock);
568		swapcache_free(swap, page);
569	} else {
570		void (*freepage)(struct page *);
571
572		freepage = mapping->a_ops->freepage;
573
574		__delete_from_page_cache(page);
575		spin_unlock_irq(&mapping->tree_lock);
576		mem_cgroup_uncharge_cache_page(page);
577
578		if (freepage != NULL)
579			freepage(page);
580	}
581
582	return 1;
583
584cannot_free:
585	spin_unlock_irq(&mapping->tree_lock);
586	return 0;
587}
588
589/*
590 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
591 * someone else has a ref on the page, abort and return 0.  If it was
592 * successfully detached, return 1.  Assumes the caller has a single ref on
593 * this page.
594 */
595int remove_mapping(struct address_space *mapping, struct page *page)
596{
597	if (__remove_mapping(mapping, page)) {
598		/*
599		 * Unfreezing the refcount with 1 rather than 2 effectively
600		 * drops the pagecache ref for us without requiring another
601		 * atomic operation.
602		 */
603		page_unfreeze_refs(page, 1);
604		return 1;
605	}
606	return 0;
607}
608
609/**
610 * putback_lru_page - put previously isolated page onto appropriate LRU list
611 * @page: page to be put back to appropriate lru list
612 *
613 * Add previously isolated @page to appropriate LRU list.
614 * Page may still be unevictable for other reasons.
615 *
616 * lru_lock must not be held, interrupts must be enabled.
617 */
618void putback_lru_page(struct page *page)
619{
620	int lru;
621	int active = !!TestClearPageActive(page);
622	int was_unevictable = PageUnevictable(page);
623
624	VM_BUG_ON(PageLRU(page));
625
626redo:
627	ClearPageUnevictable(page);
628
629	if (page_evictable(page, NULL)) {
630		/*
631		 * For evictable pages, we can use the cache.
632		 * In event of a race, worst case is we end up with an
633		 * unevictable page on [in]active list.
634		 * We know how to handle that.
635		 */
636		lru = active + page_lru_base_type(page);
637		lru_cache_add_lru(page, lru);
638	} else {
639		/*
640		 * Put unevictable pages directly on zone's unevictable
641		 * list.
642		 */
643		lru = LRU_UNEVICTABLE;
644		add_page_to_unevictable_list(page);
645		/*
646		 * When racing with an mlock clearing (page is
647		 * unlocked), make sure that if the other thread does
648		 * not observe our setting of PG_lru and fails
649		 * isolation, we see PG_mlocked cleared below and move
650		 * the page back to the evictable list.
651		 *
652		 * The other side is TestClearPageMlocked().
653		 */
654		smp_mb();
655	}
656
657	/*
658	 * page's status can change while we move it among lru. If an evictable
659	 * page is on unevictable list, it never be freed. To avoid that,
660	 * check after we added it to the list, again.
661	 */
662	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
663		if (!isolate_lru_page(page)) {
664			put_page(page);
665			goto redo;
666		}
667		/* This means someone else dropped this page from LRU
668		 * So, it will be freed or putback to LRU again. There is
669		 * nothing to do here.
670		 */
671	}
672
673	if (was_unevictable && lru != LRU_UNEVICTABLE)
674		count_vm_event(UNEVICTABLE_PGRESCUED);
675	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
676		count_vm_event(UNEVICTABLE_PGCULLED);
677
678	put_page(page);		/* drop ref from isolate */
679}
680
681enum page_references {
682	PAGEREF_RECLAIM,
683	PAGEREF_RECLAIM_CLEAN,
684	PAGEREF_KEEP,
685	PAGEREF_ACTIVATE,
686};
687
688static enum page_references page_check_references(struct page *page,
689						  struct scan_control *sc)
690{
691	int referenced_ptes, referenced_page;
692	unsigned long vm_flags;
693
694	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
695	referenced_page = TestClearPageReferenced(page);
696
697	/* Lumpy reclaim - ignore references */
698	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
699		return PAGEREF_RECLAIM;
700
701	/*
702	 * Mlock lost the isolation race with us.  Let try_to_unmap()
703	 * move the page to the unevictable list.
704	 */
705	if (vm_flags & VM_LOCKED)
706		return PAGEREF_RECLAIM;
707
708	if (referenced_ptes) {
709		if (PageAnon(page))
710			return PAGEREF_ACTIVATE;
711		/*
712		 * All mapped pages start out with page table
713		 * references from the instantiating fault, so we need
714		 * to look twice if a mapped file page is used more
715		 * than once.
716		 *
717		 * Mark it and spare it for another trip around the
718		 * inactive list.  Another page table reference will
719		 * lead to its activation.
720		 *
721		 * Note: the mark is set for activated pages as well
722		 * so that recently deactivated but used pages are
723		 * quickly recovered.
724		 */
725		SetPageReferenced(page);
726
727		if (referenced_page)
728			return PAGEREF_ACTIVATE;
729
730		return PAGEREF_KEEP;
731	}
732
733	/* Reclaim if clean, defer dirty pages to writeback */
734	if (referenced_page && !PageSwapBacked(page))
735		return PAGEREF_RECLAIM_CLEAN;
736
737	return PAGEREF_RECLAIM;
738}
739
740static noinline_for_stack void free_page_list(struct list_head *free_pages)
741{
742	struct pagevec freed_pvec;
743	struct page *page, *tmp;
744
745	pagevec_init(&freed_pvec, 1);
746
747	list_for_each_entry_safe(page, tmp, free_pages, lru) {
748		list_del(&page->lru);
749		if (!pagevec_add(&freed_pvec, page)) {
750			__pagevec_free(&freed_pvec);
751			pagevec_reinit(&freed_pvec);
752		}
753	}
754
755	pagevec_free(&freed_pvec);
756}
757
758/*
759 * shrink_page_list() returns the number of reclaimed pages
760 */
761static unsigned long shrink_page_list(struct list_head *page_list,
762				      struct zone *zone,
763				      struct scan_control *sc)
764{
765	LIST_HEAD(ret_pages);
766	LIST_HEAD(free_pages);
767	int pgactivate = 0;
768	unsigned long nr_dirty = 0;
769	unsigned long nr_congested = 0;
770	unsigned long nr_reclaimed = 0;
771
772	cond_resched();
773
774	while (!list_empty(page_list)) {
775		enum page_references references;
776		struct address_space *mapping;
777		struct page *page;
778		int may_enter_fs;
779
780		cond_resched();
781
782		page = lru_to_page(page_list);
783		list_del(&page->lru);
784
785		if (!trylock_page(page))
786			goto keep;
787
788		VM_BUG_ON(PageActive(page));
789		VM_BUG_ON(page_zone(page) != zone);
790
791		sc->nr_scanned++;
792
793		if (unlikely(!page_evictable(page, NULL)))
794			goto cull_mlocked;
795
796		if (!sc->may_unmap && page_mapped(page))
797			goto keep_locked;
798
799		/* Double the slab pressure for mapped and swapcache pages */
800		if (page_mapped(page) || PageSwapCache(page))
801			sc->nr_scanned++;
802
803		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
804			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
805
806		if (PageWriteback(page)) {
807			/*
808			 * Synchronous reclaim is performed in two passes,
809			 * first an asynchronous pass over the list to
810			 * start parallel writeback, and a second synchronous
811			 * pass to wait for the IO to complete.  Wait here
812			 * for any page for which writeback has already
813			 * started.
814			 */
815			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816			    may_enter_fs)
817				wait_on_page_writeback(page);
818			else {
819				unlock_page(page);
820				goto keep_lumpy;
821			}
822		}
823
824		references = page_check_references(page, sc);
825		switch (references) {
826		case PAGEREF_ACTIVATE:
827			goto activate_locked;
828		case PAGEREF_KEEP:
829			goto keep_locked;
830		case PAGEREF_RECLAIM:
831		case PAGEREF_RECLAIM_CLEAN:
832			; /* try to reclaim the page below */
833		}
834
835		/*
836		 * Anonymous process memory has backing store?
837		 * Try to allocate it some swap space here.
838		 */
839		if (PageAnon(page) && !PageSwapCache(page)) {
840			if (!(sc->gfp_mask & __GFP_IO))
841				goto keep_locked;
842			if (!add_to_swap(page))
843				goto activate_locked;
844			may_enter_fs = 1;
845		}
846
847		mapping = page_mapping(page);
848
849		/*
850		 * The page is mapped into the page tables of one or more
851		 * processes. Try to unmap it here.
852		 */
853		if (page_mapped(page) && mapping) {
854			switch (try_to_unmap(page, TTU_UNMAP)) {
855			case SWAP_FAIL:
856				goto activate_locked;
857			case SWAP_AGAIN:
858				goto keep_locked;
859			case SWAP_MLOCK:
860				goto cull_mlocked;
861			case SWAP_SUCCESS:
862				; /* try to free the page below */
863			}
864		}
865
866		if (PageDirty(page)) {
867			nr_dirty++;
868
869			if (references == PAGEREF_RECLAIM_CLEAN)
870				goto keep_locked;
871			if (!may_enter_fs)
872				goto keep_locked;
873			if (!sc->may_writepage)
874				goto keep_locked;
875
876			/* Page is dirty, try to write it out here */
877			switch (pageout(page, mapping, sc)) {
878			case PAGE_KEEP:
879				nr_congested++;
880				goto keep_locked;
881			case PAGE_ACTIVATE:
882				goto activate_locked;
883			case PAGE_SUCCESS:
884				if (PageWriteback(page))
885					goto keep_lumpy;
886				if (PageDirty(page))
887					goto keep;
888
889				/*
890				 * A synchronous write - probably a ramdisk.  Go
891				 * ahead and try to reclaim the page.
892				 */
893				if (!trylock_page(page))
894					goto keep;
895				if (PageDirty(page) || PageWriteback(page))
896					goto keep_locked;
897				mapping = page_mapping(page);
898			case PAGE_CLEAN:
899				; /* try to free the page below */
900			}
901		}
902
903		/*
904		 * If the page has buffers, try to free the buffer mappings
905		 * associated with this page. If we succeed we try to free
906		 * the page as well.
907		 *
908		 * We do this even if the page is PageDirty().
909		 * try_to_release_page() does not perform I/O, but it is
910		 * possible for a page to have PageDirty set, but it is actually
911		 * clean (all its buffers are clean).  This happens if the
912		 * buffers were written out directly, with submit_bh(). ext3
913		 * will do this, as well as the blockdev mapping.
914		 * try_to_release_page() will discover that cleanness and will
915		 * drop the buffers and mark the page clean - it can be freed.
916		 *
917		 * Rarely, pages can have buffers and no ->mapping.  These are
918		 * the pages which were not successfully invalidated in
919		 * truncate_complete_page().  We try to drop those buffers here
920		 * and if that worked, and the page is no longer mapped into
921		 * process address space (page_count == 1) it can be freed.
922		 * Otherwise, leave the page on the LRU so it is swappable.
923		 */
924		if (page_has_private(page)) {
925			if (!try_to_release_page(page, sc->gfp_mask))
926				goto activate_locked;
927			if (!mapping && page_count(page) == 1) {
928				unlock_page(page);
929				if (put_page_testzero(page))
930					goto free_it;
931				else {
932					/*
933					 * rare race with speculative reference.
