vmscan.c revision 8bb7844286fb8c9fce6f65d8288aeb09d03a5e0d
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40
41#include <asm/tlbflush.h>
42#include <asm/div64.h>
43
44#include <linux/swapops.h>
45
46#include "internal.h"
47
48struct scan_control {
49	/* Incremented by the number of inactive pages that were scanned */
50	unsigned long nr_scanned;
51
52	/* This context's GFP mask */
53	gfp_t gfp_mask;
54
55	int may_writepage;
56
57	/* Can pages be swapped as part of reclaim? */
58	int may_swap;
59
60	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
61	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62	 * In this context, it doesn't matter that we scan the
63	 * whole list at once. */
64	int swap_cluster_max;
65
66	int swappiness;
67
68	int all_unreclaimable;
69};
70
71/*
72 * The list of shrinker callbacks used by to apply pressure to
73 * ageable caches.
74 */
75struct shrinker {
76	shrinker_t		shrinker;
77	struct list_head	list;
78	int			seeks;	/* seeks to recreate an obj */
79	long			nr;	/* objs pending delete */
80};
81
82#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
83
84#ifdef ARCH_HAS_PREFETCH
85#define prefetch_prev_lru_page(_page, _base, _field)			\
86	do {								\
87		if ((_page)->lru.prev != _base) {			\
88			struct page *prev;				\
89									\
90			prev = lru_to_page(&(_page->lru));		\
91			prefetch(&prev->_field);			\
92		}							\
93	} while (0)
94#else
95#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
96#endif
97
98#ifdef ARCH_HAS_PREFETCHW
99#define prefetchw_prev_lru_page(_page, _base, _field)			\
100	do {								\
101		if ((_page)->lru.prev != _base) {			\
102			struct page *prev;				\
103									\
104			prev = lru_to_page(&(_page->lru));		\
105			prefetchw(&prev->_field);			\
106		}							\
107	} while (0)
108#else
109#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
110#endif
111
112/*
113 * From 0 .. 100.  Higher means more swappy.
114 */
115int vm_swappiness = 60;
116long vm_total_pages;	/* The total number of pages which the VM controls */
117
118static LIST_HEAD(shrinker_list);
119static DECLARE_RWSEM(shrinker_rwsem);
120
121/*
122 * Add a shrinker callback to be called from the vm
123 */
124struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
125{
126        struct shrinker *shrinker;
127
128        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
129        if (shrinker) {
130	        shrinker->shrinker = theshrinker;
131	        shrinker->seeks = seeks;
132	        shrinker->nr = 0;
133	        down_write(&shrinker_rwsem);
134	        list_add_tail(&shrinker->list, &shrinker_list);
135	        up_write(&shrinker_rwsem);
136	}
137	return shrinker;
138}
139EXPORT_SYMBOL(set_shrinker);
140
141/*
142 * Remove one
143 */
144void remove_shrinker(struct shrinker *shrinker)
145{
146	down_write(&shrinker_rwsem);
147	list_del(&shrinker->list);
148	up_write(&shrinker_rwsem);
149	kfree(shrinker);
150}
151EXPORT_SYMBOL(remove_shrinker);
152
153#define SHRINK_BATCH 128
154/*
155 * Call the shrink functions to age shrinkable caches
156 *
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object.  With this in mind we age equal
159 * percentages of the lru and ageable caches.  This should balance the seeks
160 * generated by these structures.
161 *
162 * If the vm encounted mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
164 *
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 *
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt.  It is used for balancing
169 * slab reclaim versus page reclaim.
170 *
171 * Returns the number of slab objects which we shrunk.
172 */
173unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174			unsigned long lru_pages)
175{
176	struct shrinker *shrinker;
177	unsigned long ret = 0;
178
179	if (scanned == 0)
180		scanned = SWAP_CLUSTER_MAX;
181
182	if (!down_read_trylock(&shrinker_rwsem))
183		return 1;	/* Assume we'll be able to shrink next time */
184
185	list_for_each_entry(shrinker, &shrinker_list, list) {
186		unsigned long long delta;
187		unsigned long total_scan;
188		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
189
190		delta = (4 * scanned) / shrinker->seeks;
191		delta *= max_pass;
192		do_div(delta, lru_pages + 1);
193		shrinker->nr += delta;
194		if (shrinker->nr < 0) {
195			printk(KERN_ERR "%s: nr=%ld\n",
196					__FUNCTION__, shrinker->nr);
197			shrinker->nr = max_pass;
198		}
199
200		/*
201		 * Avoid risking looping forever due to too large nr value:
202		 * never try to free more than twice the estimate number of
203		 * freeable entries.
204		 */
205		if (shrinker->nr > max_pass * 2)
206			shrinker->nr = max_pass * 2;
207
208		total_scan = shrinker->nr;
209		shrinker->nr = 0;
210
211		while (total_scan >= SHRINK_BATCH) {
212			long this_scan = SHRINK_BATCH;
213			int shrink_ret;
214			int nr_before;
215
216			nr_before = (*shrinker->shrinker)(0, gfp_mask);
217			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
218			if (shrink_ret == -1)
219				break;
220			if (shrink_ret < nr_before)
221				ret += nr_before - shrink_ret;
222			count_vm_events(SLABS_SCANNED, this_scan);
223			total_scan -= this_scan;
224
225			cond_resched();
226		}
227
228		shrinker->nr += total_scan;
229	}
230	up_read(&shrinker_rwsem);
231	return ret;
232}
233
234/* Called without lock on whether page is mapped, so answer is unstable */
235static inline int page_mapping_inuse(struct page *page)
236{
237	struct address_space *mapping;
238
239	/* Page is in somebody's page tables. */
240	if (page_mapped(page))
241		return 1;
242
243	/* Be more reluctant to reclaim swapcache than pagecache */
244	if (PageSwapCache(page))
245		return 1;
246
247	mapping = page_mapping(page);
248	if (!mapping)
249		return 0;
250
251	/* File is mmap'd by somebody? */
252	return mapping_mapped(mapping);
253}
254
255static inline int is_page_cache_freeable(struct page *page)
256{
257	return page_count(page) - !!PagePrivate(page) == 2;
258}
259
260static int may_write_to_queue(struct backing_dev_info *bdi)
261{
262	if (current->flags & PF_SWAPWRITE)
263		return 1;
264	if (!bdi_write_congested(bdi))
265		return 1;
266	if (bdi == current->backing_dev_info)
267		return 1;
268	return 0;
269}
270
271/*
272 * We detected a synchronous write error writing a page out.  Probably
273 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
275 *
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up.  But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
279 *
280 * We're allowed to run sleeping lock_page() here because we know the caller has
281 * __GFP_FS.
