vmscan.c revision 918d3f90e8d5657491024f64427e9a5ea632d284
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40
41#include <asm/tlbflush.h>
42#include <asm/div64.h>
43
44#include <linux/swapops.h>
45
46#include "internal.h"
47
48struct scan_control {
49	/* Incremented by the number of inactive pages that were scanned */
50	unsigned long nr_scanned;
51
52	/* This context's GFP mask */
53	gfp_t gfp_mask;
54
55	int may_writepage;
56
57	/* Can pages be swapped as part of reclaim? */
58	int may_swap;
59
60	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
61	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62	 * In this context, it doesn't matter that we scan the
63	 * whole list at once. */
64	int swap_cluster_max;
65
66	int swappiness;
67
68	int all_unreclaimable;
69};
70
71/*
72 * The list of shrinker callbacks used by to apply pressure to
73 * ageable caches.
74 */
75struct shrinker {
76	shrinker_t		shrinker;
77	struct list_head	list;
78	int			seeks;	/* seeks to recreate an obj */
79	long			nr;	/* objs pending delete */
80};
81
82#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
83
84#ifdef ARCH_HAS_PREFETCH
85#define prefetch_prev_lru_page(_page, _base, _field)			\
86	do {								\
87		if ((_page)->lru.prev != _base) {			\
88			struct page *prev;				\
89									\
90			prev = lru_to_page(&(_page->lru));		\
91			prefetch(&prev->_field);			\
92		}							\
93	} while (0)
94#else
95#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
96#endif
97
98#ifdef ARCH_HAS_PREFETCHW
99#define prefetchw_prev_lru_page(_page, _base, _field)			\
100	do {								\
101		if ((_page)->lru.prev != _base) {			\
102			struct page *prev;				\
103									\
104			prev = lru_to_page(&(_page->lru));		\
105			prefetchw(&prev->_field);			\
106		}							\
107	} while (0)
108#else
109#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
110#endif
111
112/*
113 * From 0 .. 100.  Higher means more swappy.
114 */
115int vm_swappiness = 60;
116long vm_total_pages;	/* The total number of pages which the VM controls */
117
118static LIST_HEAD(shrinker_list);
119static DECLARE_RWSEM(shrinker_rwsem);
120
121/*
122 * Add a shrinker callback to be called from the vm
123 */
124struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
125{
126        struct shrinker *shrinker;
127
128        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
129        if (shrinker) {
130	        shrinker->shrinker = theshrinker;
131	        shrinker->seeks = seeks;
132	        shrinker->nr = 0;
133	        down_write(&shrinker_rwsem);
134	        list_add_tail(&shrinker->list, &shrinker_list);
135	        up_write(&shrinker_rwsem);
136	}
137	return shrinker;
138}
139EXPORT_SYMBOL(set_shrinker);
140
141/*
142 * Remove one
143 */
144void remove_shrinker(struct shrinker *shrinker)
145{
146	down_write(&shrinker_rwsem);
147	list_del(&shrinker->list);
148	up_write(&shrinker_rwsem);
149	kfree(shrinker);
150}
151EXPORT_SYMBOL(remove_shrinker);
152
153#define SHRINK_BATCH 128
154/*
155 * Call the shrink functions to age shrinkable caches
156 *
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object.  With this in mind we age equal
159 * percentages of the lru and ageable caches.  This should balance the seeks
160 * generated by these structures.
161 *
162 * If the vm encounted mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
164 *
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 *
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt.  It is used for balancing
169 * slab reclaim versus page reclaim.
170 *
171 * Returns the number of slab objects which we shrunk.
172 */
173unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174			unsigned long lru_pages)
175{
176	struct shrinker *shrinker;
177	unsigned long ret = 0;
178
179	if (scanned == 0)
180		scanned = SWAP_CLUSTER_MAX;
181
182	if (!down_read_trylock(&shrinker_rwsem))
183		return 1;	/* Assume we'll be able to shrink next time */
184
185	list_for_each_entry(shrinker, &shrinker_list, list) {
186		unsigned long long delta;
187		unsigned long total_scan;
188		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
189
190		delta = (4 * scanned) / shrinker->seeks;
191		delta *= max_pass;
192		do_div(delta, lru_pages + 1);
193		shrinker->nr += delta;
194		if (shrinker->nr < 0) {
195			printk(KERN_ERR "%s: nr=%ld\n",
196					__FUNCTION__, shrinker->nr);
197			shrinker->nr = max_pass;
198		}
199
200		/*
201		 * Avoid risking looping forever due to too large nr value:
202		 * never try to free more than twice the estimate number of
203		 * freeable entries.
204		 */
205		if (shrinker->nr > max_pass * 2)
206			shrinker->nr = max_pass * 2;
207
208		total_scan = shrinker->nr;
209		shrinker->nr = 0;
210
211		while (total_scan >= SHRINK_BATCH) {
212			long this_scan = SHRINK_BATCH;
213			int shrink_ret;
214			int nr_before;
215
216			nr_before = (*shrinker->shrinker)(0, gfp_mask);
217			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
218			if (shrink_ret == -1)
219				break;
220			if (shrink_ret < nr_before)
221				ret += nr_before - shrink_ret;
222			count_vm_events(SLABS_SCANNED, this_scan);
223			total_scan -= this_scan;
224
225			cond_resched();
226		}
227
228		shrinker->nr += total_scan;
229	}
230	up_read(&shrinker_rwsem);
231	return ret;
232}
233
234/* Called without lock on whether page is mapped, so answer is unstable */
235static inline int page_mapping_inuse(struct page *page)
236{
237	struct address_space *mapping;
238
239	/* Page is in somebody's page tables. */
240	if (page_mapped(page))
241		return 1;
242
243	/* Be more reluctant to reclaim swapcache than pagecache */
244	if (PageSwapCache(page))
245		return 1;
246
247	mapping = page_mapping(page);
248	if (!mapping)
249		return 0;
250
251	/* File is mmap'd by somebody? */
252	return mapping_mapped(mapping);
253}
254
255static inline int is_page_cache_freeable(struct page *page)
256{
257	return page_count(page) - !!PagePrivate(page) == 2;
258}
259
260static int may_write_to_queue(struct backing_dev_info *bdi)
261{
262	if (current->flags & PF_SWAPWRITE)
263		return 1;
264	if (!bdi_write_congested(bdi))
265		return 1;
266	if (bdi == current->backing_dev_info)
267		return 1;
268	return 0;
269}
270
271/*
272 * We detected a synchronous write error writing a page out.  Probably
273 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
275 *
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up.  But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
279 *
280 * We're allowed to run sleeping lock_page() here because we know the caller has
281 * __GFP_FS.
