vmscan.c revision 83e33a4711760469f5c3861b8ffea4947656d4eb
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h>	/* for try_to_release_page(),
26					buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36#include <linux/delay.h>
37#include <linux/kthread.h>
38
39#include <asm/tlbflush.h>
40#include <asm/div64.h>
41
42#include <linux/swapops.h>
43
44#include "internal.h"
45
46struct scan_control {
47	/* Incremented by the number of inactive pages that were scanned */
48	unsigned long nr_scanned;
49
50	/* This context's GFP mask */
51	gfp_t gfp_mask;
52
53	int may_writepage;
54
55	/* Can pages be swapped as part of reclaim? */
56	int may_swap;
57
58	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
59	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
60	 * In this context, it doesn't matter that we scan the
61	 * whole list at once. */
62	int swap_cluster_max;
63
64	int swappiness;
65
66	int all_unreclaimable;
67};
68
69/*
70 * The list of shrinker callbacks used by to apply pressure to
71 * ageable caches.
72 */
73struct shrinker {
74	shrinker_t		shrinker;
75	struct list_head	list;
76	int			seeks;	/* seeks to recreate an obj */
77	long			nr;	/* objs pending delete */
78};
79
80#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
81
82#ifdef ARCH_HAS_PREFETCH
83#define prefetch_prev_lru_page(_page, _base, _field)			\
84	do {								\
85		if ((_page)->lru.prev != _base) {			\
86			struct page *prev;				\
87									\
88			prev = lru_to_page(&(_page->lru));		\
89			prefetch(&prev->_field);			\
90		}							\
91	} while (0)
92#else
93#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
94#endif
95
96#ifdef ARCH_HAS_PREFETCHW
97#define prefetchw_prev_lru_page(_page, _base, _field)			\
98	do {								\
99		if ((_page)->lru.prev != _base) {			\
100			struct page *prev;				\
101									\
102			prev = lru_to_page(&(_page->lru));		\
103			prefetchw(&prev->_field);			\
104		}							\
105	} while (0)
106#else
107#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
108#endif
109
110/*
111 * From 0 .. 100.  Higher means more swappy.
112 */
113int vm_swappiness = 60;
114long vm_total_pages;	/* The total number of pages which the VM controls */
115
116static LIST_HEAD(shrinker_list);
117static DECLARE_RWSEM(shrinker_rwsem);
118
119/*
120 * Add a shrinker callback to be called from the vm
121 */
122struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
123{
124        struct shrinker *shrinker;
125
126        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
127        if (shrinker) {
128	        shrinker->shrinker = theshrinker;
129	        shrinker->seeks = seeks;
130	        shrinker->nr = 0;
131	        down_write(&shrinker_rwsem);
132	        list_add_tail(&shrinker->list, &shrinker_list);
133	        up_write(&shrinker_rwsem);
134	}
135	return shrinker;
136}
137EXPORT_SYMBOL(set_shrinker);
138
139/*
140 * Remove one
141 */
142void remove_shrinker(struct shrinker *shrinker)
143{
144	down_write(&shrinker_rwsem);
145	list_del(&shrinker->list);
146	up_write(&shrinker_rwsem);
147	kfree(shrinker);
148}
149EXPORT_SYMBOL(remove_shrinker);
150
151#define SHRINK_BATCH 128
152/*
153 * Call the shrink functions to age shrinkable caches
154 *
155 * Here we assume it costs one seek to replace a lru page and that it also
156 * takes a seek to recreate a cache object.  With this in mind we age equal
157 * percentages of the lru and ageable caches.  This should balance the seeks
158 * generated by these structures.
159 *
160 * If the vm encounted mapped pages on the LRU it increase the pressure on
161 * slab to avoid swapping.
162 *
163 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
164 *
165 * `lru_pages' represents the number of on-LRU pages in all the zones which
166 * are eligible for the caller's allocation attempt.  It is used for balancing
167 * slab reclaim versus page reclaim.
168 *
169 * Returns the number of slab objects which we shrunk.
170 */
171unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
172			unsigned long lru_pages)
173{
174	struct shrinker *shrinker;
175	unsigned long ret = 0;
176
177	if (scanned == 0)
178		scanned = SWAP_CLUSTER_MAX;
179
180	if (!down_read_trylock(&shrinker_rwsem))
181		return 1;	/* Assume we'll be able to shrink next time */
182
183	list_for_each_entry(shrinker, &shrinker_list, list) {
184		unsigned long long delta;
185		unsigned long total_scan;
186		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
187
188		delta = (4 * scanned) / shrinker->seeks;
189		delta *= max_pass;
190		do_div(delta, lru_pages + 1);
191		shrinker->nr += delta;
192		if (shrinker->nr < 0) {
193			printk(KERN_ERR "%s: nr=%ld\n",
194					__FUNCTION__, shrinker->nr);
195			shrinker->nr = max_pass;
196		}
197
198		/*
199		 * Avoid risking looping forever due to too large nr value:
200		 * never try to free more than twice the estimate number of
201		 * freeable entries.
202		 */
203		if (shrinker->nr > max_pass * 2)
204			shrinker->nr = max_pass * 2;
205
206		total_scan = shrinker->nr;
207		shrinker->nr = 0;
208
209		while (total_scan >= SHRINK_BATCH) {
210			long this_scan = SHRINK_BATCH;
211			int shrink_ret;
212			int nr_before;
213
214			nr_before = (*shrinker->shrinker)(0, gfp_mask);
215			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
216			if (shrink_ret == -1)
217				break;
218			if (shrink_ret < nr_before)
219				ret += nr_before - shrink_ret;
220			count_vm_events(SLABS_SCANNED, this_scan);
221			total_scan -= this_scan;
222
223			cond_resched();
224		}
225
226		shrinker->nr += total_scan;
227	}
228	up_read(&shrinker_rwsem);
229	return ret;
230}
231
232/* Called without lock on whether page is mapped, so answer is unstable */
233static inline int page_mapping_inuse(struct page *page)
234{
235	struct address_space *mapping;
236
237	/* Page is in somebody's page tables. */
238	if (page_mapped(page))
239		return 1;
240
241	/* Be more reluctant to reclaim swapcache than pagecache */
242	if (PageSwapCache(page))
243		return 1;
244
245	mapping = page_mapping(page);
246	if (!mapping)
247		return 0;
248
249	/* File is mmap'd by somebody? */
250	return mapping_mapped(mapping);
251}
252
253static inline int is_page_cache_freeable(struct page *page)
254{
255	return page_count(page) - !!PagePrivate(page) == 2;
256}
257
258static int may_write_to_queue(struct backing_dev_info *bdi)
259{
260	if (current->flags & PF_SWAPWRITE)
261		return 1;
262	if (!bdi_write_congested(bdi))
263		return 1;
264	if (bdi == current->backing_dev_info)
265		return 1;
266	return 0;
267}
268
269/*
270 * We detected a synchronous write error writing a page out.  Probably
271 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
272 * fsync(), msync() or close().