934					 * the speculative reference will free
935					 * this page shortly, so we may
936					 * increment nr_reclaimed here (and
937					 * leave it off the LRU).
938					 */
939					nr_reclaimed++;
940					continue;
941				}
942			}
943		}
944
945		if (!mapping || !__remove_mapping(mapping, page))
946			goto keep_locked;
947
948		/*
949		 * At this point, we have no other references and there is
950		 * no way to pick any more up (removed from LRU, removed
951		 * from pagecache). Can use non-atomic bitops now (and
952		 * we obviously don't have to worry about waking up a process
953		 * waiting on the page lock, because there are no references.
954		 */
955		__clear_page_locked(page);
956free_it:
957		nr_reclaimed++;
958
959		/*
960		 * Is there need to periodically free_page_list? It would
961		 * appear not as the counts should be low
962		 */
963		list_add(&page->lru, &free_pages);
964		continue;
965
966cull_mlocked:
967		if (PageSwapCache(page))
968			try_to_free_swap(page);
969		unlock_page(page);
970		putback_lru_page(page);
971		reset_reclaim_mode(sc);
972		continue;
973
974activate_locked:
975		/* Not a candidate for swapping, so reclaim swap space. */
976		if (PageSwapCache(page) && vm_swap_full())
977			try_to_free_swap(page);
978		VM_BUG_ON(PageActive(page));
979		SetPageActive(page);
980		pgactivate++;
981keep_locked:
982		unlock_page(page);
983keep:
984		reset_reclaim_mode(sc);
985keep_lumpy:
986		list_add(&page->lru, &ret_pages);
987		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
988	}
989
990	/*
991	 * Tag a zone as congested if all the dirty pages encountered were
992	 * backed by a congested BDI. In this case, reclaimers should just
993	 * back off and wait for congestion to clear because further reclaim
994	 * will encounter the same problem
995	 */
996	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997		zone_set_flag(zone, ZONE_CONGESTED);
998
999	free_page_list(&free_pages);
1000
1001	list_splice(&ret_pages, page_list);
1002	count_vm_events(PGACTIVATE, pgactivate);
1003	return nr_reclaimed;
1004}
1005
1006/*
1007 * Attempt to remove the specified page from its LRU.  Only take this page
1008 * if it is of the appropriate PageActive status.  Pages which are being
1009 * freed elsewhere are also ignored.
1010 *
1011 * page:	page to consider
1012 * mode:	one of the LRU isolation modes defined above
1013 *
1014 * returns 0 on success, -ve errno on failure.
1015 */
1016int __isolate_lru_page(struct page *page, int mode, int file)
1017{
1018	int ret = -EINVAL;
1019
1020	/* Only take pages on the LRU. */
1021	if (!PageLRU(page))
1022		return ret;
1023
1024	/*
1025	 * When checking the active state, we need to be sure we are
1026	 * dealing with comparible boolean values.  Take the logical not
1027	 * of each.
1028	 */
1029	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1030		return ret;
1031
1032	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1033		return ret;
1034
1035	/*
1036	 * When this function is being called for lumpy reclaim, we
1037	 * initially look into all LRU pages, active, inactive and
1038	 * unevictable; only give shrink_page_list evictable pages.
1039	 */
1040	if (PageUnevictable(page))
1041		return ret;
1042
1043	ret = -EBUSY;
1044
1045	if (likely(get_page_unless_zero(page))) {
1046		/*
1047		 * Be careful not to clear PageLRU until after we're
1048		 * sure the page is not being freed elsewhere -- the
1049		 * page release code relies on it.
1050		 */
1051		ClearPageLRU(page);
1052		ret = 0;
1053	}
1054
1055	return ret;
1056}
1057
1058/*
1059 * zone->lru_lock is heavily contended.  Some of the functions that
1060 * shrink the lists perform better by taking out a batch of pages
1061 * and working on them outside the LRU lock.
1062 *
1063 * For pagecache intensive workloads, this function is the hottest
1064 * spot in the kernel (apart from copy_*_user functions).
1065 *
1066 * Appropriate locks must be held before calling this function.
1067 *
1068 * @nr_to_scan:	The number of pages to look through on the list.
1069 * @src:	The LRU list to pull pages off.
1070 * @dst:	The temp list to put pages on to.
1071 * @scanned:	The number of pages that were scanned.
1072 * @order:	The caller's attempted allocation order
1073 * @mode:	One of the LRU isolation modes
1074 * @file:	True [1] if isolating file [!anon] pages
1075 *
1076 * returns how many pages were moved onto *@dst.
1077 */
1078static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1079		struct list_head *src, struct list_head *dst,
1080		unsigned long *scanned, int order, int mode, int file)
1081{
1082	unsigned long nr_taken = 0;
1083	unsigned long nr_lumpy_taken = 0;
1084	unsigned long nr_lumpy_dirty = 0;
1085	unsigned long nr_lumpy_failed = 0;
1086	unsigned long scan;
1087
1088	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1089		struct page *page;
1090		unsigned long pfn;
1091		unsigned long end_pfn;
1092		unsigned long page_pfn;
1093		int zone_id;
1094
1095		page = lru_to_page(src);
1096		prefetchw_prev_lru_page(page, src, flags);
1097
1098		VM_BUG_ON(!PageLRU(page));
1099
1100		switch (__isolate_lru_page(page, mode, file)) {
1101		case 0:
1102			list_move(&page->lru, dst);
1103			mem_cgroup_del_lru(page);
1104			nr_taken += hpage_nr_pages(page);
1105			break;
1106
1107		case -EBUSY:
1108			/* else it is being freed elsewhere */
1109			list_move(&page->lru, src);
1110			mem_cgroup_rotate_lru_list(page, page_lru(page));
1111			continue;
1112
1113		default:
1114			BUG();
1115		}
1116
1117		if (!order)
1118			continue;
1119
1120		/*
1121		 * Attempt to take all pages in the order aligned region
1122		 * surrounding the tag page.  Only take those pages of
1123		 * the same active state as that tag page.  We may safely
1124		 * round the target page pfn down to the requested order
1125		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1126		 * where that page is in a different zone we will detect
1127		 * it from its zone id and abort this block scan.
1128		 */
1129		zone_id = page_zone_id(page);
1130		page_pfn = page_to_pfn(page);
1131		pfn = page_pfn & ~((1 << order) - 1);
1132		end_pfn = pfn + (1 << order);
1133		for (; pfn < end_pfn; pfn++) {
1134			struct page *cursor_page;
1135
1136			/* The target page is in the block, ignore it. */
1137			if (unlikely(pfn == page_pfn))
1138				continue;
1139
1140			/* Avoid holes within the zone. */
1141			if (unlikely(!pfn_valid_within(pfn)))
1142				break;
1143
1144			cursor_page = pfn_to_page(pfn);
1145
1146			/* Check that we have not crossed a zone boundary. */
1147			if (unlikely(page_zone_id(cursor_page) != zone_id))
1148				break;
1149
1150			/*
1151			 * If we don't have enough swap space, reclaiming of
1152			 * anon page which don't already have a swap slot is
1153			 * pointless.
1154			 */
1155			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1156			    !PageSwapCache(cursor_page))
1157				break;
1158
1159			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1160				list_move(&cursor_page->lru, dst);
1161				mem_cgroup_del_lru(cursor_page);
1162				nr_taken += hpage_nr_pages(page);
1163				nr_lumpy_taken++;
1164				if (PageDirty(cursor_page))
1165					nr_lumpy_dirty++;
1166				scan++;
1167			} else {
1168				/*
1169				 * Check if the page is freed already.
1170				 *
1171				 * We can't use page_count() as that
1172				 * requires compound_head and we don't
1173				 * have a pin on the page here. If a
1174				 * page is tail, we may or may not
1175				 * have isolated the head, so assume
1176				 * it's not free, it'd be tricky to
1177				 * track the head status without a
1178				 * page pin.
1179				 */
1180				if (!PageTail(cursor_page) &&
1181				    !atomic_read(&cursor_page->_count))
1182					continue;
1183				break;
1184			}
1185		}
1186
1187		/* If we break out of the loop above, lumpy reclaim failed */
1188		if (pfn < end_pfn)
1189			nr_lumpy_failed++;
1190	}
1191
1192	*scanned = scan;
1193
1194	trace_mm_vmscan_lru_isolate(order,
1195			nr_to_scan, scan,
1196			nr_taken,
1197			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1198			mode);
1199	return nr_taken;
1200}
1201
1202static unsigned long isolate_pages_global(unsigned long nr,
1203					struct list_head *dst,
1204					unsigned long *scanned, int order,
1205					int mode, struct zone *z,
1206					int active, int file)
1207{
1208	int lru = LRU_BASE;
1209	if (active)
1210		lru += LRU_ACTIVE;
1211	if (file)
1212		lru += LRU_FILE;
1213	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1214								mode, file);
1215}
1216
1217/*
1218 * clear_active_flags() is a helper for shrink_active_list(), clearing
1219 * any active bits from the pages in the list.
1220 */
1221static unsigned long clear_active_flags(struct list_head *page_list,
1222					unsigned int *count)
1223{
1224	int nr_active = 0;
1225	int lru;
1226	struct page *page;
1227
1228	list_for_each_entry(page, page_list, lru) {
1229		int numpages = hpage_nr_pages(page);
1230		lru = page_lru_base_type(page);
1231		if (PageActive(page)) {
1232			lru += LRU_ACTIVE;
1233			ClearPageActive(page);
1234			nr_active += numpages;
1235		}
1236		if (count)
1237			count[lru] += numpages;
1238	}
1239
1240	return nr_active;
1241}
1242
1243/**
1244 * isolate_lru_page - tries to isolate a page from its LRU list
1245 * @page: page to isolate from its LRU list
1246 *
1247 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1248 * vmstat statistic corresponding to whatever LRU list the page was on.
1249 *
1250 * Returns 0 if the page was removed from an LRU list.
1251 * Returns -EBUSY if the page was not on an LRU list.
1252 *
1253 * The returned page will have PageLRU() cleared.  If it was found on
1254 * the active list, it will have PageActive set.  If it was found on
1255 * the unevictable list, it will have the PageUnevictable bit set. That flag
1256 * may need to be cleared by the caller before letting the page go.
1257 *
1258 * The vmstat statistic corresponding to the list on which the page was
1259 * found will be decremented.
1260 *
1261 * Restrictions:
1262 * (1) Must be called with an elevated refcount on the page. This is a
1263 *     fundamentnal difference from isolate_lru_pages (which is called
1264 *     without a stable reference).
1265 * (2) the lru_lock must not be held.
1266 * (3) interrupts must be enabled.
1267 */
1268int isolate_lru_page(struct page *page)
1269{
1270	int ret = -EBUSY;
1271
1272	VM_BUG_ON(!page_count(page));
1273
1274	if (PageLRU(page)) {
1275		struct zone *zone = page_zone(page);
1276
1277		spin_lock_irq(&zone->lru_lock);
1278		if (PageLRU(page)) {
1279			int lru = page_lru(page);
1280			ret = 0;
1281			get_page(page);
1282			ClearPageLRU(page);
1283
1284			del_page_from_lru_list(zone, page, lru);
1285		}
1286		spin_unlock_irq(&zone->lru_lock);
1287	}
1288	return ret;
1289}
1290
1291/*
1292 * Are there way too many processes in the direct reclaim path already?