282 */
283static void handle_write_error(struct address_space *mapping,
284				struct page *page, int error)
285{
286	lock_page(page);
287	if (page_mapping(page) == mapping) {
288		if (error == -ENOSPC)
289			set_bit(AS_ENOSPC, &mapping->flags);
290		else
291			set_bit(AS_EIO, &mapping->flags);
292	}
293	unlock_page(page);
294}
295
296/* possible outcome of pageout() */
297typedef enum {
298	/* failed to write page out, page is locked */
299	PAGE_KEEP,
300	/* move page to the active list, page is locked */
301	PAGE_ACTIVATE,
302	/* page has been sent to the disk successfully, page is unlocked */
303	PAGE_SUCCESS,
304	/* page is clean and locked */
305	PAGE_CLEAN,
306} pageout_t;
307
308/*
309 * pageout is called by shrink_page_list() for each dirty page.
310 * Calls ->writepage().
311 */
312static pageout_t pageout(struct page *page, struct address_space *mapping)
313{
314	/*
315	 * If the page is dirty, only perform writeback if that write
316	 * will be non-blocking.  To prevent this allocation from being
317	 * stalled by pagecache activity.  But note that there may be
318	 * stalls if we need to run get_block().  We could test
319	 * PagePrivate for that.
320	 *
321	 * If this process is currently in generic_file_write() against
322	 * this page's queue, we can perform writeback even if that
323	 * will block.
324	 *
325	 * If the page is swapcache, write it back even if that would
326	 * block, for some throttling. This happens by accident, because
327	 * swap_backing_dev_info is bust: it doesn't reflect the
328	 * congestion state of the swapdevs.  Easy to fix, if needed.
329	 * See swapfile.c:page_queue_congested().
330	 */
331	if (!is_page_cache_freeable(page))
332		return PAGE_KEEP;
333	if (!mapping) {
334		/*
335		 * Some data journaling orphaned pages can have
336		 * page->mapping == NULL while being dirty with clean buffers.
337		 */
338		if (PagePrivate(page)) {
339			if (try_to_free_buffers(page)) {
340				ClearPageDirty(page);
341				printk("%s: orphaned page\n", __FUNCTION__);
342				return PAGE_CLEAN;
343			}
344		}
345		return PAGE_KEEP;
346	}
347	if (mapping->a_ops->writepage == NULL)
348		return PAGE_ACTIVATE;
349	if (!may_write_to_queue(mapping->backing_dev_info))
350		return PAGE_KEEP;
351
352	if (clear_page_dirty_for_io(page)) {
353		int res;
354		struct writeback_control wbc = {
355			.sync_mode = WB_SYNC_NONE,
356			.nr_to_write = SWAP_CLUSTER_MAX,
357			.range_start = 0,
358			.range_end = LLONG_MAX,
359			.nonblocking = 1,
360			.for_reclaim = 1,
361		};
362
363		SetPageReclaim(page);
364		res = mapping->a_ops->writepage(page, &wbc);
365		if (res < 0)
366			handle_write_error(mapping, page, res);
367		if (res == AOP_WRITEPAGE_ACTIVATE) {
368			ClearPageReclaim(page);
369			return PAGE_ACTIVATE;
370		}
371		if (!PageWriteback(page)) {
372			/* synchronous write or broken a_ops? */
373			ClearPageReclaim(page);
374		}
375		inc_zone_page_state(page, NR_VMSCAN_WRITE);
376		return PAGE_SUCCESS;
377	}
378
379	return PAGE_CLEAN;
380}
381
382/*
383 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
384 * someone else has a ref on the page, abort and return 0.  If it was
385 * successfully detached, return 1.  Assumes the caller has a single ref on
386 * this page.
387 */
388int remove_mapping(struct address_space *mapping, struct page *page)
389{
390	BUG_ON(!PageLocked(page));
391	BUG_ON(mapping != page_mapping(page));
392
393	write_lock_irq(&mapping->tree_lock);
394	/*
395	 * The non racy check for a busy page.
396	 *
397	 * Must be careful with the order of the tests. When someone has
398	 * a ref to the page, it may be possible that they dirty it then
399	 * drop the reference. So if PageDirty is tested before page_count
400	 * here, then the following race may occur:
401	 *
402	 * get_user_pages(&page);
403	 * [user mapping goes away]
404	 * write_to(page);
405	 *				!PageDirty(page)    [good]
406	 * SetPageDirty(page);
407	 * put_page(page);
408	 *				!page_count(page)   [good, discard it]
409	 *
410	 * [oops, our write_to data is lost]
411	 *
412	 * Reversing the order of the tests ensures such a situation cannot
413	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
414	 * load is not satisfied before that of page->_count.
415	 *
416	 * Note that if SetPageDirty is always performed via set_page_dirty,
417	 * and thus under tree_lock, then this ordering is not required.