273 *
274 * The tricky part is that after writepage we cannot touch the mapping: nothing
275 * prevents it from being freed up.  But we have a ref on the page and once
276 * that page is locked, the mapping is pinned.
277 *
278 * We're allowed to run sleeping lock_page() here because we know the caller has
279 * __GFP_FS.
280 */
281static void handle_write_error(struct address_space *mapping,
282				struct page *page, int error)
283{
284	lock_page(page);
285	if (page_mapping(page) == mapping) {
286		if (error == -ENOSPC)
287			set_bit(AS_ENOSPC, &mapping->flags);
288		else
289			set_bit(AS_EIO, &mapping->flags);
290	}
291	unlock_page(page);
292}
293
294/* possible outcome of pageout() */
295typedef enum {
296	/* failed to write page out, page is locked */
297	PAGE_KEEP,
298	/* move page to the active list, page is locked */
299	PAGE_ACTIVATE,
300	/* page has been sent to the disk successfully, page is unlocked */
301	PAGE_SUCCESS,
302	/* page is clean and locked */
303	PAGE_CLEAN,
304} pageout_t;
305
306/*
307 * pageout is called by shrink_page_list() for each dirty page.
308 * Calls ->writepage().
309 */
310static pageout_t pageout(struct page *page, struct address_space *mapping)
311{
312	/*
313	 * If the page is dirty, only perform writeback if that write
314	 * will be non-blocking.  To prevent this allocation from being
315	 * stalled by pagecache activity.  But note that there may be
316	 * stalls if we need to run get_block().  We could test
317	 * PagePrivate for that.
318	 *
319	 * If this process is currently in generic_file_write() against
320	 * this page's queue, we can perform writeback even if that
321	 * will block.
322	 *
323	 * If the page is swapcache, write it back even if that would
324	 * block, for some throttling. This happens by accident, because
325	 * swap_backing_dev_info is bust: it doesn't reflect the
326	 * congestion state of the swapdevs.  Easy to fix, if needed.
327	 * See swapfile.c:page_queue_congested().
328	 */
329	if (!is_page_cache_freeable(page))
330		return PAGE_KEEP;
331	if (!mapping) {
332		/*
333		 * Some data journaling orphaned pages can have
334		 * page->mapping == NULL while being dirty with clean buffers.
335		 */
336		if (PagePrivate(page)) {
337			if (try_to_free_buffers(page)) {
338				ClearPageDirty(page);
339				printk("%s: orphaned page\n", __FUNCTION__);
340				return PAGE_CLEAN;
341			}
342		}
343		return PAGE_KEEP;
344	}
345	if (mapping->a_ops->writepage == NULL)
346		return PAGE_ACTIVATE;
347	if (!may_write_to_queue(mapping->backing_dev_info))
348		return PAGE_KEEP;
349
350	if (clear_page_dirty_for_io(page)) {
351		int res;
352		struct writeback_control wbc = {
353			.sync_mode = WB_SYNC_NONE,
354			.nr_to_write = SWAP_CLUSTER_MAX,
355			.range_start = 0,
356			.range_end = LLONG_MAX,
357			.nonblocking = 1,
358			.for_reclaim = 1,
359		};
360
361		SetPageReclaim(page);
362		res = mapping->a_ops->writepage(page, &wbc);
363		if (res < 0)
364			handle_write_error(mapping, page, res);
365		if (res == AOP_WRITEPAGE_ACTIVATE) {
366			ClearPageReclaim(page);
367			return PAGE_ACTIVATE;
368		}
369		if (!PageWriteback(page)) {
370			/* synchronous write or broken a_ops? */
371			ClearPageReclaim(page);
372		}
373
374		return PAGE_SUCCESS;
375	}
376
377	return PAGE_CLEAN;
378}
379
380int remove_mapping(struct address_space *mapping, struct page *page)
381{
382	BUG_ON(!PageLocked(page));
383	BUG_ON(mapping != page_mapping(page));
384
385	write_lock_irq(&mapping->tree_lock);
386
387	/*
388	 * The non-racy check for busy page.  It is critical to check
389	 * PageDirty _after_ making sure that the page is freeable and
390	 * not in use by anybody. 	(pagecache + us == 2)
391	 */
392	if (unlikely(page_count(page) != 2))
393		goto cannot_free;
394	smp_rmb();
395	if (unlikely(PageDirty(page)))
396		goto cannot_free;
397
398	if (PageSwapCache(page)) {
399		swp_entry_t swap = { .val = page_private(page) };
400		__delete_from_swap_cache(page);
401		write_unlock_irq(&mapping->tree_lock);
402		swap_free(swap);
403		__put_page(page);	/* The pagecache ref */
404		return 1;
405	}
406
407	__remove_from_page_cache(page);
408	write_unlock_irq(&mapping->tree_lock);
409	__put_page(page);
410	return 1;
411
412cannot_free:
413	write_unlock_irq(&mapping->tree_lock);
414	return 0;
415}
416
417/*
418 * shrink_page_list() returns the number of reclaimed pages
419 */
420static unsigned long shrink_page_list(struct list_head *page_list,
421					struct scan_control *sc)
422{
423	LIST_HEAD(ret_pages);
424	struct pagevec freed_pvec;
425	int pgactivate = 0;
426	unsigned long nr_reclaimed = 0;
427
428	cond_resched();
429
430	pagevec_init(&freed_pvec, 1);
431	while (!list_empty(page_list)) {
432		struct address_space *mapping;
433		struct page *page;
434		int may_enter_fs;
435		int referenced;
436
437		cond_resched();
438
439		page = lru_to_page(page_list);
440		list_del(&page->lru);
441
442		if (TestSetPageLocked(page))
443			goto keep;
444
445		VM_BUG_ON(PageActive(page));
446
447		sc->nr_scanned++;
448
449		if (!sc->may_swap && page_mapped(page))
450			goto keep_locked;
451
452		/* Double the slab pressure for mapped and swapcache pages */
453		if (page_mapped(page) || PageSwapCache(page))
454			sc->nr_scanned++;
455
456		if (PageWriteback(page))
457			goto keep_locked;
458
459		referenced = page_referenced(page, 1);
460		/* In active use or really unfreeable?  Activate it. */
461		if (referenced && page_mapping_inuse(page))
462			goto activate_locked;
463
464#ifdef CONFIG_SWAP
465		/*
466		 * Anonymous process memory has backing store?
