vmscan.c revision 889976dbcb1218119fdd950fb7819084e37d7d37
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int swappiness;
99
100	int order;
101
102	/*
103	 * Intend to reclaim enough continuous memory rather than reclaim
104	 * enough amount of memory. i.e, mode for high order allocation.
105	 */
106	reclaim_mode_t reclaim_mode;
107
108	/* Which cgroup do we reclaim from */
109	struct mem_cgroup *mem_cgroup;
110
111	/*
112	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113	 * are scanned.
114	 */
115	nodemask_t	*nodemask;
116};
117
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field)			\
122	do {								\
123		if ((_page)->lru.prev != _base) {			\
124			struct page *prev;				\
125									\
126			prev = lru_to_page(&(_page->lru));		\
127			prefetch(&prev->_field);			\
128		}							\
129	} while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field)			\
136	do {								\
137		if ((_page)->lru.prev != _base) {			\
138			struct page *prev;				\
139									\
140			prev = lru_to_page(&(_page->lru));		\
141			prefetchw(&prev->_field);			\
142		}							\
143	} while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100.  Higher means more swappy.
150 */
151int vm_swappiness = 60;
152long vm_total_pages;	/* The total number of pages which the VM controls */
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159#else
160#define scanning_global_lru(sc)	(1)
161#endif
162
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164						  struct scan_control *sc)
165{
166	if (!scanning_global_lru(sc))
167		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169	return &zone->reclaim_stat;
170}
171
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173				struct scan_control *sc, enum lru_list lru)
174{
175	if (!scanning_global_lru(sc))
176		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
177
178	return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
182/*
183 * Add a shrinker callback to be called from the vm
184 */
185void register_shrinker(struct shrinker *shrinker)
186{
187	shrinker->nr = 0;
188	down_write(&shrinker_rwsem);
189	list_add_tail(&shrinker->list, &shrinker_list);
190	up_write(&shrinker_rwsem);
191}
192EXPORT_SYMBOL(register_shrinker);
193
194/*
195 * Remove one
196 */
197void unregister_shrinker(struct shrinker *shrinker)
198{
199	down_write(&shrinker_rwsem);
200	list_del(&shrinker->list);
201	up_write(&shrinker_rwsem);
202}
203EXPORT_SYMBOL(unregister_shrinker);
204
205static inline int do_shrinker_shrink(struct shrinker *shrinker,
206				     struct shrink_control *sc,
207				     unsigned long nr_to_scan)
208{
209	sc->nr_to_scan = nr_to_scan;
210	return (*shrinker->shrink)(shrinker, sc);
211}
212
213#define SHRINK_BATCH 128
214/*
215 * Call the shrink functions to age shrinkable caches
216 *
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object.  With this in mind we age equal
219 * percentages of the lru and ageable caches.  This should balance the seeks
220 * generated by these structures.
221 *
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
224 *
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 *
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt.  It is used for balancing
229 * slab reclaim versus page reclaim.
230 *
231 * Returns the number of slab objects which we shrunk.
232 */
233unsigned long shrink_slab(struct shrink_control *shrink,
234			  unsigned long nr_pages_scanned,
235			  unsigned long lru_pages)
236{
237	struct shrinker *shrinker;
238	unsigned long ret = 0;
239
240	if (nr_pages_scanned == 0)
241		nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243	if (!down_read_trylock(&shrinker_rwsem)) {
244		/* Assume we'll be able to shrink next time */
245		ret = 1;
246		goto out;
247	}
248
249	list_for_each_entry(shrinker, &shrinker_list, list) {
250		unsigned long long delta;
251		unsigned long total_scan;
252		unsigned long max_pass;
253
254		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
255		delta = (4 * nr_pages_scanned) / shrinker->seeks;
256		delta *= max_pass;
257		do_div(delta, lru_pages + 1);
258		shrinker->nr += delta;
259		if (shrinker->nr < 0) {
260			printk(KERN_ERR "shrink_slab: %pF negative objects to "
261			       "delete nr=%ld\n",
262			       shrinker->shrink, shrinker->nr);
263			shrinker->nr = max_pass;
264		}
265
266		/*
267		 * Avoid risking looping forever due to too large nr value:
268		 * never try to free more than twice the estimate number of
269		 * freeable entries.
270		 */
271		if (shrinker->nr > max_pass * 2)
272			shrinker->nr = max_pass * 2;
273
274		total_scan = shrinker->nr;
275		shrinker->nr = 0;
276
277		while (total_scan >= SHRINK_BATCH) {
278			long this_scan = SHRINK_BATCH;
279			int shrink_ret;
280			int nr_before;
281
282			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
283			shrink_ret = do_shrinker_shrink(shrinker, shrink,
284							this_scan);
285			if (shrink_ret == -1)
286				break;
287			if (shrink_ret < nr_before)
288				ret += nr_before - shrink_ret;
289			count_vm_events(SLABS_SCANNED, this_scan);
290			total_scan -= this_scan;
291
292			cond_resched();
293		}
294
295		shrinker->nr += total_scan;
296	}
297	up_read(&shrinker_rwsem);
298out:
299	cond_resched();
300	return ret;
301}
302
303static void set_reclaim_mode(int priority, struct scan_control *sc,
304				   bool sync)
305{
306	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
307
308	/*
309	 * Initially assume we are entering either lumpy reclaim or
310	 * reclaim/compaction.Depending on the order, we will either set the
311	 * sync mode or just reclaim order-0 pages later.
312	 */
313	if (COMPACTION_BUILD)
314		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
315	else
316		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
317
318	/*
319	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
320	 * restricting when its set to either costly allocations or when
321	 * under memory pressure
322	 */
323	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
324		sc->reclaim_mode |= syncmode;
325	else if (sc->order && priority < DEF_PRIORITY - 2)
326		sc->reclaim_mode |= syncmode;
327	else
328		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
329}
330
331static void reset_reclaim_mode(struct scan_control *sc)
332{
333	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
334}
335
336static inline int is_page_cache_freeable(struct page *page)
337{
338	/*
339	 * A freeable page cache page is referenced only by the caller
340	 * that isolated the page, the page cache radix tree and
341	 * optional buffer heads at page->private.
342	 */
343	return page_count(page) - page_has_private(page) == 2;
344}
345
346static int may_write_to_queue(struct backing_dev_info *bdi,
347			      struct scan_control *sc)
348{
349	if (current->flags & PF_SWAPWRITE)
350		return 1;
351	if (!bdi_write_congested(bdi))
352		return 1;
353	if (bdi == current->backing_dev_info)
354		return 1;
355
356	/* lumpy reclaim for hugepage often need a lot of write */
357	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
358		return 1;
359	return 0;
360}
361
362/*
363 * We detected a synchronous write error writing a page out.  Probably
364 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
365 * fsync(), msync() or close().
366 *
367 * The tricky part is that after writepage we cannot touch the mapping: nothing
368 * prevents it from being freed up.  But we have a ref on the page and once
369 * that page is locked, the mapping is pinned.
370 *
371 * We're allowed to run sleeping lock_page() here because we know the caller has
372 * __GFP_FS.
373 */
374static void handle_write_error(struct address_space *mapping,
375				struct page *page, int error)
376{
377	lock_page(page);
378	if (page_mapping(page) == mapping)
379		mapping_set_error(mapping, error);
380	unlock_page(page);
381}
382
383/* possible outcome of pageout() */
384typedef enum {
385	/* failed to write page out, page is locked */
386	PAGE_KEEP,
387	/* move page to the active list, page is locked */
388	PAGE_ACTIVATE,
389	/* page has been sent to the disk successfully, page is unlocked */
390	PAGE_SUCCESS,
391	/* page is clean and locked */
392	PAGE_CLEAN,
393} pageout_t;
394
395/*
396 * pageout is called by shrink_page_list() for each dirty page.
397 * Calls ->writepage().
398 */
399static pageout_t pageout(struct page *page, struct address_space *mapping,
400			 struct scan_control *sc)
401{
402	/*
403	 * If the page is dirty, only perform writeback if that write
404	 * will be non-blocking.  To prevent this allocation from being
405	 * stalled by pagecache activity.  But note that there may be
406	 * stalls if we need to run get_block().  We could test
407	 * PagePrivate for that.
408	 *
409	 * If this process is currently in __generic_file_aio_write() against
410	 * this page's queue, we can perform writeback even if that
411	 * will block.
412	 *
413	 * If the page is swapcache, write it back even if that would
414	 * block, for some throttling. This happens by accident, because
415	 * swap_backing_dev_info is bust: it doesn't reflect the
416	 * congestion state of the swapdevs.  Easy to fix, if needed.
417	 */
418	if (!is_page_cache_freeable(page))
419		return PAGE_KEEP;
420	if (!mapping) {
421		/*
422		 * Some data journaling orphaned pages can have
423		 * page->mapping == NULL while being dirty with clean buffers.
424		 */
425		if (page_has_private(page)) {
426			if (try_to_free_buffers(page)) {
427				ClearPageDirty(page);
428				printk("%s: orphaned page\n", __func__);
429				return PAGE_CLEAN;
430			}
431		}
432		return PAGE_KEEP;
433	}
434	if (mapping->a_ops->writepage == NULL)
435		return PAGE_ACTIVATE;
436	if (!may_write_to_queue(mapping->backing_dev_info, sc))
437		return PAGE_KEEP;
438
439	if (clear_page_dirty_for_io(page)) {
440		int res;
441		struct writeback_control wbc = {
442			.sync_mode = WB_SYNC_NONE,
443			.nr_to_write = SWAP_CLUSTER_MAX,
444			.range_start = 0,
445			.range_end = LLONG_MAX,
446			.for_reclaim = 1,
447		};
448
449		SetPageReclaim(page);
450		res = mapping->a_ops->writepage(page, &wbc);
451		if (res < 0)
452			handle_write_error(mapping, page, res);
453		if (res == AOP_WRITEPAGE_ACTIVATE) {
454			ClearPageReclaim(page);
455			return PAGE_ACTIVATE;
456		}
457
458		/*
459		 * Wait on writeback if requested to. This happens when
460		 * direct reclaiming a large contiguous area and the
461		 * first attempt to free a range of pages fails.
462		 */
463		if (PageWriteback(page) &&
464		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
465			wait_on_page_writeback(page);
466
467		if (!PageWriteback(page)) {
468			/* synchronous write or broken a_ops? */
469			ClearPageReclaim(page);
470		}
471		trace_mm_vmscan_writepage(page,
472			trace_reclaim_flags(page, sc->reclaim_mode));
473		inc_zone_page_state(page, NR_VMSCAN_WRITE);
474		return PAGE_SUCCESS;
475	}
476
477	return PAGE_CLEAN;
478}
479
480/*
481 * Same as remove_mapping, but if the page is removed from the mapping, it
482 * gets returned with a refcount of 0.
483 */
484static int __remove_mapping(struct address_space *mapping, struct page *page)
485{
486	BUG_ON(!PageLocked(page));
487	BUG_ON(mapping != page_mapping(page));
488
489	spin_lock_irq(&mapping->tree_lock);
490	/*
491	 * The non racy check for a busy page.
492	 *
493	 * Must be careful with the order of the tests. When someone has
494	 * a ref to the page, it may be possible that they dirty it then
495	 * drop the reference. So if PageDirty is tested before page_count
496	 * here, then the following race may occur:
497	 *
498	 * get_user_pages(&page);
499	 * [user mapping goes away]
500	 * write_to(page);
501	 *				!PageDirty(page)    [good]
502	 * SetPageDirty(page);
503	 * put_page(page);
504	 *				!page_count(page)   [good, discard it]
505	 *
506	 * [oops, our write_to data is lost]
507	 *
508	 * Reversing the order of the tests ensures such a situation cannot
509	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510	 * load is not satisfied before that of page->_count.
511	 *
512	 * Note that if SetPageDirty is always performed via set_page_dirty,
513	 * and thus under tree_lock, then this ordering is not required.
514	 */
515	if (!page_freeze_refs(page, 2))
516		goto cannot_free;
517	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518	if (unlikely(PageDirty(page))) {
519		page_unfreeze_refs(page, 2);
520		goto cannot_free;
521	}
522
523	if (PageSwapCache(page)) {
524		swp_entry_t swap = { .val = page_private(page) };
525		__delete_from_swap_cache(page);
526		spin_unlock_irq(&mapping->tree_lock);
527		swapcache_free(swap, page);
528	} else {
529		void (*freepage)(struct page *);
530
531		freepage = mapping->a_ops->freepage;
532
533		__delete_from_page_cache(page);
534		spin_unlock_irq(&mapping->tree_lock);
535		mem_cgroup_uncharge_cache_page(page);
536
537		if (freepage != NULL)
538			freepage(page);
539	}
540
541	return 1;
542
543cannot_free:
544	spin_unlock_irq(&mapping->tree_lock);
545	return 0;
546}
547
548/*
549 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
550 * someone else has a ref on the page, abort and return 0.  If it was
551 * successfully detached, return 1.  Assumes the caller has a single ref on
552 * this page.
