vmscan.c revision 88f5acf88ae6a9778f6d25d0d5d7ec2d57764a97
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51#define CREATE_TRACE_POINTS
52#include <trace/events/vmscan.h>
53
54enum lumpy_mode {
55	LUMPY_MODE_NONE,
56	LUMPY_MODE_ASYNC,
57	LUMPY_MODE_SYNC,
58};
59
60struct scan_control {
61	/* Incremented by the number of inactive pages that were scanned */
62	unsigned long nr_scanned;
63
64	/* Number of pages freed so far during a call to shrink_zones() */
65	unsigned long nr_reclaimed;
66
67	/* How many pages shrink_list() should reclaim */
68	unsigned long nr_to_reclaim;
69
70	unsigned long hibernation_mode;
71
72	/* This context's GFP mask */
73	gfp_t gfp_mask;
74
75	int may_writepage;
76
77	/* Can mapped pages be reclaimed? */
78	int may_unmap;
79
80	/* Can pages be swapped as part of reclaim? */
81	int may_swap;
82
83	int swappiness;
84
85	int order;
86
87	/*
88	 * Intend to reclaim enough continuous memory rather than reclaim
89	 * enough amount of memory. i.e, mode for high order allocation.
90	 */
91	enum lumpy_mode lumpy_reclaim_mode;
92
93	/* Which cgroup do we reclaim from */
94	struct mem_cgroup *mem_cgroup;
95
96	/*
97	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
98	 * are scanned.
99	 */
100	nodemask_t	*nodemask;
101};
102
103#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
104
105#ifdef ARCH_HAS_PREFETCH
106#define prefetch_prev_lru_page(_page, _base, _field)			\
107	do {								\
108		if ((_page)->lru.prev != _base) {			\
109			struct page *prev;				\
110									\
111			prev = lru_to_page(&(_page->lru));		\
112			prefetch(&prev->_field);			\
113		}							\
114	} while (0)
115#else
116#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
117#endif
118
119#ifdef ARCH_HAS_PREFETCHW
120#define prefetchw_prev_lru_page(_page, _base, _field)			\
121	do {								\
122		if ((_page)->lru.prev != _base) {			\
123			struct page *prev;				\
124									\
125			prev = lru_to_page(&(_page->lru));		\
126			prefetchw(&prev->_field);			\
127		}							\
128	} while (0)
129#else
130#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
131#endif
132
133/*
134 * From 0 .. 100.  Higher means more swappy.
135 */
136int vm_swappiness = 60;
137long vm_total_pages;	/* The total number of pages which the VM controls */
138
139static LIST_HEAD(shrinker_list);
140static DECLARE_RWSEM(shrinker_rwsem);
141
142#ifdef CONFIG_CGROUP_MEM_RES_CTLR
143#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
144#else
145#define scanning_global_lru(sc)	(1)
146#endif
147
148static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
149						  struct scan_control *sc)
150{
151	if (!scanning_global_lru(sc))
152		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
153
154	return &zone->reclaim_stat;
155}
156
157static unsigned long zone_nr_lru_pages(struct zone *zone,
158				struct scan_control *sc, enum lru_list lru)
159{
160	if (!scanning_global_lru(sc))
161		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
162
163	return zone_page_state(zone, NR_LRU_BASE + lru);
164}
165
166
167/*
168 * Add a shrinker callback to be called from the vm
169 */
170void register_shrinker(struct shrinker *shrinker)
171{
172	shrinker->nr = 0;
173	down_write(&shrinker_rwsem);
174	list_add_tail(&shrinker->list, &shrinker_list);
175	up_write(&shrinker_rwsem);
176}
177EXPORT_SYMBOL(register_shrinker);
178
179/*
180 * Remove one
181 */
182void unregister_shrinker(struct shrinker *shrinker)
183{
184	down_write(&shrinker_rwsem);
185	list_del(&shrinker->list);
186	up_write(&shrinker_rwsem);
187}
188EXPORT_SYMBOL(unregister_shrinker);
189
190#define SHRINK_BATCH 128
191/*
192 * Call the shrink functions to age shrinkable caches
193 *
194 * Here we assume it costs one seek to replace a lru page and that it also
195 * takes a seek to recreate a cache object.  With this in mind we age equal
196 * percentages of the lru and ageable caches.  This should balance the seeks
197 * generated by these structures.
198 *
199 * If the vm encountered mapped pages on the LRU it increase the pressure on
200 * slab to avoid swapping.
201 *
202 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
203 *
204 * `lru_pages' represents the number of on-LRU pages in all the zones which
205 * are eligible for the caller's allocation attempt.  It is used for balancing
206 * slab reclaim versus page reclaim.
207 *
208 * Returns the number of slab objects which we shrunk.
209 */
210unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
211			unsigned long lru_pages)
212{
213	struct shrinker *shrinker;
214	unsigned long ret = 0;
215
216	if (scanned == 0)
217		scanned = SWAP_CLUSTER_MAX;
218
219	if (!down_read_trylock(&shrinker_rwsem))
220		return 1;	/* Assume we'll be able to shrink next time */
221
222	list_for_each_entry(shrinker, &shrinker_list, list) {
223		unsigned long long delta;
224		unsigned long total_scan;
225		unsigned long max_pass;
226
227		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
228		delta = (4 * scanned) / shrinker->seeks;
229		delta *= max_pass;
230		do_div(delta, lru_pages + 1);
231		shrinker->nr += delta;
232		if (shrinker->nr < 0) {
233			printk(KERN_ERR "shrink_slab: %pF negative objects to "
234			       "delete nr=%ld\n",
235			       shrinker->shrink, shrinker->nr);
236			shrinker->nr = max_pass;
237		}
238
239		/*
240		 * Avoid risking looping forever due to too large nr value:
241		 * never try to free more than twice the estimate number of
242		 * freeable entries.
243		 */
244		if (shrinker->nr > max_pass * 2)
245			shrinker->nr = max_pass * 2;
246
247		total_scan = shrinker->nr;
248		shrinker->nr = 0;
249
250		while (total_scan >= SHRINK_BATCH) {
251			long this_scan = SHRINK_BATCH;
252			int shrink_ret;
253			int nr_before;
254
255			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
256			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
257								gfp_mask);
258			if (shrink_ret == -1)
259				break;
260			if (shrink_ret < nr_before)
261				ret += nr_before - shrink_ret;
262			count_vm_events(SLABS_SCANNED, this_scan);
263			total_scan -= this_scan;
264
265			cond_resched();
266		}
267
268		shrinker->nr += total_scan;
269	}
270	up_read(&shrinker_rwsem);
271	return ret;
272}
273
274static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc,
275				   bool sync)
276{
277	enum lumpy_mode mode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC;
278
279	/*
280	 * Some reclaim have alredy been failed. No worth to try synchronous
281	 * lumpy reclaim.
282	 */
283	if (sync && sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
284		return;
285
286	/*
287	 * If we need a large contiguous chunk of memory, or have
288	 * trouble getting a small set of contiguous pages, we
289	 * will reclaim both active and inactive pages.
290	 */
291	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
292		sc->lumpy_reclaim_mode = mode;
293	else if (sc->order && priority < DEF_PRIORITY - 2)
294		sc->lumpy_reclaim_mode = mode;
295	else
296		sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
297}
298
299static void disable_lumpy_reclaim_mode(struct scan_control *sc)
300{
301	sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
302}
303
304static inline int is_page_cache_freeable(struct page *page)
305{
306	/*
307	 * A freeable page cache page is referenced only by the caller
308	 * that isolated the page, the page cache radix tree and
309	 * optional buffer heads at page->private.
310	 */
311	return page_count(page) - page_has_private(page) == 2;
312}
313
314static int may_write_to_queue(struct backing_dev_info *bdi,
315			      struct scan_control *sc)
316{
317	if (current->flags & PF_SWAPWRITE)
318		return 1;
319	if (!bdi_write_congested(bdi))
320		return 1;
321	if (bdi == current->backing_dev_info)
322		return 1;
323
324	/* lumpy reclaim for hugepage often need a lot of write */
325	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
326		return 1;
327	return 0;
328}
329
330/*
331 * We detected a synchronous write error writing a page out.  Probably
332 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
333 * fsync(), msync() or close().
334 *
335 * The tricky part is that after writepage we cannot touch the mapping: nothing
336 * prevents it from being freed up.  But we have a ref on the page and once
337 * that page is locked, the mapping is pinned.
338 *
339 * We're allowed to run sleeping lock_page() here because we know the caller has
340 * __GFP_FS.
341 */
342static void handle_write_error(struct address_space *mapping,
343				struct page *page, int error)
344{
345	lock_page_nosync(page);
346	if (page_mapping(page) == mapping)
347		mapping_set_error(mapping, error);
348	unlock_page(page);
349}
350
351/* possible outcome of pageout() */
352typedef enum {
353	/* failed to write page out, page is locked */
354	PAGE_KEEP,
355	/* move page to the active list, page is locked */
356	PAGE_ACTIVATE,
357	/* page has been sent to the disk successfully, page is unlocked */
358	PAGE_SUCCESS,
359	/* page is clean and locked */
360	PAGE_CLEAN,
361} pageout_t;
362
363/*
364 * pageout is called by shrink_page_list() for each dirty page.
365 * Calls ->writepage().
366 */
367static pageout_t pageout(struct page *page, struct address_space *mapping,
368			 struct scan_control *sc)
369{
370	/*
371	 * If the page is dirty, only perform writeback if that write
372	 * will be non-blocking.  To prevent this allocation from being
373	 * stalled by pagecache activity.  But note that there may be
374	 * stalls if we need to run get_block().  We could test
375	 * PagePrivate for that.
376	 *
377	 * If this process is currently in __generic_file_aio_write() against
378	 * this page's queue, we can perform writeback even if that
379	 * will block.
380	 *
381	 * If the page is swapcache, write it back even if that would
382	 * block, for some throttling. This happens by accident, because
383	 * swap_backing_dev_info is bust: it doesn't reflect the
384	 * congestion state of the swapdevs.  Easy to fix, if needed.
385	 */
386	if (!is_page_cache_freeable(page))
387		return PAGE_KEEP;
388	if (!mapping) {
389		/*
390		 * Some data journaling orphaned pages can have
391		 * page->mapping == NULL while being dirty with clean buffers.
392		 */
393		if (page_has_private(page)) {
394			if (try_to_free_buffers(page)) {
395				ClearPageDirty(page);
396				printk("%s: orphaned page\n", __func__);
397				return PAGE_CLEAN;
398			}
399		}
400		return PAGE_KEEP;
401	}
402	if (mapping->a_ops->writepage == NULL)
403		return PAGE_ACTIVATE;
404	if (!may_write_to_queue(mapping->backing_dev_info, sc))
405		return PAGE_KEEP;
406
407	if (clear_page_dirty_for_io(page)) {
408		int res;
409		struct writeback_control wbc = {
410			.sync_mode = WB_SYNC_NONE,
411			.nr_to_write = SWAP_CLUSTER_MAX,
412			.range_start = 0,
413			.range_end = LLONG_MAX,
414			.for_reclaim = 1,
415		};
416
417		SetPageReclaim(page);
418		res = mapping->a_ops->writepage(page, &wbc);
419		if (res < 0)
420			handle_write_error(mapping, page, res);
421		if (res == AOP_WRITEPAGE_ACTIVATE) {
422			ClearPageReclaim(page);
423			return PAGE_ACTIVATE;
424		}
425
426		/*
427		 * Wait on writeback if requested to. This happens when
428		 * direct reclaiming a large contiguous area and the
429		 * first attempt to free a range of pages fails.