467		 * Try to allocate it some swap space here.
468		 */
469		if (PageAnon(page) && !PageSwapCache(page))
470			if (!add_to_swap(page, GFP_ATOMIC))
471				goto activate_locked;
472#endif /* CONFIG_SWAP */
473
474		mapping = page_mapping(page);
475		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
476			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
477
478		/*
479		 * The page is mapped into the page tables of one or more
480		 * processes. Try to unmap it here.
481		 */
482		if (page_mapped(page) && mapping) {
483			switch (try_to_unmap(page, 0)) {
484			case SWAP_FAIL:
485				goto activate_locked;
486			case SWAP_AGAIN:
487				goto keep_locked;
488			case SWAP_SUCCESS:
489				; /* try to free the page below */
490			}
491		}
492
493		if (PageDirty(page)) {
494			if (referenced)
495				goto keep_locked;
496			if (!may_enter_fs)
497				goto keep_locked;
498			if (!sc->may_writepage)
499				goto keep_locked;
500
501			/* Page is dirty, try to write it out here */
502			switch(pageout(page, mapping)) {
503			case PAGE_KEEP:
504				goto keep_locked;
505			case PAGE_ACTIVATE:
506				goto activate_locked;
507			case PAGE_SUCCESS:
508				if (PageWriteback(page) || PageDirty(page))
509					goto keep;
510				/*
511				 * A synchronous write - probably a ramdisk.  Go
512				 * ahead and try to reclaim the page.
513				 */
514				if (TestSetPageLocked(page))
515					goto keep;
516				if (PageDirty(page) || PageWriteback(page))
517					goto keep_locked;
518				mapping = page_mapping(page);
519			case PAGE_CLEAN:
520				; /* try to free the page below */
521			}
522		}
523
524		/*
525		 * If the page has buffers, try to free the buffer mappings
526		 * associated with this page. If we succeed we try to free
527		 * the page as well.
528		 *
529		 * We do this even if the page is PageDirty().
530		 * try_to_release_page() does not perform I/O, but it is
531		 * possible for a page to have PageDirty set, but it is actually
532		 * clean (all its buffers are clean).  This happens if the
533		 * buffers were written out directly, with submit_bh(). ext3
534		 * will do this, as well as the blockdev mapping.
535		 * try_to_release_page() will discover that cleanness and will
536		 * drop the buffers and mark the page clean - it can be freed.
537		 *
538		 * Rarely, pages can have buffers and no ->mapping.  These are
539		 * the pages which were not successfully invalidated in
540		 * truncate_complete_page().  We try to drop those buffers here
541		 * and if that worked, and the page is no longer mapped into
542		 * process address space (page_count == 1) it can be freed.
543		 * Otherwise, leave the page on the LRU so it is swappable.
544		 */
545		if (PagePrivate(page)) {
546			if (!try_to_release_page(page, sc->gfp_mask))
547				goto activate_locked;
548			if (!mapping && page_count(page) == 1)
549				goto free_it;
550		}
551
552		if (!mapping || !remove_mapping(mapping, page))
553			goto keep_locked;
554
555free_it:
556		unlock_page(page);
557		nr_reclaimed++;
558		if (!pagevec_add(&freed_pvec, page))
559			__pagevec_release_nonlru(&freed_pvec);
560		continue;
561
562activate_locked:
563		SetPageActive(page);
564		pgactivate++;
565keep_locked:
566		unlock_page(page);
567keep:
568		list_add(&page->lru, &ret_pages);
569		VM_BUG_ON(PageLRU(page));
570	}
571	list_splice(&ret_pages, page_list);
572	if (pagevec_count(&freed_pvec))
573		__pagevec_release_nonlru(&freed_pvec);
574	count_vm_events(PGACTIVATE, pgactivate);
575	return nr_reclaimed;
576}
577
578/*
579 * zone->lru_lock is heavily contended.  Some of the functions that
580 * shrink the lists perform better by taking out a batch of pages
581 * and working on them outside the LRU lock.
582 *
583 * For pagecache intensive workloads, this function is the hottest
584 * spot in the kernel (apart from copy_*_user functions).
585 *
586 * Appropriate locks must be held before calling this function.
587 *
588 * @nr_to_scan:	The number of pages to look through on the list.
589 * @src:	The LRU list to pull pages off.
590 * @dst:	The temp list to put pages on to.
591 * @scanned:	The number of pages that were scanned.
592 *
593 * returns how many pages were moved onto *@dst.
594 */
595static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
596		struct list_head *src, struct list_head *dst,
597		unsigned long *scanned)
598{
599	unsigned long nr_taken = 0;
600	struct page *page;
601	unsigned long scan;
602
603	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
604		struct list_head *target;
605		page = lru_to_page(src);
606		prefetchw_prev_lru_page(page, src, flags);
607
608		VM_BUG_ON(!PageLRU(page));
609
610		list_del(&page->lru);
611		target = src;
612		if (likely(get_page_unless_zero(page))) {
613			/*
614			 * Be careful not to clear PageLRU until after we're
615			 * sure the page is not being freed elsewhere -- the
616			 * page release code relies on it.
617			 */
618			ClearPageLRU(page);
619			target = dst;
620			nr_taken++;
621		} /* else it is being freed elsewhere */
622
623		list_add(&page->lru, target);
624	}
625
626	*scanned = scan;
627	return nr_taken;
628}
629
630/*
631 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
632 * of reclaimed pages
633 */
634static unsigned long shrink_inactive_list(unsigned long max_scan,
635				struct zone *zone, struct scan_control *sc)
636{
637	LIST_HEAD(page_list);
638	struct pagevec pvec;
639	unsigned long nr_scanned = 0;
640	unsigned long nr_reclaimed = 0;
641
642	pagevec_init(&pvec, 1);
643
644	lru_add_drain();
645	spin_lock_irq(&zone->lru_lock);
646	do {
647		struct page *page;
648		unsigned long nr_taken;
649		unsigned long nr_scan;
650		unsigned long nr_freed;
651
652		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
653					     &zone->inactive_list,
654					     &page_list, &nr_scan);
655		zone->nr_inactive -= nr_taken;
656		zone->pages_scanned += nr_scan;
657		spin_unlock_irq(&zone->lru_lock);
658
659		nr_scanned += nr_scan;
660		nr_freed = shrink_page_list(&page_list, sc);
661		nr_reclaimed += nr_freed;
662		local_irq_disable();
663		if (current_is_kswapd()) {
664			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
665			__count_vm_events(KSWAPD_STEAL, nr_freed);
666		} else
667			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
668		__count_vm_events(PGACTIVATE, nr_freed);
669
670		if (nr_taken == 0)
671			goto done;
672
673		spin_lock(&zone->lru_lock);
674		/*
675		 * Put back any unfreeable pages.