553 */
554int remove_mapping(struct address_space *mapping, struct page *page)
555{
556	if (__remove_mapping(mapping, page)) {
557		/*
558		 * Unfreezing the refcount with 1 rather than 2 effectively
559		 * drops the pagecache ref for us without requiring another
560		 * atomic operation.
561		 */
562		page_unfreeze_refs(page, 1);
563		return 1;
564	}
565	return 0;
566}
567
568/**
569 * putback_lru_page - put previously isolated page onto appropriate LRU list
570 * @page: page to be put back to appropriate lru list
571 *
572 * Add previously isolated @page to appropriate LRU list.
573 * Page may still be unevictable for other reasons.
574 *
575 * lru_lock must not be held, interrupts must be enabled.
576 */
577void putback_lru_page(struct page *page)
578{
579	int lru;
580	int active = !!TestClearPageActive(page);
581	int was_unevictable = PageUnevictable(page);
582
583	VM_BUG_ON(PageLRU(page));
584
585redo:
586	ClearPageUnevictable(page);
587
588	if (page_evictable(page, NULL)) {
589		/*
590		 * For evictable pages, we can use the cache.
591		 * In event of a race, worst case is we end up with an
592		 * unevictable page on [in]active list.
593		 * We know how to handle that.
594		 */
595		lru = active + page_lru_base_type(page);
596		lru_cache_add_lru(page, lru);
597	} else {
598		/*
599		 * Put unevictable pages directly on zone's unevictable
600		 * list.
601		 */
602		lru = LRU_UNEVICTABLE;
603		add_page_to_unevictable_list(page);
604		/*
605		 * When racing with an mlock clearing (page is
606		 * unlocked), make sure that if the other thread does
607		 * not observe our setting of PG_lru and fails
608		 * isolation, we see PG_mlocked cleared below and move
609		 * the page back to the evictable list.
610		 *
611		 * The other side is TestClearPageMlocked().
612		 */
613		smp_mb();
614	}
615
616	/*
617	 * page's status can change while we move it among lru. If an evictable
618	 * page is on unevictable list, it never be freed. To avoid that,
619	 * check after we added it to the list, again.
620	 */
621	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
622		if (!isolate_lru_page(page)) {
623			put_page(page);
624			goto redo;
625		}
626		/* This means someone else dropped this page from LRU
627		 * So, it will be freed or putback to LRU again. There is
628		 * nothing to do here.
629		 */
630	}
631
632	if (was_unevictable && lru != LRU_UNEVICTABLE)
633		count_vm_event(UNEVICTABLE_PGRESCUED);
634	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
635		count_vm_event(UNEVICTABLE_PGCULLED);
636
637	put_page(page);		/* drop ref from isolate */
638}
639
640enum page_references {
641	PAGEREF_RECLAIM,
642	PAGEREF_RECLAIM_CLEAN,
643	PAGEREF_KEEP,
644	PAGEREF_ACTIVATE,
645};
646
647static enum page_references page_check_references(struct page *page,
648						  struct scan_control *sc)
649{
650	int referenced_ptes, referenced_page;
651	unsigned long vm_flags;
652
653	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
654	referenced_page = TestClearPageReferenced(page);
655
656	/* Lumpy reclaim - ignore references */
657	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
658		return PAGEREF_RECLAIM;
659
660	/*
661	 * Mlock lost the isolation race with us.  Let try_to_unmap()
662	 * move the page to the unevictable list.
663	 */
664	if (vm_flags & VM_LOCKED)
665		return PAGEREF_RECLAIM;
666
667	if (referenced_ptes) {
668		if (PageAnon(page))
669			return PAGEREF_ACTIVATE;
670		/*
671		 * All mapped pages start out with page table
672		 * references from the instantiating fault, so we need
673		 * to look twice if a mapped file page is used more
674		 * than once.
675		 *
676		 * Mark it and spare it for another trip around the
677		 * inactive list.  Another page table reference will
678		 * lead to its activation.
679		 *
680		 * Note: the mark is set for activated pages as well
681		 * so that recently deactivated but used pages are
682		 * quickly recovered.
683		 */
684		SetPageReferenced(page);
685
686		if (referenced_page)
687			return PAGEREF_ACTIVATE;
688
689		return PAGEREF_KEEP;
690	}
691
692	/* Reclaim if clean, defer dirty pages to writeback */
693	if (referenced_page && !PageSwapBacked(page))
694		return PAGEREF_RECLAIM_CLEAN;
695
696	return PAGEREF_RECLAIM;
697}
698
699static noinline_for_stack void free_page_list(struct list_head *free_pages)
700{
701	struct pagevec freed_pvec;
702	struct page *page, *tmp;
703
704	pagevec_init(&freed_pvec, 1);
705
706	list_for_each_entry_safe(page, tmp, free_pages, lru) {
707		list_del(&page->lru);
708		if (!pagevec_add(&freed_pvec, page)) {
709			__pagevec_free(&freed_pvec);
710			pagevec_reinit(&freed_pvec);
711		}
712	}
713
714	pagevec_free(&freed_pvec);
715}
716
717/*
718 * shrink_page_list() returns the number of reclaimed pages
719 */
720static unsigned long shrink_page_list(struct list_head *page_list,
721				      struct zone *zone,
722				      struct scan_control *sc)
723{
724	LIST_HEAD(ret_pages);
725	LIST_HEAD(free_pages);
726	int pgactivate = 0;
727	unsigned long nr_dirty = 0;
728	unsigned long nr_congested = 0;
729	unsigned long nr_reclaimed = 0;
730
731	cond_resched();
732
733	while (!list_empty(page_list)) {
734		enum page_references references;
735		struct address_space *mapping;
736		struct page *page;
737		int may_enter_fs;
738
739		cond_resched();
740
741		page = lru_to_page(page_list);
742		list_del(&page->lru);
743
744		if (!trylock_page(page))
745			goto keep;
746
747		VM_BUG_ON(PageActive(page));
748		VM_BUG_ON(page_zone(page) != zone);
749
750		sc->nr_scanned++;
751
752		if (unlikely(!page_evictable(page, NULL)))
753			goto cull_mlocked;
754
755		if (!sc->may_unmap && page_mapped(page))
756			goto keep_locked;
757
758		/* Double the slab pressure for mapped and swapcache pages */
759		if (page_mapped(page) || PageSwapCache(page))
760			sc->nr_scanned++;
761
762		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
763			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
764
765		if (PageWriteback(page)) {
766			/*
767			 * Synchronous reclaim is performed in two passes,
768			 * first an asynchronous pass over the list to
769			 * start parallel writeback, and a second synchronous
770			 * pass to wait for the IO to complete.  Wait here
771			 * for any page for which writeback has already
772			 * started.
773			 */
774			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
775			    may_enter_fs)
776				wait_on_page_writeback(page);
777			else {
778				unlock_page(page);
779				goto keep_lumpy;
780			}
781		}
782
783		references = page_check_references(page, sc);
784		switch (references) {
785		case PAGEREF_ACTIVATE:
786			goto activate_locked;
787		case PAGEREF_KEEP:
788			goto keep_locked;
789		case PAGEREF_RECLAIM:
790		case PAGEREF_RECLAIM_CLEAN:
791			; /* try to reclaim the page below */
792		}
793
794		/*
795		 * Anonymous process memory has backing store?
796		 * Try to allocate it some swap space here.
797		 */
798		if (PageAnon(page) && !PageSwapCache(page)) {
799			if (!(sc->gfp_mask & __GFP_IO))
800				goto keep_locked;
801			if (!add_to_swap(page))
802				goto activate_locked;
803			may_enter_fs = 1;
804		}
805
806		mapping = page_mapping(page);
807
808		/*
809		 * The page is mapped into the page tables of one or more
810		 * processes. Try to unmap it here.
811		 */
812		if (page_mapped(page) && mapping) {
813			switch (try_to_unmap(page, TTU_UNMAP)) {
814			case SWAP_FAIL:
815				goto activate_locked;
816			case SWAP_AGAIN:
817				goto keep_locked;
818			case SWAP_MLOCK:
819				goto cull_mlocked;
820			case SWAP_SUCCESS:
821				; /* try to free the page below */
822			}
823		}
824
825		if (PageDirty(page)) {
826			nr_dirty++;
827
828			if (references == PAGEREF_RECLAIM_CLEAN)
829				goto keep_locked;
830			if (!may_enter_fs)
831				goto keep_locked;
832			if (!sc->may_writepage)
833				goto keep_locked;
834
835			/* Page is dirty, try to write it out here */
836			switch (pageout(page, mapping, sc)) {
837			case PAGE_KEEP:
838				nr_congested++;
839				goto keep_locked;
840			case PAGE_ACTIVATE:
841				goto activate_locked;
842			case PAGE_SUCCESS:
843				if (PageWriteback(page))
844					goto keep_lumpy;
845				if (PageDirty(page))
846					goto keep;
847
848				/*
849				 * A synchronous write - probably a ramdisk.  Go
850				 * ahead and try to reclaim the page.
851				 */
852				if (!trylock_page(page))
853					goto keep;
854				if (PageDirty(page) || PageWriteback(page))
855					goto keep_locked;
856				mapping = page_mapping(page);
857			case PAGE_CLEAN:
858				; /* try to free the page below */
859			}
860		}
861
862		/*
863		 * If the page has buffers, try to free the buffer mappings
864		 * associated with this page. If we succeed we try to free
865		 * the page as well.
866		 *
867		 * We do this even if the page is PageDirty().
868		 * try_to_release_page() does not perform I/O, but it is
869		 * possible for a page to have PageDirty set, but it is actually
870		 * clean (all its buffers are clean).  This happens if the
871		 * buffers were written out directly, with submit_bh(). ext3
872		 * will do this, as well as the blockdev mapping.
873		 * try_to_release_page() will discover that cleanness and will
874		 * drop the buffers and mark the page clean - it can be freed.
875		 *
876		 * Rarely, pages can have buffers and no ->mapping.  These are
877		 * the pages which were not successfully invalidated in
878		 * truncate_complete_page().  We try to drop those buffers here
879		 * and if that worked, and the page is no longer mapped into
880		 * process address space (page_count == 1) it can be freed.
881		 * Otherwise, leave the page on the LRU so it is swappable.
882		 */
883		if (page_has_private(page)) {
884			if (!try_to_release_page(page, sc->gfp_mask))
885				goto activate_locked;
886			if (!mapping && page_count(page) == 1) {
887				unlock_page(page);
888				if (put_page_testzero(page))
889					goto free_it;
890				else {
891					/*
892					 * rare race with speculative reference.
893					 * the speculative reference will free
894					 * this page shortly, so we may
895					 * increment nr_reclaimed here (and
896					 * leave it off the LRU).
897					 */
898					nr_reclaimed++;
899					continue;
900				}
901			}
902		}
903
904		if (!mapping || !__remove_mapping(mapping, page))
905			goto keep_locked;
906
907		/*
908		 * At this point, we have no other references and there is
909		 * no way to pick any more up (removed from LRU, removed
910		 * from pagecache). Can use non-atomic bitops now (and
911		 * we obviously don't have to worry about waking up a process
912		 * waiting on the page lock, because there are no references.
913		 */
914		__clear_page_locked(page);
915free_it:
916		nr_reclaimed++;
917
918		/*
919		 * Is there need to periodically free_page_list? It would
920		 * appear not as the counts should be low
921		 */
922		list_add(&page->lru, &free_pages);
923		continue;
924
925cull_mlocked:
926		if (PageSwapCache(page))
927			try_to_free_swap(page);
928		unlock_page(page);
929		putback_lru_page(page);
930		reset_reclaim_mode(sc);
931		continue;
932
933activate_locked:
934		/* Not a candidate for swapping, so reclaim swap space. */
935		if (PageSwapCache(page) && vm_swap_full())
936			try_to_free_swap(page);
937		VM_BUG_ON(PageActive(page));
938		SetPageActive(page);
939		pgactivate++;
940keep_locked:
941		unlock_page(page);
942keep:
943		reset_reclaim_mode(sc);
944keep_lumpy:
945		list_add(&page->lru, &ret_pages);
946		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947	}
948
949	/*
950	 * Tag a zone as congested if all the dirty pages encountered were
951	 * backed by a congested BDI. In this case, reclaimers should just
952	 * back off and wait for congestion to clear because further reclaim
953	 * will encounter the same problem
954	 */
955	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
956		zone_set_flag(zone, ZONE_CONGESTED);
957
958	free_page_list(&free_pages);
959
960	list_splice(&ret_pages, page_list);
961	count_vm_events(PGACTIVATE, pgactivate);
962	return nr_reclaimed;
963}
964
965/*
966 * Attempt to remove the specified page from its LRU.  Only take this page
967 * if it is of the appropriate PageActive status.  Pages which are being
968 * freed elsewhere are also ignored.