1293 */
1294static int too_many_isolated(struct zone *zone, int file,
1295		struct scan_control *sc)
1296{
1297	unsigned long inactive, isolated;
1298
1299	if (current_is_kswapd())
1300		return 0;
1301
1302	if (!scanning_global_lru(sc))
1303		return 0;
1304
1305	if (file) {
1306		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1307		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1308	} else {
1309		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1310		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1311	}
1312
1313	return isolated > inactive;
1314}
1315
1316/*
1317 * TODO: Try merging with migrations version of putback_lru_pages
1318 */
1319static noinline_for_stack void
1320putback_lru_pages(struct zone *zone, struct scan_control *sc,
1321				unsigned long nr_anon, unsigned long nr_file,
1322				struct list_head *page_list)
1323{
1324	struct page *page;
1325	struct pagevec pvec;
1326	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1327
1328	pagevec_init(&pvec, 1);
1329
1330	/*
1331	 * Put back any unfreeable pages.
1332	 */
1333	spin_lock(&zone->lru_lock);
1334	while (!list_empty(page_list)) {
1335		int lru;
1336		page = lru_to_page(page_list);
1337		VM_BUG_ON(PageLRU(page));
1338		list_del(&page->lru);
1339		if (unlikely(!page_evictable(page, NULL))) {
1340			spin_unlock_irq(&zone->lru_lock);
1341			putback_lru_page(page);
1342			spin_lock_irq(&zone->lru_lock);
1343			continue;
1344		}
1345		SetPageLRU(page);
1346		lru = page_lru(page);
1347		add_page_to_lru_list(zone, page, lru);
1348		if (is_active_lru(lru)) {
1349			int file = is_file_lru(lru);
1350			int numpages = hpage_nr_pages(page);
1351			reclaim_stat->recent_rotated[file] += numpages;
1352		}
1353		if (!pagevec_add(&pvec, page)) {
1354			spin_unlock_irq(&zone->lru_lock);
1355			__pagevec_release(&pvec);
1356			spin_lock_irq(&zone->lru_lock);
1357		}
1358	}
1359	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1360	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1361
1362	spin_unlock_irq(&zone->lru_lock);
1363	pagevec_release(&pvec);
1364}
1365
1366static noinline_for_stack void update_isolated_counts(struct zone *zone,
1367					struct scan_control *sc,
1368					unsigned long *nr_anon,
1369					unsigned long *nr_file,
1370					struct list_head *isolated_list)
1371{
1372	unsigned long nr_active;
1373	unsigned int count[NR_LRU_LISTS] = { 0, };
1374	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1375
1376	nr_active = clear_active_flags(isolated_list, count);
1377	__count_vm_events(PGDEACTIVATE, nr_active);
1378
1379	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1380			      -count[LRU_ACTIVE_FILE]);
1381	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1382			      -count[LRU_INACTIVE_FILE]);
1383	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1384			      -count[LRU_ACTIVE_ANON]);
1385	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1386			      -count[LRU_INACTIVE_ANON]);
1387
1388	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1389	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1390	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1391	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1392
1393	reclaim_stat->recent_scanned[0] += *nr_anon;
1394	reclaim_stat->recent_scanned[1] += *nr_file;
1395}
1396
1397/*
1398 * Returns true if the caller should wait to clean dirty/writeback pages.
1399 *
1400 * If we are direct reclaiming for contiguous pages and we do not reclaim
1401 * everything in the list, try again and wait for writeback IO to complete.
1402 * This will stall high-order allocations noticeably. Only do that when really
1403 * need to free the pages under high memory pressure.
1404 */
1405static inline bool should_reclaim_stall(unsigned long nr_taken,
1406					unsigned long nr_freed,
1407					int priority,
1408					struct scan_control *sc)
1409{
1410	int lumpy_stall_priority;
1411
1412	/* kswapd should not stall on sync IO */
1413	if (current_is_kswapd())
1414		return false;
1415
1416	/* Only stall on lumpy reclaim */
1417	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1418		return false;
1419
1420	/* If we have reclaimed everything on the isolated list, no stall */
1421	if (nr_freed == nr_taken)
1422		return false;
1423
1424	/*
1425	 * For high-order allocations, there are two stall thresholds.
1426	 * High-cost allocations stall immediately where as lower
1427	 * order allocations such as stacks require the scanning
1428	 * priority to be much higher before stalling.
1429	 */
1430	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1431		lumpy_stall_priority = DEF_PRIORITY;
1432	else
1433		lumpy_stall_priority = DEF_PRIORITY / 3;
1434
1435	return priority <= lumpy_stall_priority;
1436}
1437
1438/*
1439 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1440 * of reclaimed pages
1441 */
1442static noinline_for_stack unsigned long
1443shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1444			struct scan_control *sc, int priority, int file)
1445{
1446	LIST_HEAD(page_list);
1447	unsigned long nr_scanned;
1448	unsigned long nr_reclaimed = 0;
1449	unsigned long nr_taken;
1450	unsigned long nr_anon;
1451	unsigned long nr_file;
1452
1453	while (unlikely(too_many_isolated(zone, file, sc))) {
1454		congestion_wait(BLK_RW_ASYNC, HZ/10);
1455
1456		/* We are about to die and free our memory. Return now. */
1457		if (fatal_signal_pending(current))
1458			return SWAP_CLUSTER_MAX;
1459	}
1460
1461	set_reclaim_mode(priority, sc, false);
1462	lru_add_drain();
1463	spin_lock_irq(&zone->lru_lock);
1464
1465	if (scanning_global_lru(sc)) {
1466		nr_taken = isolate_pages_global(nr_to_scan,
1467			&page_list, &nr_scanned, sc->order,
1468			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1469					ISOLATE_BOTH : ISOLATE_INACTIVE,
1470			zone, 0, file);
1471		zone->pages_scanned += nr_scanned;
1472		if (current_is_kswapd())
1473			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1474					       nr_scanned);
1475		else
1476			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1477					       nr_scanned);
1478	} else {
1479		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1480			&page_list, &nr_scanned, sc->order,
1481			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1482					ISOLATE_BOTH : ISOLATE_INACTIVE,
1483			zone, sc->mem_cgroup,
1484			0, file);
1485		/*
1486		 * mem_cgroup_isolate_pages() keeps track of
1487		 * scanned pages on its own.
1488		 */
1489	}
1490
1491	if (nr_taken == 0) {
1492		spin_unlock_irq(&zone->lru_lock);
1493		return 0;
1494	}
1495
1496	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1497
1498	spin_unlock_irq(&zone->lru_lock);
1499
1500	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1501
1502	/* Check if we should syncronously wait for writeback */
1503	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1504		set_reclaim_mode(priority, sc, true);
1505		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1506	}
1507
1508	local_irq_disable();
1509	if (current_is_kswapd())
1510		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1511	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1512
1513	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1514
1515	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1516		zone_idx(zone),
1517		nr_scanned, nr_reclaimed,
1518		priority,
1519		trace_shrink_flags(file, sc->reclaim_mode));
1520	return nr_reclaimed;
1521}
1522
1523/*
1524 * This moves pages from the active list to the inactive list.
1525 *
1526 * We move them the other way if the page is referenced by one or more
1527 * processes, from rmap.
1528 *
1529 * If the pages are mostly unmapped, the processing is fast and it is
1530 * appropriate to hold zone->lru_lock across the whole operation.  But if
1531 * the pages are mapped, the processing is slow (page_referenced()) so we
1532 * should drop zone->lru_lock around each page.  It's impossible to balance
1533 * this, so instead we remove the pages from the LRU while processing them.
1534 * It is safe to rely on PG_active against the non-LRU pages in here because
1535 * nobody will play with that bit on a non-LRU page.
1536 *
1537 * The downside is that we have to touch page->_count against each page.
1538 * But we had to alter page->flags anyway.
1539 */
1540
1541static void move_active_pages_to_lru(struct zone *zone,
1542				     struct list_head *list,
1543				     enum lru_list lru)
1544{
1545	unsigned long pgmoved = 0;
1546	struct pagevec pvec;
1547	struct page *page;
1548
1549	pagevec_init(&pvec, 1);
1550
1551	while (!list_empty(list)) {
1552		page = lru_to_page(list);
1553
1554		VM_BUG_ON(PageLRU(page));
1555		SetPageLRU(page);
1556
1557		list_move(&page->lru, &zone->lru[lru].list);
1558		mem_cgroup_add_lru_list(page, lru);
1559		pgmoved += hpage_nr_pages(page);
1560
1561		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1562			spin_unlock_irq(&zone->lru_lock);
1563			if (buffer_heads_over_limit)
1564				pagevec_strip(&pvec);
1565			__pagevec_release(&pvec);
1566			spin_lock_irq(&zone->lru_lock);
1567		}
1568	}
1569	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1570	if (!is_active_lru(lru))
1571		__count_vm_events(PGDEACTIVATE, pgmoved);
1572}
1573
1574static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1575			struct scan_control *sc, int priority, int file)
1576{
1577	unsigned long nr_taken;
1578	unsigned long pgscanned;
1579	unsigned long vm_flags;
1580	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1581	LIST_HEAD(l_active);
1582	LIST_HEAD(l_inactive);
1583	struct page *page;
1584	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1585	unsigned long nr_rotated = 0;
1586
1587	lru_add_drain();
1588	spin_lock_irq(&zone->lru_lock);
1589	if (scanning_global_lru(sc)) {
1590		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1591						&pgscanned, sc->order,
1592						ISOLATE_ACTIVE, zone,
1593						1, file);
1594		zone->pages_scanned += pgscanned;
1595	} else {
1596		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1597						&pgscanned, sc->order,
1598						ISOLATE_ACTIVE, zone,
1599						sc->mem_cgroup, 1, file);
1600		/*
1601		 * mem_cgroup_isolate_pages() keeps track of
1602		 * scanned pages on its own.
1603		 */
1604	}
1605
1606	reclaim_stat->recent_scanned[file] += nr_taken;
1607
1608	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1609	if (file)
1610		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1611	else
1612		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1613	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1614	spin_unlock_irq(&zone->lru_lock);
1615
1616	while (!list_empty(&l_hold)) {
1617		cond_resched();
1618		page = lru_to_page(&l_hold);
1619		list_del(&page->lru);
1620
1621		if (unlikely(!page_evictable(page, NULL))) {
1622			putback_lru_page(page);
1623			continue;
1624		}
1625
1626		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1627			nr_rotated += hpage_nr_pages(page);
1628			/*
1629			 * Identify referenced, file-backed active pages and
1630			 * give them one more trip around the active list. So
1631			 * that executable code get better chances to stay in
1632			 * memory under moderate memory pressure.  Anon pages
1633			 * are not likely to be evicted by use-once streaming
1634			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1635			 * so we ignore them here.
1636			 */
1637			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1638				list_add(&page->lru, &l_active);
1639				continue;
1640			}
1641		}
1642
1643		ClearPageActive(page);	/* we are de-activating */
1644		list_add(&page->lru, &l_inactive);
1645	}
1646
1647	/*
1648	 * Move pages back to the lru list.