676		 */
677		while (!list_empty(&page_list)) {
678			page = lru_to_page(&page_list);
679			VM_BUG_ON(PageLRU(page));
680			SetPageLRU(page);
681			list_del(&page->lru);
682			if (PageActive(page))
683				add_page_to_active_list(zone, page);
684			else
685				add_page_to_inactive_list(zone, page);
686			if (!pagevec_add(&pvec, page)) {
687				spin_unlock_irq(&zone->lru_lock);
688				__pagevec_release(&pvec);
689				spin_lock_irq(&zone->lru_lock);
690			}
691		}
692  	} while (nr_scanned < max_scan);
693	spin_unlock(&zone->lru_lock);
694done:
695	local_irq_enable();
696	pagevec_release(&pvec);
697	return nr_reclaimed;
698}
699
700static inline int zone_is_near_oom(struct zone *zone)
701{
702	return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3;
703}
704
705/*
706 * This moves pages from the active list to the inactive list.
707 *
708 * We move them the other way if the page is referenced by one or more
709 * processes, from rmap.
710 *
711 * If the pages are mostly unmapped, the processing is fast and it is
712 * appropriate to hold zone->lru_lock across the whole operation.  But if
713 * the pages are mapped, the processing is slow (page_referenced()) so we
714 * should drop zone->lru_lock around each page.  It's impossible to balance
715 * this, so instead we remove the pages from the LRU while processing them.
716 * It is safe to rely on PG_active against the non-LRU pages in here because
717 * nobody will play with that bit on a non-LRU page.
718 *
719 * The downside is that we have to touch page->_count against each page.
720 * But we had to alter page->flags anyway.
721 */
722static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
723				struct scan_control *sc)
724{
725	unsigned long pgmoved;
726	int pgdeactivate = 0;
727	unsigned long pgscanned;
728	LIST_HEAD(l_hold);	/* The pages which were snipped off */
729	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
730	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
731	struct page *page;
732	struct pagevec pvec;
733	int reclaim_mapped = 0;
734
735	if (sc->may_swap) {
736		long mapped_ratio;
737		long distress;
738		long swap_tendency;
739
740		if (zone_is_near_oom(zone))
741			goto force_reclaim_mapped;
742
743		/*
744		 * `distress' is a measure of how much trouble we're having
745		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
746		 */
747		distress = 100 >> zone->prev_priority;
748
749		/*
750		 * The point of this algorithm is to decide when to start
751		 * reclaiming mapped memory instead of just pagecache.  Work out
752		 * how much memory
753		 * is mapped.
754		 */
755		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
756				global_page_state(NR_ANON_PAGES)) * 100) /
757					vm_total_pages;
758
759		/*
760		 * Now decide how much we really want to unmap some pages.  The
761		 * mapped ratio is downgraded - just because there's a lot of
762		 * mapped memory doesn't necessarily mean that page reclaim
763		 * isn't succeeding.
764		 *
765		 * The distress ratio is important - we don't want to start
766		 * going oom.
767		 *
768		 * A 100% value of vm_swappiness overrides this algorithm
769		 * altogether.
770		 */
771		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
772
773		/*
774		 * Now use this metric to decide whether to start moving mapped
775		 * memory onto the inactive list.
776		 */
777		if (swap_tendency >= 100)
778force_reclaim_mapped:
779			reclaim_mapped = 1;
780	}
781
782	lru_add_drain();
783	spin_lock_irq(&zone->lru_lock);
784	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
785				    &l_hold, &pgscanned);
786	zone->pages_scanned += pgscanned;
787	zone->nr_active -= pgmoved;
788	spin_unlock_irq(&zone->lru_lock);
789
790	while (!list_empty(&l_hold)) {
791		cond_resched();
792		page = lru_to_page(&l_hold);
793		list_del(&page->lru);
794		if (page_mapped(page)) {
795			if (!reclaim_mapped ||
796			    (total_swap_pages == 0 && PageAnon(page)) ||
797			    page_referenced(page, 0)) {
798				list_add(&page->lru, &l_active);
799				continue;
800			}
801		}
802		list_add(&page->lru, &l_inactive);
803	}
804
805	pagevec_init(&pvec, 1);
806	pgmoved = 0;
807	spin_lock_irq(&zone->lru_lock);
808	while (!list_empty(&l_inactive)) {
809		page = lru_to_page(&l_inactive);
810		prefetchw_prev_lru_page(page, &l_inactive, flags);
811		VM_BUG_ON(PageLRU(page));
812		SetPageLRU(page);
813		VM_BUG_ON(!PageActive(page));
814		ClearPageActive(page);
815
816		list_move(&page->lru, &zone->inactive_list);
817		pgmoved++;
818		if (!pagevec_add(&pvec, page)) {
819			zone->nr_inactive += pgmoved;
820			spin_unlock_irq(&zone->lru_lock);
821			pgdeactivate += pgmoved;
822			pgmoved = 0;
823			if (buffer_heads_over_limit)
824				pagevec_strip(&pvec);
825			__pagevec_release(&pvec);
826			spin_lock_irq(&zone->lru_lock);
827		}
828	}
829	zone->nr_inactive += pgmoved;
830	pgdeactivate += pgmoved;
831	if (buffer_heads_over_limit) {
832		spin_unlock_irq(&zone->lru_lock);
833		pagevec_strip(&pvec);
834		spin_lock_irq(&zone->lru_lock);
835	}
836
837	pgmoved = 0;
838	while (!list_empty(&l_active)) {
839		page = lru_to_page(&l_active);
840		prefetchw_prev_lru_page(page, &l_active, flags);
841		VM_BUG_ON(PageLRU(page));
842		SetPageLRU(page);
843		VM_BUG_ON(!PageActive(page));
844		list_move(&page->lru, &zone->active_list);
845		pgmoved++;
846		if (!pagevec_add(&pvec, page)) {
847			zone->nr_active += pgmoved;
848			pgmoved = 0;
849			spin_unlock_irq(&zone->lru_lock);
850			__pagevec_release(&pvec);
851			spin_lock_irq(&zone->lru_lock);
852		}
853	}
854	zone->nr_active += pgmoved;
855
856	__count_zone_vm_events(PGREFILL, zone, pgscanned);
857	__count_vm_events(PGDEACTIVATE, pgdeactivate);
858	spin_unlock_irq(&zone->lru_lock);
859
860	pagevec_release(&pvec);
861}
862
863/*
864 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
865 */
866static unsigned long shrink_zone(int priority, struct zone *zone,
867				struct scan_control *sc)
868{
869	unsigned long nr_active;
870	unsigned long nr_inactive;
871	unsigned long nr_to_scan;
872	unsigned long nr_reclaimed = 0;
873
874	atomic_inc(&zone->reclaim_in_progress);
875
876	/*
877	 * Add one to `nr_to_scan' just to make sure that the kernel will
878	 * slowly sift through the active list.