969 *
970 * page:	page to consider
971 * mode:	one of the LRU isolation modes defined above
972 *
973 * returns 0 on success, -ve errno on failure.
974 */
975int __isolate_lru_page(struct page *page, int mode, int file)
976{
977	int ret = -EINVAL;
978
979	/* Only take pages on the LRU. */
980	if (!PageLRU(page))
981		return ret;
982
983	/*
984	 * When checking the active state, we need to be sure we are
985	 * dealing with comparible boolean values.  Take the logical not
986	 * of each.
987	 */
988	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
989		return ret;
990
991	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
992		return ret;
993
994	/*
995	 * When this function is being called for lumpy reclaim, we
996	 * initially look into all LRU pages, active, inactive and
997	 * unevictable; only give shrink_page_list evictable pages.
998	 */
999	if (PageUnevictable(page))
1000		return ret;
1001
1002	ret = -EBUSY;
1003
1004	if (likely(get_page_unless_zero(page))) {
1005		/*
1006		 * Be careful not to clear PageLRU until after we're
1007		 * sure the page is not being freed elsewhere -- the
1008		 * page release code relies on it.
1009		 */
1010		ClearPageLRU(page);
1011		ret = 0;
1012	}
1013
1014	return ret;
1015}
1016
1017/*
1018 * zone->lru_lock is heavily contended.  Some of the functions that
1019 * shrink the lists perform better by taking out a batch of pages
1020 * and working on them outside the LRU lock.
1021 *
1022 * For pagecache intensive workloads, this function is the hottest
1023 * spot in the kernel (apart from copy_*_user functions).
1024 *
1025 * Appropriate locks must be held before calling this function.
1026 *
1027 * @nr_to_scan:	The number of pages to look through on the list.
1028 * @src:	The LRU list to pull pages off.
1029 * @dst:	The temp list to put pages on to.
1030 * @scanned:	The number of pages that were scanned.
1031 * @order:	The caller's attempted allocation order
1032 * @mode:	One of the LRU isolation modes
1033 * @file:	True [1] if isolating file [!anon] pages
1034 *
1035 * returns how many pages were moved onto *@dst.
1036 */
1037static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1038		struct list_head *src, struct list_head *dst,
1039		unsigned long *scanned, int order, int mode, int file)
1040{
1041	unsigned long nr_taken = 0;
1042	unsigned long nr_lumpy_taken = 0;
1043	unsigned long nr_lumpy_dirty = 0;
1044	unsigned long nr_lumpy_failed = 0;
1045	unsigned long scan;
1046
1047	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1048		struct page *page;
1049		unsigned long pfn;
1050		unsigned long end_pfn;
1051		unsigned long page_pfn;
1052		int zone_id;
1053
1054		page = lru_to_page(src);
1055		prefetchw_prev_lru_page(page, src, flags);
1056
1057		VM_BUG_ON(!PageLRU(page));
1058
1059		switch (__isolate_lru_page(page, mode, file)) {
1060		case 0:
1061			list_move(&page->lru, dst);
1062			mem_cgroup_del_lru(page);
1063			nr_taken += hpage_nr_pages(page);
1064			break;
1065
1066		case -EBUSY:
1067			/* else it is being freed elsewhere */
1068			list_move(&page->lru, src);
1069			mem_cgroup_rotate_lru_list(page, page_lru(page));
1070			continue;
1071
1072		default:
1073			BUG();
1074		}
1075
1076		if (!order)
1077			continue;
1078
1079		/*
1080		 * Attempt to take all pages in the order aligned region
1081		 * surrounding the tag page.  Only take those pages of
1082		 * the same active state as that tag page.  We may safely
1083		 * round the target page pfn down to the requested order
1084		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1085		 * where that page is in a different zone we will detect
1086		 * it from its zone id and abort this block scan.
1087		 */
1088		zone_id = page_zone_id(page);
1089		page_pfn = page_to_pfn(page);
1090		pfn = page_pfn & ~((1 << order) - 1);
1091		end_pfn = pfn + (1 << order);
1092		for (; pfn < end_pfn; pfn++) {
1093			struct page *cursor_page;
1094
1095			/* The target page is in the block, ignore it. */
1096			if (unlikely(pfn == page_pfn))
1097				continue;
1098
1099			/* Avoid holes within the zone. */
1100			if (unlikely(!pfn_valid_within(pfn)))
1101				break;
1102
1103			cursor_page = pfn_to_page(pfn);
1104
1105			/* Check that we have not crossed a zone boundary. */
1106			if (unlikely(page_zone_id(cursor_page) != zone_id))
1107				break;
1108
1109			/*
1110			 * If we don't have enough swap space, reclaiming of
1111			 * anon page which don't already have a swap slot is
1112			 * pointless.
1113			 */
1114			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1115			    !PageSwapCache(cursor_page))
1116				break;
1117
1118			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1119				list_move(&cursor_page->lru, dst);
1120				mem_cgroup_del_lru(cursor_page);
1121				nr_taken += hpage_nr_pages(page);
1122				nr_lumpy_taken++;
1123				if (PageDirty(cursor_page))
1124					nr_lumpy_dirty++;
1125				scan++;
1126			} else {
1127				/* the page is freed already. */
1128				if (!page_count(cursor_page))
1129					continue;
1130				break;
1131			}
1132		}
1133
1134		/* If we break out of the loop above, lumpy reclaim failed */
1135		if (pfn < end_pfn)
1136			nr_lumpy_failed++;
1137	}
1138
1139	*scanned = scan;
1140
1141	trace_mm_vmscan_lru_isolate(order,
1142			nr_to_scan, scan,
1143			nr_taken,
1144			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1145			mode);
1146	return nr_taken;
1147}
1148
1149static unsigned long isolate_pages_global(unsigned long nr,
1150					struct list_head *dst,
1151					unsigned long *scanned, int order,
1152					int mode, struct zone *z,
1153					int active, int file)
1154{
1155	int lru = LRU_BASE;
1156	if (active)
1157		lru += LRU_ACTIVE;
1158	if (file)
1159		lru += LRU_FILE;
1160	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1161								mode, file);
1162}
1163
1164/*
1165 * clear_active_flags() is a helper for shrink_active_list(), clearing
1166 * any active bits from the pages in the list.
1167 */
1168static unsigned long clear_active_flags(struct list_head *page_list,
1169					unsigned int *count)
1170{
1171	int nr_active = 0;
1172	int lru;
1173	struct page *page;
1174
1175	list_for_each_entry(page, page_list, lru) {
1176		int numpages = hpage_nr_pages(page);
1177		lru = page_lru_base_type(page);
1178		if (PageActive(page)) {
1179			lru += LRU_ACTIVE;
1180			ClearPageActive(page);
1181			nr_active += numpages;
1182		}
1183		if (count)
1184			count[lru] += numpages;
1185	}
1186
1187	return nr_active;
1188}
1189
1190/**
1191 * isolate_lru_page - tries to isolate a page from its LRU list
1192 * @page: page to isolate from its LRU list
1193 *
1194 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1195 * vmstat statistic corresponding to whatever LRU list the page was on.
1196 *
1197 * Returns 0 if the page was removed from an LRU list.
1198 * Returns -EBUSY if the page was not on an LRU list.
1199 *
1200 * The returned page will have PageLRU() cleared.  If it was found on
1201 * the active list, it will have PageActive set.  If it was found on
1202 * the unevictable list, it will have the PageUnevictable bit set. That flag
1203 * may need to be cleared by the caller before letting the page go.
1204 *
1205 * The vmstat statistic corresponding to the list on which the page was
1206 * found will be decremented.
1207 *
1208 * Restrictions:
1209 * (1) Must be called with an elevated refcount on the page. This is a
1210 *     fundamentnal difference from isolate_lru_pages (which is called
1211 *     without a stable reference).
1212 * (2) the lru_lock must not be held.
1213 * (3) interrupts must be enabled.
1214 */
1215int isolate_lru_page(struct page *page)
1216{
1217	int ret = -EBUSY;
1218
1219	VM_BUG_ON(!page_count(page));
1220
1221	if (PageLRU(page)) {
1222		struct zone *zone = page_zone(page);
1223
1224		spin_lock_irq(&zone->lru_lock);
1225		if (PageLRU(page)) {
1226			int lru = page_lru(page);
1227			ret = 0;
1228			get_page(page);
1229			ClearPageLRU(page);
1230
1231			del_page_from_lru_list(zone, page, lru);
1232		}
1233		spin_unlock_irq(&zone->lru_lock);
1234	}
1235	return ret;
1236}
1237
1238/*
1239 * Are there way too many processes in the direct reclaim path already?
1240 */
1241static int too_many_isolated(struct zone *zone, int file,
1242		struct scan_control *sc)
1243{
1244	unsigned long inactive, isolated;
1245
1246	if (current_is_kswapd())
1247		return 0;
1248
1249	if (!scanning_global_lru(sc))
1250		return 0;
1251
1252	if (file) {
1253		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1254		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1255	} else {
1256		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1257		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1258	}
1259
1260	return isolated > inactive;
1261}
1262
1263/*
1264 * TODO: Try merging with migrations version of putback_lru_pages
1265 */
1266static noinline_for_stack void
1267putback_lru_pages(struct zone *zone, struct scan_control *sc,
1268				unsigned long nr_anon, unsigned long nr_file,
1269				struct list_head *page_list)
1270{
1271	struct page *page;
1272	struct pagevec pvec;
1273	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1274
1275	pagevec_init(&pvec, 1);
1276
1277	/*
1278	 * Put back any unfreeable pages.
1279	 */
1280	spin_lock(&zone->lru_lock);
1281	while (!list_empty(page_list)) {
1282		int lru;
1283		page = lru_to_page(page_list);
1284		VM_BUG_ON(PageLRU(page));
1285		list_del(&page->lru);
1286		if (unlikely(!page_evictable(page, NULL))) {
1287			spin_unlock_irq(&zone->lru_lock);
1288			putback_lru_page(page);
1289			spin_lock_irq(&zone->lru_lock);
1290			continue;
1291		}
1292		SetPageLRU(page);
1293		lru = page_lru(page);
1294		add_page_to_lru_list(zone, page, lru);
1295		if (is_active_lru(lru)) {
1296			int file = is_file_lru(lru);
1297			int numpages = hpage_nr_pages(page);
1298			reclaim_stat->recent_rotated[file] += numpages;
1299		}
1300		if (!pagevec_add(&pvec, page)) {
1301			spin_unlock_irq(&zone->lru_lock);
1302			__pagevec_release(&pvec);
1303			spin_lock_irq(&zone->lru_lock);
1304		}
1305	}
1306	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1307	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1308
1309	spin_unlock_irq(&zone->lru_lock);
1310	pagevec_release(&pvec);
1311}
1312
1313static noinline_for_stack void update_isolated_counts(struct zone *zone,
1314					struct scan_control *sc,
1315					unsigned long *nr_anon,
1316					unsigned long *nr_file,
1317					struct list_head *isolated_list)
1318{
1319	unsigned long nr_active;
1320	unsigned int count[NR_LRU_LISTS] = { 0, };
1321	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1322
1323	nr_active = clear_active_flags(isolated_list, count);
1324	__count_vm_events(PGDEACTIVATE, nr_active);
1325
1326	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1327			      -count[LRU_ACTIVE_FILE]);
1328	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1329			      -count[LRU_INACTIVE_FILE]);
1330	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1331			      -count[LRU_ACTIVE_ANON]);
1332	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1333			      -count[LRU_INACTIVE_ANON]);
1334
1335	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1336	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1337	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1338	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1339
1340	reclaim_stat->recent_scanned[0] += *nr_anon;
1341	reclaim_stat->recent_scanned[1] += *nr_file;
1342}
1343
1344/*
1345 * Returns true if the caller should wait to clean dirty/writeback pages.