1649	 */
1650	spin_lock_irq(&zone->lru_lock);
1651	/*
1652	 * Count referenced pages from currently used mappings as rotated,
1653	 * even though only some of them are actually re-activated.  This
1654	 * helps balance scan pressure between file and anonymous pages in
1655	 * get_scan_ratio.
1656	 */
1657	reclaim_stat->recent_rotated[file] += nr_rotated;
1658
1659	move_active_pages_to_lru(zone, &l_active,
1660						LRU_ACTIVE + file * LRU_FILE);
1661	move_active_pages_to_lru(zone, &l_inactive,
1662						LRU_BASE   + file * LRU_FILE);
1663	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1664	spin_unlock_irq(&zone->lru_lock);
1665}
1666
1667#ifdef CONFIG_SWAP
1668static int inactive_anon_is_low_global(struct zone *zone)
1669{
1670	unsigned long active, inactive;
1671
1672	active = zone_page_state(zone, NR_ACTIVE_ANON);
1673	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1674
1675	if (inactive * zone->inactive_ratio < active)
1676		return 1;
1677
1678	return 0;
1679}
1680
1681/**
1682 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1683 * @zone: zone to check
1684 * @sc:   scan control of this context
1685 *
1686 * Returns true if the zone does not have enough inactive anon pages,
1687 * meaning some active anon pages need to be deactivated.
1688 */
1689static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1690{
1691	int low;
1692
1693	/*
1694	 * If we don't have swap space, anonymous page deactivation
1695	 * is pointless.
1696	 */
1697	if (!total_swap_pages)
1698		return 0;
1699
1700	if (scanning_global_lru(sc))
1701		low = inactive_anon_is_low_global(zone);
1702	else
1703		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1704	return low;
1705}
1706#else
1707static inline int inactive_anon_is_low(struct zone *zone,
1708					struct scan_control *sc)
1709{
1710	return 0;
1711}
1712#endif
1713
1714static int inactive_file_is_low_global(struct zone *zone)
1715{
1716	unsigned long active, inactive;
1717
1718	active = zone_page_state(zone, NR_ACTIVE_FILE);
1719	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1720
1721	return (active > inactive);
1722}
1723
1724/**
1725 * inactive_file_is_low - check if file pages need to be deactivated
1726 * @zone: zone to check
1727 * @sc:   scan control of this context
1728 *
1729 * When the system is doing streaming IO, memory pressure here
1730 * ensures that active file pages get deactivated, until more
1731 * than half of the file pages are on the inactive list.
1732 *
1733 * Once we get to that situation, protect the system's working
1734 * set from being evicted by disabling active file page aging.
1735 *
1736 * This uses a different ratio than the anonymous pages, because
1737 * the page cache uses a use-once replacement algorithm.
1738 */
1739static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1740{
1741	int low;
1742
1743	if (scanning_global_lru(sc))
1744		low = inactive_file_is_low_global(zone);
1745	else
1746		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1747	return low;
1748}
1749
1750static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1751				int file)
1752{
1753	if (file)
1754		return inactive_file_is_low(zone, sc);
1755	else
1756		return inactive_anon_is_low(zone, sc);
1757}
1758
1759static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1760	struct zone *zone, struct scan_control *sc, int priority)
1761{
1762	int file = is_file_lru(lru);
1763
1764	if (is_active_lru(lru)) {
1765		if (inactive_list_is_low(zone, sc, file))
1766		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1767		return 0;
1768	}
1769
1770	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1771}
1772
1773/*
1774 * Determine how aggressively the anon and file LRU lists should be
1775 * scanned.  The relative value of each set of LRU lists is determined
1776 * by looking at the fraction of the pages scanned we did rotate back
1777 * onto the active list instead of evict.
1778 *
1779 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1780 */
1781static void get_scan_count(struct zone *zone, struct scan_control *sc,
1782					unsigned long *nr, int priority)
1783{
1784	unsigned long anon, file, free;
1785	unsigned long anon_prio, file_prio;
1786	unsigned long ap, fp;
1787	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1788	u64 fraction[2], denominator;
1789	enum lru_list l;
1790	int noswap = 0;
1791	int force_scan = 0;
1792
1793
1794	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1795		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1796	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1797		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1798
1799	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1800		/* kswapd does zone balancing and need to scan this zone */
1801		if (scanning_global_lru(sc) && current_is_kswapd())
1802			force_scan = 1;
1803		/* memcg may have small limit and need to avoid priority drop */
1804		if (!scanning_global_lru(sc))
1805			force_scan = 1;
1806	}
1807
1808	/* If we have no swap space, do not bother scanning anon pages. */
1809	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1810		noswap = 1;
1811		fraction[0] = 0;
1812		fraction[1] = 1;
1813		denominator = 1;
1814		goto out;
1815	}
1816
1817	if (scanning_global_lru(sc)) {
1818		free  = zone_page_state(zone, NR_FREE_PAGES);
1819		/* If we have very few page cache pages,
1820		   force-scan anon pages. */
1821		if (unlikely(file + free <= high_wmark_pages(zone))) {
1822			fraction[0] = 1;
1823			fraction[1] = 0;
1824			denominator = 1;
1825			goto out;
1826		}
1827	}
1828
1829	/*
1830	 * With swappiness at 100, anonymous and file have the same priority.
1831	 * This scanning priority is essentially the inverse of IO cost.
1832	 */
1833	anon_prio = sc->swappiness;
1834	file_prio = 200 - sc->swappiness;
1835
1836	/*
1837	 * OK, so we have swap space and a fair amount of page cache
1838	 * pages.  We use the recently rotated / recently scanned
1839	 * ratios to determine how valuable each cache is.
1840	 *
1841	 * Because workloads change over time (and to avoid overflow)
1842	 * we keep these statistics as a floating average, which ends
1843	 * up weighing recent references more than old ones.
1844	 *
1845	 * anon in [0], file in [1]
1846	 */
1847	spin_lock_irq(&zone->lru_lock);
1848	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1849		reclaim_stat->recent_scanned[0] /= 2;
1850		reclaim_stat->recent_rotated[0] /= 2;
1851	}
1852
1853	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1854		reclaim_stat->recent_scanned[1] /= 2;
1855		reclaim_stat->recent_rotated[1] /= 2;
1856	}
1857
1858	/*
1859	 * The amount of pressure on anon vs file pages is inversely
1860	 * proportional to the fraction of recently scanned pages on
1861	 * each list that were recently referenced and in active use.
1862	 */
1863	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1864	ap /= reclaim_stat->recent_rotated[0] + 1;
1865
1866	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1867	fp /= reclaim_stat->recent_rotated[1] + 1;
1868	spin_unlock_irq(&zone->lru_lock);
1869
1870	fraction[0] = ap;
1871	fraction[1] = fp;
1872	denominator = ap + fp + 1;
1873out:
1874	for_each_evictable_lru(l) {
1875		int file = is_file_lru(l);
1876		unsigned long scan;
1877
1878		scan = zone_nr_lru_pages(zone, sc, l);
1879		if (priority || noswap) {
1880			scan >>= priority;
1881			scan = div64_u64(scan * fraction[file], denominator);
1882		}
1883
1884		/*
1885		 * If zone is small or memcg is small, nr[l] can be 0.
1886		 * This results no-scan on this priority and priority drop down.
1887		 * For global direct reclaim, it can visit next zone and tend
1888		 * not to have problems. For global kswapd, it's for zone
1889		 * balancing and it need to scan a small amounts. When using
1890		 * memcg, priority drop can cause big latency. So, it's better
1891		 * to scan small amount. See may_noscan above.
1892		 */
1893		if (!scan && force_scan) {
1894			if (file)
1895				scan = SWAP_CLUSTER_MAX;
1896			else if (!noswap)
1897				scan = SWAP_CLUSTER_MAX;
1898		}
1899		nr[l] = scan;
1900	}
1901}
1902
1903/*
1904 * Reclaim/compaction depends on a number of pages being freed. To avoid
1905 * disruption to the system, a small number of order-0 pages continue to be
1906 * rotated and reclaimed in the normal fashion. However, by the time we get
1907 * back to the allocator and call try_to_compact_zone(), we ensure that
1908 * there are enough free pages for it to be likely successful
1909 */
1910static inline bool should_continue_reclaim(struct zone *zone,
1911					unsigned long nr_reclaimed,
1912					unsigned long nr_scanned,
1913					struct scan_control *sc)
1914{
1915	unsigned long pages_for_compaction;
1916	unsigned long inactive_lru_pages;
1917
1918	/* If not in reclaim/compaction mode, stop */
1919	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1920		return false;
1921
1922	/* Consider stopping depending on scan and reclaim activity */
1923	if (sc->gfp_mask & __GFP_REPEAT) {
1924		/*
1925		 * For __GFP_REPEAT allocations, stop reclaiming if the
1926		 * full LRU list has been scanned and we are still failing
1927		 * to reclaim pages. This full LRU scan is potentially
1928		 * expensive but a __GFP_REPEAT caller really wants to succeed
1929		 */
1930		if (!nr_reclaimed && !nr_scanned)
1931			return false;
1932	} else {
1933		/*
1934		 * For non-__GFP_REPEAT allocations which can presumably
1935		 * fail without consequence, stop if we failed to reclaim
1936		 * any pages from the last SWAP_CLUSTER_MAX number of
1937		 * pages that were scanned. This will return to the
1938		 * caller faster at the risk reclaim/compaction and
1939		 * the resulting allocation attempt fails
1940		 */
1941		if (!nr_reclaimed)
1942			return false;
1943	}
1944
1945	/*
1946	 * If we have not reclaimed enough pages for compaction and the
1947	 * inactive lists are large enough, continue reclaiming
1948	 */
1949	pages_for_compaction = (2UL << sc->order);
1950	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1951				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1952	if (sc->nr_reclaimed < pages_for_compaction &&
1953			inactive_lru_pages > pages_for_compaction)
1954		return true;
1955
1956	/* If compaction would go ahead or the allocation would succeed, stop */
1957	switch (compaction_suitable(zone, sc->order)) {
1958	case COMPACT_PARTIAL:
1959	case COMPACT_CONTINUE:
1960		return false;
1961	default:
1962		return true;
1963	}
1964}
1965
1966/*
1967 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1968 */
1969static void shrink_zone(int priority, struct zone *zone,
1970				struct scan_control *sc)
1971{
1972	unsigned long nr[NR_LRU_LISTS];
1973	unsigned long nr_to_scan;
1974	enum lru_list l;
1975	unsigned long nr_reclaimed, nr_scanned;
1976	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1977
1978restart:
1979	nr_reclaimed = 0;
1980	nr_scanned = sc->nr_scanned;
1981	get_scan_count(zone, sc, nr, priority);
1982
1983	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1984					nr[LRU_INACTIVE_FILE]) {
1985		for_each_evictable_lru(l) {
1986			if (nr[l]) {
1987				nr_to_scan = min_t(unsigned long,
1988						   nr[l], SWAP_CLUSTER_MAX);
1989				nr[l] -= nr_to_scan;
1990
1991				nr_reclaimed += shrink_list(l, nr_to_scan,
1992							    zone, sc, priority);
1993			}
1994		}
1995		/*
1996		 * On large memory systems, scan >> priority can become
1997		 * really large. This is fine for the starting priority;
1998		 * we want to put equal scanning pressure on each zone.