430		 */
431		if (PageWriteback(page) &&
432		    sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC)
433			wait_on_page_writeback(page);
434
435		if (!PageWriteback(page)) {
436			/* synchronous write or broken a_ops? */
437			ClearPageReclaim(page);
438		}
439		trace_mm_vmscan_writepage(page,
440			trace_reclaim_flags(page, sc->lumpy_reclaim_mode));
441		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442		return PAGE_SUCCESS;
443	}
444
445	return PAGE_CLEAN;
446}
447
448/*
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
451 */
452static int __remove_mapping(struct address_space *mapping, struct page *page)
453{
454	BUG_ON(!PageLocked(page));
455	BUG_ON(mapping != page_mapping(page));
456
457	spin_lock_irq(&mapping->tree_lock);
458	/*
459	 * The non racy check for a busy page.
460	 *
461	 * Must be careful with the order of the tests. When someone has
462	 * a ref to the page, it may be possible that they dirty it then
463	 * drop the reference. So if PageDirty is tested before page_count
464	 * here, then the following race may occur:
465	 *
466	 * get_user_pages(&page);
467	 * [user mapping goes away]
468	 * write_to(page);
469	 *				!PageDirty(page)    [good]
470	 * SetPageDirty(page);
471	 * put_page(page);
472	 *				!page_count(page)   [good, discard it]
473	 *
474	 * [oops, our write_to data is lost]
475	 *
476	 * Reversing the order of the tests ensures such a situation cannot
477	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478	 * load is not satisfied before that of page->_count.
479	 *
480	 * Note that if SetPageDirty is always performed via set_page_dirty,
481	 * and thus under tree_lock, then this ordering is not required.
482	 */
483	if (!page_freeze_refs(page, 2))
484		goto cannot_free;
485	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486	if (unlikely(PageDirty(page))) {
487		page_unfreeze_refs(page, 2);
488		goto cannot_free;
489	}
490
491	if (PageSwapCache(page)) {
492		swp_entry_t swap = { .val = page_private(page) };
493		__delete_from_swap_cache(page);
494		spin_unlock_irq(&mapping->tree_lock);
495		swapcache_free(swap, page);
496	} else {
497		void (*freepage)(struct page *);
498
499		freepage = mapping->a_ops->freepage;
500
501		__remove_from_page_cache(page);
502		spin_unlock_irq(&mapping->tree_lock);
503		mem_cgroup_uncharge_cache_page(page);
504
505		if (freepage != NULL)
506			freepage(page);
507	}
508
509	return 1;
510
511cannot_free:
512	spin_unlock_irq(&mapping->tree_lock);
513	return 0;
514}
515
516/*
517 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518 * someone else has a ref on the page, abort and return 0.  If it was
519 * successfully detached, return 1.  Assumes the caller has a single ref on
520 * this page.
521 */
522int remove_mapping(struct address_space *mapping, struct page *page)
523{
524	if (__remove_mapping(mapping, page)) {
525		/*
526		 * Unfreezing the refcount with 1 rather than 2 effectively
527		 * drops the pagecache ref for us without requiring another
528		 * atomic operation.
529		 */
530		page_unfreeze_refs(page, 1);
531		return 1;
532	}
533	return 0;
534}
535
536/**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
545void putback_lru_page(struct page *page)
546{
547	int lru;
548	int active = !!TestClearPageActive(page);
549	int was_unevictable = PageUnevictable(page);
550
551	VM_BUG_ON(PageLRU(page));
552
553redo:
554	ClearPageUnevictable(page);
555
556	if (page_evictable(page, NULL)) {
557		/*
558		 * For evictable pages, we can use the cache.
559		 * In event of a race, worst case is we end up with an
560		 * unevictable page on [in]active list.
561		 * We know how to handle that.
562		 */
563		lru = active + page_lru_base_type(page);
564		lru_cache_add_lru(page, lru);
565	} else {
566		/*
567		 * Put unevictable pages directly on zone's unevictable
568		 * list.
569		 */
570		lru = LRU_UNEVICTABLE;
571		add_page_to_unevictable_list(page);
572		/*
573		 * When racing with an mlock clearing (page is
574		 * unlocked), make sure that if the other thread does
575		 * not observe our setting of PG_lru and fails
576		 * isolation, we see PG_mlocked cleared below and move
577		 * the page back to the evictable list.
578		 *
579		 * The other side is TestClearPageMlocked().
580		 */
581		smp_mb();
582	}
583
584	/*
585	 * page's status can change while we move it among lru. If an evictable
586	 * page is on unevictable list, it never be freed. To avoid that,
587	 * check after we added it to the list, again.
588	 */
589	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
590		if (!isolate_lru_page(page)) {
591			put_page(page);
592			goto redo;
593		}
594		/* This means someone else dropped this page from LRU
595		 * So, it will be freed or putback to LRU again. There is
596		 * nothing to do here.
597		 */
598	}
599
600	if (was_unevictable && lru != LRU_UNEVICTABLE)
601		count_vm_event(UNEVICTABLE_PGRESCUED);
602	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
603		count_vm_event(UNEVICTABLE_PGCULLED);
604
605	put_page(page);		/* drop ref from isolate */
606}
607
608enum page_references {
609	PAGEREF_RECLAIM,
610	PAGEREF_RECLAIM_CLEAN,
611	PAGEREF_KEEP,
612	PAGEREF_ACTIVATE,
613};
614
615static enum page_references page_check_references(struct page *page,
616						  struct scan_control *sc)
617{
618	int referenced_ptes, referenced_page;
619	unsigned long vm_flags;
620
621	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
622	referenced_page = TestClearPageReferenced(page);
623
624	/* Lumpy reclaim - ignore references */
625	if (sc->lumpy_reclaim_mode != LUMPY_MODE_NONE)
626		return PAGEREF_RECLAIM;
627
628	/*
629	 * Mlock lost the isolation race with us.  Let try_to_unmap()
630	 * move the page to the unevictable list.
631	 */
632	if (vm_flags & VM_LOCKED)
633		return PAGEREF_RECLAIM;
634
635	if (referenced_ptes) {
636		if (PageAnon(page))
637			return PAGEREF_ACTIVATE;
638		/*
639		 * All mapped pages start out with page table
640		 * references from the instantiating fault, so we need
641		 * to look twice if a mapped file page is used more
642		 * than once.
643		 *
644		 * Mark it and spare it for another trip around the
645		 * inactive list.  Another page table reference will
646		 * lead to its activation.
647		 *
648		 * Note: the mark is set for activated pages as well
649		 * so that recently deactivated but used pages are
650		 * quickly recovered.
651		 */
652		SetPageReferenced(page);
653
654		if (referenced_page)
655			return PAGEREF_ACTIVATE;
656
657		return PAGEREF_KEEP;
658	}
659
660	/* Reclaim if clean, defer dirty pages to writeback */
661	if (referenced_page && !PageSwapBacked(page))
662		return PAGEREF_RECLAIM_CLEAN;
663
664	return PAGEREF_RECLAIM;
665}
666
667static noinline_for_stack void free_page_list(struct list_head *free_pages)
668{
669	struct pagevec freed_pvec;
670	struct page *page, *tmp;
671
672	pagevec_init(&freed_pvec, 1);
673
674	list_for_each_entry_safe(page, tmp, free_pages, lru) {
675		list_del(&page->lru);
676		if (!pagevec_add(&freed_pvec, page)) {
677			__pagevec_free(&freed_pvec);
678			pagevec_reinit(&freed_pvec);
679		}
680	}
681
682	pagevec_free(&freed_pvec);
683}
684
685/*
686 * shrink_page_list() returns the number of reclaimed pages
687 */
688static unsigned long shrink_page_list(struct list_head *page_list,
689				      struct zone *zone,
690				      struct scan_control *sc)
691{
692	LIST_HEAD(ret_pages);
693	LIST_HEAD(free_pages);
694	int pgactivate = 0;
695	unsigned long nr_dirty = 0;
696	unsigned long nr_congested = 0;
697	unsigned long nr_reclaimed = 0;
698
699	cond_resched();
700
701	while (!list_empty(page_list)) {
702		enum page_references references;
703		struct address_space *mapping;
704		struct page *page;
705		int may_enter_fs;
706
707		cond_resched();
708
709		page = lru_to_page(page_list);
710		list_del(&page->lru);
711
712		if (!trylock_page(page))
713			goto keep;
714
715		VM_BUG_ON(PageActive(page));
716		VM_BUG_ON(page_zone(page) != zone);
717
718		sc->nr_scanned++;
719
720		if (unlikely(!page_evictable(page, NULL)))
721			goto cull_mlocked;
722
723		if (!sc->may_unmap && page_mapped(page))
724			goto keep_locked;
725
726		/* Double the slab pressure for mapped and swapcache pages */
727		if (page_mapped(page) || PageSwapCache(page))
728			sc->nr_scanned++;
729
730		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
731			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
732
733		if (PageWriteback(page)) {
734			/*
735			 * Synchronous reclaim is performed in two passes,
736			 * first an asynchronous pass over the list to
737			 * start parallel writeback, and a second synchronous
738			 * pass to wait for the IO to complete.  Wait here
739			 * for any page for which writeback has already
740			 * started.
741			 */
742			if (sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC &&
743			    may_enter_fs)
744				wait_on_page_writeback(page);
745			else {
746				unlock_page(page);
747				goto keep_lumpy;
748			}
749		}
750
751		references = page_check_references(page, sc);
752		switch (references) {
753		case PAGEREF_ACTIVATE:
754			goto activate_locked;
755		case PAGEREF_KEEP:
756			goto keep_locked;
757		case PAGEREF_RECLAIM:
758		case PAGEREF_RECLAIM_CLEAN:
759			; /* try to reclaim the page below */
760		}
761
762		/*
763		 * Anonymous process memory has backing store?
764		 * Try to allocate it some swap space here.
765		 */
766		if (PageAnon(page) && !PageSwapCache(page)) {
767			if (!(sc->gfp_mask & __GFP_IO))
768				goto keep_locked;
769			if (!add_to_swap(page))
770				goto activate_locked;
771			may_enter_fs = 1;
772		}
773
774		mapping = page_mapping(page);
775
776		/*
777		 * The page is mapped into the page tables of one or more
778		 * processes. Try to unmap it here.
779		 */
780		if (page_mapped(page) && mapping) {
781			switch (try_to_unmap(page, TTU_UNMAP)) {
782			case SWAP_FAIL:
783				goto activate_locked;
784			case SWAP_AGAIN:
785				goto keep_locked;
786			case SWAP_MLOCK:
787				goto cull_mlocked;
788			case SWAP_SUCCESS:
789				; /* try to free the page below */
790			}
791		}
792
793		if (PageDirty(page)) {
794			nr_dirty++;
795
796			if (references == PAGEREF_RECLAIM_CLEAN)
797				goto keep_locked;
798			if (!may_enter_fs)
799				goto keep_locked;
800			if (!sc->may_writepage)
801				goto keep_locked;
802
803			/* Page is dirty, try to write it out here */
804			switch (pageout(page, mapping, sc)) {
805			case PAGE_KEEP:
806				nr_congested++;
807				goto keep_locked;
808			case PAGE_ACTIVATE:
809				goto activate_locked;
810			case PAGE_SUCCESS:
811				if (PageWriteback(page))
812					goto keep_lumpy;
813				if (PageDirty(page))
814					goto keep;
815
816				/*
817				 * A synchronous write - probably a ramdisk.  Go
818				 * ahead and try to reclaim the page.