282 */
283static void handle_write_error(struct address_space *mapping,
284				struct page *page, int error)
285{
286	lock_page(page);
287	if (page_mapping(page) == mapping)
288		mapping_set_error(mapping, error);
289	unlock_page(page);
290}
291
292/* possible outcome of pageout() */
293typedef enum {
294	/* failed to write page out, page is locked */
295	PAGE_KEEP,
296	/* move page to the active list, page is locked */
297	PAGE_ACTIVATE,
298	/* page has been sent to the disk successfully, page is unlocked */
299	PAGE_SUCCESS,
300	/* page is clean and locked */
301	PAGE_CLEAN,
302} pageout_t;
303
304/*
305 * pageout is called by shrink_page_list() for each dirty page.
306 * Calls ->writepage().
307 */
308static pageout_t pageout(struct page *page, struct address_space *mapping)
309{
310	/*
311	 * If the page is dirty, only perform writeback if that write
312	 * will be non-blocking.  To prevent this allocation from being
313	 * stalled by pagecache activity.  But note that there may be
314	 * stalls if we need to run get_block().  We could test
315	 * PagePrivate for that.
316	 *
317	 * If this process is currently in generic_file_write() against
318	 * this page's queue, we can perform writeback even if that
319	 * will block.
320	 *
321	 * If the page is swapcache, write it back even if that would
322	 * block, for some throttling. This happens by accident, because
323	 * swap_backing_dev_info is bust: it doesn't reflect the
324	 * congestion state of the swapdevs.  Easy to fix, if needed.
325	 * See swapfile.c:page_queue_congested().
326	 */
327	if (!is_page_cache_freeable(page))
328		return PAGE_KEEP;
329	if (!mapping) {
330		/*
331		 * Some data journaling orphaned pages can have
332		 * page->mapping == NULL while being dirty with clean buffers.
333		 */
334		if (PagePrivate(page)) {
335			if (try_to_free_buffers(page)) {
336				ClearPageDirty(page);
337				printk("%s: orphaned page\n", __FUNCTION__);
338				return PAGE_CLEAN;
339			}
340		}
341		return PAGE_KEEP;
342	}
343	if (mapping->a_ops->writepage == NULL)
344		return PAGE_ACTIVATE;
345	if (!may_write_to_queue(mapping->backing_dev_info))
346		return PAGE_KEEP;
347
348	if (clear_page_dirty_for_io(page)) {
349		int res;
350		struct writeback_control wbc = {
351			.sync_mode = WB_SYNC_NONE,
352			.nr_to_write = SWAP_CLUSTER_MAX,
353			.range_start = 0,
354			.range_end = LLONG_MAX,
355			.nonblocking = 1,
356			.for_reclaim = 1,
357		};
358
359		SetPageReclaim(page);
360		res = mapping->a_ops->writepage(page, &wbc);
361		if (res < 0)
362			handle_write_error(mapping, page, res);
363		if (res == AOP_WRITEPAGE_ACTIVATE) {
364			ClearPageReclaim(page);
365			return PAGE_ACTIVATE;
366		}
367		if (!PageWriteback(page)) {
368			/* synchronous write or broken a_ops? */
369			ClearPageReclaim(page);
370		}
371		inc_zone_page_state(page, NR_VMSCAN_WRITE);
372		return PAGE_SUCCESS;
373	}
374
375	return PAGE_CLEAN;
376}
377
378/*
379 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
380 * someone else has a ref on the page, abort and return 0.  If it was
381 * successfully detached, return 1.  Assumes the caller has a single ref on
382 * this page.
383 */
384int remove_mapping(struct address_space *mapping, struct page *page)
385{
386	BUG_ON(!PageLocked(page));
387	BUG_ON(mapping != page_mapping(page));
388
389	write_lock_irq(&mapping->tree_lock);
390	/*
391	 * The non racy check for a busy page.
392	 *
393	 * Must be careful with the order of the tests. When someone has
394	 * a ref to the page, it may be possible that they dirty it then
395	 * drop the reference. So if PageDirty is tested before page_count
396	 * here, then the following race may occur:
397	 *
398	 * get_user_pages(&page);
399	 * [user mapping goes away]
400	 * write_to(page);
401	 *				!PageDirty(page)    [good]
402	 * SetPageDirty(page);
403	 * put_page(page);
404	 *				!page_count(page)   [good, discard it]
405	 *
406	 * [oops, our write_to data is lost]
407	 *
408	 * Reversing the order of the tests ensures such a situation cannot
409	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
410	 * load is not satisfied before that of page->_count.
411	 *
412	 * Note that if SetPageDirty is always performed via set_page_dirty,
413	 * and thus under tree_lock, then this ordering is not required.
414	 */
415	if (unlikely(page_count(page) != 2))
416		goto cannot_free;
417	smp_rmb();
418	if (unlikely(PageDirty(page)))
419		goto cannot_free;
420
421	if (PageSwapCache(page)) {
422		swp_entry_t swap = { .val = page_private(page) };
423		__delete_from_swap_cache(page);
424		write_unlock_irq(&mapping->tree_lock);
425		swap_free(swap);
426		__put_page(page);	/* The pagecache ref */
427		return 1;
428	}
429
430	__remove_from_page_cache(page);
431	write_unlock_irq(&mapping->tree_lock);
432	__put_page(page);
433	return 1;
434
435cannot_free:
436	write_unlock_irq(&mapping->tree_lock);
437	return 0;
438}
439
440/*
441 * shrink_page_list() returns the number of reclaimed pages
442 */
443static unsigned long shrink_page_list(struct list_head *page_list,
444					struct scan_control *sc)
445{
446	LIST_HEAD(ret_pages);
447	struct pagevec freed_pvec;
448	int pgactivate = 0;
449	unsigned long nr_reclaimed = 0;
450
451	cond_resched();
452
453	pagevec_init(&freed_pvec, 1);
454	while (!list_empty(page_list)) {
455		struct address_space *mapping;
456		struct page *page;
457		int may_enter_fs;
458		int referenced;
459
460		cond_resched();
461
462		page = lru_to_page(page_list);
463		list_del(&page->lru);
464
465		if (TestSetPageLocked(page))
466			goto keep;
467
468		VM_BUG_ON(PageActive(page));
469
470		sc->nr_scanned++;
471
472		if (!sc->may_swap && page_mapped(page))
473			goto keep_locked;
474
475		/* Double the slab pressure for mapped and swapcache pages */
476		if (page_mapped(page) || PageSwapCache(page))
477			sc->nr_scanned++;
478
479		if (PageWriteback(page))
480			goto keep_locked;
481
482		referenced = page_referenced(page, 1);
483		/* In active use or really unfreeable?  Activate it. */
484		if (referenced && page_mapping_inuse(page))
485			goto activate_locked;
486
487#ifdef CONFIG_SWAP
488		/*
489		 * Anonymous process memory has backing store?