418	 */
419	if (unlikely(page_count(page) != 2))
420		goto cannot_free;
421	smp_rmb();
422	if (unlikely(PageDirty(page)))
423		goto cannot_free;
424
425	if (PageSwapCache(page)) {
426		swp_entry_t swap = { .val = page_private(page) };
427		__delete_from_swap_cache(page);
428		write_unlock_irq(&mapping->tree_lock);
429		swap_free(swap);
430		__put_page(page);	/* The pagecache ref */
431		return 1;
432	}
433
434	__remove_from_page_cache(page);
435	write_unlock_irq(&mapping->tree_lock);
436	__put_page(page);
437	return 1;
438
439cannot_free:
440	write_unlock_irq(&mapping->tree_lock);
441	return 0;
442}
443
444/*
445 * shrink_page_list() returns the number of reclaimed pages
446 */
447static unsigned long shrink_page_list(struct list_head *page_list,
448					struct scan_control *sc)
449{
450	LIST_HEAD(ret_pages);
451	struct pagevec freed_pvec;
452	int pgactivate = 0;
453	unsigned long nr_reclaimed = 0;
454
455	cond_resched();
456
457	pagevec_init(&freed_pvec, 1);
458	while (!list_empty(page_list)) {
459		struct address_space *mapping;
460		struct page *page;
461		int may_enter_fs;
462		int referenced;
463
464		cond_resched();
465
466		page = lru_to_page(page_list);
467		list_del(&page->lru);
468
469		if (TestSetPageLocked(page))
470			goto keep;
471
472		VM_BUG_ON(PageActive(page));
473
474		sc->nr_scanned++;
475
476		if (!sc->may_swap && page_mapped(page))
477			goto keep_locked;
478
479		/* Double the slab pressure for mapped and swapcache pages */
480		if (page_mapped(page) || PageSwapCache(page))
481			sc->nr_scanned++;
482
483		if (PageWriteback(page))
484			goto keep_locked;
485
486		referenced = page_referenced(page, 1);
487		/* In active use or really unfreeable?  Activate it. */
488		if (referenced && page_mapping_inuse(page))
489			goto activate_locked;
490
491#ifdef CONFIG_SWAP
492		/*
493		 * Anonymous process memory has backing store?
494		 * Try to allocate it some swap space here.
495		 */
496		if (PageAnon(page) && !PageSwapCache(page))
497			if (!add_to_swap(page, GFP_ATOMIC))
498				goto activate_locked;
499#endif /* CONFIG_SWAP */
500
501		mapping = page_mapping(page);
502		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
503			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
504
505		/*
506		 * The page is mapped into the page tables of one or more
507		 * processes. Try to unmap it here.
508		 */
509		if (page_mapped(page) && mapping) {
510			switch (try_to_unmap(page, 0)) {
511			case SWAP_FAIL:
512				goto activate_locked;
513			case SWAP_AGAIN:
514				goto keep_locked;
515			case SWAP_SUCCESS:
516				; /* try to free the page below */
517			}
518		}
519
520		if (PageDirty(page)) {
521			if (referenced)
522				goto keep_locked;
523			if (!may_enter_fs)
524				goto keep_locked;
525			if (!sc->may_writepage)
526				goto keep_locked;
527
528			/* Page is dirty, try to write it out here */
529			switch(pageout(page, mapping)) {
530			case PAGE_KEEP:
531				goto keep_locked;
532			case PAGE_ACTIVATE:
533				goto activate_locked;
534			case PAGE_SUCCESS:
535				if (PageWriteback(page) || PageDirty(page))
536					goto keep;
537				/*
538				 * A synchronous write - probably a ramdisk.  Go
539				 * ahead and try to reclaim the page.
540				 */
541				if (TestSetPageLocked(page))
542					goto keep;
543				if (PageDirty(page) || PageWriteback(page))
544					goto keep_locked;
545				mapping = page_mapping(page);
546			case PAGE_CLEAN:
547				; /* try to free the page below */
548			}
549		}
550
551		/*
552		 * If the page has buffers, try to free the buffer mappings
553		 * associated with this page. If we succeed we try to free
554		 * the page as well.
555		 *
556		 * We do this even if the page is PageDirty().
557		 * try_to_release_page() does not perform I/O, but it is
558		 * possible for a page to have PageDirty set, but it is actually
559		 * clean (all its buffers are clean).  This happens if the
560		 * buffers were written out directly, with submit_bh(). ext3
561		 * will do this, as well as the blockdev mapping.
562		 * try_to_release_page() will discover that cleanness and will
563		 * drop the buffers and mark the page clean - it can be freed.
564		 *
565		 * Rarely, pages can have buffers and no ->mapping.  These are
566		 * the pages which were not successfully invalidated in
567		 * truncate_complete_page().  We try to drop those buffers here
568		 * and if that worked, and the page is no longer mapped into
569		 * process address space (page_count == 1) it can be freed.
570		 * Otherwise, leave the page on the LRU so it is swappable.
571		 */
572		if (PagePrivate(page)) {
573			if (!try_to_release_page(page, sc->gfp_mask))
574				goto activate_locked;
575			if (!mapping && page_count(page) == 1)
576				goto free_it;
577		}
578
579		if (!mapping || !remove_mapping(mapping, page))
580			goto keep_locked;
581
582free_it:
583		unlock_page(page);
584		nr_reclaimed++;
585		if (!pagevec_add(&freed_pvec, page))
586			__pagevec_release_nonlru(&freed_pvec);
587		continue;
588
589activate_locked:
590		SetPageActive(page);
591		pgactivate++;
592keep_locked:
593		unlock_page(page);
594keep:
595		list_add(&page->lru, &ret_pages);
596		VM_BUG_ON(PageLRU(page));
597	}
598	list_splice(&ret_pages, page_list);
599	if (pagevec_count(&freed_pvec))
600		__pagevec_release_nonlru(&freed_pvec);
601	count_vm_events(PGACTIVATE, pgactivate);
602	return nr_reclaimed;
603}
604
605/*
606 * zone->lru_lock is heavily contended.  Some of the functions that
607 * shrink the lists perform better by taking out a batch of pages
608 * and working on them outside the LRU lock.
609 *
610 * For pagecache intensive workloads, this function is the hottest
611 * spot in the kernel (apart from copy_*_user functions).
612 *
613 * Appropriate locks must be held before calling this function.
614 *
615 * @nr_to_scan:	The number of pages to look through on the list.
616 * @src:	The LRU list to pull pages off.
617 * @dst:	The temp list to put pages on to.
618 * @scanned:	The number of pages that were scanned.