819				 */
820				if (!trylock_page(page))
821					goto keep;
822				if (PageDirty(page) || PageWriteback(page))
823					goto keep_locked;
824				mapping = page_mapping(page);
825			case PAGE_CLEAN:
826				; /* try to free the page below */
827			}
828		}
829
830		/*
831		 * If the page has buffers, try to free the buffer mappings
832		 * associated with this page. If we succeed we try to free
833		 * the page as well.
834		 *
835		 * We do this even if the page is PageDirty().
836		 * try_to_release_page() does not perform I/O, but it is
837		 * possible for a page to have PageDirty set, but it is actually
838		 * clean (all its buffers are clean).  This happens if the
839		 * buffers were written out directly, with submit_bh(). ext3
840		 * will do this, as well as the blockdev mapping.
841		 * try_to_release_page() will discover that cleanness and will
842		 * drop the buffers and mark the page clean - it can be freed.
843		 *
844		 * Rarely, pages can have buffers and no ->mapping.  These are
845		 * the pages which were not successfully invalidated in
846		 * truncate_complete_page().  We try to drop those buffers here
847		 * and if that worked, and the page is no longer mapped into
848		 * process address space (page_count == 1) it can be freed.
849		 * Otherwise, leave the page on the LRU so it is swappable.
850		 */
851		if (page_has_private(page)) {
852			if (!try_to_release_page(page, sc->gfp_mask))
853				goto activate_locked;
854			if (!mapping && page_count(page) == 1) {
855				unlock_page(page);
856				if (put_page_testzero(page))
857					goto free_it;
858				else {
859					/*
860					 * rare race with speculative reference.
861					 * the speculative reference will free
862					 * this page shortly, so we may
863					 * increment nr_reclaimed here (and
864					 * leave it off the LRU).
865					 */
866					nr_reclaimed++;
867					continue;
868				}
869			}
870		}
871
872		if (!mapping || !__remove_mapping(mapping, page))
873			goto keep_locked;
874
875		/*
876		 * At this point, we have no other references and there is
877		 * no way to pick any more up (removed from LRU, removed
878		 * from pagecache). Can use non-atomic bitops now (and
879		 * we obviously don't have to worry about waking up a process
880		 * waiting on the page lock, because there are no references.
881		 */
882		__clear_page_locked(page);
883free_it:
884		nr_reclaimed++;
885
886		/*
887		 * Is there need to periodically free_page_list? It would
888		 * appear not as the counts should be low
889		 */
890		list_add(&page->lru, &free_pages);
891		continue;
892
893cull_mlocked:
894		if (PageSwapCache(page))
895			try_to_free_swap(page);
896		unlock_page(page);
897		putback_lru_page(page);
898		disable_lumpy_reclaim_mode(sc);
899		continue;
900
901activate_locked:
902		/* Not a candidate for swapping, so reclaim swap space. */
903		if (PageSwapCache(page) && vm_swap_full())
904			try_to_free_swap(page);
905		VM_BUG_ON(PageActive(page));
906		SetPageActive(page);
907		pgactivate++;
908keep_locked:
909		unlock_page(page);
910keep:
911		disable_lumpy_reclaim_mode(sc);
912keep_lumpy:
913		list_add(&page->lru, &ret_pages);
914		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
915	}
916
917	/*
918	 * Tag a zone as congested if all the dirty pages encountered were
919	 * backed by a congested BDI. In this case, reclaimers should just
920	 * back off and wait for congestion to clear because further reclaim
921	 * will encounter the same problem
922	 */
923	if (nr_dirty == nr_congested && nr_dirty != 0)
924		zone_set_flag(zone, ZONE_CONGESTED);
925
926	free_page_list(&free_pages);
927
928	list_splice(&ret_pages, page_list);
929	count_vm_events(PGACTIVATE, pgactivate);
930	return nr_reclaimed;
931}
932
933/*
934 * Attempt to remove the specified page from its LRU.  Only take this page
935 * if it is of the appropriate PageActive status.  Pages which are being
936 * freed elsewhere are also ignored.
937 *
938 * page:	page to consider
939 * mode:	one of the LRU isolation modes defined above
940 *
941 * returns 0 on success, -ve errno on failure.
942 */
943int __isolate_lru_page(struct page *page, int mode, int file)
944{
945	int ret = -EINVAL;
946
947	/* Only take pages on the LRU. */
948	if (!PageLRU(page))
949		return ret;
950
951	/*
952	 * When checking the active state, we need to be sure we are
953	 * dealing with comparible boolean values.  Take the logical not
954	 * of each.
955	 */
956	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
957		return ret;
958
959	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
960		return ret;
961
962	/*
963	 * When this function is being called for lumpy reclaim, we
964	 * initially look into all LRU pages, active, inactive and
965	 * unevictable; only give shrink_page_list evictable pages.
966	 */
967	if (PageUnevictable(page))
968		return ret;
969
970	ret = -EBUSY;
971
972	if (likely(get_page_unless_zero(page))) {
973		/*
974		 * Be careful not to clear PageLRU until after we're
975		 * sure the page is not being freed elsewhere -- the
976		 * page release code relies on it.
977		 */
978		ClearPageLRU(page);
979		ret = 0;
980	}
981
982	return ret;
983}
984
985/*
986 * zone->lru_lock is heavily contended.  Some of the functions that
987 * shrink the lists perform better by taking out a batch of pages
988 * and working on them outside the LRU lock.
989 *
990 * For pagecache intensive workloads, this function is the hottest
991 * spot in the kernel (apart from copy_*_user functions).
992 *
993 * Appropriate locks must be held before calling this function.
994 *
995 * @nr_to_scan:	The number of pages to look through on the list.
996 * @src:	The LRU list to pull pages off.
997 * @dst:	The temp list to put pages on to.
998 * @scanned:	The number of pages that were scanned.
999 * @order:	The caller's attempted allocation order
1000 * @mode:	One of the LRU isolation modes
1001 * @file:	True [1] if isolating file [!anon] pages
1002 *
1003 * returns how many pages were moved onto *@dst.
1004 */
1005static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1006		struct list_head *src, struct list_head *dst,
1007		unsigned long *scanned, int order, int mode, int file)
1008{
1009	unsigned long nr_taken = 0;
1010	unsigned long nr_lumpy_taken = 0;
1011	unsigned long nr_lumpy_dirty = 0;
1012	unsigned long nr_lumpy_failed = 0;
1013	unsigned long scan;
1014
1015	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1016		struct page *page;
1017		unsigned long pfn;
1018		unsigned long end_pfn;
1019		unsigned long page_pfn;
1020		int zone_id;
1021
1022		page = lru_to_page(src);
1023		prefetchw_prev_lru_page(page, src, flags);
1024
1025		VM_BUG_ON(!PageLRU(page));
1026
1027		switch (__isolate_lru_page(page, mode, file)) {
1028		case 0:
1029			list_move(&page->lru, dst);
1030			mem_cgroup_del_lru(page);
1031			nr_taken++;
1032			break;
1033
1034		case -EBUSY:
1035			/* else it is being freed elsewhere */
1036			list_move(&page->lru, src);
1037			mem_cgroup_rotate_lru_list(page, page_lru(page));
1038			continue;
1039
1040		default:
1041			BUG();
1042		}
1043
1044		if (!order)
1045			continue;
1046
1047		/*
1048		 * Attempt to take all pages in the order aligned region
1049		 * surrounding the tag page.  Only take those pages of
1050		 * the same active state as that tag page.  We may safely
1051		 * round the target page pfn down to the requested order
1052		 * as the mem_map is guarenteed valid out to MAX_ORDER,
1053		 * where that page is in a different zone we will detect
1054		 * it from its zone id and abort this block scan.
1055		 */
1056		zone_id = page_zone_id(page);
1057		page_pfn = page_to_pfn(page);
1058		pfn = page_pfn & ~((1 << order) - 1);
1059		end_pfn = pfn + (1 << order);
1060		for (; pfn < end_pfn; pfn++) {
1061			struct page *cursor_page;
1062
1063			/* The target page is in the block, ignore it. */
1064			if (unlikely(pfn == page_pfn))
1065				continue;
1066
1067			/* Avoid holes within the zone. */
1068			if (unlikely(!pfn_valid_within(pfn)))
1069				break;
1070
1071			cursor_page = pfn_to_page(pfn);
1072
1073			/* Check that we have not crossed a zone boundary. */
1074			if (unlikely(page_zone_id(cursor_page) != zone_id))
1075				break;
1076
1077			/*
1078			 * If we don't have enough swap space, reclaiming of
1079			 * anon page which don't already have a swap slot is
1080			 * pointless.
1081			 */
1082			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1083			    !PageSwapCache(cursor_page))
1084				break;
1085
1086			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1087				list_move(&cursor_page->lru, dst);
1088				mem_cgroup_del_lru(cursor_page);
1089				nr_taken++;
1090				nr_lumpy_taken++;
1091				if (PageDirty(cursor_page))
1092					nr_lumpy_dirty++;
1093				scan++;
1094			} else {
1095				/* the page is freed already. */
1096				if (!page_count(cursor_page))
1097					continue;
1098				break;
1099			}
1100		}
1101
1102		/* If we break out of the loop above, lumpy reclaim failed */
1103		if (pfn < end_pfn)
1104			nr_lumpy_failed++;
1105	}
1106
1107	*scanned = scan;
1108
1109	trace_mm_vmscan_lru_isolate(order,
1110			nr_to_scan, scan,
1111			nr_taken,
1112			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1113			mode);
1114	return nr_taken;
1115}
1116
1117static unsigned long isolate_pages_global(unsigned long nr,
1118					struct list_head *dst,
1119					unsigned long *scanned, int order,
1120					int mode, struct zone *z,
1121					int active, int file)
1122{
1123	int lru = LRU_BASE;
1124	if (active)
1125		lru += LRU_ACTIVE;
1126	if (file)
1127		lru += LRU_FILE;
1128	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1129								mode, file);
1130}
1131
1132/*
1133 * clear_active_flags() is a helper for shrink_active_list(), clearing
1134 * any active bits from the pages in the list.
1135 */
1136static unsigned long clear_active_flags(struct list_head *page_list,
1137					unsigned int *count)
1138{
1139	int nr_active = 0;
1140	int lru;
1141	struct page *page;
1142
1143	list_for_each_entry(page, page_list, lru) {
1144		lru = page_lru_base_type(page);
1145		if (PageActive(page)) {
1146			lru += LRU_ACTIVE;
1147			ClearPageActive(page);
1148			nr_active++;
1149		}
1150		if (count)
1151			count[lru]++;
1152	}
1153
1154	return nr_active;
1155}
1156
1157/**
1158 * isolate_lru_page - tries to isolate a page from its LRU list
1159 * @page: page to isolate from its LRU list
1160 *
1161 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1162 * vmstat statistic corresponding to whatever LRU list the page was on.
1163 *
1164 * Returns 0 if the page was removed from an LRU list.
1165 * Returns -EBUSY if the page was not on an LRU list.
1166 *
1167 * The returned page will have PageLRU() cleared.  If it was found on
1168 * the active list, it will have PageActive set.  If it was found on
1169 * the unevictable list, it will have the PageUnevictable bit set. That flag
1170 * may need to be cleared by the caller before letting the page go.
1171 *
1172 * The vmstat statistic corresponding to the list on which the page was
1173 * found will be decremented.
1174 *
1175 * Restrictions:
1176 * (1) Must be called with an elevated refcount on the page. This is a
1177 *     fundamentnal difference from isolate_lru_pages (which is called
1178 *     without a stable reference).