879	 */
880	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
881	nr_active = zone->nr_scan_active;
882	if (nr_active >= sc->swap_cluster_max)
883		zone->nr_scan_active = 0;
884	else
885		nr_active = 0;
886
887	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
888	nr_inactive = zone->nr_scan_inactive;
889	if (nr_inactive >= sc->swap_cluster_max)
890		zone->nr_scan_inactive = 0;
891	else
892		nr_inactive = 0;
893
894	while (nr_active || nr_inactive) {
895		if (nr_active) {
896			nr_to_scan = min(nr_active,
897					(unsigned long)sc->swap_cluster_max);
898			nr_active -= nr_to_scan;
899			shrink_active_list(nr_to_scan, zone, sc);
900		}
901
902		if (nr_inactive) {
903			nr_to_scan = min(nr_inactive,
904					(unsigned long)sc->swap_cluster_max);
905			nr_inactive -= nr_to_scan;
906			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
907								sc);
908		}
909	}
910
911	throttle_vm_writeout();
912
913	atomic_dec(&zone->reclaim_in_progress);
914	return nr_reclaimed;
915}
916
917/*
918 * This is the direct reclaim path, for page-allocating processes.  We only
919 * try to reclaim pages from zones which will satisfy the caller's allocation
920 * request.
921 *
922 * We reclaim from a zone even if that zone is over pages_high.  Because:
923 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
924 *    allocation or
925 * b) The zones may be over pages_high but they must go *over* pages_high to
926 *    satisfy the `incremental min' zone defense algorithm.
927 *
928 * Returns the number of reclaimed pages.
929 *
930 * If a zone is deemed to be full of pinned pages then just give it a light
931 * scan then give up on it.
932 */
933static unsigned long shrink_zones(int priority, struct zone **zones,
934					struct scan_control *sc)
935{
936	unsigned long nr_reclaimed = 0;
937	int i;
938
939	sc->all_unreclaimable = 1;
940	for (i = 0; zones[i] != NULL; i++) {
941		struct zone *zone = zones[i];
942
943		if (!populated_zone(zone))
944			continue;
945
946		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
947			continue;
948
949		zone->temp_priority = priority;
950		if (zone->prev_priority > priority)
951			zone->prev_priority = priority;
952
953		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
954			continue;	/* Let kswapd poll it */
955
956		sc->all_unreclaimable = 0;
957
958		nr_reclaimed += shrink_zone(priority, zone, sc);
959	}
960	return nr_reclaimed;
961}
962
963/*
964 * This is the main entry point to direct page reclaim.
965 *
966 * If a full scan of the inactive list fails to free enough memory then we
967 * are "out of memory" and something needs to be killed.
968 *
969 * If the caller is !__GFP_FS then the probability of a failure is reasonably
970 * high - the zone may be full of dirty or under-writeback pages, which this
971 * caller can't do much about.  We kick pdflush and take explicit naps in the
972 * hope that some of these pages can be written.  But if the allocating task
973 * holds filesystem locks which prevent writeout this might not work, and the
974 * allocation attempt will fail.
975 */
976unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
977{
978	int priority;
979	int ret = 0;
980	unsigned long total_scanned = 0;
981	unsigned long nr_reclaimed = 0;
982	struct reclaim_state *reclaim_state = current->reclaim_state;
983	unsigned long lru_pages = 0;
984	int i;
985	struct scan_control sc = {
986		.gfp_mask = gfp_mask,
987		.may_writepage = !laptop_mode,
988		.swap_cluster_max = SWAP_CLUSTER_MAX,
989		.may_swap = 1,
990		.swappiness = vm_swappiness,
991	};
992
993	count_vm_event(ALLOCSTALL);
994
995	for (i = 0; zones[i] != NULL; i++) {
996		struct zone *zone = zones[i];
997
998		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
999			continue;
1000
1001		zone->temp_priority = DEF_PRIORITY;
1002		lru_pages += zone->nr_active + zone->nr_inactive;
1003	}
1004
1005	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1006		sc.nr_scanned = 0;
1007		if (!priority)
1008			disable_swap_token();
1009		nr_reclaimed += shrink_zones(priority, zones, &sc);
1010		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1011		if (reclaim_state) {
1012			nr_reclaimed += reclaim_state->reclaimed_slab;
1013			reclaim_state->reclaimed_slab = 0;
1014		}
1015		total_scanned += sc.nr_scanned;
1016		if (nr_reclaimed >= sc.swap_cluster_max) {
1017			ret = 1;
1018			goto out;
1019		}
1020
1021		/*
1022		 * Try to write back as many pages as we just scanned.  This
1023		 * tends to cause slow streaming writers to write data to the
1024		 * disk smoothly, at the dirtying rate, which is nice.   But
1025		 * that's undesirable in laptop mode, where we *want* lumpy
1026		 * writeout.  So in laptop mode, write out the whole world.
1027		 */
1028		if (total_scanned > sc.swap_cluster_max +
1029					sc.swap_cluster_max / 2) {
1030			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1031			sc.may_writepage = 1;
1032		}
1033
1034		/* Take a nap, wait for some writeback to complete */
1035		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1036			blk_congestion_wait(WRITE, HZ/10);
1037	}
1038	/* top priority shrink_caches still had more to do? don't OOM, then */
1039	if (!sc.all_unreclaimable)
1040		ret = 1;
1041out:
1042	for (i = 0; zones[i] != 0; i++) {
1043		struct zone *zone = zones[i];
1044
1045		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1046			continue;
1047
1048		zone->prev_priority = zone->temp_priority;
1049	}
1050	return ret;
1051}
1052
1053/*
1054 * For kswapd, balance_pgdat() will work across all this node's zones until
1055 * they are all at pages_high.
1056 *
1057 * Returns the number of pages which were actually freed.