490		 * Try to allocate it some swap space here.
491		 */
492		if (PageAnon(page) && !PageSwapCache(page))
493			if (!add_to_swap(page, GFP_ATOMIC))
494				goto activate_locked;
495#endif /* CONFIG_SWAP */
496
497		mapping = page_mapping(page);
498		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
499			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
500
501		/*
502		 * The page is mapped into the page tables of one or more
503		 * processes. Try to unmap it here.
504		 */
505		if (page_mapped(page) && mapping) {
506			switch (try_to_unmap(page, 0)) {
507			case SWAP_FAIL:
508				goto activate_locked;
509			case SWAP_AGAIN:
510				goto keep_locked;
511			case SWAP_SUCCESS:
512				; /* try to free the page below */
513			}
514		}
515
516		if (PageDirty(page)) {
517			if (referenced)
518				goto keep_locked;
519			if (!may_enter_fs)
520				goto keep_locked;
521			if (!sc->may_writepage)
522				goto keep_locked;
523
524			/* Page is dirty, try to write it out here */
525			switch(pageout(page, mapping)) {
526			case PAGE_KEEP:
527				goto keep_locked;
528			case PAGE_ACTIVATE:
529				goto activate_locked;
530			case PAGE_SUCCESS:
531				if (PageWriteback(page) || PageDirty(page))
532					goto keep;
533				/*
534				 * A synchronous write - probably a ramdisk.  Go
535				 * ahead and try to reclaim the page.
536				 */
537				if (TestSetPageLocked(page))
538					goto keep;
539				if (PageDirty(page) || PageWriteback(page))
540					goto keep_locked;
541				mapping = page_mapping(page);
542			case PAGE_CLEAN:
543				; /* try to free the page below */
544			}
545		}
546
547		/*
548		 * If the page has buffers, try to free the buffer mappings
549		 * associated with this page. If we succeed we try to free
550		 * the page as well.
551		 *
552		 * We do this even if the page is PageDirty().
553		 * try_to_release_page() does not perform I/O, but it is
554		 * possible for a page to have PageDirty set, but it is actually
555		 * clean (all its buffers are clean).  This happens if the
556		 * buffers were written out directly, with submit_bh(). ext3
557		 * will do this, as well as the blockdev mapping.
558		 * try_to_release_page() will discover that cleanness and will
559		 * drop the buffers and mark the page clean - it can be freed.
560		 *
561		 * Rarely, pages can have buffers and no ->mapping.  These are
562		 * the pages which were not successfully invalidated in
563		 * truncate_complete_page().  We try to drop those buffers here
564		 * and if that worked, and the page is no longer mapped into
565		 * process address space (page_count == 1) it can be freed.
566		 * Otherwise, leave the page on the LRU so it is swappable.
567		 */
568		if (PagePrivate(page)) {
569			if (!try_to_release_page(page, sc->gfp_mask))
570				goto activate_locked;
571			if (!mapping && page_count(page) == 1)
572				goto free_it;
573		}
574
575		if (!mapping || !remove_mapping(mapping, page))
576			goto keep_locked;
577
578free_it:
579		unlock_page(page);
580		nr_reclaimed++;
581		if (!pagevec_add(&freed_pvec, page))
582			__pagevec_release_nonlru(&freed_pvec);
583		continue;
584
585activate_locked:
586		SetPageActive(page);
587		pgactivate++;
588keep_locked:
589		unlock_page(page);
590keep:
591		list_add(&page->lru, &ret_pages);
592		VM_BUG_ON(PageLRU(page));
593	}
594	list_splice(&ret_pages, page_list);
595	if (pagevec_count(&freed_pvec))
596		__pagevec_release_nonlru(&freed_pvec);
597	count_vm_events(PGACTIVATE, pgactivate);
598	return nr_reclaimed;
599}
600
601/*
602 * zone->lru_lock is heavily contended.  Some of the functions that
603 * shrink the lists perform better by taking out a batch of pages
604 * and working on them outside the LRU lock.
605 *
606 * For pagecache intensive workloads, this function is the hottest
607 * spot in the kernel (apart from copy_*_user functions).
608 *
609 * Appropriate locks must be held before calling this function.
610 *
611 * @nr_to_scan:	The number of pages to look through on the list.
612 * @src:	The LRU list to pull pages off.
613 * @dst:	The temp list to put pages on to.
614 * @scanned:	The number of pages that were scanned.
615 *
616 * returns how many pages were moved onto *@dst.
617 */
618static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
619		struct list_head *src, struct list_head *dst,
620		unsigned long *scanned)
621{
622	unsigned long nr_taken = 0;
623	struct page *page;
624	unsigned long scan;
625
626	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
627		struct list_head *target;
628		page = lru_to_page(src);
629		prefetchw_prev_lru_page(page, src, flags);
630
631		VM_BUG_ON(!PageLRU(page));
632
633		list_del(&page->lru);
634		target = src;
635		if (likely(get_page_unless_zero(page))) {
636			/*
637			 * Be careful not to clear PageLRU until after we're
638			 * sure the page is not being freed elsewhere -- the
639			 * page release code relies on it.
640			 */
641			ClearPageLRU(page);
642			target = dst;
643			nr_taken++;
644		} /* else it is being freed elsewhere */
645
646		list_add(&page->lru, target);
647	}
648
649	*scanned = scan;
650	return nr_taken;
651}
652
653/*
654 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
655 * of reclaimed pages
656 */
657static unsigned long shrink_inactive_list(unsigned long max_scan,
658				struct zone *zone, struct scan_control *sc)
659{
660	LIST_HEAD(page_list);
661	struct pagevec pvec;
662	unsigned long nr_scanned = 0;
663	unsigned long nr_reclaimed = 0;
664
665	pagevec_init(&pvec, 1);
666
667	lru_add_drain();
668	spin_lock_irq(&zone->lru_lock);
669	do {
670		struct page *page;
671		unsigned long nr_taken;
672		unsigned long nr_scan;
673		unsigned long nr_freed;
674
675		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
676					     &zone->inactive_list,
677					     &page_list, &nr_scan);
678		__mod_zone_page_state(zone, NR_INACTIVE, -nr_taken);
679		zone->pages_scanned += nr_scan;
680		spin_unlock_irq(&zone->lru_lock);
681
682		nr_scanned += nr_scan;
683		nr_freed = shrink_page_list(&page_list, sc);
684		nr_reclaimed += nr_freed;
685		local_irq_disable();
686		if (current_is_kswapd()) {
687			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
688			__count_vm_events(KSWAPD_STEAL, nr_freed);
689		} else
690			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
691		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
692
693		if (nr_taken == 0)
694			goto done;
695
696		spin_lock(&zone->lru_lock);
697		/*
698		 * Put back any unfreeable pages.