619 *
620 * returns how many pages were moved onto *@dst.
621 */
622static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
623		struct list_head *src, struct list_head *dst,
624		unsigned long *scanned)
625{
626	unsigned long nr_taken = 0;
627	struct page *page;
628	unsigned long scan;
629
630	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
631		struct list_head *target;
632		page = lru_to_page(src);
633		prefetchw_prev_lru_page(page, src, flags);
634
635		VM_BUG_ON(!PageLRU(page));
636
637		list_del(&page->lru);
638		target = src;
639		if (likely(get_page_unless_zero(page))) {
640			/*
641			 * Be careful not to clear PageLRU until after we're
642			 * sure the page is not being freed elsewhere -- the
643			 * page release code relies on it.
644			 */
645			ClearPageLRU(page);
646			target = dst;
647			nr_taken++;
648		} /* else it is being freed elsewhere */
649
650		list_add(&page->lru, target);
651	}
652
653	*scanned = scan;
654	return nr_taken;
655}
656
657/*
658 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
659 * of reclaimed pages
660 */
661static unsigned long shrink_inactive_list(unsigned long max_scan,
662				struct zone *zone, struct scan_control *sc)
663{
664	LIST_HEAD(page_list);
665	struct pagevec pvec;
666	unsigned long nr_scanned = 0;
667	unsigned long nr_reclaimed = 0;
668
669	pagevec_init(&pvec, 1);
670
671	lru_add_drain();
672	spin_lock_irq(&zone->lru_lock);
673	do {
674		struct page *page;
675		unsigned long nr_taken;
676		unsigned long nr_scan;
677		unsigned long nr_freed;
678
679		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
680					     &zone->inactive_list,
681					     &page_list, &nr_scan);
682		zone->nr_inactive -= nr_taken;
683		zone->pages_scanned += nr_scan;
684		spin_unlock_irq(&zone->lru_lock);
685
686		nr_scanned += nr_scan;
687		nr_freed = shrink_page_list(&page_list, sc);
688		nr_reclaimed += nr_freed;
689		local_irq_disable();
690		if (current_is_kswapd()) {
691			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
692			__count_vm_events(KSWAPD_STEAL, nr_freed);
693		} else
694			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
695		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
696
697		if (nr_taken == 0)
698			goto done;
699
700		spin_lock(&zone->lru_lock);
701		/*
702		 * Put back any unfreeable pages.
703		 */
704		while (!list_empty(&page_list)) {
705			page = lru_to_page(&page_list);
706			VM_BUG_ON(PageLRU(page));
707			SetPageLRU(page);
708			list_del(&page->lru);
709			if (PageActive(page))
710				add_page_to_active_list(zone, page);
711			else
712				add_page_to_inactive_list(zone, page);
713			if (!pagevec_add(&pvec, page)) {
714				spin_unlock_irq(&zone->lru_lock);
715				__pagevec_release(&pvec);
716				spin_lock_irq(&zone->lru_lock);
717			}
718		}
719  	} while (nr_scanned < max_scan);
720	spin_unlock(&zone->lru_lock);
721done:
722	local_irq_enable();
723	pagevec_release(&pvec);
724	return nr_reclaimed;
725}
726
727/*
728 * We are about to scan this zone at a certain priority level.  If that priority
729 * level is smaller (ie: more urgent) than the previous priority, then note
730 * that priority level within the zone.  This is done so that when the next
731 * process comes in to scan this zone, it will immediately start out at this
732 * priority level rather than having to build up its own scanning priority.
733 * Here, this priority affects only the reclaim-mapped threshold.
734 */
735static inline void note_zone_scanning_priority(struct zone *zone, int priority)
736{
737	if (priority < zone->prev_priority)
738		zone->prev_priority = priority;
739}
740
741static inline int zone_is_near_oom(struct zone *zone)
742{
743	return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3;
744}
745
746/*
747 * This moves pages from the active list to the inactive list.
748 *
749 * We move them the other way if the page is referenced by one or more
750 * processes, from rmap.
751 *
752 * If the pages are mostly unmapped, the processing is fast and it is
753 * appropriate to hold zone->lru_lock across the whole operation.  But if
754 * the pages are mapped, the processing is slow (page_referenced()) so we
755 * should drop zone->lru_lock around each page.  It's impossible to balance
756 * this, so instead we remove the pages from the LRU while processing them.
757 * It is safe to rely on PG_active against the non-LRU pages in here because
758 * nobody will play with that bit on a non-LRU page.
759 *
760 * The downside is that we have to touch page->_count against each page.
761 * But we had to alter page->flags anyway.
762 */
763static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
764				struct scan_control *sc, int priority)
765{
766	unsigned long pgmoved;
767	int pgdeactivate = 0;
768	unsigned long pgscanned;
769	LIST_HEAD(l_hold);	/* The pages which were snipped off */
770	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
771	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
772	struct page *page;
773	struct pagevec pvec;
774	int reclaim_mapped = 0;
775
776	if (sc->may_swap) {
777		long mapped_ratio;
778		long distress;
779		long swap_tendency;
780
781		if (zone_is_near_oom(zone))
782			goto force_reclaim_mapped;
783
784		/*
785		 * `distress' is a measure of how much trouble we're having
786		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
787		 */
788		distress = 100 >> min(zone->prev_priority, priority);
789
790		/*
791		 * The point of this algorithm is to decide when to start
792		 * reclaiming mapped memory instead of just pagecache.  Work out
793		 * how much memory
794		 * is mapped.
795		 */
796		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
797				global_page_state(NR_ANON_PAGES)) * 100) /
798					vm_total_pages;
799
800		/*
801		 * Now decide how much we really want to unmap some pages.  The
802		 * mapped ratio is downgraded - just because there's a lot of
803		 * mapped memory doesn't necessarily mean that page reclaim
804		 * isn't succeeding.
805		 *
806		 * The distress ratio is important - we don't want to start
807		 * going oom.
808		 *
809		 * A 100% value of vm_swappiness overrides this algorithm
810		 * altogether.