1179 * (2) the lru_lock must not be held.
1180 * (3) interrupts must be enabled.
1181 */
1182int isolate_lru_page(struct page *page)
1183{
1184	int ret = -EBUSY;
1185
1186	if (PageLRU(page)) {
1187		struct zone *zone = page_zone(page);
1188
1189		spin_lock_irq(&zone->lru_lock);
1190		if (PageLRU(page) && get_page_unless_zero(page)) {
1191			int lru = page_lru(page);
1192			ret = 0;
1193			ClearPageLRU(page);
1194
1195			del_page_from_lru_list(zone, page, lru);
1196		}
1197		spin_unlock_irq(&zone->lru_lock);
1198	}
1199	return ret;
1200}
1201
1202/*
1203 * Are there way too many processes in the direct reclaim path already?
1204 */
1205static int too_many_isolated(struct zone *zone, int file,
1206		struct scan_control *sc)
1207{
1208	unsigned long inactive, isolated;
1209
1210	if (current_is_kswapd())
1211		return 0;
1212
1213	if (!scanning_global_lru(sc))
1214		return 0;
1215
1216	if (file) {
1217		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1218		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1219	} else {
1220		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1221		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1222	}
1223
1224	return isolated > inactive;
1225}
1226
1227/*
1228 * TODO: Try merging with migrations version of putback_lru_pages
1229 */
1230static noinline_for_stack void
1231putback_lru_pages(struct zone *zone, struct scan_control *sc,
1232				unsigned long nr_anon, unsigned long nr_file,
1233				struct list_head *page_list)
1234{
1235	struct page *page;
1236	struct pagevec pvec;
1237	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1238
1239	pagevec_init(&pvec, 1);
1240
1241	/*
1242	 * Put back any unfreeable pages.
1243	 */
1244	spin_lock(&zone->lru_lock);
1245	while (!list_empty(page_list)) {
1246		int lru;
1247		page = lru_to_page(page_list);
1248		VM_BUG_ON(PageLRU(page));
1249		list_del(&page->lru);
1250		if (unlikely(!page_evictable(page, NULL))) {
1251			spin_unlock_irq(&zone->lru_lock);
1252			putback_lru_page(page);
1253			spin_lock_irq(&zone->lru_lock);
1254			continue;
1255		}
1256		SetPageLRU(page);
1257		lru = page_lru(page);
1258		add_page_to_lru_list(zone, page, lru);
1259		if (is_active_lru(lru)) {
1260			int file = is_file_lru(lru);
1261			reclaim_stat->recent_rotated[file]++;
1262		}
1263		if (!pagevec_add(&pvec, page)) {
1264			spin_unlock_irq(&zone->lru_lock);
1265			__pagevec_release(&pvec);
1266			spin_lock_irq(&zone->lru_lock);
1267		}
1268	}
1269	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1270	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1271
1272	spin_unlock_irq(&zone->lru_lock);
1273	pagevec_release(&pvec);
1274}
1275
1276static noinline_for_stack void update_isolated_counts(struct zone *zone,
1277					struct scan_control *sc,
1278					unsigned long *nr_anon,
1279					unsigned long *nr_file,
1280					struct list_head *isolated_list)
1281{
1282	unsigned long nr_active;
1283	unsigned int count[NR_LRU_LISTS] = { 0, };
1284	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1285
1286	nr_active = clear_active_flags(isolated_list, count);
1287	__count_vm_events(PGDEACTIVATE, nr_active);
1288
1289	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1290			      -count[LRU_ACTIVE_FILE]);
1291	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1292			      -count[LRU_INACTIVE_FILE]);
1293	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1294			      -count[LRU_ACTIVE_ANON]);
1295	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1296			      -count[LRU_INACTIVE_ANON]);
1297
1298	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1299	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1300	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1301	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1302
1303	reclaim_stat->recent_scanned[0] += *nr_anon;
1304	reclaim_stat->recent_scanned[1] += *nr_file;
1305}
1306
1307/*
1308 * Returns true if the caller should wait to clean dirty/writeback pages.
1309 *
1310 * If we are direct reclaiming for contiguous pages and we do not reclaim
1311 * everything in the list, try again and wait for writeback IO to complete.
1312 * This will stall high-order allocations noticeably. Only do that when really
1313 * need to free the pages under high memory pressure.
1314 */
1315static inline bool should_reclaim_stall(unsigned long nr_taken,
1316					unsigned long nr_freed,
1317					int priority,
1318					struct scan_control *sc)
1319{
1320	int lumpy_stall_priority;
1321
1322	/* kswapd should not stall on sync IO */
1323	if (current_is_kswapd())
1324		return false;
1325
1326	/* Only stall on lumpy reclaim */
1327	if (sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
1328		return false;
1329
1330	/* If we have relaimed everything on the isolated list, no stall */
1331	if (nr_freed == nr_taken)
1332		return false;
1333
1334	/*
1335	 * For high-order allocations, there are two stall thresholds.
1336	 * High-cost allocations stall immediately where as lower
1337	 * order allocations such as stacks require the scanning
1338	 * priority to be much higher before stalling.
1339	 */
1340	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1341		lumpy_stall_priority = DEF_PRIORITY;
1342	else
1343		lumpy_stall_priority = DEF_PRIORITY / 3;
1344
1345	return priority <= lumpy_stall_priority;
1346}
1347
1348/*
1349 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1350 * of reclaimed pages
1351 */
1352static noinline_for_stack unsigned long
1353shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1354			struct scan_control *sc, int priority, int file)
1355{
1356	LIST_HEAD(page_list);
1357	unsigned long nr_scanned;
1358	unsigned long nr_reclaimed = 0;
1359	unsigned long nr_taken;
1360	unsigned long nr_anon;
1361	unsigned long nr_file;
1362
1363	while (unlikely(too_many_isolated(zone, file, sc))) {
1364		congestion_wait(BLK_RW_ASYNC, HZ/10);
1365
1366		/* We are about to die and free our memory. Return now. */
1367		if (fatal_signal_pending(current))
1368			return SWAP_CLUSTER_MAX;
1369	}
1370
1371	set_lumpy_reclaim_mode(priority, sc, false);
1372	lru_add_drain();
1373	spin_lock_irq(&zone->lru_lock);
1374
1375	if (scanning_global_lru(sc)) {
1376		nr_taken = isolate_pages_global(nr_to_scan,
1377			&page_list, &nr_scanned, sc->order,
1378			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
1379					ISOLATE_INACTIVE : ISOLATE_BOTH,
1380			zone, 0, file);
1381		zone->pages_scanned += nr_scanned;
1382		if (current_is_kswapd())
1383			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1384					       nr_scanned);
1385		else
1386			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1387					       nr_scanned);
1388	} else {
1389		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1390			&page_list, &nr_scanned, sc->order,
1391			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
1392					ISOLATE_INACTIVE : ISOLATE_BOTH,
1393			zone, sc->mem_cgroup,
1394			0, file);
1395		/*
1396		 * mem_cgroup_isolate_pages() keeps track of
1397		 * scanned pages on its own.
1398		 */
1399	}
1400
1401	if (nr_taken == 0) {
1402		spin_unlock_irq(&zone->lru_lock);
1403		return 0;
1404	}
1405
1406	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1407
1408	spin_unlock_irq(&zone->lru_lock);
1409
1410	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1411
1412	/* Check if we should syncronously wait for writeback */
1413	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1414		set_lumpy_reclaim_mode(priority, sc, true);
1415		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1416	}
1417
1418	local_irq_disable();
1419	if (current_is_kswapd())
1420		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1421	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1422
1423	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1424
1425	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1426		zone_idx(zone),
1427		nr_scanned, nr_reclaimed,
1428		priority,
1429		trace_shrink_flags(file, sc->lumpy_reclaim_mode));
1430	return nr_reclaimed;
1431}
1432
1433/*
1434 * This moves pages from the active list to the inactive list.
1435 *
1436 * We move them the other way if the page is referenced by one or more
1437 * processes, from rmap.
1438 *
1439 * If the pages are mostly unmapped, the processing is fast and it is
1440 * appropriate to hold zone->lru_lock across the whole operation.  But if
1441 * the pages are mapped, the processing is slow (page_referenced()) so we
1442 * should drop zone->lru_lock around each page.  It's impossible to balance
1443 * this, so instead we remove the pages from the LRU while processing them.
1444 * It is safe to rely on PG_active against the non-LRU pages in here because
1445 * nobody will play with that bit on a non-LRU page.
1446 *
1447 * The downside is that we have to touch page->_count against each page.
1448 * But we had to alter page->flags anyway.
1449 */
1450
1451static void move_active_pages_to_lru(struct zone *zone,
1452				     struct list_head *list,
1453				     enum lru_list lru)
1454{
1455	unsigned long pgmoved = 0;
1456	struct pagevec pvec;
1457	struct page *page;
1458
1459	pagevec_init(&pvec, 1);
1460
1461	while (!list_empty(list)) {
1462		page = lru_to_page(list);
1463
1464		VM_BUG_ON(PageLRU(page));
1465		SetPageLRU(page);
1466
1467		list_move(&page->lru, &zone->lru[lru].list);
1468		mem_cgroup_add_lru_list(page, lru);
1469		pgmoved++;
1470
1471		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1472			spin_unlock_irq(&zone->lru_lock);
1473			if (buffer_heads_over_limit)
1474				pagevec_strip(&pvec);
1475			__pagevec_release(&pvec);
1476			spin_lock_irq(&zone->lru_lock);
1477		}
1478	}
1479	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1480	if (!is_active_lru(lru))
1481		__count_vm_events(PGDEACTIVATE, pgmoved);
1482}
1483
1484static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1485			struct scan_control *sc, int priority, int file)
1486{
1487	unsigned long nr_taken;
1488	unsigned long pgscanned;
1489	unsigned long vm_flags;
1490	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1491	LIST_HEAD(l_active);
1492	LIST_HEAD(l_inactive);
1493	struct page *page;
1494	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1495	unsigned long nr_rotated = 0;
1496
1497	lru_add_drain();
1498	spin_lock_irq(&zone->lru_lock);
1499	if (scanning_global_lru(sc)) {
1500		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1501						&pgscanned, sc->order,
1502						ISOLATE_ACTIVE, zone,
1503						1, file);
1504		zone->pages_scanned += pgscanned;
1505	} else {
1506		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1507						&pgscanned, sc->order,
1508						ISOLATE_ACTIVE, zone,
1509						sc->mem_cgroup, 1, file);
1510		/*
1511		 * mem_cgroup_isolate_pages() keeps track of
1512		 * scanned pages on its own.
1513		 */
1514	}
1515
1516	reclaim_stat->recent_scanned[file] += nr_taken;
1517
1518	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1519	if (file)
1520		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1521	else
1522		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1523	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1524	spin_unlock_irq(&zone->lru_lock);
1525
1526	while (!list_empty(&l_hold)) {
1527		cond_resched();
1528		page = lru_to_page(&l_hold);
1529		list_del(&page->lru);
1530
1531		if (unlikely(!page_evictable(page, NULL))) {
1532			putback_lru_page(page);
1533			continue;
1534		}
1535
1536		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1537			nr_rotated++;
1538			/*
1539			 * Identify referenced, file-backed active pages and
1540			 * give them one more trip around the active list. So
1541			 * that executable code get better chances to stay in
1542			 * memory under moderate memory pressure.  Anon pages
1543			 * are not likely to be evicted by use-once streaming
1544			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1545			 * so we ignore them here.