1999		 * However, if the VM has a harder time of freeing pages,
2000		 * with multiple processes reclaiming pages, the total
2001		 * freeing target can get unreasonably large.
2002		 */
2003		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2004			break;
2005	}
2006	sc->nr_reclaimed += nr_reclaimed;
2007
2008	/*
2009	 * Even if we did not try to evict anon pages at all, we want to
2010	 * rebalance the anon lru active/inactive ratio.
2011	 */
2012	if (inactive_anon_is_low(zone, sc))
2013		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2014
2015	/* reclaim/compaction might need reclaim to continue */
2016	if (should_continue_reclaim(zone, nr_reclaimed,
2017					sc->nr_scanned - nr_scanned, sc))
2018		goto restart;
2019
2020	throttle_vm_writeout(sc->gfp_mask);
2021}
2022
2023/*
2024 * This is the direct reclaim path, for page-allocating processes.  We only
2025 * try to reclaim pages from zones which will satisfy the caller's allocation
2026 * request.
2027 *
2028 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2029 * Because:
2030 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2031 *    allocation or
2032 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2033 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2034 *    zone defense algorithm.
2035 *
2036 * If a zone is deemed to be full of pinned pages then just give it a light
2037 * scan then give up on it.
2038 */
2039static void shrink_zones(int priority, struct zonelist *zonelist,
2040					struct scan_control *sc)
2041{
2042	struct zoneref *z;
2043	struct zone *zone;
2044	unsigned long nr_soft_reclaimed;
2045	unsigned long nr_soft_scanned;
2046
2047	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2048					gfp_zone(sc->gfp_mask), sc->nodemask) {
2049		if (!populated_zone(zone))
2050			continue;
2051		/*
2052		 * Take care memory controller reclaiming has small influence
2053		 * to global LRU.
2054		 */
2055		if (scanning_global_lru(sc)) {
2056			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2057				continue;
2058			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2059				continue;	/* Let kswapd poll it */
2060			/*
2061			 * This steals pages from memory cgroups over softlimit
2062			 * and returns the number of reclaimed pages and
2063			 * scanned pages. This works for global memory pressure
2064			 * and balancing, not for a memcg's limit.
2065			 */
2066			nr_soft_scanned = 0;
2067			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2068						sc->order, sc->gfp_mask,
2069						&nr_soft_scanned);
2070			sc->nr_reclaimed += nr_soft_reclaimed;
2071			sc->nr_scanned += nr_soft_scanned;
2072			/* need some check for avoid more shrink_zone() */
2073		}
2074
2075		shrink_zone(priority, zone, sc);
2076	}
2077}
2078
2079static bool zone_reclaimable(struct zone *zone)
2080{
2081	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2082}
2083
2084/* All zones in zonelist are unreclaimable? */
2085static bool all_unreclaimable(struct zonelist *zonelist,
2086		struct scan_control *sc)
2087{
2088	struct zoneref *z;
2089	struct zone *zone;
2090
2091	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2092			gfp_zone(sc->gfp_mask), sc->nodemask) {
2093		if (!populated_zone(zone))
2094			continue;
2095		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2096			continue;
2097		if (!zone->all_unreclaimable)
2098			return false;
2099	}
2100
2101	return true;
2102}
2103
2104/*
2105 * This is the main entry point to direct page reclaim.
2106 *
2107 * If a full scan of the inactive list fails to free enough memory then we
2108 * are "out of memory" and something needs to be killed.
2109 *
2110 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2111 * high - the zone may be full of dirty or under-writeback pages, which this
2112 * caller can't do much about.  We kick the writeback threads and take explicit
2113 * naps in the hope that some of these pages can be written.  But if the
2114 * allocating task holds filesystem locks which prevent writeout this might not
2115 * work, and the allocation attempt will fail.
2116 *
2117 * returns:	0, if no pages reclaimed
2118 * 		else, the number of pages reclaimed
2119 */
2120static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2121					struct scan_control *sc,
2122					struct shrink_control *shrink)
2123{
2124	int priority;
2125	unsigned long total_scanned = 0;
2126	struct reclaim_state *reclaim_state = current->reclaim_state;
2127	struct zoneref *z;
2128	struct zone *zone;
2129	unsigned long writeback_threshold;
2130
2131	get_mems_allowed();
2132	delayacct_freepages_start();
2133
2134	if (scanning_global_lru(sc))
2135		count_vm_event(ALLOCSTALL);
2136
2137	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2138		sc->nr_scanned = 0;
2139		if (!priority)
2140			disable_swap_token(sc->mem_cgroup);
2141		shrink_zones(priority, zonelist, sc);
2142		/*
2143		 * Don't shrink slabs when reclaiming memory from
2144		 * over limit cgroups
2145		 */
2146		if (scanning_global_lru(sc)) {
2147			unsigned long lru_pages = 0;
2148			for_each_zone_zonelist(zone, z, zonelist,
2149					gfp_zone(sc->gfp_mask)) {
2150				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2151					continue;
2152
2153				lru_pages += zone_reclaimable_pages(zone);
2154			}
2155
2156			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2157			if (reclaim_state) {
2158				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2159				reclaim_state->reclaimed_slab = 0;
2160			}
2161		}
2162		total_scanned += sc->nr_scanned;
2163		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2164			goto out;
2165
2166		/*
2167		 * Try to write back as many pages as we just scanned.  This
2168		 * tends to cause slow streaming writers to write data to the
2169		 * disk smoothly, at the dirtying rate, which is nice.   But
2170		 * that's undesirable in laptop mode, where we *want* lumpy
2171		 * writeout.  So in laptop mode, write out the whole world.
2172		 */
2173		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2174		if (total_scanned > writeback_threshold) {
2175			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2176			sc->may_writepage = 1;
2177		}
2178
2179		/* Take a nap, wait for some writeback to complete */
2180		if (!sc->hibernation_mode && sc->nr_scanned &&
2181		    priority < DEF_PRIORITY - 2) {
2182			struct zone *preferred_zone;
2183
2184			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2185						&cpuset_current_mems_allowed,
2186						&preferred_zone);
2187			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2188		}
2189	}
2190
2191out:
2192	delayacct_freepages_end();
2193	put_mems_allowed();
2194
2195	if (sc->nr_reclaimed)
2196		return sc->nr_reclaimed;
2197
2198	/*
2199	 * As hibernation is going on, kswapd is freezed so that it can't mark
2200	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2201	 * check.
2202	 */
2203	if (oom_killer_disabled)
2204		return 0;
2205
2206	/* top priority shrink_zones still had more to do? don't OOM, then */
2207	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2208		return 1;
2209
2210	return 0;
2211}
2212
2213unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2214				gfp_t gfp_mask, nodemask_t *nodemask)
2215{
2216	unsigned long nr_reclaimed;
2217	struct scan_control sc = {
2218		.gfp_mask = gfp_mask,
2219		.may_writepage = !laptop_mode,
2220		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2221		.may_unmap = 1,
2222		.may_swap = 1,
2223		.swappiness = vm_swappiness,
2224		.order = order,
2225		.mem_cgroup = NULL,
2226		.nodemask = nodemask,
2227	};
2228	struct shrink_control shrink = {
2229		.gfp_mask = sc.gfp_mask,
2230	};
2231
2232	trace_mm_vmscan_direct_reclaim_begin(order,
2233				sc.may_writepage,
2234				gfp_mask);
2235
2236	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2237
2238	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2239
2240	return nr_reclaimed;
2241}
2242
2243#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2244
2245unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2246						gfp_t gfp_mask, bool noswap,
2247						unsigned int swappiness,
2248						struct zone *zone,
2249						unsigned long *nr_scanned)
2250{
2251	struct scan_control sc = {
2252		.nr_scanned = 0,
2253		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2254		.may_writepage = !laptop_mode,
2255		.may_unmap = 1,
2256		.may_swap = !noswap,
2257		.swappiness = swappiness,
2258		.order = 0,
2259		.mem_cgroup = mem,
2260	};
2261
2262	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2263			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2264
2265	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2266						      sc.may_writepage,
2267						      sc.gfp_mask);
2268
2269	/*
2270	 * NOTE: Although we can get the priority field, using it
2271	 * here is not a good idea, since it limits the pages we can scan.
2272	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2273	 * will pick up pages from other mem cgroup's as well. We hack
2274	 * the priority and make it zero.
2275	 */
2276	shrink_zone(0, zone, &sc);
2277
2278	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2279
2280	*nr_scanned = sc.nr_scanned;
2281	return sc.nr_reclaimed;
2282}
2283
2284unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2285					   gfp_t gfp_mask,
2286					   bool noswap,
2287					   unsigned int swappiness)
2288{
2289	struct zonelist *zonelist;
2290	unsigned long nr_reclaimed;
2291	int nid;
2292	struct scan_control sc = {
2293		.may_writepage = !laptop_mode,
2294		.may_unmap = 1,
2295		.may_swap = !noswap,
2296		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2297		.swappiness = swappiness,
2298		.order = 0,
2299		.mem_cgroup = mem_cont,
2300		.nodemask = NULL, /* we don't care the placement */
2301		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2302				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2303	};
2304	struct shrink_control shrink = {
2305		.gfp_mask = sc.gfp_mask,
2306	};
2307
2308	/*
2309	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2310	 * take care of from where we get pages. So the node where we start the
2311	 * scan does not need to be the current node.
2312	 */
2313	nid = mem_cgroup_select_victim_node(mem_cont);
2314
2315	zonelist = NODE_DATA(nid)->node_zonelists;
2316
2317	trace_mm_vmscan_memcg_reclaim_begin(0,
2318					    sc.may_writepage,
2319					    sc.gfp_mask);
2320
2321	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2322
2323	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2324
2325	return nr_reclaimed;
2326}
2327#endif
2328
2329/*
2330 * pgdat_balanced is used when checking if a node is balanced for high-order
2331 * allocations. Only zones that meet watermarks and are in a zone allowed
2332 * by the callers classzone_idx are added to balanced_pages. The total of
2333 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2334 * for the node to be considered balanced. Forcing all zones to be balanced
2335 * for high orders can cause excessive reclaim when there are imbalanced zones.
2336 * The choice of 25% is due to
2337 *   o a 16M DMA zone that is balanced will not balance a zone on any
2338 *     reasonable sized machine
2339 *   o On all other machines, the top zone must be at least a reasonable
2340 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2341 *     would need to be at least 256M for it to be balance a whole node.
2342 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2343 *     to balance a node on its own. These seemed like reasonable ratios.