1346 *
1347 * If we are direct reclaiming for contiguous pages and we do not reclaim
1348 * everything in the list, try again and wait for writeback IO to complete.
1349 * This will stall high-order allocations noticeably. Only do that when really
1350 * need to free the pages under high memory pressure.
1351 */
1352static inline bool should_reclaim_stall(unsigned long nr_taken,
1353					unsigned long nr_freed,
1354					int priority,
1355					struct scan_control *sc)
1356{
1357	int lumpy_stall_priority;
1358
1359	/* kswapd should not stall on sync IO */
1360	if (current_is_kswapd())
1361		return false;
1362
1363	/* Only stall on lumpy reclaim */
1364	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1365		return false;
1366
1367	/* If we have relaimed everything on the isolated list, no stall */
1368	if (nr_freed == nr_taken)
1369		return false;
1370
1371	/*
1372	 * For high-order allocations, there are two stall thresholds.
1373	 * High-cost allocations stall immediately where as lower
1374	 * order allocations such as stacks require the scanning
1375	 * priority to be much higher before stalling.
1376	 */
1377	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1378		lumpy_stall_priority = DEF_PRIORITY;
1379	else
1380		lumpy_stall_priority = DEF_PRIORITY / 3;
1381
1382	return priority <= lumpy_stall_priority;
1383}
1384
1385/*
1386 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1387 * of reclaimed pages
1388 */
1389static noinline_for_stack unsigned long
1390shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1391			struct scan_control *sc, int priority, int file)
1392{
1393	LIST_HEAD(page_list);
1394	unsigned long nr_scanned;
1395	unsigned long nr_reclaimed = 0;
1396	unsigned long nr_taken;
1397	unsigned long nr_anon;
1398	unsigned long nr_file;
1399
1400	while (unlikely(too_many_isolated(zone, file, sc))) {
1401		congestion_wait(BLK_RW_ASYNC, HZ/10);
1402
1403		/* We are about to die and free our memory. Return now. */
1404		if (fatal_signal_pending(current))
1405			return SWAP_CLUSTER_MAX;
1406	}
1407
1408	set_reclaim_mode(priority, sc, false);
1409	lru_add_drain();
1410	spin_lock_irq(&zone->lru_lock);
1411
1412	if (scanning_global_lru(sc)) {
1413		nr_taken = isolate_pages_global(nr_to_scan,
1414			&page_list, &nr_scanned, sc->order,
1415			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1416					ISOLATE_BOTH : ISOLATE_INACTIVE,
1417			zone, 0, file);
1418		zone->pages_scanned += nr_scanned;
1419		if (current_is_kswapd())
1420			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1421					       nr_scanned);
1422		else
1423			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1424					       nr_scanned);
1425	} else {
1426		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1427			&page_list, &nr_scanned, sc->order,
1428			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1429					ISOLATE_BOTH : ISOLATE_INACTIVE,
1430			zone, sc->mem_cgroup,
1431			0, file);
1432		/*
1433		 * mem_cgroup_isolate_pages() keeps track of
1434		 * scanned pages on its own.
1435		 */
1436	}
1437
1438	if (nr_taken == 0) {
1439		spin_unlock_irq(&zone->lru_lock);
1440		return 0;
1441	}
1442
1443	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1444
1445	spin_unlock_irq(&zone->lru_lock);
1446
1447	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1448
1449	/* Check if we should syncronously wait for writeback */
1450	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1451		set_reclaim_mode(priority, sc, true);
1452		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1453	}
1454
1455	local_irq_disable();
1456	if (current_is_kswapd())
1457		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1458	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1459
1460	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1461
1462	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1463		zone_idx(zone),
1464		nr_scanned, nr_reclaimed,
1465		priority,
1466		trace_shrink_flags(file, sc->reclaim_mode));
1467	return nr_reclaimed;
1468}
1469
1470/*
1471 * This moves pages from the active list to the inactive list.
1472 *
1473 * We move them the other way if the page is referenced by one or more
1474 * processes, from rmap.
1475 *
1476 * If the pages are mostly unmapped, the processing is fast and it is
1477 * appropriate to hold zone->lru_lock across the whole operation.  But if
1478 * the pages are mapped, the processing is slow (page_referenced()) so we
1479 * should drop zone->lru_lock around each page.  It's impossible to balance
1480 * this, so instead we remove the pages from the LRU while processing them.
1481 * It is safe to rely on PG_active against the non-LRU pages in here because
1482 * nobody will play with that bit on a non-LRU page.
1483 *
1484 * The downside is that we have to touch page->_count against each page.
1485 * But we had to alter page->flags anyway.
1486 */
1487
1488static void move_active_pages_to_lru(struct zone *zone,
1489				     struct list_head *list,
1490				     enum lru_list lru)
1491{
1492	unsigned long pgmoved = 0;
1493	struct pagevec pvec;
1494	struct page *page;
1495
1496	pagevec_init(&pvec, 1);
1497
1498	while (!list_empty(list)) {
1499		page = lru_to_page(list);
1500
1501		VM_BUG_ON(PageLRU(page));
1502		SetPageLRU(page);
1503
1504		list_move(&page->lru, &zone->lru[lru].list);
1505		mem_cgroup_add_lru_list(page, lru);
1506		pgmoved += hpage_nr_pages(page);
1507
1508		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1509			spin_unlock_irq(&zone->lru_lock);
1510			if (buffer_heads_over_limit)
1511				pagevec_strip(&pvec);
1512			__pagevec_release(&pvec);
1513			spin_lock_irq(&zone->lru_lock);
1514		}
1515	}
1516	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1517	if (!is_active_lru(lru))
1518		__count_vm_events(PGDEACTIVATE, pgmoved);
1519}
1520
1521static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1522			struct scan_control *sc, int priority, int file)
1523{
1524	unsigned long nr_taken;
1525	unsigned long pgscanned;
1526	unsigned long vm_flags;
1527	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1528	LIST_HEAD(l_active);
1529	LIST_HEAD(l_inactive);
1530	struct page *page;
1531	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1532	unsigned long nr_rotated = 0;
1533
1534	lru_add_drain();
1535	spin_lock_irq(&zone->lru_lock);
1536	if (scanning_global_lru(sc)) {
1537		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1538						&pgscanned, sc->order,
1539						ISOLATE_ACTIVE, zone,
1540						1, file);
1541		zone->pages_scanned += pgscanned;
1542	} else {
1543		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1544						&pgscanned, sc->order,
1545						ISOLATE_ACTIVE, zone,
1546						sc->mem_cgroup, 1, file);
1547		/*
1548		 * mem_cgroup_isolate_pages() keeps track of
1549		 * scanned pages on its own.
1550		 */
1551	}
1552
1553	reclaim_stat->recent_scanned[file] += nr_taken;
1554
1555	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1556	if (file)
1557		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1558	else
1559		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1560	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1561	spin_unlock_irq(&zone->lru_lock);
1562
1563	while (!list_empty(&l_hold)) {
1564		cond_resched();
1565		page = lru_to_page(&l_hold);
1566		list_del(&page->lru);
1567
1568		if (unlikely(!page_evictable(page, NULL))) {
1569			putback_lru_page(page);
1570			continue;
1571		}
1572
1573		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1574			nr_rotated += hpage_nr_pages(page);
1575			/*
1576			 * Identify referenced, file-backed active pages and
1577			 * give them one more trip around the active list. So
1578			 * that executable code get better chances to stay in
1579			 * memory under moderate memory pressure.  Anon pages
1580			 * are not likely to be evicted by use-once streaming
1581			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1582			 * so we ignore them here.
1583			 */
1584			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1585				list_add(&page->lru, &l_active);
1586				continue;
1587			}
1588		}
1589
1590		ClearPageActive(page);	/* we are de-activating */
1591		list_add(&page->lru, &l_inactive);
1592	}
1593
1594	/*
1595	 * Move pages back to the lru list.
1596	 */
1597	spin_lock_irq(&zone->lru_lock);
1598	/*
1599	 * Count referenced pages from currently used mappings as rotated,
1600	 * even though only some of them are actually re-activated.  This
1601	 * helps balance scan pressure between file and anonymous pages in
1602	 * get_scan_ratio.
1603	 */
1604	reclaim_stat->recent_rotated[file] += nr_rotated;
1605
1606	move_active_pages_to_lru(zone, &l_active,
1607						LRU_ACTIVE + file * LRU_FILE);
1608	move_active_pages_to_lru(zone, &l_inactive,
1609						LRU_BASE   + file * LRU_FILE);
1610	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1611	spin_unlock_irq(&zone->lru_lock);
1612}
1613
1614#ifdef CONFIG_SWAP
1615static int inactive_anon_is_low_global(struct zone *zone)
1616{
1617	unsigned long active, inactive;
1618
1619	active = zone_page_state(zone, NR_ACTIVE_ANON);
1620	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1621
1622	if (inactive * zone->inactive_ratio < active)
1623		return 1;
1624
1625	return 0;
1626}
1627
1628/**
1629 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1630 * @zone: zone to check
1631 * @sc:   scan control of this context
1632 *
1633 * Returns true if the zone does not have enough inactive anon pages,
1634 * meaning some active anon pages need to be deactivated.
1635 */
1636static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1637{
1638	int low;
1639
1640	/*
1641	 * If we don't have swap space, anonymous page deactivation
1642	 * is pointless.
1643	 */
1644	if (!total_swap_pages)
1645		return 0;
1646
1647	if (scanning_global_lru(sc))
1648		low = inactive_anon_is_low_global(zone);
1649	else
1650		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1651	return low;
1652}
1653#else
1654static inline int inactive_anon_is_low(struct zone *zone,
1655					struct scan_control *sc)
1656{
1657	return 0;
1658}
1659#endif
1660
1661static int inactive_file_is_low_global(struct zone *zone)
1662{
1663	unsigned long active, inactive;
1664
1665	active = zone_page_state(zone, NR_ACTIVE_FILE);
1666	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1667
1668	return (active > inactive);
1669}
1670
1671/**
1672 * inactive_file_is_low - check if file pages need to be deactivated
1673 * @zone: zone to check
1674 * @sc:   scan control of this context
1675 *
1676 * When the system is doing streaming IO, memory pressure here
1677 * ensures that active file pages get deactivated, until more
1678 * than half of the file pages are on the inactive list.
1679 *
1680 * Once we get to that situation, protect the system's working
1681 * set from being evicted by disabling active file page aging.
1682 *
1683 * This uses a different ratio than the anonymous pages, because
1684 * the page cache uses a use-once replacement algorithm.
1685 */
1686static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1687{
1688	int low;
1689
1690	if (scanning_global_lru(sc))
1691		low = inactive_file_is_low_global(zone);
1692	else
1693		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1694	return low;
1695}
1696
1697static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1698				int file)
1699{
1700	if (file)
1701		return inactive_file_is_low(zone, sc);
1702	else
1703		return inactive_anon_is_low(zone, sc);
1704}
1705
1706static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1707	struct zone *zone, struct scan_control *sc, int priority)
1708{
1709	int file = is_file_lru(lru);
1710
1711	if (is_active_lru(lru)) {
1712		if (inactive_list_is_low(zone, sc, file))
1713		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1714		return 0;
1715	}
1716
1717	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1718}
1719
1720/*
1721 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1722 * until we collected @swap_cluster_max pages to scan.
1723 */
1724static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1725				       unsigned long *nr_saved_scan)
1726{
1727	unsigned long nr;
1728
1729	*nr_saved_scan += nr_to_scan;
1730	nr = *nr_saved_scan;
1731
1732	if (nr >= SWAP_CLUSTER_MAX)
1733		*nr_saved_scan = 0;
1734	else
1735		nr = 0;
1736
1737	return nr;
1738}
1739
1740/*
1741 * Determine how aggressively the anon and file LRU lists should be
1742 * scanned.  The relative value of each set of LRU lists is determined
1743 * by looking at the fraction of the pages scanned we did rotate back
1744 * onto the active list instead of evict.