699		 */
700		while (!list_empty(&page_list)) {
701			page = lru_to_page(&page_list);
702			VM_BUG_ON(PageLRU(page));
703			SetPageLRU(page);
704			list_del(&page->lru);
705			if (PageActive(page))
706				add_page_to_active_list(zone, page);
707			else
708				add_page_to_inactive_list(zone, page);
709			if (!pagevec_add(&pvec, page)) {
710				spin_unlock_irq(&zone->lru_lock);
711				__pagevec_release(&pvec);
712				spin_lock_irq(&zone->lru_lock);
713			}
714		}
715  	} while (nr_scanned < max_scan);
716	spin_unlock(&zone->lru_lock);
717done:
718	local_irq_enable();
719	pagevec_release(&pvec);
720	return nr_reclaimed;
721}
722
723/*
724 * We are about to scan this zone at a certain priority level.  If that priority
725 * level is smaller (ie: more urgent) than the previous priority, then note
726 * that priority level within the zone.  This is done so that when the next
727 * process comes in to scan this zone, it will immediately start out at this
728 * priority level rather than having to build up its own scanning priority.
729 * Here, this priority affects only the reclaim-mapped threshold.
730 */
731static inline void note_zone_scanning_priority(struct zone *zone, int priority)
732{
733	if (priority < zone->prev_priority)
734		zone->prev_priority = priority;
735}
736
737static inline int zone_is_near_oom(struct zone *zone)
738{
739	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
740				+ zone_page_state(zone, NR_INACTIVE))*3;
741}
742
743/*
744 * This moves pages from the active list to the inactive list.
745 *
746 * We move them the other way if the page is referenced by one or more
747 * processes, from rmap.
748 *
749 * If the pages are mostly unmapped, the processing is fast and it is
750 * appropriate to hold zone->lru_lock across the whole operation.  But if
751 * the pages are mapped, the processing is slow (page_referenced()) so we
752 * should drop zone->lru_lock around each page.  It's impossible to balance
753 * this, so instead we remove the pages from the LRU while processing them.
754 * It is safe to rely on PG_active against the non-LRU pages in here because
755 * nobody will play with that bit on a non-LRU page.
756 *
757 * The downside is that we have to touch page->_count against each page.
758 * But we had to alter page->flags anyway.
759 */
760static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
761				struct scan_control *sc, int priority)
762{
763	unsigned long pgmoved;
764	int pgdeactivate = 0;
765	unsigned long pgscanned;
766	LIST_HEAD(l_hold);	/* The pages which were snipped off */
767	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
768	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
769	struct page *page;
770	struct pagevec pvec;
771	int reclaim_mapped = 0;
772
773	if (sc->may_swap) {
774		long mapped_ratio;
775		long distress;
776		long swap_tendency;
777
778		if (zone_is_near_oom(zone))
779			goto force_reclaim_mapped;
780
781		/*
782		 * `distress' is a measure of how much trouble we're having
783		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
784		 */
785		distress = 100 >> min(zone->prev_priority, priority);
786
787		/*
788		 * The point of this algorithm is to decide when to start
789		 * reclaiming mapped memory instead of just pagecache.  Work out
790		 * how much memory
791		 * is mapped.
792		 */
793		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
794				global_page_state(NR_ANON_PAGES)) * 100) /
795					vm_total_pages;
796
797		/*
798		 * Now decide how much we really want to unmap some pages.  The
799		 * mapped ratio is downgraded - just because there's a lot of
800		 * mapped memory doesn't necessarily mean that page reclaim
801		 * isn't succeeding.
802		 *
803		 * The distress ratio is important - we don't want to start
804		 * going oom.
805		 *
806		 * A 100% value of vm_swappiness overrides this algorithm
807		 * altogether.
808		 */
809		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
810
811		/*
812		 * Now use this metric to decide whether to start moving mapped
813		 * memory onto the inactive list.
814		 */
815		if (swap_tendency >= 100)
816force_reclaim_mapped:
817			reclaim_mapped = 1;
818	}
819
820	lru_add_drain();
821	spin_lock_irq(&zone->lru_lock);
822	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
823				    &l_hold, &pgscanned);
824	zone->pages_scanned += pgscanned;
825	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
826	spin_unlock_irq(&zone->lru_lock);
827
828	while (!list_empty(&l_hold)) {
829		cond_resched();
830		page = lru_to_page(&l_hold);
831		list_del(&page->lru);
832		if (page_mapped(page)) {
833			if (!reclaim_mapped ||
834			    (total_swap_pages == 0 && PageAnon(page)) ||
835			    page_referenced(page, 0)) {
836				list_add(&page->lru, &l_active);
837				continue;
838			}
839		}
840		list_add(&page->lru, &l_inactive);
841	}
842
843	pagevec_init(&pvec, 1);
844	pgmoved = 0;
845	spin_lock_irq(&zone->lru_lock);
846	while (!list_empty(&l_inactive)) {
847		page = lru_to_page(&l_inactive);
848		prefetchw_prev_lru_page(page, &l_inactive, flags);
849		VM_BUG_ON(PageLRU(page));
850		SetPageLRU(page);
851		VM_BUG_ON(!PageActive(page));
852		ClearPageActive(page);
853
854		list_move(&page->lru, &zone->inactive_list);
855		pgmoved++;
856		if (!pagevec_add(&pvec, page)) {
857			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
858			spin_unlock_irq(&zone->lru_lock);
859			pgdeactivate += pgmoved;
860			pgmoved = 0;
861			if (buffer_heads_over_limit)
862				pagevec_strip(&pvec);
863			__pagevec_release(&pvec);
864			spin_lock_irq(&zone->lru_lock);
865		}
866	}
867	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
868	pgdeactivate += pgmoved;
869	if (buffer_heads_over_limit) {
870		spin_unlock_irq(&zone->lru_lock);
871		pagevec_strip(&pvec);
872		spin_lock_irq(&zone->lru_lock);
873	}
874
875	pgmoved = 0;
876	while (!list_empty(&l_active)) {
877		page = lru_to_page(&l_active);
878		prefetchw_prev_lru_page(page, &l_active, flags);
879		VM_BUG_ON(PageLRU(page));
880		SetPageLRU(page);
881		VM_BUG_ON(!PageActive(page));
882		list_move(&page->lru, &zone->active_list);
883		pgmoved++;
884		if (!pagevec_add(&pvec, page)) {
885			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
886			pgmoved = 0;
887			spin_unlock_irq(&zone->lru_lock);
888			__pagevec_release(&pvec);
889			spin_lock_irq(&zone->lru_lock);
890		}
891	}
892	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
893
894	__count_zone_vm_events(PGREFILL, zone, pgscanned);
895	__count_vm_events(PGDEACTIVATE, pgdeactivate);
896	spin_unlock_irq(&zone->lru_lock);
897
898	pagevec_release(&pvec);
899}
900
901/*
902 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
903 */
904static unsigned long shrink_zone(int priority, struct zone *zone,
905				struct scan_control *sc)
906{
907	unsigned long nr_active;
908	unsigned long nr_inactive;
909	unsigned long nr_to_scan;
910	unsigned long nr_reclaimed = 0;
911
912	atomic_inc(&zone->reclaim_in_progress);
913
914	/*
915	 * Add one to `nr_to_scan' just to make sure that the kernel will
916	 * slowly sift through the active list.