811		 */
812		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
813
814		/*
815		 * Now use this metric to decide whether to start moving mapped
816		 * memory onto the inactive list.
817		 */
818		if (swap_tendency >= 100)
819force_reclaim_mapped:
820			reclaim_mapped = 1;
821	}
822
823	lru_add_drain();
824	spin_lock_irq(&zone->lru_lock);
825	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
826				    &l_hold, &pgscanned);
827	zone->pages_scanned += pgscanned;
828	zone->nr_active -= pgmoved;
829	spin_unlock_irq(&zone->lru_lock);
830
831	while (!list_empty(&l_hold)) {
832		cond_resched();
833		page = lru_to_page(&l_hold);
834		list_del(&page->lru);
835		if (page_mapped(page)) {
836			if (!reclaim_mapped ||
837			    (total_swap_pages == 0 && PageAnon(page)) ||
838			    page_referenced(page, 0)) {
839				list_add(&page->lru, &l_active);
840				continue;
841			}
842		}
843		list_add(&page->lru, &l_inactive);
844	}
845
846	pagevec_init(&pvec, 1);
847	pgmoved = 0;
848	spin_lock_irq(&zone->lru_lock);
849	while (!list_empty(&l_inactive)) {
850		page = lru_to_page(&l_inactive);
851		prefetchw_prev_lru_page(page, &l_inactive, flags);
852		VM_BUG_ON(PageLRU(page));
853		SetPageLRU(page);
854		VM_BUG_ON(!PageActive(page));
855		ClearPageActive(page);
856
857		list_move(&page->lru, &zone->inactive_list);
858		pgmoved++;
859		if (!pagevec_add(&pvec, page)) {
860			zone->nr_inactive += pgmoved;
861			spin_unlock_irq(&zone->lru_lock);
862			pgdeactivate += pgmoved;
863			pgmoved = 0;
864			if (buffer_heads_over_limit)
865				pagevec_strip(&pvec);
866			__pagevec_release(&pvec);
867			spin_lock_irq(&zone->lru_lock);
868		}
869	}
870	zone->nr_inactive += pgmoved;
871	pgdeactivate += pgmoved;
872	if (buffer_heads_over_limit) {
873		spin_unlock_irq(&zone->lru_lock);
874		pagevec_strip(&pvec);
875		spin_lock_irq(&zone->lru_lock);
876	}
877
878	pgmoved = 0;
879	while (!list_empty(&l_active)) {
880		page = lru_to_page(&l_active);
881		prefetchw_prev_lru_page(page, &l_active, flags);
882		VM_BUG_ON(PageLRU(page));
883		SetPageLRU(page);
884		VM_BUG_ON(!PageActive(page));
885		list_move(&page->lru, &zone->active_list);
886		pgmoved++;
887		if (!pagevec_add(&pvec, page)) {
888			zone->nr_active += pgmoved;
889			pgmoved = 0;
890			spin_unlock_irq(&zone->lru_lock);
891			__pagevec_release(&pvec);
892			spin_lock_irq(&zone->lru_lock);
893		}
894	}
895	zone->nr_active += pgmoved;
896
897	__count_zone_vm_events(PGREFILL, zone, pgscanned);
898	__count_vm_events(PGDEACTIVATE, pgdeactivate);
899	spin_unlock_irq(&zone->lru_lock);
900
901	pagevec_release(&pvec);
902}
903
904/*
905 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
906 */
907static unsigned long shrink_zone(int priority, struct zone *zone,
908				struct scan_control *sc)
909{
910	unsigned long nr_active;
911	unsigned long nr_inactive;
912	unsigned long nr_to_scan;
913	unsigned long nr_reclaimed = 0;
914
915	atomic_inc(&zone->reclaim_in_progress);
916
917	/*
918	 * Add one to `nr_to_scan' just to make sure that the kernel will
919	 * slowly sift through the active list.
920	 */
921	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
922	nr_active = zone->nr_scan_active;
923	if (nr_active >= sc->swap_cluster_max)
924		zone->nr_scan_active = 0;
925	else
926		nr_active = 0;
927
928	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
929	nr_inactive = zone->nr_scan_inactive;
930	if (nr_inactive >= sc->swap_cluster_max)
931		zone->nr_scan_inactive = 0;
932	else
933		nr_inactive = 0;
934
935	while (nr_active || nr_inactive) {
936		if (nr_active) {
937			nr_to_scan = min(nr_active,
938					(unsigned long)sc->swap_cluster_max);
939			nr_active -= nr_to_scan;
940			shrink_active_list(nr_to_scan, zone, sc, priority);
941		}
942
943		if (nr_inactive) {
944			nr_to_scan = min(nr_inactive,
945					(unsigned long)sc->swap_cluster_max);
946			nr_inactive -= nr_to_scan;
947			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
948								sc);
949		}
950	}
951
952	throttle_vm_writeout();
953
954	atomic_dec(&zone->reclaim_in_progress);
955	return nr_reclaimed;
956}
957
958/*
959 * This is the direct reclaim path, for page-allocating processes.  We only
960 * try to reclaim pages from zones which will satisfy the caller's allocation
961 * request.
962 *
963 * We reclaim from a zone even if that zone is over pages_high.  Because:
964 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
965 *    allocation or
966 * b) The zones may be over pages_high but they must go *over* pages_high to
967 *    satisfy the `incremental min' zone defense algorithm.
968 *
969 * Returns the number of reclaimed pages.
970 *
971 * If a zone is deemed to be full of pinned pages then just give it a light
972 * scan then give up on it.
973 */
974static unsigned long shrink_zones(int priority, struct zone **zones,
975					struct scan_control *sc)
976{
977	unsigned long nr_reclaimed = 0;
978	int i;
979
980	sc->all_unreclaimable = 1;
981	for (i = 0; zones[i] != NULL; i++) {
982		struct zone *zone = zones[i];
983
984		if (!populated_zone(zone))
985			continue;
986
987		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
988			continue;
989
990		note_zone_scanning_priority(zone, priority);
991
992		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
993			continue;	/* Let kswapd poll it */
994
995		sc->all_unreclaimable = 0;
996
997		nr_reclaimed += shrink_zone(priority, zone, sc);
998	}
999	return nr_reclaimed;
1000}
1001
1002/*
1003 * This is the main entry point to direct page reclaim.