2344 */
2345static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2346						int classzone_idx)
2347{
2348	unsigned long present_pages = 0;
2349	int i;
2350
2351	for (i = 0; i <= classzone_idx; i++)
2352		present_pages += pgdat->node_zones[i].present_pages;
2353
2354	/* A special case here: if zone has no page, we think it's balanced */
2355	return balanced_pages >= (present_pages >> 2);
2356}
2357
2358/* is kswapd sleeping prematurely? */
2359static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2360					int classzone_idx)
2361{
2362	int i;
2363	unsigned long balanced = 0;
2364	bool all_zones_ok = true;
2365
2366	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2367	if (remaining)
2368		return true;
2369
2370	/* Check the watermark levels */
2371	for (i = 0; i <= classzone_idx; i++) {
2372		struct zone *zone = pgdat->node_zones + i;
2373
2374		if (!populated_zone(zone))
2375			continue;
2376
2377		/*
2378		 * balance_pgdat() skips over all_unreclaimable after
2379		 * DEF_PRIORITY. Effectively, it considers them balanced so
2380		 * they must be considered balanced here as well if kswapd
2381		 * is to sleep
2382		 */
2383		if (zone->all_unreclaimable) {
2384			balanced += zone->present_pages;
2385			continue;
2386		}
2387
2388		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2389							i, 0))
2390			all_zones_ok = false;
2391		else
2392			balanced += zone->present_pages;
2393	}
2394
2395	/*
2396	 * For high-order requests, the balanced zones must contain at least
2397	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2398	 * must be balanced
2399	 */
2400	if (order)
2401		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2402	else
2403		return !all_zones_ok;
2404}
2405
2406/*
2407 * For kswapd, balance_pgdat() will work across all this node's zones until
2408 * they are all at high_wmark_pages(zone).
2409 *
2410 * Returns the final order kswapd was reclaiming at
2411 *
2412 * There is special handling here for zones which are full of pinned pages.
2413 * This can happen if the pages are all mlocked, or if they are all used by
2414 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2415 * What we do is to detect the case where all pages in the zone have been
2416 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2417 * dead and from now on, only perform a short scan.  Basically we're polling
2418 * the zone for when the problem goes away.
2419 *
2420 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2421 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2422 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2423 * lower zones regardless of the number of free pages in the lower zones. This
2424 * interoperates with the page allocator fallback scheme to ensure that aging
2425 * of pages is balanced across the zones.
2426 */
2427static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2428							int *classzone_idx)
2429{
2430	int all_zones_ok;
2431	unsigned long balanced;
2432	int priority;
2433	int i;
2434	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2435	unsigned long total_scanned;
2436	struct reclaim_state *reclaim_state = current->reclaim_state;
2437	unsigned long nr_soft_reclaimed;
2438	unsigned long nr_soft_scanned;
2439	struct scan_control sc = {
2440		.gfp_mask = GFP_KERNEL,
2441		.may_unmap = 1,
2442		.may_swap = 1,
2443		/*
2444		 * kswapd doesn't want to be bailed out while reclaim. because
2445		 * we want to put equal scanning pressure on each zone.
2446		 */
2447		.nr_to_reclaim = ULONG_MAX,
2448		.swappiness = vm_swappiness,
2449		.order = order,
2450		.mem_cgroup = NULL,
2451	};
2452	struct shrink_control shrink = {
2453		.gfp_mask = sc.gfp_mask,
2454	};
2455loop_again:
2456	total_scanned = 0;
2457	sc.nr_reclaimed = 0;
2458	sc.may_writepage = !laptop_mode;
2459	count_vm_event(PAGEOUTRUN);
2460
2461	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2462		unsigned long lru_pages = 0;
2463		int has_under_min_watermark_zone = 0;
2464
2465		/* The swap token gets in the way of swapout... */
2466		if (!priority)
2467			disable_swap_token(NULL);
2468
2469		all_zones_ok = 1;
2470		balanced = 0;
2471
2472		/*
2473		 * Scan in the highmem->dma direction for the highest
2474		 * zone which needs scanning
2475		 */
2476		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2477			struct zone *zone = pgdat->node_zones + i;
2478
2479			if (!populated_zone(zone))
2480				continue;
2481
2482			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2483				continue;
2484
2485			/*
2486			 * Do some background aging of the anon list, to give
2487			 * pages a chance to be referenced before reclaiming.
2488			 */
2489			if (inactive_anon_is_low(zone, &sc))
2490				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2491							&sc, priority, 0);
2492
2493			if (!zone_watermark_ok_safe(zone, order,
2494					high_wmark_pages(zone), 0, 0)) {
2495				end_zone = i;
2496				break;
2497			}
2498		}
2499		if (i < 0)
2500			goto out;
2501
2502		for (i = 0; i <= end_zone; i++) {
2503			struct zone *zone = pgdat->node_zones + i;
2504
2505			lru_pages += zone_reclaimable_pages(zone);
2506		}
2507
2508		/*
2509		 * Now scan the zone in the dma->highmem direction, stopping
2510		 * at the last zone which needs scanning.
2511		 *
2512		 * We do this because the page allocator works in the opposite
2513		 * direction.  This prevents the page allocator from allocating
2514		 * pages behind kswapd's direction of progress, which would
2515		 * cause too much scanning of the lower zones.
2516		 */
2517		for (i = 0; i <= end_zone; i++) {
2518			struct zone *zone = pgdat->node_zones + i;
2519			int nr_slab;
2520			unsigned long balance_gap;
2521
2522			if (!populated_zone(zone))
2523				continue;
2524
2525			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2526				continue;
2527
2528			sc.nr_scanned = 0;
2529
2530			nr_soft_scanned = 0;
2531			/*
2532			 * Call soft limit reclaim before calling shrink_zone.
2533			 */
2534			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2535							order, sc.gfp_mask,
2536							&nr_soft_scanned);
2537			sc.nr_reclaimed += nr_soft_reclaimed;
2538			total_scanned += nr_soft_scanned;
2539
2540			/*
2541			 * We put equal pressure on every zone, unless
2542			 * one zone has way too many pages free
2543			 * already. The "too many pages" is defined
2544			 * as the high wmark plus a "gap" where the
2545			 * gap is either the low watermark or 1%
2546			 * of the zone, whichever is smaller.
2547			 */
2548			balance_gap = min(low_wmark_pages(zone),
2549				(zone->present_pages +
2550					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2551				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2552			if (!zone_watermark_ok_safe(zone, order,
2553					high_wmark_pages(zone) + balance_gap,
2554					end_zone, 0)) {
2555				shrink_zone(priority, zone, &sc);
2556
2557				reclaim_state->reclaimed_slab = 0;
2558				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2559				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2560				total_scanned += sc.nr_scanned;
2561
2562				if (nr_slab == 0 && !zone_reclaimable(zone))
2563					zone->all_unreclaimable = 1;
2564			}
2565
2566			/*
2567			 * If we've done a decent amount of scanning and
2568			 * the reclaim ratio is low, start doing writepage
2569			 * even in laptop mode
2570			 */
2571			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2572			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2573				sc.may_writepage = 1;
2574
2575			if (zone->all_unreclaimable) {
2576				if (end_zone && end_zone == i)
2577					end_zone--;
2578				continue;
2579			}
2580
2581			if (!zone_watermark_ok_safe(zone, order,
2582					high_wmark_pages(zone), end_zone, 0)) {
2583				all_zones_ok = 0;
2584				/*
2585				 * We are still under min water mark.  This
2586				 * means that we have a GFP_ATOMIC allocation
2587				 * failure risk. Hurry up!
2588				 */
2589				if (!zone_watermark_ok_safe(zone, order,
2590					    min_wmark_pages(zone), end_zone, 0))
2591					has_under_min_watermark_zone = 1;
2592			} else {
2593				/*
2594				 * If a zone reaches its high watermark,
2595				 * consider it to be no longer congested. It's
2596				 * possible there are dirty pages backed by
2597				 * congested BDIs but as pressure is relieved,
2598				 * spectulatively avoid congestion waits
2599				 */
2600				zone_clear_flag(zone, ZONE_CONGESTED);
2601				if (i <= *classzone_idx)
2602					balanced += zone->present_pages;
2603			}
2604
2605		}
2606		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2607			break;		/* kswapd: all done */
2608		/*
2609		 * OK, kswapd is getting into trouble.  Take a nap, then take
2610		 * another pass across the zones.
2611		 */
2612		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2613			if (has_under_min_watermark_zone)
2614				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2615			else
2616				congestion_wait(BLK_RW_ASYNC, HZ/10);
2617		}
2618
2619		/*
2620		 * We do this so kswapd doesn't build up large priorities for
2621		 * example when it is freeing in parallel with allocators. It
2622		 * matches the direct reclaim path behaviour in terms of impact
2623		 * on zone->*_priority.
2624		 */
2625		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2626			break;
2627	}
2628out:
2629
2630	/*
2631	 * order-0: All zones must meet high watermark for a balanced node
2632	 * high-order: Balanced zones must make up at least 25% of the node
2633	 *             for the node to be balanced
2634	 */
2635	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2636		cond_resched();
2637
2638		try_to_freeze();
2639
2640		/*
2641		 * Fragmentation may mean that the system cannot be
2642		 * rebalanced for high-order allocations in all zones.
2643		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2644		 * it means the zones have been fully scanned and are still
2645		 * not balanced. For high-order allocations, there is
2646		 * little point trying all over again as kswapd may
2647		 * infinite loop.
2648		 *
2649		 * Instead, recheck all watermarks at order-0 as they
2650		 * are the most important. If watermarks are ok, kswapd will go
2651		 * back to sleep. High-order users can still perform direct
2652		 * reclaim if they wish.
2653		 */
2654		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2655			order = sc.order = 0;
2656
2657		goto loop_again;
2658	}
2659
2660	/*
2661	 * If kswapd was reclaiming at a higher order, it has the option of
2662	 * sleeping without all zones being balanced. Before it does, it must
2663	 * ensure that the watermarks for order-0 on *all* zones are met and
2664	 * that the congestion flags are cleared. The congestion flag must
2665	 * be cleared as kswapd is the only mechanism that clears the flag
2666	 * and it is potentially going to sleep here.
2667	 */
2668	if (order) {
2669		for (i = 0; i <= end_zone; i++) {
2670			struct zone *zone = pgdat->node_zones + i;
2671
2672			if (!populated_zone(zone))
2673				continue;
2674
2675			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2676				continue;
2677
2678			/* Confirm the zone is balanced for order-0 */
2679			if (!zone_watermark_ok(zone, 0,
2680					high_wmark_pages(zone), 0, 0)) {
2681				order = sc.order = 0;
2682				goto loop_again;
2683			}
2684
2685			/* If balanced, clear the congested flag */
2686			zone_clear_flag(zone, ZONE_CONGESTED);
2687		}
2688	}
2689
2690	/*
2691	 * Return the order we were reclaiming at so sleeping_prematurely()
2692	 * makes a decision on the order we were last reclaiming at. However,
2693	 * if another caller entered the allocator slow path while kswapd
2694	 * was awake, order will remain at the higher level
2695	 */
2696	*classzone_idx = end_zone;
2697	return order;
2698}
2699
2700static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2701{
2702	long remaining = 0;
2703	DEFINE_WAIT(wait);
2704
2705	if (freezing(current) || kthread_should_stop())
2706		return;
2707
2708	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2709
2710	/* Try to sleep for a short interval */
2711	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2712		remaining = schedule_timeout(HZ/10);
2713		finish_wait(&pgdat->kswapd_wait, &wait);
2714		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2715	}
2716
2717	/*
2718	 * After a short sleep, check if it was a premature sleep. If not, then
2719	 * go fully to sleep until explicitly woken up.