917	 */
918	zone->nr_scan_active +=
919		(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
920	nr_active = zone->nr_scan_active;
921	if (nr_active >= sc->swap_cluster_max)
922		zone->nr_scan_active = 0;
923	else
924		nr_active = 0;
925
926	zone->nr_scan_inactive +=
927		(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
928	nr_inactive = zone->nr_scan_inactive;
929	if (nr_inactive >= sc->swap_cluster_max)
930		zone->nr_scan_inactive = 0;
931	else
932		nr_inactive = 0;
933
934	while (nr_active || nr_inactive) {
935		if (nr_active) {
936			nr_to_scan = min(nr_active,
937					(unsigned long)sc->swap_cluster_max);
938			nr_active -= nr_to_scan;
939			shrink_active_list(nr_to_scan, zone, sc, priority);
940		}
941
942		if (nr_inactive) {
943			nr_to_scan = min(nr_inactive,
944					(unsigned long)sc->swap_cluster_max);
945			nr_inactive -= nr_to_scan;
946			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
947								sc);
948		}
949	}
950
951	throttle_vm_writeout(sc->gfp_mask);
952
953	atomic_dec(&zone->reclaim_in_progress);
954	return nr_reclaimed;
955}
956
957/*
958 * This is the direct reclaim path, for page-allocating processes.  We only
959 * try to reclaim pages from zones which will satisfy the caller's allocation
960 * request.
961 *
962 * We reclaim from a zone even if that zone is over pages_high.  Because:
963 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
964 *    allocation or
965 * b) The zones may be over pages_high but they must go *over* pages_high to
966 *    satisfy the `incremental min' zone defense algorithm.
967 *
968 * Returns the number of reclaimed pages.
969 *
970 * If a zone is deemed to be full of pinned pages then just give it a light
971 * scan then give up on it.
972 */
973static unsigned long shrink_zones(int priority, struct zone **zones,
974					struct scan_control *sc)
975{
976	unsigned long nr_reclaimed = 0;
977	int i;
978
979	sc->all_unreclaimable = 1;
980	for (i = 0; zones[i] != NULL; i++) {
981		struct zone *zone = zones[i];
982
983		if (!populated_zone(zone))
984			continue;
985
986		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
987			continue;
988
989		note_zone_scanning_priority(zone, priority);
990
991		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
992			continue;	/* Let kswapd poll it */
993
994		sc->all_unreclaimable = 0;
995
996		nr_reclaimed += shrink_zone(priority, zone, sc);
997	}
998	return nr_reclaimed;
999}
1000
1001/*
1002 * This is the main entry point to direct page reclaim.
1003 *
1004 * If a full scan of the inactive list fails to free enough memory then we
1005 * are "out of memory" and something needs to be killed.
1006 *
1007 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1008 * high - the zone may be full of dirty or under-writeback pages, which this
1009 * caller can't do much about.  We kick pdflush and take explicit naps in the
1010 * hope that some of these pages can be written.  But if the allocating task
1011 * holds filesystem locks which prevent writeout this might not work, and the
1012 * allocation attempt will fail.
1013 */
1014unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1015{
1016	int priority;
1017	int ret = 0;
1018	unsigned long total_scanned = 0;
1019	unsigned long nr_reclaimed = 0;
1020	struct reclaim_state *reclaim_state = current->reclaim_state;
1021	unsigned long lru_pages = 0;
1022	int i;
1023	struct scan_control sc = {
1024		.gfp_mask = gfp_mask,
1025		.may_writepage = !laptop_mode,
1026		.swap_cluster_max = SWAP_CLUSTER_MAX,
1027		.may_swap = 1,
1028		.swappiness = vm_swappiness,
1029	};
1030
1031	count_vm_event(ALLOCSTALL);
1032
1033	for (i = 0; zones[i] != NULL; i++) {
1034		struct zone *zone = zones[i];
1035
1036		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1037			continue;
1038
1039		lru_pages += zone_page_state(zone, NR_ACTIVE)
1040				+ zone_page_state(zone, NR_INACTIVE);
1041	}
1042
1043	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1044		sc.nr_scanned = 0;
1045		if (!priority)
1046			disable_swap_token();
1047		nr_reclaimed += shrink_zones(priority, zones, &sc);
1048		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1049		if (reclaim_state) {
1050			nr_reclaimed += reclaim_state->reclaimed_slab;
1051			reclaim_state->reclaimed_slab = 0;
1052		}
1053		total_scanned += sc.nr_scanned;
1054		if (nr_reclaimed >= sc.swap_cluster_max) {
1055			ret = 1;
1056			goto out;
1057		}
1058
1059		/*
1060		 * Try to write back as many pages as we just scanned.  This
1061		 * tends to cause slow streaming writers to write data to the
1062		 * disk smoothly, at the dirtying rate, which is nice.   But
1063		 * that's undesirable in laptop mode, where we *want* lumpy
1064		 * writeout.  So in laptop mode, write out the whole world.
1065		 */
1066		if (total_scanned > sc.swap_cluster_max +
1067					sc.swap_cluster_max / 2) {
1068			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1069			sc.may_writepage = 1;
1070		}
1071
1072		/* Take a nap, wait for some writeback to complete */
1073		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1074			congestion_wait(WRITE, HZ/10);
1075	}
1076	/* top priority shrink_caches still had more to do? don't OOM, then */
1077	if (!sc.all_unreclaimable)
1078		ret = 1;
1079out:
1080	/*
1081	 * Now that we've scanned all the zones at this priority level, note
1082	 * that level within the zone so that the next thread which performs
1083	 * scanning of this zone will immediately start out at this priority
1084	 * level.  This affects only the decision whether or not to bring
1085	 * mapped pages onto the inactive list.
1086	 */
1087	if (priority < 0)
1088		priority = 0;
1089	for (i = 0; zones[i] != 0; i++) {
1090		struct zone *zone = zones[i];
1091
1092		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1093			continue;
1094
1095		zone->prev_priority = priority;
1096	}
1097	return ret;
1098}
1099
1100/*
1101 * For kswapd, balance_pgdat() will work across all this node's zones until
1102 * they are all at pages_high.