1004 *
1005 * If a full scan of the inactive list fails to free enough memory then we
1006 * are "out of memory" and something needs to be killed.
1007 *
1008 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1009 * high - the zone may be full of dirty or under-writeback pages, which this
1010 * caller can't do much about.  We kick pdflush and take explicit naps in the
1011 * hope that some of these pages can be written.  But if the allocating task
1012 * holds filesystem locks which prevent writeout this might not work, and the
1013 * allocation attempt will fail.
1014 */
1015unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1016{
1017	int priority;
1018	int ret = 0;
1019	unsigned long total_scanned = 0;
1020	unsigned long nr_reclaimed = 0;
1021	struct reclaim_state *reclaim_state = current->reclaim_state;
1022	unsigned long lru_pages = 0;
1023	int i;
1024	struct scan_control sc = {
1025		.gfp_mask = gfp_mask,
1026		.may_writepage = !laptop_mode,
1027		.swap_cluster_max = SWAP_CLUSTER_MAX,
1028		.may_swap = 1,
1029		.swappiness = vm_swappiness,
1030	};
1031
1032	count_vm_event(ALLOCSTALL);
1033
1034	for (i = 0; zones[i] != NULL; i++) {
1035		struct zone *zone = zones[i];
1036
1037		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1038			continue;
1039
1040		lru_pages += zone->nr_active + zone->nr_inactive;
1041	}
1042
1043	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1044		sc.nr_scanned = 0;
1045		if (!priority)
1046			disable_swap_token();
1047		nr_reclaimed += shrink_zones(priority, zones, &sc);
1048		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1049		if (reclaim_state) {
1050			nr_reclaimed += reclaim_state->reclaimed_slab;
1051			reclaim_state->reclaimed_slab = 0;
1052		}
1053		total_scanned += sc.nr_scanned;
1054		if (nr_reclaimed >= sc.swap_cluster_max) {
1055			ret = 1;
1056			goto out;
1057		}
1058
1059		/*
1060		 * Try to write back as many pages as we just scanned.  This
1061		 * tends to cause slow streaming writers to write data to the
1062		 * disk smoothly, at the dirtying rate, which is nice.   But
1063		 * that's undesirable in laptop mode, where we *want* lumpy
1064		 * writeout.  So in laptop mode, write out the whole world.
1065		 */
1066		if (total_scanned > sc.swap_cluster_max +
1067					sc.swap_cluster_max / 2) {
1068			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1069			sc.may_writepage = 1;
1070		}
1071
1072		/* Take a nap, wait for some writeback to complete */
1073		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1074			congestion_wait(WRITE, HZ/10);
1075	}
1076	/* top priority shrink_caches still had more to do? don't OOM, then */
1077	if (!sc.all_unreclaimable)
1078		ret = 1;
1079out:
1080	/*
1081	 * Now that we've scanned all the zones at this priority level, note
1082	 * that level within the zone so that the next thread which performs
1083	 * scanning of this zone will immediately start out at this priority
1084	 * level.  This affects only the decision whether or not to bring
1085	 * mapped pages onto the inactive list.
1086	 */
1087	if (priority < 0)
1088		priority = 0;
1089	for (i = 0; zones[i] != 0; i++) {
1090		struct zone *zone = zones[i];
1091
1092		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1093			continue;
1094
1095		zone->prev_priority = priority;
1096	}
1097	return ret;
1098}
1099
1100/*
1101 * For kswapd, balance_pgdat() will work across all this node's zones until
1102 * they are all at pages_high.
1103 *
1104 * Returns the number of pages which were actually freed.
1105 *
1106 * There is special handling here for zones which are full of pinned pages.
1107 * This can happen if the pages are all mlocked, or if they are all used by
1108 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1109 * What we do is to detect the case where all pages in the zone have been
1110 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1111 * dead and from now on, only perform a short scan.  Basically we're polling
1112 * the zone for when the problem goes away.
1113 *
1114 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1115 * zones which have free_pages > pages_high, but once a zone is found to have
1116 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1117 * of the number of free pages in the lower zones.  This interoperates with
1118 * the page allocator fallback scheme to ensure that aging of pages is balanced
1119 * across the zones.
1120 */
1121static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1122{
1123	int all_zones_ok;
1124	int priority;
1125	int i;
1126	unsigned long total_scanned;
1127	unsigned long nr_reclaimed;
1128	struct reclaim_state *reclaim_state = current->reclaim_state;
1129	struct scan_control sc = {
1130		.gfp_mask = GFP_KERNEL,
1131		.may_swap = 1,
1132		.swap_cluster_max = SWAP_CLUSTER_MAX,
1133		.swappiness = vm_swappiness,
1134	};
1135	/*
1136	 * temp_priority is used to remember the scanning priority at which
1137	 * this zone was successfully refilled to free_pages == pages_high.
1138	 */
1139	int temp_priority[MAX_NR_ZONES];
1140
1141loop_again:
1142	total_scanned = 0;
1143	nr_reclaimed = 0;
1144	sc.may_writepage = !laptop_mode;
1145	count_vm_event(PAGEOUTRUN);
1146
1147	for (i = 0; i < pgdat->nr_zones; i++)
1148		temp_priority[i] = DEF_PRIORITY;
1149
1150	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1151		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1152		unsigned long lru_pages = 0;
1153
1154		/* The swap token gets in the way of swapout... */
1155		if (!priority)
1156			disable_swap_token();
1157
1158		all_zones_ok = 1;
1159
1160		/*
1161		 * Scan in the highmem->dma direction for the highest
1162		 * zone which needs scanning
1163		 */
1164		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1165			struct zone *zone = pgdat->node_zones + i;
1166
1167			if (!populated_zone(zone))
1168				continue;
1169
1170			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1171				continue;
1172
1173			if (!zone_watermark_ok(zone, order, zone->pages_high,
1174					       0, 0)) {
1175				end_zone = i;
1176				break;
1177			}
1178		}
1179		if (i < 0)
1180			goto out;
1181
1182		for (i = 0; i <= end_zone; i++) {
1183			struct zone *zone = pgdat->node_zones + i;
1184
1185			lru_pages += zone->nr_active + zone->nr_inactive;
1186		}
1187
1188		/*
1189		 * Now scan the zone in the dma->highmem direction, stopping
1190		 * at the last zone which needs scanning.