1546			 */
1547			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1548				list_add(&page->lru, &l_active);
1549				continue;
1550			}
1551		}
1552
1553		ClearPageActive(page);	/* we are de-activating */
1554		list_add(&page->lru, &l_inactive);
1555	}
1556
1557	/*
1558	 * Move pages back to the lru list.
1559	 */
1560	spin_lock_irq(&zone->lru_lock);
1561	/*
1562	 * Count referenced pages from currently used mappings as rotated,
1563	 * even though only some of them are actually re-activated.  This
1564	 * helps balance scan pressure between file and anonymous pages in
1565	 * get_scan_ratio.
1566	 */
1567	reclaim_stat->recent_rotated[file] += nr_rotated;
1568
1569	move_active_pages_to_lru(zone, &l_active,
1570						LRU_ACTIVE + file * LRU_FILE);
1571	move_active_pages_to_lru(zone, &l_inactive,
1572						LRU_BASE   + file * LRU_FILE);
1573	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1574	spin_unlock_irq(&zone->lru_lock);
1575}
1576
1577#ifdef CONFIG_SWAP
1578static int inactive_anon_is_low_global(struct zone *zone)
1579{
1580	unsigned long active, inactive;
1581
1582	active = zone_page_state(zone, NR_ACTIVE_ANON);
1583	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1584
1585	if (inactive * zone->inactive_ratio < active)
1586		return 1;
1587
1588	return 0;
1589}
1590
1591/**
1592 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1593 * @zone: zone to check
1594 * @sc:   scan control of this context
1595 *
1596 * Returns true if the zone does not have enough inactive anon pages,
1597 * meaning some active anon pages need to be deactivated.
1598 */
1599static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1600{
1601	int low;
1602
1603	/*
1604	 * If we don't have swap space, anonymous page deactivation
1605	 * is pointless.
1606	 */
1607	if (!total_swap_pages)
1608		return 0;
1609
1610	if (scanning_global_lru(sc))
1611		low = inactive_anon_is_low_global(zone);
1612	else
1613		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1614	return low;
1615}
1616#else
1617static inline int inactive_anon_is_low(struct zone *zone,
1618					struct scan_control *sc)
1619{
1620	return 0;
1621}
1622#endif
1623
1624static int inactive_file_is_low_global(struct zone *zone)
1625{
1626	unsigned long active, inactive;
1627
1628	active = zone_page_state(zone, NR_ACTIVE_FILE);
1629	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1630
1631	return (active > inactive);
1632}
1633
1634/**
1635 * inactive_file_is_low - check if file pages need to be deactivated
1636 * @zone: zone to check
1637 * @sc:   scan control of this context
1638 *
1639 * When the system is doing streaming IO, memory pressure here
1640 * ensures that active file pages get deactivated, until more
1641 * than half of the file pages are on the inactive list.
1642 *
1643 * Once we get to that situation, protect the system's working
1644 * set from being evicted by disabling active file page aging.
1645 *
1646 * This uses a different ratio than the anonymous pages, because
1647 * the page cache uses a use-once replacement algorithm.
1648 */
1649static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1650{
1651	int low;
1652
1653	if (scanning_global_lru(sc))
1654		low = inactive_file_is_low_global(zone);
1655	else
1656		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1657	return low;
1658}
1659
1660static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1661				int file)
1662{
1663	if (file)
1664		return inactive_file_is_low(zone, sc);
1665	else
1666		return inactive_anon_is_low(zone, sc);
1667}
1668
1669static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1670	struct zone *zone, struct scan_control *sc, int priority)
1671{
1672	int file = is_file_lru(lru);
1673
1674	if (is_active_lru(lru)) {
1675		if (inactive_list_is_low(zone, sc, file))
1676		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1677		return 0;
1678	}
1679
1680	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1681}
1682
1683/*
1684 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1685 * until we collected @swap_cluster_max pages to scan.
1686 */
1687static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1688				       unsigned long *nr_saved_scan)
1689{
1690	unsigned long nr;
1691
1692	*nr_saved_scan += nr_to_scan;
1693	nr = *nr_saved_scan;
1694
1695	if (nr >= SWAP_CLUSTER_MAX)
1696		*nr_saved_scan = 0;
1697	else
1698		nr = 0;
1699
1700	return nr;
1701}
1702
1703/*
1704 * Determine how aggressively the anon and file LRU lists should be
1705 * scanned.  The relative value of each set of LRU lists is determined
1706 * by looking at the fraction of the pages scanned we did rotate back
1707 * onto the active list instead of evict.
1708 *
1709 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1710 */
1711static void get_scan_count(struct zone *zone, struct scan_control *sc,
1712					unsigned long *nr, int priority)
1713{
1714	unsigned long anon, file, free;
1715	unsigned long anon_prio, file_prio;
1716	unsigned long ap, fp;
1717	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1718	u64 fraction[2], denominator;
1719	enum lru_list l;
1720	int noswap = 0;
1721
1722	/* If we have no swap space, do not bother scanning anon pages. */
1723	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1724		noswap = 1;
1725		fraction[0] = 0;
1726		fraction[1] = 1;
1727		denominator = 1;
1728		goto out;
1729	}
1730
1731	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1732		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1733	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1734		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1735
1736	if (scanning_global_lru(sc)) {
1737		free  = zone_page_state(zone, NR_FREE_PAGES);
1738		/* If we have very few page cache pages,
1739		   force-scan anon pages. */
1740		if (unlikely(file + free <= high_wmark_pages(zone))) {
1741			fraction[0] = 1;
1742			fraction[1] = 0;
1743			denominator = 1;
1744			goto out;
1745		}
1746	}
1747
1748	/*
1749	 * With swappiness at 100, anonymous and file have the same priority.
1750	 * This scanning priority is essentially the inverse of IO cost.
1751	 */
1752	anon_prio = sc->swappiness;
1753	file_prio = 200 - sc->swappiness;
1754
1755	/*
1756	 * OK, so we have swap space and a fair amount of page cache
1757	 * pages.  We use the recently rotated / recently scanned
1758	 * ratios to determine how valuable each cache is.
1759	 *
1760	 * Because workloads change over time (and to avoid overflow)
1761	 * we keep these statistics as a floating average, which ends
1762	 * up weighing recent references more than old ones.
1763	 *
1764	 * anon in [0], file in [1]
1765	 */
1766	spin_lock_irq(&zone->lru_lock);
1767	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1768		reclaim_stat->recent_scanned[0] /= 2;
1769		reclaim_stat->recent_rotated[0] /= 2;
1770	}
1771
1772	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1773		reclaim_stat->recent_scanned[1] /= 2;
1774		reclaim_stat->recent_rotated[1] /= 2;
1775	}
1776
1777	/*
1778	 * The amount of pressure on anon vs file pages is inversely
1779	 * proportional to the fraction of recently scanned pages on
1780	 * each list that were recently referenced and in active use.
1781	 */
1782	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1783	ap /= reclaim_stat->recent_rotated[0] + 1;
1784
1785	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1786	fp /= reclaim_stat->recent_rotated[1] + 1;
1787	spin_unlock_irq(&zone->lru_lock);
1788
1789	fraction[0] = ap;
1790	fraction[1] = fp;
1791	denominator = ap + fp + 1;
1792out:
1793	for_each_evictable_lru(l) {
1794		int file = is_file_lru(l);
1795		unsigned long scan;
1796
1797		scan = zone_nr_lru_pages(zone, sc, l);
1798		if (priority || noswap) {
1799			scan >>= priority;
1800			scan = div64_u64(scan * fraction[file], denominator);
1801		}
1802		nr[l] = nr_scan_try_batch(scan,
1803					  &reclaim_stat->nr_saved_scan[l]);
1804	}
1805}
1806
1807/*
1808 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1809 */
1810static void shrink_zone(int priority, struct zone *zone,
1811				struct scan_control *sc)
1812{
1813	unsigned long nr[NR_LRU_LISTS];
1814	unsigned long nr_to_scan;
1815	enum lru_list l;
1816	unsigned long nr_reclaimed = sc->nr_reclaimed;
1817	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1818
1819	get_scan_count(zone, sc, nr, priority);
1820
1821	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1822					nr[LRU_INACTIVE_FILE]) {
1823		for_each_evictable_lru(l) {
1824			if (nr[l]) {
1825				nr_to_scan = min_t(unsigned long,
1826						   nr[l], SWAP_CLUSTER_MAX);
1827				nr[l] -= nr_to_scan;
1828
1829				nr_reclaimed += shrink_list(l, nr_to_scan,
1830							    zone, sc, priority);
1831			}
1832		}
1833		/*
1834		 * On large memory systems, scan >> priority can become
1835		 * really large. This is fine for the starting priority;
1836		 * we want to put equal scanning pressure on each zone.
1837		 * However, if the VM has a harder time of freeing pages,
1838		 * with multiple processes reclaiming pages, the total
1839		 * freeing target can get unreasonably large.
1840		 */
1841		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1842			break;
1843	}
1844
1845	sc->nr_reclaimed = nr_reclaimed;
1846
1847	/*
1848	 * Even if we did not try to evict anon pages at all, we want to
1849	 * rebalance the anon lru active/inactive ratio.
1850	 */
1851	if (inactive_anon_is_low(zone, sc))
1852		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1853
1854	throttle_vm_writeout(sc->gfp_mask);
1855}
1856
1857/*
1858 * This is the direct reclaim path, for page-allocating processes.  We only
1859 * try to reclaim pages from zones which will satisfy the caller's allocation
1860 * request.
1861 *
1862 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1863 * Because:
1864 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1865 *    allocation or
1866 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1867 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1868 *    zone defense algorithm.
1869 *
1870 * If a zone is deemed to be full of pinned pages then just give it a light
1871 * scan then give up on it.
1872 */
1873static void shrink_zones(int priority, struct zonelist *zonelist,
1874					struct scan_control *sc)
1875{
1876	struct zoneref *z;
1877	struct zone *zone;
1878
1879	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1880					gfp_zone(sc->gfp_mask), sc->nodemask) {
1881		if (!populated_zone(zone))
1882			continue;
1883		/*
1884		 * Take care memory controller reclaiming has small influence
1885		 * to global LRU.
1886		 */
1887		if (scanning_global_lru(sc)) {
1888			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1889				continue;
1890			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1891				continue;	/* Let kswapd poll it */
1892		}
1893
1894		shrink_zone(priority, zone, sc);
1895	}
1896}
1897
1898static bool zone_reclaimable(struct zone *zone)
1899{
1900	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1901}
1902
1903/*
1904 * As hibernation is going on, kswapd is freezed so that it can't mark
1905 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1906 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1907 */
1908static bool all_unreclaimable(struct zonelist *zonelist,
1909		struct scan_control *sc)
1910{
1911	struct zoneref *z;
1912	struct zone *zone;
1913	bool all_unreclaimable = true;
1914
1915	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1916			gfp_zone(sc->gfp_mask), sc->nodemask) {
1917		if (!populated_zone(zone))
1918			continue;
1919		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1920			continue;
1921		if (zone_reclaimable(zone)) {
1922			all_unreclaimable = false;
1923			break;
1924		}
1925	}
1926
1927	return all_unreclaimable;
1928}
1929
1930/*
1931 * This is the main entry point to direct page reclaim.
1932 *
1933 * If a full scan of the inactive list fails to free enough memory then we
1934 * are "out of memory" and something needs to be killed.
1935 *
1936 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1937 * high - the zone may be full of dirty or under-writeback pages, which this
1938 * caller can't do much about.  We kick the writeback threads and take explicit
1939 * naps in the hope that some of these pages can be written.  But if the
1940 * allocating task holds filesystem locks which prevent writeout this might not
1941 * work, and the allocation attempt will fail.