1103 *
1104 * Returns the number of pages which were actually freed.
1105 *
1106 * There is special handling here for zones which are full of pinned pages.
1107 * This can happen if the pages are all mlocked, or if they are all used by
1108 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1109 * What we do is to detect the case where all pages in the zone have been
1110 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1111 * dead and from now on, only perform a short scan.  Basically we're polling
1112 * the zone for when the problem goes away.
1113 *
1114 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1115 * zones which have free_pages > pages_high, but once a zone is found to have
1116 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1117 * of the number of free pages in the lower zones.  This interoperates with
1118 * the page allocator fallback scheme to ensure that aging of pages is balanced
1119 * across the zones.
1120 */
1121static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1122{
1123	int all_zones_ok;
1124	int priority;
1125	int i;
1126	unsigned long total_scanned;
1127	unsigned long nr_reclaimed;
1128	struct reclaim_state *reclaim_state = current->reclaim_state;
1129	struct scan_control sc = {
1130		.gfp_mask = GFP_KERNEL,
1131		.may_swap = 1,
1132		.swap_cluster_max = SWAP_CLUSTER_MAX,
1133		.swappiness = vm_swappiness,
1134	};
1135	/*
1136	 * temp_priority is used to remember the scanning priority at which
1137	 * this zone was successfully refilled to free_pages == pages_high.
1138	 */
1139	int temp_priority[MAX_NR_ZONES];
1140
1141loop_again:
1142	total_scanned = 0;
1143	nr_reclaimed = 0;
1144	sc.may_writepage = !laptop_mode;
1145	count_vm_event(PAGEOUTRUN);
1146
1147	for (i = 0; i < pgdat->nr_zones; i++)
1148		temp_priority[i] = DEF_PRIORITY;
1149
1150	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1151		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1152		unsigned long lru_pages = 0;
1153
1154		/* The swap token gets in the way of swapout... */
1155		if (!priority)
1156			disable_swap_token();
1157
1158		all_zones_ok = 1;
1159
1160		/*
1161		 * Scan in the highmem->dma direction for the highest
1162		 * zone which needs scanning
1163		 */
1164		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1165			struct zone *zone = pgdat->node_zones + i;
1166
1167			if (!populated_zone(zone))
1168				continue;
1169
1170			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1171				continue;
1172
1173			if (!zone_watermark_ok(zone, order, zone->pages_high,
1174					       0, 0)) {
1175				end_zone = i;
1176				break;
1177			}
1178		}
1179		if (i < 0)
1180			goto out;
1181
1182		for (i = 0; i <= end_zone; i++) {
1183			struct zone *zone = pgdat->node_zones + i;
1184
1185			lru_pages += zone_page_state(zone, NR_ACTIVE)
1186					+ zone_page_state(zone, NR_INACTIVE);
1187		}
1188
1189		/*
1190		 * Now scan the zone in the dma->highmem direction, stopping
1191		 * at the last zone which needs scanning.
1192		 *
1193		 * We do this because the page allocator works in the opposite
1194		 * direction.  This prevents the page allocator from allocating
1195		 * pages behind kswapd's direction of progress, which would
1196		 * cause too much scanning of the lower zones.
1197		 */
1198		for (i = 0; i <= end_zone; i++) {
1199			struct zone *zone = pgdat->node_zones + i;
1200			int nr_slab;
1201
1202			if (!populated_zone(zone))
1203				continue;
1204
1205			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1206				continue;
1207
1208			if (!zone_watermark_ok(zone, order, zone->pages_high,
1209					       end_zone, 0))
1210				all_zones_ok = 0;
1211			temp_priority[i] = priority;
1212			sc.nr_scanned = 0;
1213			note_zone_scanning_priority(zone, priority);
1214			nr_reclaimed += shrink_zone(priority, zone, &sc);
1215			reclaim_state->reclaimed_slab = 0;
1216			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1217						lru_pages);
1218			nr_reclaimed += reclaim_state->reclaimed_slab;
1219			total_scanned += sc.nr_scanned;
1220			if (zone->all_unreclaimable)
1221				continue;
1222			if (nr_slab == 0 && zone->pages_scanned >=
1223				(zone_page_state(zone, NR_ACTIVE)
1224				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1225					zone->all_unreclaimable = 1;
1226			/*
1227			 * If we've done a decent amount of scanning and
1228			 * the reclaim ratio is low, start doing writepage
1229			 * even in laptop mode
1230			 */
1231			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1232			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1233				sc.may_writepage = 1;
1234		}
1235		if (all_zones_ok)
1236			break;		/* kswapd: all done */
1237		/*
1238		 * OK, kswapd is getting into trouble.  Take a nap, then take
1239		 * another pass across the zones.
1240		 */
1241		if (total_scanned && priority < DEF_PRIORITY - 2)
1242			congestion_wait(WRITE, HZ/10);
1243
1244		/*
1245		 * We do this so kswapd doesn't build up large priorities for
1246		 * example when it is freeing in parallel with allocators. It
1247		 * matches the direct reclaim path behaviour in terms of impact
1248		 * on zone->*_priority.
1249		 */
1250		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1251			break;
1252	}
1253out:
1254	/*
1255	 * Note within each zone the priority level at which this zone was
1256	 * brought into a happy state.  So that the next thread which scans this
1257	 * zone will start out at that priority level.
1258	 */
1259	for (i = 0; i < pgdat->nr_zones; i++) {
1260		struct zone *zone = pgdat->node_zones + i;
1261
1262		zone->prev_priority = temp_priority[i];
1263	}
1264	if (!all_zones_ok) {
1265		cond_resched();
1266
1267		try_to_freeze();
1268
1269		goto loop_again;
1270	}
1271
1272	return nr_reclaimed;
1273}
1274
1275/*
1276 * The background pageout daemon, started as a kernel thread
1277 * from the init process.
1278 *
1279 * This basically trickles out pages so that we have _some_
1280 * free memory available even if there is no other activity
1281 * that frees anything up. This is needed for things like routing
1282 * etc, where we otherwise might have all activity going on in
1283 * asynchronous contexts that cannot page things out.
1284 *
1285 * If there are applications that are active memory-allocators
1286 * (most normal use), this basically shouldn't matter.
1287 */
1288static int kswapd(void *p)
1289{
1290	unsigned long order;
1291	pg_data_t *pgdat = (pg_data_t*)p;
1292	struct task_struct *tsk = current;
1293	DEFINE_WAIT(wait);
1294	struct reclaim_state reclaim_state = {
1295		.reclaimed_slab = 0,
1296	};
1297	cpumask_t cpumask;
1298
1299	cpumask = node_to_cpumask(pgdat->node_id);
1300	if (!cpus_empty(cpumask))
1301		set_cpus_allowed(tsk, cpumask);
1302	current->reclaim_state = &reclaim_state;
1303
1304	/*
1305	 * Tell the memory management that we're a "memory allocator",
1306	 * and that if we need more memory we should get access to it
1307	 * regardless (see "__alloc_pages()"). "kswapd" should
1308	 * never get caught in the normal page freeing logic.