1191		 *
1192		 * We do this because the page allocator works in the opposite
1193		 * direction.  This prevents the page allocator from allocating
1194		 * pages behind kswapd's direction of progress, which would
1195		 * cause too much scanning of the lower zones.
1196		 */
1197		for (i = 0; i <= end_zone; i++) {
1198			struct zone *zone = pgdat->node_zones + i;
1199			int nr_slab;
1200
1201			if (!populated_zone(zone))
1202				continue;
1203
1204			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1205				continue;
1206
1207			if (!zone_watermark_ok(zone, order, zone->pages_high,
1208					       end_zone, 0))
1209				all_zones_ok = 0;
1210			temp_priority[i] = priority;
1211			sc.nr_scanned = 0;
1212			note_zone_scanning_priority(zone, priority);
1213			nr_reclaimed += shrink_zone(priority, zone, &sc);
1214			reclaim_state->reclaimed_slab = 0;
1215			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1216						lru_pages);
1217			nr_reclaimed += reclaim_state->reclaimed_slab;
1218			total_scanned += sc.nr_scanned;
1219			if (zone->all_unreclaimable)
1220				continue;
1221			if (nr_slab == 0 && zone->pages_scanned >=
1222				    (zone->nr_active + zone->nr_inactive) * 6)
1223				zone->all_unreclaimable = 1;
1224			/*
1225			 * If we've done a decent amount of scanning and
1226			 * the reclaim ratio is low, start doing writepage
1227			 * even in laptop mode
1228			 */
1229			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1230			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1231				sc.may_writepage = 1;
1232		}
1233		if (all_zones_ok)
1234			break;		/* kswapd: all done */
1235		/*
1236		 * OK, kswapd is getting into trouble.  Take a nap, then take
1237		 * another pass across the zones.
1238		 */
1239		if (total_scanned && priority < DEF_PRIORITY - 2)
1240			congestion_wait(WRITE, HZ/10);
1241
1242		/*
1243		 * We do this so kswapd doesn't build up large priorities for
1244		 * example when it is freeing in parallel with allocators. It
1245		 * matches the direct reclaim path behaviour in terms of impact
1246		 * on zone->*_priority.
1247		 */
1248		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1249			break;
1250	}
1251out:
1252	/*
1253	 * Note within each zone the priority level at which this zone was
1254	 * brought into a happy state.  So that the next thread which scans this
1255	 * zone will start out at that priority level.
1256	 */
1257	for (i = 0; i < pgdat->nr_zones; i++) {
1258		struct zone *zone = pgdat->node_zones + i;
1259
1260		zone->prev_priority = temp_priority[i];
1261	}
1262	if (!all_zones_ok) {
1263		cond_resched();
1264
1265		try_to_freeze();
1266
1267		goto loop_again;
1268	}
1269
1270	return nr_reclaimed;
1271}
1272
1273/*
1274 * The background pageout daemon, started as a kernel thread
1275 * from the init process.
1276 *
1277 * This basically trickles out pages so that we have _some_
1278 * free memory available even if there is no other activity
1279 * that frees anything up. This is needed for things like routing
1280 * etc, where we otherwise might have all activity going on in
1281 * asynchronous contexts that cannot page things out.
1282 *
1283 * If there are applications that are active memory-allocators
1284 * (most normal use), this basically shouldn't matter.
1285 */
1286static int kswapd(void *p)
1287{
1288	unsigned long order;
1289	pg_data_t *pgdat = (pg_data_t*)p;
1290	struct task_struct *tsk = current;
1291	DEFINE_WAIT(wait);
1292	struct reclaim_state reclaim_state = {
1293		.reclaimed_slab = 0,
1294	};
1295	cpumask_t cpumask;
1296
1297	cpumask = node_to_cpumask(pgdat->node_id);
1298	if (!cpus_empty(cpumask))
1299		set_cpus_allowed(tsk, cpumask);
1300	current->reclaim_state = &reclaim_state;
1301
1302	/*
1303	 * Tell the memory management that we're a "memory allocator",
1304	 * and that if we need more memory we should get access to it
1305	 * regardless (see "__alloc_pages()"). "kswapd" should
1306	 * never get caught in the normal page freeing logic.
1307	 *
1308	 * (Kswapd normally doesn't need memory anyway, but sometimes
1309	 * you need a small amount of memory in order to be able to
1310	 * page out something else, and this flag essentially protects
1311	 * us from recursively trying to free more memory as we're
1312	 * trying to free the first piece of memory in the first place).
1313	 */
1314	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1315
1316	order = 0;
1317	for ( ; ; ) {
1318		unsigned long new_order;
1319
1320		try_to_freeze();
1321
1322		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1323		new_order = pgdat->kswapd_max_order;
1324		pgdat->kswapd_max_order = 0;
1325		if (order < new_order) {
1326			/*
1327			 * Don't sleep if someone wants a larger 'order'
1328			 * allocation
1329			 */
1330			order = new_order;
1331		} else {
1332			schedule();
1333			order = pgdat->kswapd_max_order;
1334		}
1335		finish_wait(&pgdat->kswapd_wait, &wait);
1336
1337		balance_pgdat(pgdat, order);
1338	}
1339	return 0;
1340}
1341
1342/*
1343 * A zone is low on free memory, so wake its kswapd task to service it.