1942 *
1943 * returns:	0, if no pages reclaimed
1944 * 		else, the number of pages reclaimed
1945 */
1946static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1947					struct scan_control *sc)
1948{
1949	int priority;
1950	unsigned long total_scanned = 0;
1951	struct reclaim_state *reclaim_state = current->reclaim_state;
1952	struct zoneref *z;
1953	struct zone *zone;
1954	unsigned long writeback_threshold;
1955
1956	get_mems_allowed();
1957	delayacct_freepages_start();
1958
1959	if (scanning_global_lru(sc))
1960		count_vm_event(ALLOCSTALL);
1961
1962	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1963		sc->nr_scanned = 0;
1964		if (!priority)
1965			disable_swap_token();
1966		shrink_zones(priority, zonelist, sc);
1967		/*
1968		 * Don't shrink slabs when reclaiming memory from
1969		 * over limit cgroups
1970		 */
1971		if (scanning_global_lru(sc)) {
1972			unsigned long lru_pages = 0;
1973			for_each_zone_zonelist(zone, z, zonelist,
1974					gfp_zone(sc->gfp_mask)) {
1975				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1976					continue;
1977
1978				lru_pages += zone_reclaimable_pages(zone);
1979			}
1980
1981			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1982			if (reclaim_state) {
1983				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1984				reclaim_state->reclaimed_slab = 0;
1985			}
1986		}
1987		total_scanned += sc->nr_scanned;
1988		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1989			goto out;
1990
1991		/*
1992		 * Try to write back as many pages as we just scanned.  This
1993		 * tends to cause slow streaming writers to write data to the
1994		 * disk smoothly, at the dirtying rate, which is nice.   But
1995		 * that's undesirable in laptop mode, where we *want* lumpy
1996		 * writeout.  So in laptop mode, write out the whole world.
1997		 */
1998		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1999		if (total_scanned > writeback_threshold) {
2000			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2001			sc->may_writepage = 1;
2002		}
2003
2004		/* Take a nap, wait for some writeback to complete */
2005		if (!sc->hibernation_mode && sc->nr_scanned &&
2006		    priority < DEF_PRIORITY - 2) {
2007			struct zone *preferred_zone;
2008
2009			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2010							NULL, &preferred_zone);
2011			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2012		}
2013	}
2014
2015out:
2016	delayacct_freepages_end();
2017	put_mems_allowed();
2018
2019	if (sc->nr_reclaimed)
2020		return sc->nr_reclaimed;
2021
2022	/* top priority shrink_zones still had more to do? don't OOM, then */
2023	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2024		return 1;
2025
2026	return 0;
2027}
2028
2029unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2030				gfp_t gfp_mask, nodemask_t *nodemask)
2031{
2032	unsigned long nr_reclaimed;
2033	struct scan_control sc = {
2034		.gfp_mask = gfp_mask,
2035		.may_writepage = !laptop_mode,
2036		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2037		.may_unmap = 1,
2038		.may_swap = 1,
2039		.swappiness = vm_swappiness,
2040		.order = order,
2041		.mem_cgroup = NULL,
2042		.nodemask = nodemask,
2043	};
2044
2045	trace_mm_vmscan_direct_reclaim_begin(order,
2046				sc.may_writepage,
2047				gfp_mask);
2048
2049	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2050
2051	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2052
2053	return nr_reclaimed;
2054}
2055
2056#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2057
2058unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2059						gfp_t gfp_mask, bool noswap,
2060						unsigned int swappiness,
2061						struct zone *zone)
2062{
2063	struct scan_control sc = {
2064		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2065		.may_writepage = !laptop_mode,
2066		.may_unmap = 1,
2067		.may_swap = !noswap,
2068		.swappiness = swappiness,
2069		.order = 0,
2070		.mem_cgroup = mem,
2071	};
2072	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2073			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2074
2075	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2076						      sc.may_writepage,
2077						      sc.gfp_mask);
2078
2079	/*
2080	 * NOTE: Although we can get the priority field, using it
2081	 * here is not a good idea, since it limits the pages we can scan.
2082	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2083	 * will pick up pages from other mem cgroup's as well. We hack
2084	 * the priority and make it zero.
2085	 */
2086	shrink_zone(0, zone, &sc);
2087
2088	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2089
2090	return sc.nr_reclaimed;
2091}
2092
2093unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2094					   gfp_t gfp_mask,
2095					   bool noswap,
2096					   unsigned int swappiness)
2097{
2098	struct zonelist *zonelist;
2099	unsigned long nr_reclaimed;
2100	struct scan_control sc = {
2101		.may_writepage = !laptop_mode,
2102		.may_unmap = 1,
2103		.may_swap = !noswap,
2104		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2105		.swappiness = swappiness,
2106		.order = 0,
2107		.mem_cgroup = mem_cont,
2108		.nodemask = NULL, /* we don't care the placement */
2109	};
2110
2111	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2112			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2113	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2114
2115	trace_mm_vmscan_memcg_reclaim_begin(0,
2116					    sc.may_writepage,
2117					    sc.gfp_mask);
2118
2119	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2120
2121	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2122
2123	return nr_reclaimed;
2124}
2125#endif
2126
2127/* is kswapd sleeping prematurely? */
2128static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2129{
2130	int i;
2131
2132	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2133	if (remaining)
2134		return 1;
2135
2136	/* If after HZ/10, a zone is below the high mark, it's premature */
2137	for (i = 0; i < pgdat->nr_zones; i++) {
2138		struct zone *zone = pgdat->node_zones + i;
2139
2140		if (!populated_zone(zone))
2141			continue;
2142
2143		if (zone->all_unreclaimable)
2144			continue;
2145
2146		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2147								0, 0))
2148			return 1;
2149	}
2150
2151	return 0;
2152}
2153
2154/*
2155 * For kswapd, balance_pgdat() will work across all this node's zones until
2156 * they are all at high_wmark_pages(zone).
2157 *
2158 * Returns the number of pages which were actually freed.
2159 *
2160 * There is special handling here for zones which are full of pinned pages.
2161 * This can happen if the pages are all mlocked, or if they are all used by
2162 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2163 * What we do is to detect the case where all pages in the zone have been
2164 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2165 * dead and from now on, only perform a short scan.  Basically we're polling
2166 * the zone for when the problem goes away.
2167 *
2168 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2169 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2170 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2171 * lower zones regardless of the number of free pages in the lower zones. This
2172 * interoperates with the page allocator fallback scheme to ensure that aging
2173 * of pages is balanced across the zones.
2174 */
2175static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2176{
2177	int all_zones_ok;
2178	int priority;
2179	int i;
2180	unsigned long total_scanned;
2181	struct reclaim_state *reclaim_state = current->reclaim_state;
2182	struct scan_control sc = {
2183		.gfp_mask = GFP_KERNEL,
2184		.may_unmap = 1,
2185		.may_swap = 1,
2186		/*
2187		 * kswapd doesn't want to be bailed out while reclaim. because
2188		 * we want to put equal scanning pressure on each zone.
2189		 */
2190		.nr_to_reclaim = ULONG_MAX,
2191		.swappiness = vm_swappiness,
2192		.order = order,
2193		.mem_cgroup = NULL,
2194	};
2195loop_again:
2196	total_scanned = 0;
2197	sc.nr_reclaimed = 0;
2198	sc.may_writepage = !laptop_mode;
2199	count_vm_event(PAGEOUTRUN);
2200
2201	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2202		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2203		unsigned long lru_pages = 0;
2204		int has_under_min_watermark_zone = 0;
2205
2206		/* The swap token gets in the way of swapout... */
2207		if (!priority)
2208			disable_swap_token();
2209
2210		all_zones_ok = 1;
2211
2212		/*
2213		 * Scan in the highmem->dma direction for the highest
2214		 * zone which needs scanning
2215		 */
2216		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2217			struct zone *zone = pgdat->node_zones + i;
2218
2219			if (!populated_zone(zone))
2220				continue;
2221
2222			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2223				continue;
2224
2225			/*
2226			 * Do some background aging of the anon list, to give
2227			 * pages a chance to be referenced before reclaiming.
2228			 */
2229			if (inactive_anon_is_low(zone, &sc))
2230				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2231							&sc, priority, 0);
2232
2233			if (!zone_watermark_ok_safe(zone, order,
2234					high_wmark_pages(zone), 0, 0)) {
2235				end_zone = i;
2236				break;
2237			}
2238		}
2239		if (i < 0)
2240			goto out;
2241
2242		for (i = 0; i <= end_zone; i++) {
2243			struct zone *zone = pgdat->node_zones + i;
2244
2245			lru_pages += zone_reclaimable_pages(zone);
2246		}
2247
2248		/*
2249		 * Now scan the zone in the dma->highmem direction, stopping
2250		 * at the last zone which needs scanning.
2251		 *
2252		 * We do this because the page allocator works in the opposite
2253		 * direction.  This prevents the page allocator from allocating
2254		 * pages behind kswapd's direction of progress, which would
2255		 * cause too much scanning of the lower zones.
2256		 */
2257		for (i = 0; i <= end_zone; i++) {
2258			struct zone *zone = pgdat->node_zones + i;
2259			int nr_slab;
2260
2261			if (!populated_zone(zone))
2262				continue;
2263
2264			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2265				continue;
2266
2267			sc.nr_scanned = 0;
2268
2269			/*
2270			 * Call soft limit reclaim before calling shrink_zone.
2271			 * For now we ignore the return value
2272			 */
2273			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2274
2275			/*
2276			 * We put equal pressure on every zone, unless one
2277			 * zone has way too many pages free already.
2278			 */
2279			if (!zone_watermark_ok_safe(zone, order,
2280					8*high_wmark_pages(zone), end_zone, 0))
2281				shrink_zone(priority, zone, &sc);
2282			reclaim_state->reclaimed_slab = 0;
2283			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2284						lru_pages);
2285			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2286			total_scanned += sc.nr_scanned;
2287			if (zone->all_unreclaimable)
2288				continue;
2289			if (nr_slab == 0 && !zone_reclaimable(zone))
2290				zone->all_unreclaimable = 1;
2291			/*
2292			 * If we've done a decent amount of scanning and
2293			 * the reclaim ratio is low, start doing writepage
2294			 * even in laptop mode
2295			 */
2296			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2297			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2298				sc.may_writepage = 1;
2299
2300			if (!zone_watermark_ok_safe(zone, order,
2301					high_wmark_pages(zone), end_zone, 0)) {
2302				all_zones_ok = 0;
2303				/*
2304				 * We are still under min water mark.  This
2305				 * means that we have a GFP_ATOMIC allocation
2306				 * failure risk. Hurry up!
2307				 */
2308				if (!zone_watermark_ok_safe(zone, order,
2309					    min_wmark_pages(zone), end_zone, 0))
2310					has_under_min_watermark_zone = 1;
2311			} else {
2312				/*
2313				 * If a zone reaches its high watermark,
2314				 * consider it to be no longer congested. It's
2315				 * possible there are dirty pages backed by
2316				 * congested BDIs but as pressure is relieved,
2317				 * spectulatively avoid congestion waits
2318				 */
2319				zone_clear_flag(zone, ZONE_CONGESTED);
2320			}
2321
2322		}
2323		if (all_zones_ok)
2324			break;		/* kswapd: all done */
2325		/*
2326		 * OK, kswapd is getting into trouble.  Take a nap, then take
2327		 * another pass across the zones.