1058 *
1059 * There is special handling here for zones which are full of pinned pages.
1060 * This can happen if the pages are all mlocked, or if they are all used by
1061 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1062 * What we do is to detect the case where all pages in the zone have been
1063 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1064 * dead and from now on, only perform a short scan.  Basically we're polling
1065 * the zone for when the problem goes away.
1066 *
1067 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1068 * zones which have free_pages > pages_high, but once a zone is found to have
1069 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1070 * of the number of free pages in the lower zones.  This interoperates with
1071 * the page allocator fallback scheme to ensure that aging of pages is balanced
1072 * across the zones.
1073 */
1074static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1075{
1076	int all_zones_ok;
1077	int priority;
1078	int i;
1079	unsigned long total_scanned;
1080	unsigned long nr_reclaimed;
1081	struct reclaim_state *reclaim_state = current->reclaim_state;
1082	struct scan_control sc = {
1083		.gfp_mask = GFP_KERNEL,
1084		.may_swap = 1,
1085		.swap_cluster_max = SWAP_CLUSTER_MAX,
1086		.swappiness = vm_swappiness,
1087	};
1088
1089loop_again:
1090	total_scanned = 0;
1091	nr_reclaimed = 0;
1092	sc.may_writepage = !laptop_mode;
1093	count_vm_event(PAGEOUTRUN);
1094
1095	for (i = 0; i < pgdat->nr_zones; i++) {
1096		struct zone *zone = pgdat->node_zones + i;
1097
1098		zone->temp_priority = DEF_PRIORITY;
1099	}
1100
1101	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1102		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1103		unsigned long lru_pages = 0;
1104
1105		/* The swap token gets in the way of swapout... */
1106		if (!priority)
1107			disable_swap_token();
1108
1109		all_zones_ok = 1;
1110
1111		/*
1112		 * Scan in the highmem->dma direction for the highest
1113		 * zone which needs scanning
1114		 */
1115		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1116			struct zone *zone = pgdat->node_zones + i;
1117
1118			if (!populated_zone(zone))
1119				continue;
1120
1121			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1122				continue;
1123
1124			if (!zone_watermark_ok(zone, order, zone->pages_high,
1125					       0, 0)) {
1126				end_zone = i;
1127				goto scan;
1128			}
1129		}
1130		goto out;
1131scan:
1132		for (i = 0; i <= end_zone; i++) {
1133			struct zone *zone = pgdat->node_zones + i;
1134
1135			lru_pages += zone->nr_active + zone->nr_inactive;
1136		}
1137
1138		/*
1139		 * Now scan the zone in the dma->highmem direction, stopping
1140		 * at the last zone which needs scanning.
1141		 *
1142		 * We do this because the page allocator works in the opposite
1143		 * direction.  This prevents the page allocator from allocating
1144		 * pages behind kswapd's direction of progress, which would
1145		 * cause too much scanning of the lower zones.
1146		 */
1147		for (i = 0; i <= end_zone; i++) {
1148			struct zone *zone = pgdat->node_zones + i;
1149			int nr_slab;
1150
1151			if (!populated_zone(zone))
1152				continue;
1153
1154			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1155				continue;
1156
1157			if (!zone_watermark_ok(zone, order, zone->pages_high,
1158					       end_zone, 0))
1159				all_zones_ok = 0;
1160			zone->temp_priority = priority;
1161			if (zone->prev_priority > priority)
1162				zone->prev_priority = priority;
1163			sc.nr_scanned = 0;
1164			nr_reclaimed += shrink_zone(priority, zone, &sc);
1165			reclaim_state->reclaimed_slab = 0;
1166			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1167						lru_pages);
1168			nr_reclaimed += reclaim_state->reclaimed_slab;
1169			total_scanned += sc.nr_scanned;
1170			if (zone->all_unreclaimable)
1171				continue;
1172			if (nr_slab == 0 && zone->pages_scanned >=
1173				    (zone->nr_active + zone->nr_inactive) * 6)
1174				zone->all_unreclaimable = 1;
1175			/*
1176			 * If we've done a decent amount of scanning and
1177			 * the reclaim ratio is low, start doing writepage
1178			 * even in laptop mode
1179			 */
1180			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1181			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1182				sc.may_writepage = 1;
1183		}
1184		if (all_zones_ok)
1185			break;		/* kswapd: all done */
1186		/*
1187		 * OK, kswapd is getting into trouble.  Take a nap, then take
1188		 * another pass across the zones.
1189		 */
1190		if (total_scanned && priority < DEF_PRIORITY - 2)
1191			blk_congestion_wait(WRITE, HZ/10);
1192
1193		/*
1194		 * We do this so kswapd doesn't build up large priorities for
1195		 * example when it is freeing in parallel with allocators. It
1196		 * matches the direct reclaim path behaviour in terms of impact
1197		 * on zone->*_priority.
1198		 */
1199		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1200			break;
1201	}
1202out:
1203	for (i = 0; i < pgdat->nr_zones; i++) {
1204		struct zone *zone = pgdat->node_zones + i;
1205
1206		zone->prev_priority = zone->temp_priority;
1207	}
1208	if (!all_zones_ok) {
1209		cond_resched();
1210		goto loop_again;
1211	}
1212
1213	return nr_reclaimed;
1214}
1215
1216/*
1217 * The background pageout daemon, started as a kernel thread
1218 * from the init process.
1219 *
1220 * This basically trickles out pages so that we have _some_
1221 * free memory available even if there is no other activity
1222 * that frees anything up. This is needed for things like routing
1223 * etc, where we otherwise might have all activity going on in
1224 * asynchronous contexts that cannot page things out.
1225 *
1226 * If there are applications that are active memory-allocators
1227 * (most normal use), this basically shouldn't matter.
1228 */
1229static int kswapd(void *p)
1230{
1231	unsigned long order;
1232	pg_data_t *pgdat = (pg_data_t*)p;
1233	struct task_struct *tsk = current;
1234	DEFINE_WAIT(wait);
1235	struct reclaim_state reclaim_state = {
1236		.reclaimed_slab = 0,
1237	};
1238	cpumask_t cpumask;
1239
1240	cpumask = node_to_cpumask(pgdat->node_id);
1241	if (!cpus_empty(cpumask))
1242		set_cpus_allowed(tsk, cpumask);
1243	current->reclaim_state = &reclaim_state;
1244
1245	/*
1246	 * Tell the memory management that we're a "memory allocator",
1247	 * and that if we need more memory we should get access to it
1248	 * regardless (see "__alloc_pages()"). "kswapd" should
1249	 * never get caught in the normal page freeing logic.