1745 *
1746 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1747 */
1748static void get_scan_count(struct zone *zone, struct scan_control *sc,
1749					unsigned long *nr, int priority)
1750{
1751	unsigned long anon, file, free;
1752	unsigned long anon_prio, file_prio;
1753	unsigned long ap, fp;
1754	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1755	u64 fraction[2], denominator;
1756	enum lru_list l;
1757	int noswap = 0;
1758
1759	/* If we have no swap space, do not bother scanning anon pages. */
1760	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1761		noswap = 1;
1762		fraction[0] = 0;
1763		fraction[1] = 1;
1764		denominator = 1;
1765		goto out;
1766	}
1767
1768	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1769		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1770	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1771		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1772
1773	if (scanning_global_lru(sc)) {
1774		free  = zone_page_state(zone, NR_FREE_PAGES);
1775		/* If we have very few page cache pages,
1776		   force-scan anon pages. */
1777		if (unlikely(file + free <= high_wmark_pages(zone))) {
1778			fraction[0] = 1;
1779			fraction[1] = 0;
1780			denominator = 1;
1781			goto out;
1782		}
1783	}
1784
1785	/*
1786	 * With swappiness at 100, anonymous and file have the same priority.
1787	 * This scanning priority is essentially the inverse of IO cost.
1788	 */
1789	anon_prio = sc->swappiness;
1790	file_prio = 200 - sc->swappiness;
1791
1792	/*
1793	 * OK, so we have swap space and a fair amount of page cache
1794	 * pages.  We use the recently rotated / recently scanned
1795	 * ratios to determine how valuable each cache is.
1796	 *
1797	 * Because workloads change over time (and to avoid overflow)
1798	 * we keep these statistics as a floating average, which ends
1799	 * up weighing recent references more than old ones.
1800	 *
1801	 * anon in [0], file in [1]
1802	 */
1803	spin_lock_irq(&zone->lru_lock);
1804	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1805		reclaim_stat->recent_scanned[0] /= 2;
1806		reclaim_stat->recent_rotated[0] /= 2;
1807	}
1808
1809	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1810		reclaim_stat->recent_scanned[1] /= 2;
1811		reclaim_stat->recent_rotated[1] /= 2;
1812	}
1813
1814	/*
1815	 * The amount of pressure on anon vs file pages is inversely
1816	 * proportional to the fraction of recently scanned pages on
1817	 * each list that were recently referenced and in active use.
1818	 */
1819	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1820	ap /= reclaim_stat->recent_rotated[0] + 1;
1821
1822	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1823	fp /= reclaim_stat->recent_rotated[1] + 1;
1824	spin_unlock_irq(&zone->lru_lock);
1825
1826	fraction[0] = ap;
1827	fraction[1] = fp;
1828	denominator = ap + fp + 1;
1829out:
1830	for_each_evictable_lru(l) {
1831		int file = is_file_lru(l);
1832		unsigned long scan;
1833
1834		scan = zone_nr_lru_pages(zone, sc, l);
1835		if (priority || noswap) {
1836			scan >>= priority;
1837			scan = div64_u64(scan * fraction[file], denominator);
1838		}
1839		nr[l] = nr_scan_try_batch(scan,
1840					  &reclaim_stat->nr_saved_scan[l]);
1841	}
1842}
1843
1844/*
1845 * Reclaim/compaction depends on a number of pages being freed. To avoid
1846 * disruption to the system, a small number of order-0 pages continue to be
1847 * rotated and reclaimed in the normal fashion. However, by the time we get
1848 * back to the allocator and call try_to_compact_zone(), we ensure that
1849 * there are enough free pages for it to be likely successful
1850 */
1851static inline bool should_continue_reclaim(struct zone *zone,
1852					unsigned long nr_reclaimed,
1853					unsigned long nr_scanned,
1854					struct scan_control *sc)
1855{
1856	unsigned long pages_for_compaction;
1857	unsigned long inactive_lru_pages;
1858
1859	/* If not in reclaim/compaction mode, stop */
1860	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1861		return false;
1862
1863	/* Consider stopping depending on scan and reclaim activity */
1864	if (sc->gfp_mask & __GFP_REPEAT) {
1865		/*
1866		 * For __GFP_REPEAT allocations, stop reclaiming if the
1867		 * full LRU list has been scanned and we are still failing
1868		 * to reclaim pages. This full LRU scan is potentially
1869		 * expensive but a __GFP_REPEAT caller really wants to succeed
1870		 */
1871		if (!nr_reclaimed && !nr_scanned)
1872			return false;
1873	} else {
1874		/*
1875		 * For non-__GFP_REPEAT allocations which can presumably
1876		 * fail without consequence, stop if we failed to reclaim
1877		 * any pages from the last SWAP_CLUSTER_MAX number of
1878		 * pages that were scanned. This will return to the
1879		 * caller faster at the risk reclaim/compaction and
1880		 * the resulting allocation attempt fails
1881		 */
1882		if (!nr_reclaimed)
1883			return false;
1884	}
1885
1886	/*
1887	 * If we have not reclaimed enough pages for compaction and the
1888	 * inactive lists are large enough, continue reclaiming
1889	 */
1890	pages_for_compaction = (2UL << sc->order);
1891	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1892				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1893	if (sc->nr_reclaimed < pages_for_compaction &&
1894			inactive_lru_pages > pages_for_compaction)
1895		return true;
1896
1897	/* If compaction would go ahead or the allocation would succeed, stop */
1898	switch (compaction_suitable(zone, sc->order)) {
1899	case COMPACT_PARTIAL:
1900	case COMPACT_CONTINUE:
1901		return false;
1902	default:
1903		return true;
1904	}
1905}
1906
1907/*
1908 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1909 */
1910static void shrink_zone(int priority, struct zone *zone,
1911				struct scan_control *sc)
1912{
1913	unsigned long nr[NR_LRU_LISTS];
1914	unsigned long nr_to_scan;
1915	enum lru_list l;
1916	unsigned long nr_reclaimed, nr_scanned;
1917	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1918
1919restart:
1920	nr_reclaimed = 0;
1921	nr_scanned = sc->nr_scanned;
1922	get_scan_count(zone, sc, nr, priority);
1923
1924	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1925					nr[LRU_INACTIVE_FILE]) {
1926		for_each_evictable_lru(l) {
1927			if (nr[l]) {
1928				nr_to_scan = min_t(unsigned long,
1929						   nr[l], SWAP_CLUSTER_MAX);
1930				nr[l] -= nr_to_scan;
1931
1932				nr_reclaimed += shrink_list(l, nr_to_scan,
1933							    zone, sc, priority);
1934			}
1935		}
1936		/*
1937		 * On large memory systems, scan >> priority can become
1938		 * really large. This is fine for the starting priority;
1939		 * we want to put equal scanning pressure on each zone.
1940		 * However, if the VM has a harder time of freeing pages,
1941		 * with multiple processes reclaiming pages, the total
1942		 * freeing target can get unreasonably large.
1943		 */
1944		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1945			break;
1946	}
1947	sc->nr_reclaimed += nr_reclaimed;
1948
1949	/*
1950	 * Even if we did not try to evict anon pages at all, we want to
1951	 * rebalance the anon lru active/inactive ratio.
1952	 */
1953	if (inactive_anon_is_low(zone, sc))
1954		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1955
1956	/* reclaim/compaction might need reclaim to continue */
1957	if (should_continue_reclaim(zone, nr_reclaimed,
1958					sc->nr_scanned - nr_scanned, sc))
1959		goto restart;
1960
1961	throttle_vm_writeout(sc->gfp_mask);
1962}
1963
1964/*
1965 * This is the direct reclaim path, for page-allocating processes.  We only
1966 * try to reclaim pages from zones which will satisfy the caller's allocation
1967 * request.
1968 *
1969 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1970 * Because:
1971 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1972 *    allocation or
1973 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1974 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1975 *    zone defense algorithm.
1976 *
1977 * If a zone is deemed to be full of pinned pages then just give it a light
1978 * scan then give up on it.
1979 */
1980static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1981					struct scan_control *sc)
1982{
1983	struct zoneref *z;
1984	struct zone *zone;
1985	unsigned long nr_soft_reclaimed;
1986	unsigned long nr_soft_scanned;
1987	unsigned long total_scanned = 0;
1988
1989	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1990					gfp_zone(sc->gfp_mask), sc->nodemask) {
1991		if (!populated_zone(zone))
1992			continue;
1993		/*
1994		 * Take care memory controller reclaiming has small influence
1995		 * to global LRU.
1996		 */
1997		if (scanning_global_lru(sc)) {
1998			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1999				continue;
2000			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2001				continue;	/* Let kswapd poll it */
2002		}
2003
2004		nr_soft_scanned = 0;
2005		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2006							sc->order, sc->gfp_mask,
2007							&nr_soft_scanned);
2008		sc->nr_reclaimed += nr_soft_reclaimed;
2009		total_scanned += nr_soft_scanned;
2010
2011		shrink_zone(priority, zone, sc);
2012	}
2013
2014	return total_scanned;
2015}
2016
2017static bool zone_reclaimable(struct zone *zone)
2018{
2019	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2020}
2021
2022/* All zones in zonelist are unreclaimable? */
2023static bool all_unreclaimable(struct zonelist *zonelist,
2024		struct scan_control *sc)
2025{
2026	struct zoneref *z;
2027	struct zone *zone;
2028
2029	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2030			gfp_zone(sc->gfp_mask), sc->nodemask) {
2031		if (!populated_zone(zone))
2032			continue;
2033		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2034			continue;
2035		if (!zone->all_unreclaimable)
2036			return false;
2037	}
2038
2039	return true;
2040}
2041
2042/*
2043 * This is the main entry point to direct page reclaim.
2044 *
2045 * If a full scan of the inactive list fails to free enough memory then we
2046 * are "out of memory" and something needs to be killed.
2047 *
2048 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2049 * high - the zone may be full of dirty or under-writeback pages, which this
2050 * caller can't do much about.  We kick the writeback threads and take explicit
2051 * naps in the hope that some of these pages can be written.  But if the
2052 * allocating task holds filesystem locks which prevent writeout this might not
2053 * work, and the allocation attempt will fail.
2054 *
2055 * returns:	0, if no pages reclaimed
2056 * 		else, the number of pages reclaimed
2057 */
2058static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2059					struct scan_control *sc,
2060					struct shrink_control *shrink)
2061{
2062	int priority;
2063	unsigned long total_scanned = 0;
2064	struct reclaim_state *reclaim_state = current->reclaim_state;
2065	struct zoneref *z;
2066	struct zone *zone;
2067	unsigned long writeback_threshold;
2068
2069	get_mems_allowed();
2070	delayacct_freepages_start();
2071
2072	if (scanning_global_lru(sc))
2073		count_vm_event(ALLOCSTALL);
2074
2075	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2076		sc->nr_scanned = 0;
2077		if (!priority)
2078			disable_swap_token();
2079		total_scanned += shrink_zones(priority, zonelist, sc);
2080		/*
2081		 * Don't shrink slabs when reclaiming memory from
2082		 * over limit cgroups
2083		 */
2084		if (scanning_global_lru(sc)) {
2085			unsigned long lru_pages = 0;
2086			for_each_zone_zonelist(zone, z, zonelist,
2087					gfp_zone(sc->gfp_mask)) {
2088				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2089					continue;
2090
2091				lru_pages += zone_reclaimable_pages(zone);
2092			}
2093
2094			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2095			if (reclaim_state) {
2096				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2097				reclaim_state->reclaimed_slab = 0;
2098			}
2099		}
2100		total_scanned += sc->nr_scanned;
2101		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2102			goto out;
2103
2104		/*
2105		 * Try to write back as many pages as we just scanned.  This
2106		 * tends to cause slow streaming writers to write data to the
2107		 * disk smoothly, at the dirtying rate, which is nice.   But
2108		 * that's undesirable in laptop mode, where we *want* lumpy
2109		 * writeout.  So in laptop mode, write out the whole world.
2110		 */
2111		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2112		if (total_scanned > writeback_threshold) {
2113			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2114			sc->may_writepage = 1;
2115		}
2116
2117		/* Take a nap, wait for some writeback to complete */
2118		if (!sc->hibernation_mode && sc->nr_scanned &&
2119		    priority < DEF_PRIORITY - 2) {
2120			struct zone *preferred_zone;
2121
2122			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2123						&cpuset_current_mems_allowed,
2124						&preferred_zone);
2125			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2126		}
2127	}
2128
2129out:
2130	delayacct_freepages_end();
2131	put_mems_allowed();
2132
2133	if (sc->nr_reclaimed)
2134		return sc->nr_reclaimed;
2135
2136	/*
2137	 * As hibernation is going on, kswapd is freezed so that it can't mark
2138	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2139	 * check.