2328		 */
2329		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2330			if (has_under_min_watermark_zone)
2331				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2332			else
2333				congestion_wait(BLK_RW_ASYNC, HZ/10);
2334		}
2335
2336		/*
2337		 * We do this so kswapd doesn't build up large priorities for
2338		 * example when it is freeing in parallel with allocators. It
2339		 * matches the direct reclaim path behaviour in terms of impact
2340		 * on zone->*_priority.
2341		 */
2342		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2343			break;
2344	}
2345out:
2346	if (!all_zones_ok) {
2347		cond_resched();
2348
2349		try_to_freeze();
2350
2351		/*
2352		 * Fragmentation may mean that the system cannot be
2353		 * rebalanced for high-order allocations in all zones.
2354		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2355		 * it means the zones have been fully scanned and are still
2356		 * not balanced. For high-order allocations, there is
2357		 * little point trying all over again as kswapd may
2358		 * infinite loop.
2359		 *
2360		 * Instead, recheck all watermarks at order-0 as they
2361		 * are the most important. If watermarks are ok, kswapd will go
2362		 * back to sleep. High-order users can still perform direct
2363		 * reclaim if they wish.
2364		 */
2365		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2366			order = sc.order = 0;
2367
2368		goto loop_again;
2369	}
2370
2371	return sc.nr_reclaimed;
2372}
2373
2374/*
2375 * The background pageout daemon, started as a kernel thread
2376 * from the init process.
2377 *
2378 * This basically trickles out pages so that we have _some_
2379 * free memory available even if there is no other activity
2380 * that frees anything up. This is needed for things like routing
2381 * etc, where we otherwise might have all activity going on in
2382 * asynchronous contexts that cannot page things out.
2383 *
2384 * If there are applications that are active memory-allocators
2385 * (most normal use), this basically shouldn't matter.
2386 */
2387static int kswapd(void *p)
2388{
2389	unsigned long order;
2390	pg_data_t *pgdat = (pg_data_t*)p;
2391	struct task_struct *tsk = current;
2392	DEFINE_WAIT(wait);
2393	struct reclaim_state reclaim_state = {
2394		.reclaimed_slab = 0,
2395	};
2396	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2397
2398	lockdep_set_current_reclaim_state(GFP_KERNEL);
2399
2400	if (!cpumask_empty(cpumask))
2401		set_cpus_allowed_ptr(tsk, cpumask);
2402	current->reclaim_state = &reclaim_state;
2403
2404	/*
2405	 * Tell the memory management that we're a "memory allocator",
2406	 * and that if we need more memory we should get access to it
2407	 * regardless (see "__alloc_pages()"). "kswapd" should
2408	 * never get caught in the normal page freeing logic.
2409	 *
2410	 * (Kswapd normally doesn't need memory anyway, but sometimes
2411	 * you need a small amount of memory in order to be able to
2412	 * page out something else, and this flag essentially protects
2413	 * us from recursively trying to free more memory as we're
2414	 * trying to free the first piece of memory in the first place).
2415	 */
2416	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2417	set_freezable();
2418
2419	order = 0;
2420	for ( ; ; ) {
2421		unsigned long new_order;
2422		int ret;
2423
2424		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2425		new_order = pgdat->kswapd_max_order;
2426		pgdat->kswapd_max_order = 0;
2427		if (order < new_order) {
2428			/*
2429			 * Don't sleep if someone wants a larger 'order'
2430			 * allocation
2431			 */
2432			order = new_order;
2433		} else {
2434			if (!freezing(current) && !kthread_should_stop()) {
2435				long remaining = 0;
2436
2437				/* Try to sleep for a short interval */
2438				if (!sleeping_prematurely(pgdat, order, remaining)) {
2439					remaining = schedule_timeout(HZ/10);
2440					finish_wait(&pgdat->kswapd_wait, &wait);
2441					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2442				}
2443
2444				/*
2445				 * After a short sleep, check if it was a
2446				 * premature sleep. If not, then go fully
2447				 * to sleep until explicitly woken up
2448				 */
2449				if (!sleeping_prematurely(pgdat, order, remaining)) {
2450					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2451					restore_pgdat_percpu_threshold(pgdat);
2452					schedule();
2453					reduce_pgdat_percpu_threshold(pgdat);
2454				} else {
2455					if (remaining)
2456						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2457					else
2458						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2459				}
2460			}
2461
2462			order = pgdat->kswapd_max_order;
2463		}
2464		finish_wait(&pgdat->kswapd_wait, &wait);
2465
2466		ret = try_to_freeze();
2467		if (kthread_should_stop())
2468			break;
2469
2470		/*
2471		 * We can speed up thawing tasks if we don't call balance_pgdat
2472		 * after returning from the refrigerator
2473		 */
2474		if (!ret) {
2475			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2476			balance_pgdat(pgdat, order);
2477		}
2478	}
2479	return 0;
2480}
2481
2482/*
2483 * A zone is low on free memory, so wake its kswapd task to service it.
2484 */
2485void wakeup_kswapd(struct zone *zone, int order)
2486{
2487	pg_data_t *pgdat;
2488
2489	if (!populated_zone(zone))
2490		return;
2491
2492	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2493		return;
2494	pgdat = zone->zone_pgdat;
2495	if (pgdat->kswapd_max_order < order)
2496		pgdat->kswapd_max_order = order;
2497	if (!waitqueue_active(&pgdat->kswapd_wait))
2498		return;
2499	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2500		return;
2501
2502	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2503	wake_up_interruptible(&pgdat->kswapd_wait);
2504}
2505
2506/*
2507 * The reclaimable count would be mostly accurate.
2508 * The less reclaimable pages may be
2509 * - mlocked pages, which will be moved to unevictable list when encountered
2510 * - mapped pages, which may require several travels to be reclaimed
2511 * - dirty pages, which is not "instantly" reclaimable
2512 */
2513unsigned long global_reclaimable_pages(void)
2514{
2515	int nr;
2516
2517	nr = global_page_state(NR_ACTIVE_FILE) +
2518	     global_page_state(NR_INACTIVE_FILE);
2519
2520	if (nr_swap_pages > 0)
2521		nr += global_page_state(NR_ACTIVE_ANON) +
2522		      global_page_state(NR_INACTIVE_ANON);
2523
2524	return nr;
2525}
2526
2527unsigned long zone_reclaimable_pages(struct zone *zone)
2528{
2529	int nr;
2530
2531	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2532	     zone_page_state(zone, NR_INACTIVE_FILE);
2533
2534	if (nr_swap_pages > 0)
2535		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2536		      zone_page_state(zone, NR_INACTIVE_ANON);
2537
2538	return nr;
2539}
2540
2541#ifdef CONFIG_HIBERNATION
2542/*
2543 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2544 * freed pages.
2545 *
2546 * Rather than trying to age LRUs the aim is to preserve the overall
2547 * LRU order by reclaiming preferentially
2548 * inactive > active > active referenced > active mapped
2549 */
2550unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2551{
2552	struct reclaim_state reclaim_state;
2553	struct scan_control sc = {
2554		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2555		.may_swap = 1,
2556		.may_unmap = 1,
2557		.may_writepage = 1,
2558		.nr_to_reclaim = nr_to_reclaim,
2559		.hibernation_mode = 1,
2560		.swappiness = vm_swappiness,
2561		.order = 0,
2562	};
2563	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2564	struct task_struct *p = current;
2565	unsigned long nr_reclaimed;
2566
2567	p->flags |= PF_MEMALLOC;
2568	lockdep_set_current_reclaim_state(sc.gfp_mask);
2569	reclaim_state.reclaimed_slab = 0;
2570	p->reclaim_state = &reclaim_state;
2571
2572	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2573
2574	p->reclaim_state = NULL;
2575	lockdep_clear_current_reclaim_state();
2576	p->flags &= ~PF_MEMALLOC;
2577
2578	return nr_reclaimed;
2579}
2580#endif /* CONFIG_HIBERNATION */
2581
2582/* It's optimal to keep kswapds on the same CPUs as their memory, but
2583   not required for correctness.  So if the last cpu in a node goes
2584   away, we get changed to run anywhere: as the first one comes back,
2585   restore their cpu bindings. */
2586static int __devinit cpu_callback(struct notifier_block *nfb,
2587				  unsigned long action, void *hcpu)
2588{
2589	int nid;
2590
2591	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2592		for_each_node_state(nid, N_HIGH_MEMORY) {
2593			pg_data_t *pgdat = NODE_DATA(nid);
2594			const struct cpumask *mask;
2595
2596			mask = cpumask_of_node(pgdat->node_id);
2597
2598			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2599				/* One of our CPUs online: restore mask */
2600				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2601		}
2602	}
2603	return NOTIFY_OK;
2604}
2605
2606/*
2607 * This kswapd start function will be called by init and node-hot-add.
2608 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2609 */
2610int kswapd_run(int nid)
2611{
2612	pg_data_t *pgdat = NODE_DATA(nid);
2613	int ret = 0;
2614
2615	if (pgdat->kswapd)
2616		return 0;
2617
2618	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2619	if (IS_ERR(pgdat->kswapd)) {
2620		/* failure at boot is fatal */
2621		BUG_ON(system_state == SYSTEM_BOOTING);
2622		printk("Failed to start kswapd on node %d\n",nid);
2623		ret = -1;
2624	}
2625	return ret;
2626}
2627
2628/*
2629 * Called by memory hotplug when all memory in a node is offlined.
2630 */
2631void kswapd_stop(int nid)
2632{
2633	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2634
2635	if (kswapd)
2636		kthread_stop(kswapd);
2637}
2638
2639static int __init kswapd_init(void)
2640{
2641	int nid;
2642
2643	swap_setup();
2644	for_each_node_state(nid, N_HIGH_MEMORY)
2645 		kswapd_run(nid);
2646	hotcpu_notifier(cpu_callback, 0);
2647	return 0;
2648}
2649
2650module_init(kswapd_init)
2651
2652#ifdef CONFIG_NUMA
2653/*
2654 * Zone reclaim mode
2655 *
2656 * If non-zero call zone_reclaim when the number of free pages falls below
2657 * the watermarks.
2658 */
2659int zone_reclaim_mode __read_mostly;
2660
2661#define RECLAIM_OFF 0
2662#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2663#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2664#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2665
2666/*
2667 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2668 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2669 * a zone.
2670 */
2671#define ZONE_RECLAIM_PRIORITY 4
2672
2673/*
2674 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2675 * occur.
2676 */
2677int sysctl_min_unmapped_ratio = 1;
2678
2679/*
2680 * If the number of slab pages in a zone grows beyond this percentage then
2681 * slab reclaim needs to occur.
2682 */
2683int sysctl_min_slab_ratio = 5;
2684
2685static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2686{
2687	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2688	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2689		zone_page_state(zone, NR_ACTIVE_FILE);
2690
2691	/*
2692	 * It's possible for there to be more file mapped pages than
2693	 * accounted for by the pages on the file LRU lists because
2694	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2695	 */
2696	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2697}
2698
2699/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2700static long zone_pagecache_reclaimable(struct zone *zone)
2701{
2702	long nr_pagecache_reclaimable;
2703	long delta = 0;
2704
2705	/*
2706	 * If RECLAIM_SWAP is set, then all file pages are considered
2707	 * potentially reclaimable. Otherwise, we have to worry about
2708	 * pages like swapcache and zone_unmapped_file_pages() provides
2709	 * a better estimate
2710	 */
2711	if (zone_reclaim_mode & RECLAIM_SWAP)
2712		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2713	else
2714		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2715
2716	/* If we can't clean pages, remove dirty pages from consideration */
2717	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2718		delta += zone_page_state(zone, NR_FILE_DIRTY);
2719
2720	/* Watch for any possible underflows due to delta */
2721	if (unlikely(delta > nr_pagecache_reclaimable))
2722		delta = nr_pagecache_reclaimable;
2723
2724	return nr_pagecache_reclaimable - delta;
2725}
2726
2727/*
2728 * Try to free up some pages from this zone through reclaim.