1250	 *
1251	 * (Kswapd normally doesn't need memory anyway, but sometimes
1252	 * you need a small amount of memory in order to be able to
1253	 * page out something else, and this flag essentially protects
1254	 * us from recursively trying to free more memory as we're
1255	 * trying to free the first piece of memory in the first place).
1256	 */
1257	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1258
1259	order = 0;
1260	for ( ; ; ) {
1261		unsigned long new_order;
1262
1263		try_to_freeze();
1264
1265		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1266		new_order = pgdat->kswapd_max_order;
1267		pgdat->kswapd_max_order = 0;
1268		if (order < new_order) {
1269			/*
1270			 * Don't sleep if someone wants a larger 'order'
1271			 * allocation
1272			 */
1273			order = new_order;
1274		} else {
1275			schedule();
1276			order = pgdat->kswapd_max_order;
1277		}
1278		finish_wait(&pgdat->kswapd_wait, &wait);
1279
1280		balance_pgdat(pgdat, order);
1281	}
1282	return 0;
1283}
1284
1285/*
1286 * A zone is low on free memory, so wake its kswapd task to service it.
1287 */
1288void wakeup_kswapd(struct zone *zone, int order)
1289{
1290	pg_data_t *pgdat;
1291
1292	if (!populated_zone(zone))
1293		return;
1294
1295	pgdat = zone->zone_pgdat;
1296	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1297		return;
1298	if (pgdat->kswapd_max_order < order)
1299		pgdat->kswapd_max_order = order;
1300	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1301		return;
1302	if (!waitqueue_active(&pgdat->kswapd_wait))
1303		return;
1304	wake_up_interruptible(&pgdat->kswapd_wait);
1305}
1306
1307#ifdef CONFIG_PM
1308/*
1309 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1310 * from LRU lists system-wide, for given pass and priority, and returns the
1311 * number of reclaimed pages
1312 *
1313 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1314 */
1315static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1316				      int prio, struct scan_control *sc)
1317{
1318	struct zone *zone;
1319	unsigned long nr_to_scan, ret = 0;
1320
1321	for_each_zone(zone) {
1322
1323		if (!populated_zone(zone))
1324			continue;
1325
1326		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1327			continue;
1328
1329		/* For pass = 0 we don't shrink the active list */
1330		if (pass > 0) {
1331			zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1332			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1333				zone->nr_scan_active = 0;
1334				nr_to_scan = min(nr_pages, zone->nr_active);
1335				shrink_active_list(nr_to_scan, zone, sc);
1336			}
1337		}
1338
1339		zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1340		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1341			zone->nr_scan_inactive = 0;
1342			nr_to_scan = min(nr_pages, zone->nr_inactive);
1343			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1344			if (ret >= nr_pages)
1345				return ret;
1346		}
1347	}
1348
1349	return ret;
1350}
1351
1352/*
1353 * Try to free `nr_pages' of memory, system-wide, and return the number of
1354 * freed pages.
1355 *
1356 * Rather than trying to age LRUs the aim is to preserve the overall
1357 * LRU order by reclaiming preferentially
1358 * inactive > active > active referenced > active mapped
1359 */
1360unsigned long shrink_all_memory(unsigned long nr_pages)
1361{
1362	unsigned long lru_pages, nr_slab;
1363	unsigned long ret = 0;
1364	int pass;
1365	struct reclaim_state reclaim_state;
1366	struct zone *zone;
1367	struct scan_control sc = {
1368		.gfp_mask = GFP_KERNEL,
1369		.may_swap = 0,
1370		.swap_cluster_max = nr_pages,
1371		.may_writepage = 1,
1372		.swappiness = vm_swappiness,
1373	};
1374
1375	current->reclaim_state = &reclaim_state;
1376
1377	lru_pages = 0;
1378	for_each_zone(zone)
1379		lru_pages += zone->nr_active + zone->nr_inactive;
1380
1381	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1382	/* If slab caches are huge, it's better to hit them first */
1383	while (nr_slab >= lru_pages) {
1384		reclaim_state.reclaimed_slab = 0;
1385		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1386		if (!reclaim_state.reclaimed_slab)
1387			break;
1388
1389		ret += reclaim_state.reclaimed_slab;
1390		if (ret >= nr_pages)
1391			goto out;
1392
1393		nr_slab -= reclaim_state.reclaimed_slab;
1394	}
1395
1396	/*
1397	 * We try to shrink LRUs in 5 passes:
1398	 * 0 = Reclaim from inactive_list only
1399	 * 1 = Reclaim from active list but don't reclaim mapped
1400	 * 2 = 2nd pass of type 1
1401	 * 3 = Reclaim mapped (normal reclaim)
1402	 * 4 = 2nd pass of type 3
1403	 */
1404	for (pass = 0; pass < 5; pass++) {
1405		int prio;
1406
1407		/* Needed for shrinking slab caches later on */
1408		if (!lru_pages)
1409			for_each_zone(zone) {
1410				lru_pages += zone->nr_active;
1411				lru_pages += zone->nr_inactive;
1412			}
1413
1414		/* Force reclaiming mapped pages in the passes #3 and #4 */
1415		if (pass > 2) {
1416			sc.may_swap = 1;
1417			sc.swappiness = 100;
1418		}
1419
1420		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1421			unsigned long nr_to_scan = nr_pages - ret;
1422
1423			sc.nr_scanned = 0;
1424			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1425			if (ret >= nr_pages)
1426				goto out;
1427
1428			reclaim_state.reclaimed_slab = 0;
1429			shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1430			ret += reclaim_state.reclaimed_slab;
1431			if (ret >= nr_pages)
1432				goto out;
1433
1434			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1435				blk_congestion_wait(WRITE, HZ / 10);
1436		}
1437
1438		lru_pages = 0;
1439	}
1440
1441	/*
1442	 * If ret = 0, we could not shrink LRUs, but there may be something
1443	 * in slab caches
1444	 */
1445	if (!ret)
1446		do {
1447			reclaim_state.reclaimed_slab = 0;
1448			shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1449			ret += reclaim_state.reclaimed_slab;
1450		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1451
1452out:
1453	current->reclaim_state = NULL;
1454
1455	return ret;
1456}
1457#endif
1458
1459#ifdef CONFIG_HOTPLUG_CPU
1460/* It's optimal to keep kswapds on the same CPUs as their memory, but
1461   not required for correctness.  So if the last cpu in a node goes
1462   away, we get changed to run anywhere: as the first one comes back,
1463   restore their cpu bindings. */
1464static int __devinit cpu_callback(struct notifier_block *nfb,
1465				  unsigned long action, void *hcpu)
1466{
1467	pg_data_t *pgdat;
1468	cpumask_t mask;
1469
1470	if (action == CPU_ONLINE) {
1471		for_each_online_pgdat(pgdat) {
1472			mask = node_to_cpumask(pgdat->node_id);
1473			if (any_online_cpu(mask) != NR_CPUS)
1474				/* One of our CPUs online: restore mask */
1475				set_cpus_allowed(pgdat->kswapd, mask);
1476		}
1477	}
1478	return NOTIFY_OK;
1479}
1480#endif /* CONFIG_HOTPLUG_CPU */
1481
1482/*
1483 * This kswapd start function will be called by init and node-hot-add.