2140	 */
2141	if (oom_killer_disabled)
2142		return 0;
2143
2144	/* top priority shrink_zones still had more to do? don't OOM, then */
2145	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2146		return 1;
2147
2148	return 0;
2149}
2150
2151unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2152				gfp_t gfp_mask, nodemask_t *nodemask)
2153{
2154	unsigned long nr_reclaimed;
2155	struct scan_control sc = {
2156		.gfp_mask = gfp_mask,
2157		.may_writepage = !laptop_mode,
2158		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2159		.may_unmap = 1,
2160		.may_swap = 1,
2161		.swappiness = vm_swappiness,
2162		.order = order,
2163		.mem_cgroup = NULL,
2164		.nodemask = nodemask,
2165	};
2166	struct shrink_control shrink = {
2167		.gfp_mask = sc.gfp_mask,
2168	};
2169
2170	trace_mm_vmscan_direct_reclaim_begin(order,
2171				sc.may_writepage,
2172				gfp_mask);
2173
2174	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2175
2176	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2177
2178	return nr_reclaimed;
2179}
2180
2181#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2182
2183unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2184						gfp_t gfp_mask, bool noswap,
2185						unsigned int swappiness,
2186						struct zone *zone,
2187						unsigned long *nr_scanned)
2188{
2189	struct scan_control sc = {
2190		.nr_scanned = 0,
2191		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2192		.may_writepage = !laptop_mode,
2193		.may_unmap = 1,
2194		.may_swap = !noswap,
2195		.swappiness = swappiness,
2196		.order = 0,
2197		.mem_cgroup = mem,
2198	};
2199
2200	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2201			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2202
2203	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2204						      sc.may_writepage,
2205						      sc.gfp_mask);
2206
2207	/*
2208	 * NOTE: Although we can get the priority field, using it
2209	 * here is not a good idea, since it limits the pages we can scan.
2210	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2211	 * will pick up pages from other mem cgroup's as well. We hack
2212	 * the priority and make it zero.
2213	 */
2214	shrink_zone(0, zone, &sc);
2215
2216	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2217
2218	*nr_scanned = sc.nr_scanned;
2219	return sc.nr_reclaimed;
2220}
2221
2222unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2223					   gfp_t gfp_mask,
2224					   bool noswap,
2225					   unsigned int swappiness)
2226{
2227	struct zonelist *zonelist;
2228	unsigned long nr_reclaimed;
2229	int nid;
2230	struct scan_control sc = {
2231		.may_writepage = !laptop_mode,
2232		.may_unmap = 1,
2233		.may_swap = !noswap,
2234		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2235		.swappiness = swappiness,
2236		.order = 0,
2237		.mem_cgroup = mem_cont,
2238		.nodemask = NULL, /* we don't care the placement */
2239		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2240				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2241	};
2242	struct shrink_control shrink = {
2243		.gfp_mask = sc.gfp_mask,
2244	};
2245
2246	/*
2247	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2248	 * take care of from where we get pages. So the node where we start the
2249	 * scan does not need to be the current node.
2250	 */
2251	nid = mem_cgroup_select_victim_node(mem_cont);
2252
2253	zonelist = NODE_DATA(nid)->node_zonelists;
2254
2255	trace_mm_vmscan_memcg_reclaim_begin(0,
2256					    sc.may_writepage,
2257					    sc.gfp_mask);
2258
2259	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2260
2261	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2262
2263	return nr_reclaimed;
2264}
2265#endif
2266
2267/*
2268 * pgdat_balanced is used when checking if a node is balanced for high-order
2269 * allocations. Only zones that meet watermarks and are in a zone allowed
2270 * by the callers classzone_idx are added to balanced_pages. The total of
2271 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2272 * for the node to be considered balanced. Forcing all zones to be balanced
2273 * for high orders can cause excessive reclaim when there are imbalanced zones.
2274 * The choice of 25% is due to
2275 *   o a 16M DMA zone that is balanced will not balance a zone on any
2276 *     reasonable sized machine
2277 *   o On all other machines, the top zone must be at least a reasonable
2278 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2279 *     would need to be at least 256M for it to be balance a whole node.
2280 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2281 *     to balance a node on its own. These seemed like reasonable ratios.
2282 */
2283static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2284						int classzone_idx)
2285{
2286	unsigned long present_pages = 0;
2287	int i;
2288
2289	for (i = 0; i <= classzone_idx; i++)
2290		present_pages += pgdat->node_zones[i].present_pages;
2291
2292	return balanced_pages > (present_pages >> 2);
2293}
2294
2295/* is kswapd sleeping prematurely? */
2296static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2297					int classzone_idx)
2298{
2299	int i;
2300	unsigned long balanced = 0;
2301	bool all_zones_ok = true;
2302
2303	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2304	if (remaining)
2305		return true;
2306
2307	/* Check the watermark levels */
2308	for (i = 0; i < pgdat->nr_zones; i++) {
2309		struct zone *zone = pgdat->node_zones + i;
2310
2311		if (!populated_zone(zone))
2312			continue;
2313
2314		/*
2315		 * balance_pgdat() skips over all_unreclaimable after
2316		 * DEF_PRIORITY. Effectively, it considers them balanced so
2317		 * they must be considered balanced here as well if kswapd
2318		 * is to sleep
2319		 */
2320		if (zone->all_unreclaimable) {
2321			balanced += zone->present_pages;
2322			continue;
2323		}
2324
2325		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2326							classzone_idx, 0))
2327			all_zones_ok = false;
2328		else
2329			balanced += zone->present_pages;
2330	}
2331
2332	/*
2333	 * For high-order requests, the balanced zones must contain at least
2334	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2335	 * must be balanced
2336	 */
2337	if (order)
2338		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2339	else
2340		return !all_zones_ok;
2341}
2342
2343/*
2344 * For kswapd, balance_pgdat() will work across all this node's zones until
2345 * they are all at high_wmark_pages(zone).
2346 *
2347 * Returns the final order kswapd was reclaiming at
2348 *
2349 * There is special handling here for zones which are full of pinned pages.
2350 * This can happen if the pages are all mlocked, or if they are all used by
2351 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2352 * What we do is to detect the case where all pages in the zone have been
2353 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2354 * dead and from now on, only perform a short scan.  Basically we're polling
2355 * the zone for when the problem goes away.
2356 *
2357 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2358 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2359 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2360 * lower zones regardless of the number of free pages in the lower zones. This
2361 * interoperates with the page allocator fallback scheme to ensure that aging
2362 * of pages is balanced across the zones.
2363 */
2364static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2365							int *classzone_idx)
2366{
2367	int all_zones_ok;
2368	unsigned long balanced;
2369	int priority;
2370	int i;
2371	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2372	unsigned long total_scanned;
2373	struct reclaim_state *reclaim_state = current->reclaim_state;
2374	unsigned long nr_soft_reclaimed;
2375	unsigned long nr_soft_scanned;
2376	struct scan_control sc = {
2377		.gfp_mask = GFP_KERNEL,
2378		.may_unmap = 1,
2379		.may_swap = 1,
2380		/*
2381		 * kswapd doesn't want to be bailed out while reclaim. because
2382		 * we want to put equal scanning pressure on each zone.
2383		 */
2384		.nr_to_reclaim = ULONG_MAX,
2385		.swappiness = vm_swappiness,
2386		.order = order,
2387		.mem_cgroup = NULL,
2388	};
2389	struct shrink_control shrink = {
2390		.gfp_mask = sc.gfp_mask,
2391	};
2392loop_again:
2393	total_scanned = 0;
2394	sc.nr_reclaimed = 0;
2395	sc.may_writepage = !laptop_mode;
2396	count_vm_event(PAGEOUTRUN);
2397
2398	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2399		unsigned long lru_pages = 0;
2400		int has_under_min_watermark_zone = 0;
2401
2402		/* The swap token gets in the way of swapout... */
2403		if (!priority)
2404			disable_swap_token();
2405
2406		all_zones_ok = 1;
2407		balanced = 0;
2408
2409		/*
2410		 * Scan in the highmem->dma direction for the highest
2411		 * zone which needs scanning
2412		 */
2413		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2414			struct zone *zone = pgdat->node_zones + i;
2415
2416			if (!populated_zone(zone))
2417				continue;
2418
2419			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2420				continue;
2421
2422			/*
2423			 * Do some background aging of the anon list, to give
2424			 * pages a chance to be referenced before reclaiming.
2425			 */
2426			if (inactive_anon_is_low(zone, &sc))
2427				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2428							&sc, priority, 0);
2429
2430			if (!zone_watermark_ok_safe(zone, order,
2431					high_wmark_pages(zone), 0, 0)) {
2432				end_zone = i;
2433				*classzone_idx = i;
2434				break;
2435			}
2436		}
2437		if (i < 0)
2438			goto out;
2439
2440		for (i = 0; i <= end_zone; i++) {
2441			struct zone *zone = pgdat->node_zones + i;
2442
2443			lru_pages += zone_reclaimable_pages(zone);
2444		}
2445
2446		/*
2447		 * Now scan the zone in the dma->highmem direction, stopping
2448		 * at the last zone which needs scanning.
2449		 *
2450		 * We do this because the page allocator works in the opposite
2451		 * direction.  This prevents the page allocator from allocating
2452		 * pages behind kswapd's direction of progress, which would
2453		 * cause too much scanning of the lower zones.
2454		 */
2455		for (i = 0; i <= end_zone; i++) {
2456			struct zone *zone = pgdat->node_zones + i;
2457			int nr_slab;
2458			unsigned long balance_gap;
2459
2460			if (!populated_zone(zone))
2461				continue;
2462
2463			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2464				continue;
2465
2466			sc.nr_scanned = 0;
2467
2468			nr_soft_scanned = 0;
2469			/*
2470			 * Call soft limit reclaim before calling shrink_zone.
2471			 */
2472			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2473							order, sc.gfp_mask,
2474							&nr_soft_scanned);
2475			sc.nr_reclaimed += nr_soft_reclaimed;
2476			total_scanned += nr_soft_scanned;
2477
2478			/*
2479			 * We put equal pressure on every zone, unless
2480			 * one zone has way too many pages free
2481			 * already. The "too many pages" is defined
2482			 * as the high wmark plus a "gap" where the
2483			 * gap is either the low watermark or 1%
2484			 * of the zone, whichever is smaller.
2485			 */
2486			balance_gap = min(low_wmark_pages(zone),
2487				(zone->present_pages +
2488					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2489				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2490			if (!zone_watermark_ok_safe(zone, order,
2491					high_wmark_pages(zone) + balance_gap,
2492					end_zone, 0))
2493				shrink_zone(priority, zone, &sc);
2494			reclaim_state->reclaimed_slab = 0;
2495			nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2496			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2497			total_scanned += sc.nr_scanned;
2498
2499			if (zone->all_unreclaimable)
2500				continue;
2501			if (nr_slab == 0 &&
2502			    !zone_reclaimable(zone))
2503				zone->all_unreclaimable = 1;
2504			/*
2505			 * If we've done a decent amount of scanning and
2506			 * the reclaim ratio is low, start doing writepage
2507			 * even in laptop mode
2508			 */
2509			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2510			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2511				sc.may_writepage = 1;
2512
2513			if (!zone_watermark_ok_safe(zone, order,
2514					high_wmark_pages(zone), end_zone, 0)) {
2515				all_zones_ok = 0;
2516				/*
2517				 * We are still under min water mark.  This
2518				 * means that we have a GFP_ATOMIC allocation
2519				 * failure risk. Hurry up!
2520				 */
2521				if (!zone_watermark_ok_safe(zone, order,
2522					    min_wmark_pages(zone), end_zone, 0))
2523					has_under_min_watermark_zone = 1;
2524			} else {
2525				/*
2526				 * If a zone reaches its high watermark,
2527				 * consider it to be no longer congested. It's
2528				 * possible there are dirty pages backed by
2529				 * congested BDIs but as pressure is relieved,
2530				 * spectulatively avoid congestion waits
2531				 */
2532				zone_clear_flag(zone, ZONE_CONGESTED);
2533				if (i <= *classzone_idx)
2534					balanced += zone->present_pages;
2535			}
2536
2537		}
2538		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2539			break;		/* kswapd: all done */
2540		/*
2541		 * OK, kswapd is getting into trouble.  Take a nap, then take
2542		 * another pass across the zones.
2543		 */
2544		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2545			if (has_under_min_watermark_zone)
2546				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2547			else
2548				congestion_wait(BLK_RW_ASYNC, HZ/10);
2549		}
2550
2551		/*
2552		 * We do this so kswapd doesn't build up large priorities for
2553		 * example when it is freeing in parallel with allocators. It
2554		 * matches the direct reclaim path behaviour in terms of impact
2555		 * on zone->*_priority.