2720	 */
2721	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2722		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2723
2724		/*
2725		 * vmstat counters are not perfectly accurate and the estimated
2726		 * value for counters such as NR_FREE_PAGES can deviate from the
2727		 * true value by nr_online_cpus * threshold. To avoid the zone
2728		 * watermarks being breached while under pressure, we reduce the
2729		 * per-cpu vmstat threshold while kswapd is awake and restore
2730		 * them before going back to sleep.
2731		 */
2732		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2733		schedule();
2734		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2735	} else {
2736		if (remaining)
2737			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2738		else
2739			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2740	}
2741	finish_wait(&pgdat->kswapd_wait, &wait);
2742}
2743
2744/*
2745 * The background pageout daemon, started as a kernel thread
2746 * from the init process.
2747 *
2748 * This basically trickles out pages so that we have _some_
2749 * free memory available even if there is no other activity
2750 * that frees anything up. This is needed for things like routing
2751 * etc, where we otherwise might have all activity going on in
2752 * asynchronous contexts that cannot page things out.
2753 *
2754 * If there are applications that are active memory-allocators
2755 * (most normal use), this basically shouldn't matter.
2756 */
2757static int kswapd(void *p)
2758{
2759	unsigned long order, new_order;
2760	int classzone_idx, new_classzone_idx;
2761	pg_data_t *pgdat = (pg_data_t*)p;
2762	struct task_struct *tsk = current;
2763
2764	struct reclaim_state reclaim_state = {
2765		.reclaimed_slab = 0,
2766	};
2767	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2768
2769	lockdep_set_current_reclaim_state(GFP_KERNEL);
2770
2771	if (!cpumask_empty(cpumask))
2772		set_cpus_allowed_ptr(tsk, cpumask);
2773	current->reclaim_state = &reclaim_state;
2774
2775	/*
2776	 * Tell the memory management that we're a "memory allocator",
2777	 * and that if we need more memory we should get access to it
2778	 * regardless (see "__alloc_pages()"). "kswapd" should
2779	 * never get caught in the normal page freeing logic.
2780	 *
2781	 * (Kswapd normally doesn't need memory anyway, but sometimes
2782	 * you need a small amount of memory in order to be able to
2783	 * page out something else, and this flag essentially protects
2784	 * us from recursively trying to free more memory as we're
2785	 * trying to free the first piece of memory in the first place).
2786	 */
2787	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2788	set_freezable();
2789
2790	order = new_order = 0;
2791	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2792	for ( ; ; ) {
2793		int ret;
2794
2795		/*
2796		 * If the last balance_pgdat was unsuccessful it's unlikely a
2797		 * new request of a similar or harder type will succeed soon
2798		 * so consider going to sleep on the basis we reclaimed at
2799		 */
2800		if (classzone_idx >= new_classzone_idx && order == new_order) {
2801			new_order = pgdat->kswapd_max_order;
2802			new_classzone_idx = pgdat->classzone_idx;
2803			pgdat->kswapd_max_order =  0;
2804			pgdat->classzone_idx = pgdat->nr_zones - 1;
2805		}
2806
2807		if (order < new_order || classzone_idx > new_classzone_idx) {
2808			/*
2809			 * Don't sleep if someone wants a larger 'order'
2810			 * allocation or has tigher zone constraints
2811			 */
2812			order = new_order;
2813			classzone_idx = new_classzone_idx;
2814		} else {
2815			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2816			order = pgdat->kswapd_max_order;
2817			classzone_idx = pgdat->classzone_idx;
2818			pgdat->kswapd_max_order = 0;
2819			pgdat->classzone_idx = pgdat->nr_zones - 1;
2820		}
2821
2822		ret = try_to_freeze();
2823		if (kthread_should_stop())
2824			break;
2825
2826		/*
2827		 * We can speed up thawing tasks if we don't call balance_pgdat
2828		 * after returning from the refrigerator
2829		 */
2830		if (!ret) {
2831			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2832			order = balance_pgdat(pgdat, order, &classzone_idx);
2833		}
2834	}
2835	return 0;
2836}
2837
2838/*
2839 * A zone is low on free memory, so wake its kswapd task to service it.
2840 */
2841void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2842{
2843	pg_data_t *pgdat;
2844
2845	if (!populated_zone(zone))
2846		return;
2847
2848	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2849		return;
2850	pgdat = zone->zone_pgdat;
2851	if (pgdat->kswapd_max_order < order) {
2852		pgdat->kswapd_max_order = order;
2853		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2854	}
2855	if (!waitqueue_active(&pgdat->kswapd_wait))
2856		return;
2857	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2858		return;
2859
2860	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2861	wake_up_interruptible(&pgdat->kswapd_wait);
2862}
2863
2864/*
2865 * The reclaimable count would be mostly accurate.
2866 * The less reclaimable pages may be
2867 * - mlocked pages, which will be moved to unevictable list when encountered
2868 * - mapped pages, which may require several travels to be reclaimed
2869 * - dirty pages, which is not "instantly" reclaimable
2870 */
2871unsigned long global_reclaimable_pages(void)
2872{
2873	int nr;
2874
2875	nr = global_page_state(NR_ACTIVE_FILE) +
2876	     global_page_state(NR_INACTIVE_FILE);
2877
2878	if (nr_swap_pages > 0)
2879		nr += global_page_state(NR_ACTIVE_ANON) +
2880		      global_page_state(NR_INACTIVE_ANON);
2881
2882	return nr;
2883}
2884
2885unsigned long zone_reclaimable_pages(struct zone *zone)
2886{
2887	int nr;
2888
2889	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2890	     zone_page_state(zone, NR_INACTIVE_FILE);
2891
2892	if (nr_swap_pages > 0)
2893		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2894		      zone_page_state(zone, NR_INACTIVE_ANON);
2895
2896	return nr;
2897}
2898
2899#ifdef CONFIG_HIBERNATION
2900/*
2901 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2902 * freed pages.
2903 *
2904 * Rather than trying to age LRUs the aim is to preserve the overall
2905 * LRU order by reclaiming preferentially
2906 * inactive > active > active referenced > active mapped
2907 */
2908unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2909{
2910	struct reclaim_state reclaim_state;
2911	struct scan_control sc = {
2912		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2913		.may_swap = 1,
2914		.may_unmap = 1,
2915		.may_writepage = 1,
2916		.nr_to_reclaim = nr_to_reclaim,
2917		.hibernation_mode = 1,
2918		.swappiness = vm_swappiness,
2919		.order = 0,
2920	};
2921	struct shrink_control shrink = {
2922		.gfp_mask = sc.gfp_mask,
2923	};
2924	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2925	struct task_struct *p = current;
2926	unsigned long nr_reclaimed;
2927
2928	p->flags |= PF_MEMALLOC;
2929	lockdep_set_current_reclaim_state(sc.gfp_mask);
2930	reclaim_state.reclaimed_slab = 0;
2931	p->reclaim_state = &reclaim_state;
2932
2933	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2934
2935	p->reclaim_state = NULL;
2936	lockdep_clear_current_reclaim_state();
2937	p->flags &= ~PF_MEMALLOC;
2938
2939	return nr_reclaimed;
2940}
2941#endif /* CONFIG_HIBERNATION */
2942
2943/* It's optimal to keep kswapds on the same CPUs as their memory, but
2944   not required for correctness.  So if the last cpu in a node goes
2945   away, we get changed to run anywhere: as the first one comes back,
2946   restore their cpu bindings. */
2947static int __devinit cpu_callback(struct notifier_block *nfb,
2948				  unsigned long action, void *hcpu)
2949{
2950	int nid;
2951
2952	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2953		for_each_node_state(nid, N_HIGH_MEMORY) {
2954			pg_data_t *pgdat = NODE_DATA(nid);
2955			const struct cpumask *mask;
2956
2957			mask = cpumask_of_node(pgdat->node_id);
2958
2959			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2960				/* One of our CPUs online: restore mask */
2961				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2962		}
2963	}
2964	return NOTIFY_OK;
2965}
2966
2967/*
2968 * This kswapd start function will be called by init and node-hot-add.
2969 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2970 */
2971int kswapd_run(int nid)
2972{
2973	pg_data_t *pgdat = NODE_DATA(nid);
2974	int ret = 0;
2975
2976	if (pgdat->kswapd)
2977		return 0;
2978
2979	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2980	if (IS_ERR(pgdat->kswapd)) {
2981		/* failure at boot is fatal */
2982		BUG_ON(system_state == SYSTEM_BOOTING);
2983		printk("Failed to start kswapd on node %d\n",nid);
2984		ret = -1;
2985	}
2986	return ret;
2987}
2988
2989/*
2990 * Called by memory hotplug when all memory in a node is offlined.
2991 */
2992void kswapd_stop(int nid)
2993{
2994	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2995
2996	if (kswapd)
2997		kthread_stop(kswapd);
2998}
2999
3000static int __init kswapd_init(void)
3001{
3002	int nid;
3003
3004	swap_setup();
3005	for_each_node_state(nid, N_HIGH_MEMORY)
3006 		kswapd_run(nid);
3007	hotcpu_notifier(cpu_callback, 0);
3008	return 0;
3009}
3010
3011module_init(kswapd_init)
3012
3013#ifdef CONFIG_NUMA
3014/*
3015 * Zone reclaim mode
3016 *
3017 * If non-zero call zone_reclaim when the number of free pages falls below
3018 * the watermarks.
3019 */
3020int zone_reclaim_mode __read_mostly;
3021
3022#define RECLAIM_OFF 0
3023#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3024#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3025#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3026
3027/*
3028 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3029 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3030 * a zone.
3031 */
3032#define ZONE_RECLAIM_PRIORITY 4
3033
3034/*
3035 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3036 * occur.
3037 */
3038int sysctl_min_unmapped_ratio = 1;
3039
3040/*
3041 * If the number of slab pages in a zone grows beyond this percentage then
3042 * slab reclaim needs to occur.
3043 */
3044int sysctl_min_slab_ratio = 5;
3045
3046static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3047{
3048	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3049	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3050		zone_page_state(zone, NR_ACTIVE_FILE);
3051
3052	/*
3053	 * It's possible for there to be more file mapped pages than
3054	 * accounted for by the pages on the file LRU lists because
3055	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3056	 */
3057	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3058}
3059
3060/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3061static long zone_pagecache_reclaimable(struct zone *zone)
3062{
3063	long nr_pagecache_reclaimable;
3064	long delta = 0;
3065
3066	/*
3067	 * If RECLAIM_SWAP is set, then all file pages are considered
3068	 * potentially reclaimable. Otherwise, we have to worry about
3069	 * pages like swapcache and zone_unmapped_file_pages() provides
3070	 * a better estimate
3071	 */
3072	if (zone_reclaim_mode & RECLAIM_SWAP)
3073		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3074	else
3075		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3076
3077	/* If we can't clean pages, remove dirty pages from consideration */
3078	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3079		delta += zone_page_state(zone, NR_FILE_DIRTY);
3080
3081	/* Watch for any possible underflows due to delta */
3082	if (unlikely(delta > nr_pagecache_reclaimable))
3083		delta = nr_pagecache_reclaimable;
3084
3085	return nr_pagecache_reclaimable - delta;
3086}
3087
3088/*
3089 * Try to free up some pages from this zone through reclaim.