1484 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1485 */
1486int kswapd_run(int nid)
1487{
1488	pg_data_t *pgdat = NODE_DATA(nid);
1489	int ret = 0;
1490
1491	if (pgdat->kswapd)
1492		return 0;
1493
1494	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1495	if (IS_ERR(pgdat->kswapd)) {
1496		/* failure at boot is fatal */
1497		BUG_ON(system_state == SYSTEM_BOOTING);
1498		printk("Failed to start kswapd on node %d\n",nid);
1499		ret = -1;
1500	}
1501	return ret;
1502}
1503
1504static int __init kswapd_init(void)
1505{
1506	int nid;
1507
1508	swap_setup();
1509	for_each_online_node(nid)
1510 		kswapd_run(nid);
1511	hotcpu_notifier(cpu_callback, 0);
1512	return 0;
1513}
1514
1515module_init(kswapd_init)
1516
1517#ifdef CONFIG_NUMA
1518/*
1519 * Zone reclaim mode
1520 *
1521 * If non-zero call zone_reclaim when the number of free pages falls below
1522 * the watermarks.
1523 */
1524int zone_reclaim_mode __read_mostly;
1525
1526#define RECLAIM_OFF 0
1527#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1528#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1529#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1530
1531/*
1532 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1533 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1534 * a zone.
1535 */
1536#define ZONE_RECLAIM_PRIORITY 4
1537
1538/*
1539 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1540 * occur.
1541 */
1542int sysctl_min_unmapped_ratio = 1;
1543
1544/*
1545 * If the number of slab pages in a zone grows beyond this percentage then
1546 * slab reclaim needs to occur.
1547 */
1548int sysctl_min_slab_ratio = 5;
1549
1550/*
1551 * Try to free up some pages from this zone through reclaim.
1552 */
1553static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1554{
1555	/* Minimum pages needed in order to stay on node */
1556	const unsigned long nr_pages = 1 << order;
1557	struct task_struct *p = current;
1558	struct reclaim_state reclaim_state;
1559	int priority;
1560	unsigned long nr_reclaimed = 0;
1561	struct scan_control sc = {
1562		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1563		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1564		.swap_cluster_max = max_t(unsigned long, nr_pages,
1565					SWAP_CLUSTER_MAX),
1566		.gfp_mask = gfp_mask,
1567		.swappiness = vm_swappiness,
1568	};
1569	unsigned long slab_reclaimable;
1570
1571	disable_swap_token();
1572	cond_resched();
1573	/*
1574	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1575	 * and we also need to be able to write out pages for RECLAIM_WRITE
1576	 * and RECLAIM_SWAP.
1577	 */
1578	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1579	reclaim_state.reclaimed_slab = 0;
1580	p->reclaim_state = &reclaim_state;
1581
1582	if (zone_page_state(zone, NR_FILE_PAGES) -
1583		zone_page_state(zone, NR_FILE_MAPPED) >
1584		zone->min_unmapped_pages) {
1585		/*
1586		 * Free memory by calling shrink zone with increasing
1587		 * priorities until we have enough memory freed.
1588		 */
1589		priority = ZONE_RECLAIM_PRIORITY;
1590		do {
1591			nr_reclaimed += shrink_zone(priority, zone, &sc);
1592			priority--;
1593		} while (priority >= 0 && nr_reclaimed < nr_pages);
1594	}
1595
1596	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1597	if (slab_reclaimable > zone->min_slab_pages) {
1598		/*
1599		 * shrink_slab() does not currently allow us to determine how
1600		 * many pages were freed in this zone. So we take the current
1601		 * number of slab pages and shake the slab until it is reduced
1602		 * by the same nr_pages that we used for reclaiming unmapped
1603		 * pages.
1604		 *
1605		 * Note that shrink_slab will free memory on all zones and may
1606		 * take a long time.
1607		 */
1608		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1609			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1610				slab_reclaimable - nr_pages)
1611			;
1612
1613		/*
1614		 * Update nr_reclaimed by the number of slab pages we
1615		 * reclaimed from this zone.
1616		 */
1617		nr_reclaimed += slab_reclaimable -
1618			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1619	}
1620
1621	p->reclaim_state = NULL;
1622	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1623	return nr_reclaimed >= nr_pages;
1624}
1625
1626int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1627{
1628	cpumask_t mask;
1629	int node_id;
1630
1631	/*
1632	 * Zone reclaim reclaims unmapped file backed pages and
1633	 * slab pages if we are over the defined limits.
1634	 *
1635	 * A small portion of unmapped file backed pages is needed for
1636	 * file I/O otherwise pages read by file I/O will be immediately
1637	 * thrown out if the zone is overallocated. So we do not reclaim
1638	 * if less than a specified percentage of the zone is used by
1639	 * unmapped file backed pages.
1640	 */
1641	if (zone_page_state(zone, NR_FILE_PAGES) -
1642	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1643	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1644			<= zone->min_slab_pages)
1645		return 0;
1646
1647	/*
1648	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1649	 * not have reclaimable pages and if we should not delay the allocation
1650	 * then do not scan.
1651	 */
1652	if (!(gfp_mask & __GFP_WAIT) ||
1653		zone->all_unreclaimable ||
1654		atomic_read(&zone->reclaim_in_progress) > 0 ||
1655		(current->flags & PF_MEMALLOC))
1656			return 0;
1657
1658	/*
1659	 * Only run zone reclaim on the local zone or on zones that do not
1660	 * have associated processors. This will favor the local processor
1661	 * over remote processors and spread off node memory allocations
1662	 * as wide as possible.
1663	 */
1664	node_id = zone->zone_pgdat->node_id;
1665	mask = node_to_cpumask(node_id);
1666	if (!cpus_empty(mask) && node_id != numa_node_id())
1667		return 0;
1668	return __zone_reclaim(zone, gfp_mask, order);
1669}
1670#endif
1671