2556		 */
2557		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2558			break;
2559	}
2560out:
2561
2562	/*
2563	 * order-0: All zones must meet high watermark for a balanced node
2564	 * high-order: Balanced zones must make up at least 25% of the node
2565	 *             for the node to be balanced
2566	 */
2567	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2568		cond_resched();
2569
2570		try_to_freeze();
2571
2572		/*
2573		 * Fragmentation may mean that the system cannot be
2574		 * rebalanced for high-order allocations in all zones.
2575		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2576		 * it means the zones have been fully scanned and are still
2577		 * not balanced. For high-order allocations, there is
2578		 * little point trying all over again as kswapd may
2579		 * infinite loop.
2580		 *
2581		 * Instead, recheck all watermarks at order-0 as they
2582		 * are the most important. If watermarks are ok, kswapd will go
2583		 * back to sleep. High-order users can still perform direct
2584		 * reclaim if they wish.
2585		 */
2586		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2587			order = sc.order = 0;
2588
2589		goto loop_again;
2590	}
2591
2592	/*
2593	 * If kswapd was reclaiming at a higher order, it has the option of
2594	 * sleeping without all zones being balanced. Before it does, it must
2595	 * ensure that the watermarks for order-0 on *all* zones are met and
2596	 * that the congestion flags are cleared. The congestion flag must
2597	 * be cleared as kswapd is the only mechanism that clears the flag
2598	 * and it is potentially going to sleep here.
2599	 */
2600	if (order) {
2601		for (i = 0; i <= end_zone; i++) {
2602			struct zone *zone = pgdat->node_zones + i;
2603
2604			if (!populated_zone(zone))
2605				continue;
2606
2607			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2608				continue;
2609
2610			/* Confirm the zone is balanced for order-0 */
2611			if (!zone_watermark_ok(zone, 0,
2612					high_wmark_pages(zone), 0, 0)) {
2613				order = sc.order = 0;
2614				goto loop_again;
2615			}
2616
2617			/* If balanced, clear the congested flag */
2618			zone_clear_flag(zone, ZONE_CONGESTED);
2619		}
2620	}
2621
2622	/*
2623	 * Return the order we were reclaiming at so sleeping_prematurely()
2624	 * makes a decision on the order we were last reclaiming at. However,
2625	 * if another caller entered the allocator slow path while kswapd
2626	 * was awake, order will remain at the higher level
2627	 */
2628	*classzone_idx = end_zone;
2629	return order;
2630}
2631
2632static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2633{
2634	long remaining = 0;
2635	DEFINE_WAIT(wait);
2636
2637	if (freezing(current) || kthread_should_stop())
2638		return;
2639
2640	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2641
2642	/* Try to sleep for a short interval */
2643	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2644		remaining = schedule_timeout(HZ/10);
2645		finish_wait(&pgdat->kswapd_wait, &wait);
2646		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2647	}
2648
2649	/*
2650	 * After a short sleep, check if it was a premature sleep. If not, then
2651	 * go fully to sleep until explicitly woken up.
2652	 */
2653	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2654		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2655
2656		/*
2657		 * vmstat counters are not perfectly accurate and the estimated
2658		 * value for counters such as NR_FREE_PAGES can deviate from the
2659		 * true value by nr_online_cpus * threshold. To avoid the zone
2660		 * watermarks being breached while under pressure, we reduce the
2661		 * per-cpu vmstat threshold while kswapd is awake and restore
2662		 * them before going back to sleep.
2663		 */
2664		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2665		schedule();
2666		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2667	} else {
2668		if (remaining)
2669			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2670		else
2671			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2672	}
2673	finish_wait(&pgdat->kswapd_wait, &wait);
2674}
2675
2676/*
2677 * The background pageout daemon, started as a kernel thread
2678 * from the init process.
2679 *
2680 * This basically trickles out pages so that we have _some_
2681 * free memory available even if there is no other activity
2682 * that frees anything up. This is needed for things like routing
2683 * etc, where we otherwise might have all activity going on in
2684 * asynchronous contexts that cannot page things out.
2685 *
2686 * If there are applications that are active memory-allocators
2687 * (most normal use), this basically shouldn't matter.
2688 */
2689static int kswapd(void *p)
2690{
2691	unsigned long order;
2692	int classzone_idx;
2693	pg_data_t *pgdat = (pg_data_t*)p;
2694	struct task_struct *tsk = current;
2695
2696	struct reclaim_state reclaim_state = {
2697		.reclaimed_slab = 0,
2698	};
2699	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2700
2701	lockdep_set_current_reclaim_state(GFP_KERNEL);
2702
2703	if (!cpumask_empty(cpumask))
2704		set_cpus_allowed_ptr(tsk, cpumask);
2705	current->reclaim_state = &reclaim_state;
2706
2707	/*
2708	 * Tell the memory management that we're a "memory allocator",
2709	 * and that if we need more memory we should get access to it
2710	 * regardless (see "__alloc_pages()"). "kswapd" should
2711	 * never get caught in the normal page freeing logic.
2712	 *
2713	 * (Kswapd normally doesn't need memory anyway, but sometimes
2714	 * you need a small amount of memory in order to be able to
2715	 * page out something else, and this flag essentially protects
2716	 * us from recursively trying to free more memory as we're
2717	 * trying to free the first piece of memory in the first place).
2718	 */
2719	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2720	set_freezable();
2721
2722	order = 0;
2723	classzone_idx = MAX_NR_ZONES - 1;
2724	for ( ; ; ) {
2725		unsigned long new_order;
2726		int new_classzone_idx;
2727		int ret;
2728
2729		new_order = pgdat->kswapd_max_order;
2730		new_classzone_idx = pgdat->classzone_idx;
2731		pgdat->kswapd_max_order = 0;
2732		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2733		if (order < new_order || classzone_idx > new_classzone_idx) {
2734			/*
2735			 * Don't sleep if someone wants a larger 'order'
2736			 * allocation or has tigher zone constraints
2737			 */
2738			order = new_order;
2739			classzone_idx = new_classzone_idx;
2740		} else {
2741			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2742			order = pgdat->kswapd_max_order;
2743			classzone_idx = pgdat->classzone_idx;
2744			pgdat->kswapd_max_order = 0;
2745			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2746		}
2747
2748		ret = try_to_freeze();
2749		if (kthread_should_stop())
2750			break;
2751
2752		/*
2753		 * We can speed up thawing tasks if we don't call balance_pgdat
2754		 * after returning from the refrigerator
2755		 */
2756		if (!ret) {
2757			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2758			order = balance_pgdat(pgdat, order, &classzone_idx);
2759		}
2760	}
2761	return 0;
2762}
2763
2764/*
2765 * A zone is low on free memory, so wake its kswapd task to service it.
2766 */
2767void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2768{
2769	pg_data_t *pgdat;
2770
2771	if (!populated_zone(zone))
2772		return;
2773
2774	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2775		return;
2776	pgdat = zone->zone_pgdat;
2777	if (pgdat->kswapd_max_order < order) {
2778		pgdat->kswapd_max_order = order;
2779		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2780	}
2781	if (!waitqueue_active(&pgdat->kswapd_wait))
2782		return;
2783	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2784		return;
2785
2786	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2787	wake_up_interruptible(&pgdat->kswapd_wait);
2788}
2789
2790/*
2791 * The reclaimable count would be mostly accurate.
2792 * The less reclaimable pages may be
2793 * - mlocked pages, which will be moved to unevictable list when encountered
2794 * - mapped pages, which may require several travels to be reclaimed
2795 * - dirty pages, which is not "instantly" reclaimable
2796 */
2797unsigned long global_reclaimable_pages(void)
2798{
2799	int nr;
2800
2801	nr = global_page_state(NR_ACTIVE_FILE) +
2802	     global_page_state(NR_INACTIVE_FILE);
2803
2804	if (nr_swap_pages > 0)
2805		nr += global_page_state(NR_ACTIVE_ANON) +
2806		      global_page_state(NR_INACTIVE_ANON);
2807
2808	return nr;
2809}
2810
2811unsigned long zone_reclaimable_pages(struct zone *zone)
2812{
2813	int nr;
2814
2815	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2816	     zone_page_state(zone, NR_INACTIVE_FILE);
2817
2818	if (nr_swap_pages > 0)
2819		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2820		      zone_page_state(zone, NR_INACTIVE_ANON);
2821
2822	return nr;
2823}
2824
2825#ifdef CONFIG_HIBERNATION
2826/*
2827 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2828 * freed pages.
2829 *
2830 * Rather than trying to age LRUs the aim is to preserve the overall
2831 * LRU order by reclaiming preferentially
2832 * inactive > active > active referenced > active mapped
2833 */
2834unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2835{
2836	struct reclaim_state reclaim_state;
2837	struct scan_control sc = {
2838		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2839		.may_swap = 1,
2840		.may_unmap = 1,
2841		.may_writepage = 1,
2842		.nr_to_reclaim = nr_to_reclaim,
2843		.hibernation_mode = 1,
2844		.swappiness = vm_swappiness,
2845		.order = 0,
2846	};
2847	struct shrink_control shrink = {
2848		.gfp_mask = sc.gfp_mask,
2849	};
2850	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2851	struct task_struct *p = current;
2852	unsigned long nr_reclaimed;
2853
2854	p->flags |= PF_MEMALLOC;
2855	lockdep_set_current_reclaim_state(sc.gfp_mask);
2856	reclaim_state.reclaimed_slab = 0;
2857	p->reclaim_state = &reclaim_state;
2858
2859	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2860
2861	p->reclaim_state = NULL;
2862	lockdep_clear_current_reclaim_state();
2863	p->flags &= ~PF_MEMALLOC;
2864
2865	return nr_reclaimed;
2866}
2867#endif /* CONFIG_HIBERNATION */
2868
2869/* It's optimal to keep kswapds on the same CPUs as their memory, but
2870   not required for correctness.  So if the last cpu in a node goes
2871   away, we get changed to run anywhere: as the first one comes back,
2872   restore their cpu bindings. */
2873static int __devinit cpu_callback(struct notifier_block *nfb,
2874				  unsigned long action, void *hcpu)
2875{
2876	int nid;
2877
2878	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2879		for_each_node_state(nid, N_HIGH_MEMORY) {
2880			pg_data_t *pgdat = NODE_DATA(nid);
2881			const struct cpumask *mask;
2882
2883			mask = cpumask_of_node(pgdat->node_id);
2884
2885			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2886				/* One of our CPUs online: restore mask */
2887				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2888		}
2889	}
2890	return NOTIFY_OK;
2891}
2892
2893/*
2894 * This kswapd start function will be called by init and node-hot-add.
2895 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2896 */
2897int kswapd_run(int nid)
2898{
2899	pg_data_t *pgdat = NODE_DATA(nid);
2900	int ret = 0;
2901
2902	if (pgdat->kswapd)
2903		return 0;
2904
2905	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2906	if (IS_ERR(pgdat->kswapd)) {
2907		/* failure at boot is fatal */
2908		BUG_ON(system_state == SYSTEM_BOOTING);
2909		printk("Failed to start kswapd on node %d\n",nid);
2910		ret = -1;
2911	}
2912	return ret;
2913}
2914
2915/*
2916 * Called by memory hotplug when all memory in a node is offlined.
2917 */
2918void kswapd_stop(int nid)
2919{
2920	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2921
2922	if (kswapd)
2923		kthread_stop(kswapd);
2924}
2925
2926static int __init kswapd_init(void)
2927{
2928	int nid;
2929
2930	swap_setup();
2931	for_each_node_state(nid, N_HIGH_MEMORY)
2932 		kswapd_run(nid);
2933	hotcpu_notifier(cpu_callback, 0);
2934	return 0;
2935}
2936
2937module_init(kswapd_init)
2938
2939#ifdef CONFIG_NUMA
2940/*
2941 * Zone reclaim mode
2942 *
2943 * If non-zero call zone_reclaim when the number of free pages falls below
2944 * the watermarks.
2945 */
2946int zone_reclaim_mode __read_mostly;
2947
2948#define RECLAIM_OFF 0
2949#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2950#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2951#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2952
2953/*
2954 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2955 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2956 * a zone.
2957 */
2958#define ZONE_RECLAIM_PRIORITY 4
2959
2960/*
2961 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2962 * occur.
2963 */
2964int sysctl_min_unmapped_ratio = 1;
2965
2966/*
2967 * If the number of slab pages in a zone grows beyond this percentage then
2968 * slab reclaim needs to occur.