1309	 *
1310	 * (Kswapd normally doesn't need memory anyway, but sometimes
1311	 * you need a small amount of memory in order to be able to
1312	 * page out something else, and this flag essentially protects
1313	 * us from recursively trying to free more memory as we're
1314	 * trying to free the first piece of memory in the first place).
1315	 */
1316	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1317
1318	order = 0;
1319	for ( ; ; ) {
1320		unsigned long new_order;
1321
1322		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1323		new_order = pgdat->kswapd_max_order;
1324		pgdat->kswapd_max_order = 0;
1325		if (order < new_order) {
1326			/*
1327			 * Don't sleep if someone wants a larger 'order'
1328			 * allocation
1329			 */
1330			order = new_order;
1331		} else {
1332			if (!freezing(current))
1333				schedule();
1334
1335			order = pgdat->kswapd_max_order;
1336		}
1337		finish_wait(&pgdat->kswapd_wait, &wait);
1338
1339		if (!try_to_freeze()) {
1340			/* We can speed up thawing tasks if we don't call
1341			 * balance_pgdat after returning from the refrigerator
1342			 */
1343			balance_pgdat(pgdat, order);
1344		}
1345	}
1346	return 0;
1347}
1348
1349/*
1350 * A zone is low on free memory, so wake its kswapd task to service it.
1351 */
1352void wakeup_kswapd(struct zone *zone, int order)
1353{
1354	pg_data_t *pgdat;
1355
1356	if (!populated_zone(zone))
1357		return;
1358
1359	pgdat = zone->zone_pgdat;
1360	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1361		return;
1362	if (pgdat->kswapd_max_order < order)
1363		pgdat->kswapd_max_order = order;
1364	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1365		return;
1366	if (!waitqueue_active(&pgdat->kswapd_wait))
1367		return;
1368	wake_up_interruptible(&pgdat->kswapd_wait);
1369}
1370
1371#ifdef CONFIG_PM
1372/*
1373 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1374 * from LRU lists system-wide, for given pass and priority, and returns the
1375 * number of reclaimed pages
1376 *
1377 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1378 */
1379static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1380				      int pass, struct scan_control *sc)
1381{
1382	struct zone *zone;
1383	unsigned long nr_to_scan, ret = 0;
1384
1385	for_each_zone(zone) {
1386
1387		if (!populated_zone(zone))
1388			continue;
1389
1390		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1391			continue;
1392
1393		/* For pass = 0 we don't shrink the active list */
1394		if (pass > 0) {
1395			zone->nr_scan_active +=
1396				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1397			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1398				zone->nr_scan_active = 0;
1399				nr_to_scan = min(nr_pages,
1400					zone_page_state(zone, NR_ACTIVE));
1401				shrink_active_list(nr_to_scan, zone, sc, prio);
1402			}
1403		}
1404
1405		zone->nr_scan_inactive +=
1406			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1407		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1408			zone->nr_scan_inactive = 0;
1409			nr_to_scan = min(nr_pages,
1410				zone_page_state(zone, NR_INACTIVE));
1411			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1412			if (ret >= nr_pages)
1413				return ret;
1414		}
1415	}
1416
1417	return ret;
1418}
1419
1420static unsigned long count_lru_pages(void)
1421{
1422	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1423}
1424
1425/*
1426 * Try to free `nr_pages' of memory, system-wide, and return the number of
1427 * freed pages.
1428 *
1429 * Rather than trying to age LRUs the aim is to preserve the overall
1430 * LRU order by reclaiming preferentially
1431 * inactive > active > active referenced > active mapped
1432 */
1433unsigned long shrink_all_memory(unsigned long nr_pages)
1434{
1435	unsigned long lru_pages, nr_slab;
1436	unsigned long ret = 0;
1437	int pass;
1438	struct reclaim_state reclaim_state;
1439	struct scan_control sc = {
1440		.gfp_mask = GFP_KERNEL,
1441		.may_swap = 0,
1442		.swap_cluster_max = nr_pages,
1443		.may_writepage = 1,
1444		.swappiness = vm_swappiness,
1445	};
1446
1447	current->reclaim_state = &reclaim_state;
1448
1449	lru_pages = count_lru_pages();
1450	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1451	/* If slab caches are huge, it's better to hit them first */
1452	while (nr_slab >= lru_pages) {
1453		reclaim_state.reclaimed_slab = 0;
1454		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1455		if (!reclaim_state.reclaimed_slab)
1456			break;
1457
1458		ret += reclaim_state.reclaimed_slab;
1459		if (ret >= nr_pages)
1460			goto out;
1461
1462		nr_slab -= reclaim_state.reclaimed_slab;
1463	}
1464
1465	/*
1466	 * We try to shrink LRUs in 5 passes:
1467	 * 0 = Reclaim from inactive_list only
1468	 * 1 = Reclaim from active list but don't reclaim mapped
1469	 * 2 = 2nd pass of type 1
1470	 * 3 = Reclaim mapped (normal reclaim)
1471	 * 4 = 2nd pass of type 3
1472	 */
1473	for (pass = 0; pass < 5; pass++) {
1474		int prio;
1475
1476		/* Force reclaiming mapped pages in the passes #3 and #4 */
1477		if (pass > 2) {
1478			sc.may_swap = 1;
1479			sc.swappiness = 100;
1480		}
1481
1482		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1483			unsigned long nr_to_scan = nr_pages - ret;
1484
1485			sc.nr_scanned = 0;
1486			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1487			if (ret >= nr_pages)
1488				goto out;
1489
1490			reclaim_state.reclaimed_slab = 0;
1491			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1492					count_lru_pages());
1493			ret += reclaim_state.reclaimed_slab;
1494			if (ret >= nr_pages)
1495				goto out;
1496
1497			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1498				congestion_wait(WRITE, HZ / 10);
1499		}
1500	}
1501
1502	/*
1503	 * If ret = 0, we could not shrink LRUs, but there may be something
1504	 * in slab caches
1505	 */
1506	if (!ret) {
1507		do {
1508			reclaim_state.reclaimed_slab = 0;
1509			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1510			ret += reclaim_state.reclaimed_slab;
1511		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1512	}
1513
1514out:
1515	current->reclaim_state = NULL;
1516
1517	return ret;
1518}
1519#endif
1520
1521/* It's optimal to keep kswapds on the same CPUs as their memory, but
1522   not required for correctness.  So if the last cpu in a node goes
1523   away, we get changed to run anywhere: as the first one comes back,
1524   restore their cpu bindings. */
1525static int __devinit cpu_callback(struct notifier_block *nfb,
1526				  unsigned long action, void *hcpu)
1527{
1528	pg_data_t *pgdat;
1529	cpumask_t mask;
1530
1531	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1532		for_each_online_pgdat(pgdat) {
1533			mask = node_to_cpumask(pgdat->node_id);
1534			if (any_online_cpu(mask) != NR_CPUS)
1535				/* One of our CPUs online: restore mask */
1536				set_cpus_allowed(pgdat->kswapd, mask);
1537		}
1538	}
1539	return NOTIFY_OK;
1540}
1541
1542/*
1543 * This kswapd start function will be called by init and node-hot-add.