3090 */
3091static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3092{
3093	/* Minimum pages needed in order to stay on node */
3094	const unsigned long nr_pages = 1 << order;
3095	struct task_struct *p = current;
3096	struct reclaim_state reclaim_state;
3097	int priority;
3098	struct scan_control sc = {
3099		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3100		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3101		.may_swap = 1,
3102		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3103				       SWAP_CLUSTER_MAX),
3104		.gfp_mask = gfp_mask,
3105		.swappiness = vm_swappiness,
3106		.order = order,
3107	};
3108	struct shrink_control shrink = {
3109		.gfp_mask = sc.gfp_mask,
3110	};
3111	unsigned long nr_slab_pages0, nr_slab_pages1;
3112
3113	cond_resched();
3114	/*
3115	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3116	 * and we also need to be able to write out pages for RECLAIM_WRITE
3117	 * and RECLAIM_SWAP.
3118	 */
3119	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3120	lockdep_set_current_reclaim_state(gfp_mask);
3121	reclaim_state.reclaimed_slab = 0;
3122	p->reclaim_state = &reclaim_state;
3123
3124	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3125		/*
3126		 * Free memory by calling shrink zone with increasing
3127		 * priorities until we have enough memory freed.
3128		 */
3129		priority = ZONE_RECLAIM_PRIORITY;
3130		do {
3131			shrink_zone(priority, zone, &sc);
3132			priority--;
3133		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3134	}
3135
3136	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3137	if (nr_slab_pages0 > zone->min_slab_pages) {
3138		/*
3139		 * shrink_slab() does not currently allow us to determine how
3140		 * many pages were freed in this zone. So we take the current
3141		 * number of slab pages and shake the slab until it is reduced
3142		 * by the same nr_pages that we used for reclaiming unmapped
3143		 * pages.
3144		 *
3145		 * Note that shrink_slab will free memory on all zones and may
3146		 * take a long time.
3147		 */
3148		for (;;) {
3149			unsigned long lru_pages = zone_reclaimable_pages(zone);
3150
3151			/* No reclaimable slab or very low memory pressure */
3152			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3153				break;
3154
3155			/* Freed enough memory */
3156			nr_slab_pages1 = zone_page_state(zone,
3157							NR_SLAB_RECLAIMABLE);
3158			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3159				break;
3160		}
3161
3162		/*
3163		 * Update nr_reclaimed by the number of slab pages we
3164		 * reclaimed from this zone.
3165		 */
3166		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3167		if (nr_slab_pages1 < nr_slab_pages0)
3168			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3169	}
3170
3171	p->reclaim_state = NULL;
3172	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3173	lockdep_clear_current_reclaim_state();
3174	return sc.nr_reclaimed >= nr_pages;
3175}
3176
3177int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3178{
3179	int node_id;
3180	int ret;
3181
3182	/*
3183	 * Zone reclaim reclaims unmapped file backed pages and
3184	 * slab pages if we are over the defined limits.
3185	 *
3186	 * A small portion of unmapped file backed pages is needed for
3187	 * file I/O otherwise pages read by file I/O will be immediately
3188	 * thrown out if the zone is overallocated. So we do not reclaim
3189	 * if less than a specified percentage of the zone is used by
3190	 * unmapped file backed pages.
3191	 */
3192	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3193	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3194		return ZONE_RECLAIM_FULL;
3195
3196	if (zone->all_unreclaimable)
3197		return ZONE_RECLAIM_FULL;
3198
3199	/*
3200	 * Do not scan if the allocation should not be delayed.
3201	 */
3202	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3203		return ZONE_RECLAIM_NOSCAN;
3204
3205	/*
3206	 * Only run zone reclaim on the local zone or on zones that do not
3207	 * have associated processors. This will favor the local processor
3208	 * over remote processors and spread off node memory allocations
3209	 * as wide as possible.
3210	 */
3211	node_id = zone_to_nid(zone);
3212	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3213		return ZONE_RECLAIM_NOSCAN;
3214
3215	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3216		return ZONE_RECLAIM_NOSCAN;
3217
3218	ret = __zone_reclaim(zone, gfp_mask, order);
3219	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3220
3221	if (!ret)
3222		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3223
3224	return ret;
3225}
3226#endif
3227
3228/*
3229 * page_evictable - test whether a page is evictable
3230 * @page: the page to test
3231 * @vma: the VMA in which the page is or will be mapped, may be NULL
3232 *
3233 * Test whether page is evictable--i.e., should be placed on active/inactive
3234 * lists vs unevictable list.  The vma argument is !NULL when called from the
3235 * fault path to determine how to instantate a new page.
3236 *
3237 * Reasons page might not be evictable:
3238 * (1) page's mapping marked unevictable
3239 * (2) page is part of an mlocked VMA
3240 *
3241 */
3242int page_evictable(struct page *page, struct vm_area_struct *vma)
3243{
3244
3245	if (mapping_unevictable(page_mapping(page)))
3246		return 0;
3247
3248	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3249		return 0;
3250
3251	return 1;
3252}
3253
3254/**
3255 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3256 * @page: page to check evictability and move to appropriate lru list
3257 * @zone: zone page is in
3258 *
3259 * Checks a page for evictability and moves the page to the appropriate
3260 * zone lru list.
3261 *
3262 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3263 * have PageUnevictable set.
3264 */
3265static void check_move_unevictable_page(struct page *page, struct zone *zone)
3266{
3267	VM_BUG_ON(PageActive(page));
3268
3269retry:
3270	ClearPageUnevictable(page);
3271	if (page_evictable(page, NULL)) {
3272		enum lru_list l = page_lru_base_type(page);
3273
3274		__dec_zone_state(zone, NR_UNEVICTABLE);
3275		list_move(&page->lru, &zone->lru[l].list);
3276		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3277		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3278		__count_vm_event(UNEVICTABLE_PGRESCUED);
3279	} else {
3280		/*
3281		 * rotate unevictable list
3282		 */
3283		SetPageUnevictable(page);
3284		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3285		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3286		if (page_evictable(page, NULL))
3287			goto retry;
3288	}
3289}
3290
3291/**
3292 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3293 * @mapping: struct address_space to scan for evictable pages
3294 *
3295 * Scan all pages in mapping.  Check unevictable pages for
3296 * evictability and move them to the appropriate zone lru list.
3297 */
3298void scan_mapping_unevictable_pages(struct address_space *mapping)
3299{
3300	pgoff_t next = 0;
3301	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3302			 PAGE_CACHE_SHIFT;
3303	struct zone *zone;
3304	struct pagevec pvec;
3305
3306	if (mapping->nrpages == 0)
3307		return;
3308
3309	pagevec_init(&pvec, 0);
3310	while (next < end &&
3311		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3312		int i;
3313		int pg_scanned = 0;
3314
3315		zone = NULL;
3316
3317		for (i = 0; i < pagevec_count(&pvec); i++) {
3318			struct page *page = pvec.pages[i];
3319			pgoff_t page_index = page->index;
3320			struct zone *pagezone = page_zone(page);
3321
3322			pg_scanned++;
3323			if (page_index > next)
3324				next = page_index;
3325			next++;
3326
3327			if (pagezone != zone) {
3328				if (zone)
3329					spin_unlock_irq(&zone->lru_lock);
3330				zone = pagezone;
3331				spin_lock_irq(&zone->lru_lock);
3332			}
3333
3334			if (PageLRU(page) && PageUnevictable(page))
3335				check_move_unevictable_page(page, zone);
3336		}
3337		if (zone)
3338			spin_unlock_irq(&zone->lru_lock);
3339		pagevec_release(&pvec);
3340
3341		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3342	}
3343
3344}
3345
3346/**
3347 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3348 * @zone - zone of which to scan the unevictable list
3349 *
3350 * Scan @zone's unevictable LRU lists to check for pages that have become
3351 * evictable.  Move those that have to @zone's inactive list where they
3352 * become candidates for reclaim, unless shrink_inactive_zone() decides
3353 * to reactivate them.  Pages that are still unevictable are rotated
3354 * back onto @zone's unevictable list.
3355 */
3356#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3357static void scan_zone_unevictable_pages(struct zone *zone)
3358{
3359	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3360	unsigned long scan;
3361	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3362
3363	while (nr_to_scan > 0) {
3364		unsigned long batch_size = min(nr_to_scan,
3365						SCAN_UNEVICTABLE_BATCH_SIZE);
3366
3367		spin_lock_irq(&zone->lru_lock);
3368		for (scan = 0;  scan < batch_size; scan++) {
3369			struct page *page = lru_to_page(l_unevictable);
3370
3371			if (!trylock_page(page))
3372				continue;
3373
3374			prefetchw_prev_lru_page(page, l_unevictable, flags);
3375
3376			if (likely(PageLRU(page) && PageUnevictable(page)))
3377				check_move_unevictable_page(page, zone);
3378
3379			unlock_page(page);
3380		}
3381		spin_unlock_irq(&zone->lru_lock);
3382
3383		nr_to_scan -= batch_size;
3384	}
3385}
3386
3387
3388/**
3389 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3390 *
3391 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3392 * pages that have become evictable.  Move those back to the zones'
3393 * inactive list where they become candidates for reclaim.
3394 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3395 * and we add swap to the system.  As such, it runs in the context of a task
3396 * that has possibly/probably made some previously unevictable pages
3397 * evictable.
3398 */
3399static void scan_all_zones_unevictable_pages(void)
3400{
3401	struct zone *zone;
3402
3403	for_each_zone(zone) {
3404		scan_zone_unevictable_pages(zone);
3405	}
3406}
3407
3408/*
3409 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3410 * all nodes' unevictable lists for evictable pages
3411 */
3412unsigned long scan_unevictable_pages;
3413
3414int scan_unevictable_handler(struct ctl_table *table, int write,
3415			   void __user *buffer,
3416			   size_t *length, loff_t *ppos)
3417{
3418	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3419
3420	if (write && *(unsigned long *)table->data)
3421		scan_all_zones_unevictable_pages();
3422
3423	scan_unevictable_pages = 0;
3424	return 0;
3425}
3426
3427#ifdef CONFIG_NUMA
3428/*
3429 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3430 * a specified node's per zone unevictable lists for evictable pages.
3431 */
3432
3433static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3434					  struct sysdev_attribute *attr,
3435					  char *buf)
3436{
3437	return sprintf(buf, "0\n");	/* always zero; should fit... */
3438}
3439
3440static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3441					   struct sysdev_attribute *attr,
3442					const char *buf, size_t count)
3443{
3444	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3445	struct zone *zone;
3446	unsigned long res;
3447	unsigned long req = strict_strtoul(buf, 10, &res);
3448
3449	if (!req)
3450		return 1;	/* zero is no-op */
3451
3452	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3453		if (!populated_zone(zone))
3454			continue;
3455		scan_zone_unevictable_pages(zone);
3456	}
3457	return 1;
3458}
3459
3460
3461static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3462			read_scan_unevictable_node,
3463			write_scan_unevictable_node);
3464
3465int scan_unevictable_register_node(struct node *node)
3466{
3467	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3468}
3469
3470void scan_unevictable_unregister_node(struct node *node)
3471{
3472	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3473}
3474#endif
3475