2969 */
2970int sysctl_min_slab_ratio = 5;
2971
2972static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2973{
2974	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2975	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2976		zone_page_state(zone, NR_ACTIVE_FILE);
2977
2978	/*
2979	 * It's possible for there to be more file mapped pages than
2980	 * accounted for by the pages on the file LRU lists because
2981	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2982	 */
2983	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2984}
2985
2986/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2987static long zone_pagecache_reclaimable(struct zone *zone)
2988{
2989	long nr_pagecache_reclaimable;
2990	long delta = 0;
2991
2992	/*
2993	 * If RECLAIM_SWAP is set, then all file pages are considered
2994	 * potentially reclaimable. Otherwise, we have to worry about
2995	 * pages like swapcache and zone_unmapped_file_pages() provides
2996	 * a better estimate
2997	 */
2998	if (zone_reclaim_mode & RECLAIM_SWAP)
2999		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3000	else
3001		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3002
3003	/* If we can't clean pages, remove dirty pages from consideration */
3004	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3005		delta += zone_page_state(zone, NR_FILE_DIRTY);
3006
3007	/* Watch for any possible underflows due to delta */
3008	if (unlikely(delta > nr_pagecache_reclaimable))
3009		delta = nr_pagecache_reclaimable;
3010
3011	return nr_pagecache_reclaimable - delta;
3012}
3013
3014/*
3015 * Try to free up some pages from this zone through reclaim.
3016 */
3017static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3018{
3019	/* Minimum pages needed in order to stay on node */
3020	const unsigned long nr_pages = 1 << order;
3021	struct task_struct *p = current;
3022	struct reclaim_state reclaim_state;
3023	int priority;
3024	struct scan_control sc = {
3025		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3026		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3027		.may_swap = 1,
3028		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3029				       SWAP_CLUSTER_MAX),
3030		.gfp_mask = gfp_mask,
3031		.swappiness = vm_swappiness,
3032		.order = order,
3033	};
3034	struct shrink_control shrink = {
3035		.gfp_mask = sc.gfp_mask,
3036	};
3037	unsigned long nr_slab_pages0, nr_slab_pages1;
3038
3039	cond_resched();
3040	/*
3041	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3042	 * and we also need to be able to write out pages for RECLAIM_WRITE
3043	 * and RECLAIM_SWAP.
3044	 */
3045	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3046	lockdep_set_current_reclaim_state(gfp_mask);
3047	reclaim_state.reclaimed_slab = 0;
3048	p->reclaim_state = &reclaim_state;
3049
3050	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3051		/*
3052		 * Free memory by calling shrink zone with increasing
3053		 * priorities until we have enough memory freed.
3054		 */
3055		priority = ZONE_RECLAIM_PRIORITY;
3056		do {
3057			shrink_zone(priority, zone, &sc);
3058			priority--;
3059		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3060	}
3061
3062	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3063	if (nr_slab_pages0 > zone->min_slab_pages) {
3064		/*
3065		 * shrink_slab() does not currently allow us to determine how
3066		 * many pages were freed in this zone. So we take the current
3067		 * number of slab pages and shake the slab until it is reduced
3068		 * by the same nr_pages that we used for reclaiming unmapped
3069		 * pages.
3070		 *
3071		 * Note that shrink_slab will free memory on all zones and may
3072		 * take a long time.
3073		 */
3074		for (;;) {
3075			unsigned long lru_pages = zone_reclaimable_pages(zone);
3076
3077			/* No reclaimable slab or very low memory pressure */
3078			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3079				break;
3080
3081			/* Freed enough memory */
3082			nr_slab_pages1 = zone_page_state(zone,
3083							NR_SLAB_RECLAIMABLE);
3084			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3085				break;
3086		}
3087
3088		/*
3089		 * Update nr_reclaimed by the number of slab pages we
3090		 * reclaimed from this zone.
3091		 */
3092		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3093		if (nr_slab_pages1 < nr_slab_pages0)
3094			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3095	}
3096
3097	p->reclaim_state = NULL;
3098	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3099	lockdep_clear_current_reclaim_state();
3100	return sc.nr_reclaimed >= nr_pages;
3101}
3102
3103int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3104{
3105	int node_id;
3106	int ret;
3107
3108	/*
3109	 * Zone reclaim reclaims unmapped file backed pages and
3110	 * slab pages if we are over the defined limits.
3111	 *
3112	 * A small portion of unmapped file backed pages is needed for
3113	 * file I/O otherwise pages read by file I/O will be immediately
3114	 * thrown out if the zone is overallocated. So we do not reclaim
3115	 * if less than a specified percentage of the zone is used by
3116	 * unmapped file backed pages.
3117	 */
3118	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3119	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3120		return ZONE_RECLAIM_FULL;
3121
3122	if (zone->all_unreclaimable)
3123		return ZONE_RECLAIM_FULL;
3124
3125	/*
3126	 * Do not scan if the allocation should not be delayed.
3127	 */
3128	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3129		return ZONE_RECLAIM_NOSCAN;
3130
3131	/*
3132	 * Only run zone reclaim on the local zone or on zones that do not
3133	 * have associated processors. This will favor the local processor
3134	 * over remote processors and spread off node memory allocations
3135	 * as wide as possible.
3136	 */
3137	node_id = zone_to_nid(zone);
3138	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3139		return ZONE_RECLAIM_NOSCAN;
3140
3141	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3142		return ZONE_RECLAIM_NOSCAN;
3143
3144	ret = __zone_reclaim(zone, gfp_mask, order);
3145	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3146
3147	if (!ret)
3148		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3149
3150	return ret;
3151}
3152#endif
3153
3154/*
3155 * page_evictable - test whether a page is evictable
3156 * @page: the page to test
3157 * @vma: the VMA in which the page is or will be mapped, may be NULL
3158 *
3159 * Test whether page is evictable--i.e., should be placed on active/inactive
3160 * lists vs unevictable list.  The vma argument is !NULL when called from the
3161 * fault path to determine how to instantate a new page.
3162 *
3163 * Reasons page might not be evictable:
3164 * (1) page's mapping marked unevictable
3165 * (2) page is part of an mlocked VMA
3166 *
3167 */
3168int page_evictable(struct page *page, struct vm_area_struct *vma)
3169{
3170
3171	if (mapping_unevictable(page_mapping(page)))
3172		return 0;
3173
3174	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3175		return 0;
3176
3177	return 1;
3178}
3179
3180/**
3181 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3182 * @page: page to check evictability and move to appropriate lru list
3183 * @zone: zone page is in
3184 *
3185 * Checks a page for evictability and moves the page to the appropriate
3186 * zone lru list.
3187 *
3188 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3189 * have PageUnevictable set.
3190 */
3191static void check_move_unevictable_page(struct page *page, struct zone *zone)
3192{
3193	VM_BUG_ON(PageActive(page));
3194
3195retry:
3196	ClearPageUnevictable(page);
3197	if (page_evictable(page, NULL)) {
3198		enum lru_list l = page_lru_base_type(page);
3199
3200		__dec_zone_state(zone, NR_UNEVICTABLE);
3201		list_move(&page->lru, &zone->lru[l].list);
3202		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3203		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3204		__count_vm_event(UNEVICTABLE_PGRESCUED);
3205	} else {
3206		/*
3207		 * rotate unevictable list
3208		 */
3209		SetPageUnevictable(page);
3210		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3211		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3212		if (page_evictable(page, NULL))
3213			goto retry;
3214	}
3215}
3216
3217/**
3218 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3219 * @mapping: struct address_space to scan for evictable pages
3220 *
3221 * Scan all pages in mapping.  Check unevictable pages for
3222 * evictability and move them to the appropriate zone lru list.
3223 */
3224void scan_mapping_unevictable_pages(struct address_space *mapping)
3225{
3226	pgoff_t next = 0;
3227	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3228			 PAGE_CACHE_SHIFT;
3229	struct zone *zone;
3230	struct pagevec pvec;
3231
3232	if (mapping->nrpages == 0)
3233		return;
3234
3235	pagevec_init(&pvec, 0);
3236	while (next < end &&
3237		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3238		int i;
3239		int pg_scanned = 0;
3240
3241		zone = NULL;
3242
3243		for (i = 0; i < pagevec_count(&pvec); i++) {
3244			struct page *page = pvec.pages[i];
3245			pgoff_t page_index = page->index;
3246			struct zone *pagezone = page_zone(page);
3247
3248			pg_scanned++;
3249			if (page_index > next)
3250				next = page_index;
3251			next++;
3252
3253			if (pagezone != zone) {
3254				if (zone)
3255					spin_unlock_irq(&zone->lru_lock);
3256				zone = pagezone;
3257				spin_lock_irq(&zone->lru_lock);
3258			}
3259
3260			if (PageLRU(page) && PageUnevictable(page))
3261				check_move_unevictable_page(page, zone);
3262		}
3263		if (zone)
3264			spin_unlock_irq(&zone->lru_lock);
3265		pagevec_release(&pvec);
3266
3267		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3268	}
3269
3270}
3271
3272/**
3273 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3274 * @zone - zone of which to scan the unevictable list
3275 *
3276 * Scan @zone's unevictable LRU lists to check for pages that have become
3277 * evictable.  Move those that have to @zone's inactive list where they
3278 * become candidates for reclaim, unless shrink_inactive_zone() decides
3279 * to reactivate them.  Pages that are still unevictable are rotated
3280 * back onto @zone's unevictable list.
3281 */
3282#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3283static void scan_zone_unevictable_pages(struct zone *zone)
3284{
3285	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3286	unsigned long scan;
3287	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3288
3289	while (nr_to_scan > 0) {
3290		unsigned long batch_size = min(nr_to_scan,
3291						SCAN_UNEVICTABLE_BATCH_SIZE);
3292
3293		spin_lock_irq(&zone->lru_lock);
3294		for (scan = 0;  scan < batch_size; scan++) {
3295			struct page *page = lru_to_page(l_unevictable);
3296
3297			if (!trylock_page(page))
3298				continue;
3299
3300			prefetchw_prev_lru_page(page, l_unevictable, flags);
3301
3302			if (likely(PageLRU(page) && PageUnevictable(page)))
3303				check_move_unevictable_page(page, zone);
3304
3305			unlock_page(page);
3306		}
3307		spin_unlock_irq(&zone->lru_lock);
3308
3309		nr_to_scan -= batch_size;
3310	}
3311}
3312
3313
3314/**
3315 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3316 *
3317 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3318 * pages that have become evictable.  Move those back to the zones'
3319 * inactive list where they become candidates for reclaim.
3320 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3321 * and we add swap to the system.  As such, it runs in the context of a task
3322 * that has possibly/probably made some previously unevictable pages
3323 * evictable.
3324 */
3325static void scan_all_zones_unevictable_pages(void)
3326{
3327	struct zone *zone;
3328
3329	for_each_zone(zone) {
3330		scan_zone_unevictable_pages(zone);
3331	}
3332}
3333
3334/*
3335 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3336 * all nodes' unevictable lists for evictable pages
3337 */
3338unsigned long scan_unevictable_pages;
3339
3340int scan_unevictable_handler(struct ctl_table *table, int write,
3341			   void __user *buffer,
3342			   size_t *length, loff_t *ppos)
3343{
3344	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3345
3346	if (write && *(unsigned long *)table->data)
3347		scan_all_zones_unevictable_pages();
3348
3349	scan_unevictable_pages = 0;
3350	return 0;
3351}
3352
3353#ifdef CONFIG_NUMA
3354/*
3355 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3356 * a specified node's per zone unevictable lists for evictable pages.
3357 */
3358
3359static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3360					  struct sysdev_attribute *attr,
3361					  char *buf)
3362{
3363	return sprintf(buf, "0\n");	/* always zero; should fit... */
3364}
3365
3366static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3367					   struct sysdev_attribute *attr,
3368					const char *buf, size_t count)
3369{
3370	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3371	struct zone *zone;
3372	unsigned long res;
3373	unsigned long req = strict_strtoul(buf, 10, &res);
3374
3375	if (!req)
3376		return 1;	/* zero is no-op */
3377
3378	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3379		if (!populated_zone(zone))
3380			continue;
3381		scan_zone_unevictable_pages(zone);
3382	}
3383	return 1;
3384}
3385
3386
3387static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3388			read_scan_unevictable_node,
3389			write_scan_unevictable_node);
3390
3391int scan_unevictable_register_node(struct node *node)
3392{
3393	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3394}
3395
3396void scan_unevictable_unregister_node(struct node *node)
3397{
3398	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3399}
3400#endif
3401