1544 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1545 */
1546int kswapd_run(int nid)
1547{
1548	pg_data_t *pgdat = NODE_DATA(nid);
1549	int ret = 0;
1550
1551	if (pgdat->kswapd)
1552		return 0;
1553
1554	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1555	if (IS_ERR(pgdat->kswapd)) {
1556		/* failure at boot is fatal */
1557		BUG_ON(system_state == SYSTEM_BOOTING);
1558		printk("Failed to start kswapd on node %d\n",nid);
1559		ret = -1;
1560	}
1561	return ret;
1562}
1563
1564static int __init kswapd_init(void)
1565{
1566	int nid;
1567
1568	swap_setup();
1569	for_each_online_node(nid)
1570 		kswapd_run(nid);
1571	hotcpu_notifier(cpu_callback, 0);
1572	return 0;
1573}
1574
1575module_init(kswapd_init)
1576
1577#ifdef CONFIG_NUMA
1578/*
1579 * Zone reclaim mode
1580 *
1581 * If non-zero call zone_reclaim when the number of free pages falls below
1582 * the watermarks.
1583 */
1584int zone_reclaim_mode __read_mostly;
1585
1586#define RECLAIM_OFF 0
1587#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1588#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1589#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1590
1591/*
1592 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1593 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1594 * a zone.
1595 */
1596#define ZONE_RECLAIM_PRIORITY 4
1597
1598/*
1599 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1600 * occur.
1601 */
1602int sysctl_min_unmapped_ratio = 1;
1603
1604/*
1605 * If the number of slab pages in a zone grows beyond this percentage then
1606 * slab reclaim needs to occur.
1607 */
1608int sysctl_min_slab_ratio = 5;
1609
1610/*
1611 * Try to free up some pages from this zone through reclaim.
1612 */
1613static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1614{
1615	/* Minimum pages needed in order to stay on node */
1616	const unsigned long nr_pages = 1 << order;
1617	struct task_struct *p = current;
1618	struct reclaim_state reclaim_state;
1619	int priority;
1620	unsigned long nr_reclaimed = 0;
1621	struct scan_control sc = {
1622		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1623		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1624		.swap_cluster_max = max_t(unsigned long, nr_pages,
1625					SWAP_CLUSTER_MAX),
1626		.gfp_mask = gfp_mask,
1627		.swappiness = vm_swappiness,
1628	};
1629	unsigned long slab_reclaimable;
1630
1631	disable_swap_token();
1632	cond_resched();
1633	/*
1634	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1635	 * and we also need to be able to write out pages for RECLAIM_WRITE
1636	 * and RECLAIM_SWAP.
1637	 */
1638	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1639	reclaim_state.reclaimed_slab = 0;
1640	p->reclaim_state = &reclaim_state;
1641
1642	if (zone_page_state(zone, NR_FILE_PAGES) -
1643		zone_page_state(zone, NR_FILE_MAPPED) >
1644		zone->min_unmapped_pages) {
1645		/*
1646		 * Free memory by calling shrink zone with increasing
1647		 * priorities until we have enough memory freed.
1648		 */
1649		priority = ZONE_RECLAIM_PRIORITY;
1650		do {
1651			note_zone_scanning_priority(zone, priority);
1652			nr_reclaimed += shrink_zone(priority, zone, &sc);
1653			priority--;
1654		} while (priority >= 0 && nr_reclaimed < nr_pages);
1655	}
1656
1657	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1658	if (slab_reclaimable > zone->min_slab_pages) {
1659		/*
1660		 * shrink_slab() does not currently allow us to determine how
1661		 * many pages were freed in this zone. So we take the current
1662		 * number of slab pages and shake the slab until it is reduced
1663		 * by the same nr_pages that we used for reclaiming unmapped
1664		 * pages.
1665		 *
1666		 * Note that shrink_slab will free memory on all zones and may
1667		 * take a long time.
1668		 */
1669		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1670			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1671				slab_reclaimable - nr_pages)
1672			;
1673
1674		/*
1675		 * Update nr_reclaimed by the number of slab pages we
1676		 * reclaimed from this zone.
1677		 */
1678		nr_reclaimed += slab_reclaimable -
1679			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1680	}
1681
1682	p->reclaim_state = NULL;
1683	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1684	return nr_reclaimed >= nr_pages;
1685}
1686
1687int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1688{
1689	cpumask_t mask;
1690	int node_id;
1691
1692	/*
1693	 * Zone reclaim reclaims unmapped file backed pages and
1694	 * slab pages if we are over the defined limits.
1695	 *
1696	 * A small portion of unmapped file backed pages is needed for
1697	 * file I/O otherwise pages read by file I/O will be immediately
1698	 * thrown out if the zone is overallocated. So we do not reclaim
1699	 * if less than a specified percentage of the zone is used by
1700	 * unmapped file backed pages.
1701	 */
1702	if (zone_page_state(zone, NR_FILE_PAGES) -
1703	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1704	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1705			<= zone->min_slab_pages)
1706		return 0;
1707
1708	/*
1709	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1710	 * not have reclaimable pages and if we should not delay the allocation
1711	 * then do not scan.
1712	 */
1713	if (!(gfp_mask & __GFP_WAIT) ||
1714		zone->all_unreclaimable ||
1715		atomic_read(&zone->reclaim_in_progress) > 0 ||
1716		(current->flags & PF_MEMALLOC))
1717			return 0;
1718
1719	/*
1720	 * Only run zone reclaim on the local zone or on zones that do not
1721	 * have associated processors. This will favor the local processor
1722	 * over remote processors and spread off node memory allocations
1723	 * as wide as possible.
1724	 */
1725	node_id = zone_to_nid(zone);
1726	mask = node_to_cpumask(node_id);
1727	if (!cpus_empty(mask) && node_id != numa_node_id())
1728		return 0;
1729	return __zone_reclaim(zone, gfp_mask, order);
1730}
1731#endif
1732