2729 */
2730static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2731{
2732	/* Minimum pages needed in order to stay on node */
2733	const unsigned long nr_pages = 1 << order;
2734	struct task_struct *p = current;
2735	struct reclaim_state reclaim_state;
2736	int priority;
2737	struct scan_control sc = {
2738		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2739		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2740		.may_swap = 1,
2741		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2742				       SWAP_CLUSTER_MAX),
2743		.gfp_mask = gfp_mask,
2744		.swappiness = vm_swappiness,
2745		.order = order,
2746	};
2747	unsigned long nr_slab_pages0, nr_slab_pages1;
2748
2749	cond_resched();
2750	/*
2751	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2752	 * and we also need to be able to write out pages for RECLAIM_WRITE
2753	 * and RECLAIM_SWAP.
2754	 */
2755	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2756	lockdep_set_current_reclaim_state(gfp_mask);
2757	reclaim_state.reclaimed_slab = 0;
2758	p->reclaim_state = &reclaim_state;
2759
2760	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2761		/*
2762		 * Free memory by calling shrink zone with increasing
2763		 * priorities until we have enough memory freed.
2764		 */
2765		priority = ZONE_RECLAIM_PRIORITY;
2766		do {
2767			shrink_zone(priority, zone, &sc);
2768			priority--;
2769		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2770	}
2771
2772	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2773	if (nr_slab_pages0 > zone->min_slab_pages) {
2774		/*
2775		 * shrink_slab() does not currently allow us to determine how
2776		 * many pages were freed in this zone. So we take the current
2777		 * number of slab pages and shake the slab until it is reduced
2778		 * by the same nr_pages that we used for reclaiming unmapped
2779		 * pages.
2780		 *
2781		 * Note that shrink_slab will free memory on all zones and may
2782		 * take a long time.
2783		 */
2784		for (;;) {
2785			unsigned long lru_pages = zone_reclaimable_pages(zone);
2786
2787			/* No reclaimable slab or very low memory pressure */
2788			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2789				break;
2790
2791			/* Freed enough memory */
2792			nr_slab_pages1 = zone_page_state(zone,
2793							NR_SLAB_RECLAIMABLE);
2794			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2795				break;
2796		}
2797
2798		/*
2799		 * Update nr_reclaimed by the number of slab pages we
2800		 * reclaimed from this zone.
2801		 */
2802		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2803		if (nr_slab_pages1 < nr_slab_pages0)
2804			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2805	}
2806
2807	p->reclaim_state = NULL;
2808	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2809	lockdep_clear_current_reclaim_state();
2810	return sc.nr_reclaimed >= nr_pages;
2811}
2812
2813int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2814{
2815	int node_id;
2816	int ret;
2817
2818	/*
2819	 * Zone reclaim reclaims unmapped file backed pages and
2820	 * slab pages if we are over the defined limits.
2821	 *
2822	 * A small portion of unmapped file backed pages is needed for
2823	 * file I/O otherwise pages read by file I/O will be immediately
2824	 * thrown out if the zone is overallocated. So we do not reclaim
2825	 * if less than a specified percentage of the zone is used by
2826	 * unmapped file backed pages.
2827	 */
2828	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2829	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2830		return ZONE_RECLAIM_FULL;
2831
2832	if (zone->all_unreclaimable)
2833		return ZONE_RECLAIM_FULL;
2834
2835	/*
2836	 * Do not scan if the allocation should not be delayed.
2837	 */
2838	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2839		return ZONE_RECLAIM_NOSCAN;
2840
2841	/*
2842	 * Only run zone reclaim on the local zone or on zones that do not
2843	 * have associated processors. This will favor the local processor
2844	 * over remote processors and spread off node memory allocations
2845	 * as wide as possible.
2846	 */
2847	node_id = zone_to_nid(zone);
2848	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2849		return ZONE_RECLAIM_NOSCAN;
2850
2851	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2852		return ZONE_RECLAIM_NOSCAN;
2853
2854	ret = __zone_reclaim(zone, gfp_mask, order);
2855	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2856
2857	if (!ret)
2858		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2859
2860	return ret;
2861}
2862#endif
2863
2864/*
2865 * page_evictable - test whether a page is evictable
2866 * @page: the page to test
2867 * @vma: the VMA in which the page is or will be mapped, may be NULL
2868 *
2869 * Test whether page is evictable--i.e., should be placed on active/inactive
2870 * lists vs unevictable list.  The vma argument is !NULL when called from the
2871 * fault path to determine how to instantate a new page.
2872 *
2873 * Reasons page might not be evictable:
2874 * (1) page's mapping marked unevictable
2875 * (2) page is part of an mlocked VMA
2876 *
2877 */
2878int page_evictable(struct page *page, struct vm_area_struct *vma)
2879{
2880
2881	if (mapping_unevictable(page_mapping(page)))
2882		return 0;
2883
2884	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2885		return 0;
2886
2887	return 1;
2888}
2889
2890/**
2891 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2892 * @page: page to check evictability and move to appropriate lru list
2893 * @zone: zone page is in
2894 *
2895 * Checks a page for evictability and moves the page to the appropriate
2896 * zone lru list.
2897 *
2898 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2899 * have PageUnevictable set.
2900 */
2901static void check_move_unevictable_page(struct page *page, struct zone *zone)
2902{
2903	VM_BUG_ON(PageActive(page));
2904
2905retry:
2906	ClearPageUnevictable(page);
2907	if (page_evictable(page, NULL)) {
2908		enum lru_list l = page_lru_base_type(page);
2909
2910		__dec_zone_state(zone, NR_UNEVICTABLE);
2911		list_move(&page->lru, &zone->lru[l].list);
2912		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2913		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2914		__count_vm_event(UNEVICTABLE_PGRESCUED);
2915	} else {
2916		/*
2917		 * rotate unevictable list
2918		 */
2919		SetPageUnevictable(page);
2920		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2921		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2922		if (page_evictable(page, NULL))
2923			goto retry;
2924	}
2925}
2926
2927/**
2928 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2929 * @mapping: struct address_space to scan for evictable pages
2930 *
2931 * Scan all pages in mapping.  Check unevictable pages for
2932 * evictability and move them to the appropriate zone lru list.
2933 */
2934void scan_mapping_unevictable_pages(struct address_space *mapping)
2935{
2936	pgoff_t next = 0;
2937	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2938			 PAGE_CACHE_SHIFT;
2939	struct zone *zone;
2940	struct pagevec pvec;
2941
2942	if (mapping->nrpages == 0)
2943		return;
2944
2945	pagevec_init(&pvec, 0);
2946	while (next < end &&
2947		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2948		int i;
2949		int pg_scanned = 0;
2950
2951		zone = NULL;
2952
2953		for (i = 0; i < pagevec_count(&pvec); i++) {
2954			struct page *page = pvec.pages[i];
2955			pgoff_t page_index = page->index;
2956			struct zone *pagezone = page_zone(page);
2957
2958			pg_scanned++;
2959			if (page_index > next)
2960				next = page_index;
2961			next++;
2962
2963			if (pagezone != zone) {
2964				if (zone)
2965					spin_unlock_irq(&zone->lru_lock);
2966				zone = pagezone;
2967				spin_lock_irq(&zone->lru_lock);
2968			}
2969
2970			if (PageLRU(page) && PageUnevictable(page))
2971				check_move_unevictable_page(page, zone);
2972		}
2973		if (zone)
2974			spin_unlock_irq(&zone->lru_lock);
2975		pagevec_release(&pvec);
2976
2977		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2978	}
2979
2980}
2981
2982/**
2983 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2984 * @zone - zone of which to scan the unevictable list
2985 *
2986 * Scan @zone's unevictable LRU lists to check for pages that have become
2987 * evictable.  Move those that have to @zone's inactive list where they
2988 * become candidates for reclaim, unless shrink_inactive_zone() decides
2989 * to reactivate them.  Pages that are still unevictable are rotated
2990 * back onto @zone's unevictable list.
2991 */
2992#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2993static void scan_zone_unevictable_pages(struct zone *zone)
2994{
2995	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2996	unsigned long scan;
2997	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2998
2999	while (nr_to_scan > 0) {
3000		unsigned long batch_size = min(nr_to_scan,
3001						SCAN_UNEVICTABLE_BATCH_SIZE);
3002
3003		spin_lock_irq(&zone->lru_lock);
3004		for (scan = 0;  scan < batch_size; scan++) {
3005			struct page *page = lru_to_page(l_unevictable);
3006
3007			if (!trylock_page(page))
3008				continue;
3009
3010			prefetchw_prev_lru_page(page, l_unevictable, flags);
3011
3012			if (likely(PageLRU(page) && PageUnevictable(page)))
3013				check_move_unevictable_page(page, zone);
3014
3015			unlock_page(page);
3016		}
3017		spin_unlock_irq(&zone->lru_lock);
3018
3019		nr_to_scan -= batch_size;
3020	}
3021}
3022
3023
3024/**
3025 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3026 *
3027 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3028 * pages that have become evictable.  Move those back to the zones'
3029 * inactive list where they become candidates for reclaim.
3030 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3031 * and we add swap to the system.  As such, it runs in the context of a task
3032 * that has possibly/probably made some previously unevictable pages
3033 * evictable.
3034 */
3035static void scan_all_zones_unevictable_pages(void)
3036{
3037	struct zone *zone;
3038
3039	for_each_zone(zone) {
3040		scan_zone_unevictable_pages(zone);
3041	}
3042}
3043
3044/*
3045 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3046 * all nodes' unevictable lists for evictable pages
3047 */
3048unsigned long scan_unevictable_pages;
3049
3050int scan_unevictable_handler(struct ctl_table *table, int write,
3051			   void __user *buffer,
3052			   size_t *length, loff_t *ppos)
3053{
3054	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3055
3056	if (write && *(unsigned long *)table->data)
3057		scan_all_zones_unevictable_pages();
3058
3059	scan_unevictable_pages = 0;
3060	return 0;
3061}
3062
3063#ifdef CONFIG_NUMA
3064/*
3065 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3066 * a specified node's per zone unevictable lists for evictable pages.
3067 */
3068
3069static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3070					  struct sysdev_attribute *attr,
3071					  char *buf)
3072{
3073	return sprintf(buf, "0\n");	/* always zero; should fit... */
3074}
3075
3076static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3077					   struct sysdev_attribute *attr,
3078					const char *buf, size_t count)
3079{
3080	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3081	struct zone *zone;
3082	unsigned long res;
3083	unsigned long req = strict_strtoul(buf, 10, &res);
3084
3085	if (!req)
3086		return 1;	/* zero is no-op */
3087
3088	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3089		if (!populated_zone(zone))
3090			continue;
3091		scan_zone_unevictable_pages(zone);
3092	}
3093	return 1;
3094}
3095
3096
3097static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3098			read_scan_unevictable_node,
3099			write_scan_unevictable_node);
3100
3101int scan_unevictable_register_node(struct node *node)
3102{
3103	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3104}
3105
3106void scan_unevictable_unregister_node(struct node *node)
3107{
3108	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3109}
3110#endif
3111