1344 */
1345void wakeup_kswapd(struct zone *zone, int order)
1346{
1347	pg_data_t *pgdat;
1348
1349	if (!populated_zone(zone))
1350		return;
1351
1352	pgdat = zone->zone_pgdat;
1353	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1354		return;
1355	if (pgdat->kswapd_max_order < order)
1356		pgdat->kswapd_max_order = order;
1357	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1358		return;
1359	if (!waitqueue_active(&pgdat->kswapd_wait))
1360		return;
1361	wake_up_interruptible(&pgdat->kswapd_wait);
1362}
1363
1364#ifdef CONFIG_PM
1365/*
1366 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1367 * from LRU lists system-wide, for given pass and priority, and returns the
1368 * number of reclaimed pages
1369 *
1370 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1371 */
1372static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1373				      int pass, struct scan_control *sc)
1374{
1375	struct zone *zone;
1376	unsigned long nr_to_scan, ret = 0;
1377
1378	for_each_zone(zone) {
1379
1380		if (!populated_zone(zone))
1381			continue;
1382
1383		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1384			continue;
1385
1386		/* For pass = 0 we don't shrink the active list */
1387		if (pass > 0) {
1388			zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1389			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1390				zone->nr_scan_active = 0;
1391				nr_to_scan = min(nr_pages, zone->nr_active);
1392				shrink_active_list(nr_to_scan, zone, sc, prio);
1393			}
1394		}
1395
1396		zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1397		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1398			zone->nr_scan_inactive = 0;
1399			nr_to_scan = min(nr_pages, zone->nr_inactive);
1400			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1401			if (ret >= nr_pages)
1402				return ret;
1403		}
1404	}
1405
1406	return ret;
1407}
1408
1409/*
1410 * Try to free `nr_pages' of memory, system-wide, and return the number of
1411 * freed pages.
1412 *
1413 * Rather than trying to age LRUs the aim is to preserve the overall
1414 * LRU order by reclaiming preferentially
1415 * inactive > active > active referenced > active mapped
1416 */
1417unsigned long shrink_all_memory(unsigned long nr_pages)
1418{
1419	unsigned long lru_pages, nr_slab;
1420	unsigned long ret = 0;
1421	int pass;
1422	struct reclaim_state reclaim_state;
1423	struct zone *zone;
1424	struct scan_control sc = {
1425		.gfp_mask = GFP_KERNEL,
1426		.may_swap = 0,
1427		.swap_cluster_max = nr_pages,
1428		.may_writepage = 1,
1429		.swappiness = vm_swappiness,
1430	};
1431
1432	current->reclaim_state = &reclaim_state;
1433
1434	lru_pages = 0;
1435	for_each_zone(zone)
1436		lru_pages += zone->nr_active + zone->nr_inactive;
1437
1438	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1439	/* If slab caches are huge, it's better to hit them first */
1440	while (nr_slab >= lru_pages) {
1441		reclaim_state.reclaimed_slab = 0;
1442		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1443		if (!reclaim_state.reclaimed_slab)
1444			break;
1445
1446		ret += reclaim_state.reclaimed_slab;
1447		if (ret >= nr_pages)
1448			goto out;
1449
1450		nr_slab -= reclaim_state.reclaimed_slab;
1451	}
1452
1453	/*
1454	 * We try to shrink LRUs in 5 passes:
1455	 * 0 = Reclaim from inactive_list only
1456	 * 1 = Reclaim from active list but don't reclaim mapped
1457	 * 2 = 2nd pass of type 1
1458	 * 3 = Reclaim mapped (normal reclaim)
1459	 * 4 = 2nd pass of type 3
1460	 */
1461	for (pass = 0; pass < 5; pass++) {
1462		int prio;
1463
1464		/* Needed for shrinking slab caches later on */
1465		if (!lru_pages)
1466			for_each_zone(zone) {
1467				lru_pages += zone->nr_active;
1468				lru_pages += zone->nr_inactive;
1469			}
1470
1471		/* Force reclaiming mapped pages in the passes #3 and #4 */
1472		if (pass > 2) {
1473			sc.may_swap = 1;
1474			sc.swappiness = 100;
1475		}
1476
1477		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1478			unsigned long nr_to_scan = nr_pages - ret;
1479
1480			sc.nr_scanned = 0;
1481			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1482			if (ret >= nr_pages)
1483				goto out;
1484
1485			reclaim_state.reclaimed_slab = 0;
1486			shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1487			ret += reclaim_state.reclaimed_slab;
1488			if (ret >= nr_pages)
1489				goto out;
1490
1491			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1492				congestion_wait(WRITE, HZ / 10);
1493		}
1494
1495		lru_pages = 0;
1496	}
1497
1498	/*
1499	 * If ret = 0, we could not shrink LRUs, but there may be something
1500	 * in slab caches
1501	 */
1502	if (!ret)
1503		do {
1504			reclaim_state.reclaimed_slab = 0;
1505			shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1506			ret += reclaim_state.reclaimed_slab;
1507		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1508
1509out:
1510	current->reclaim_state = NULL;
1511
1512	return ret;
1513}
1514#endif
1515
1516/* It's optimal to keep kswapds on the same CPUs as their memory, but
1517   not required for correctness.  So if the last cpu in a node goes
1518   away, we get changed to run anywhere: as the first one comes back,
1519   restore their cpu bindings. */
1520static int __devinit cpu_callback(struct notifier_block *nfb,
1521				  unsigned long action, void *hcpu)
1522{
1523	pg_data_t *pgdat;
1524	cpumask_t mask;
1525
1526	if (action == CPU_ONLINE) {
1527		for_each_online_pgdat(pgdat) {
1528			mask = node_to_cpumask(pgdat->node_id);
1529			if (any_online_cpu(mask) != NR_CPUS)
1530				/* One of our CPUs online: restore mask */
1531				set_cpus_allowed(pgdat->kswapd, mask);
1532		}
1533	}
1534	return NOTIFY_OK;
1535}
1536
1537/*
1538 * This kswapd start function will be called by init and node-hot-add.
1539 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1540 */
1541int kswapd_run(int nid)
1542{
1543	pg_data_t *pgdat = NODE_DATA(nid);
1544	int ret = 0;
1545
1546	if (pgdat->kswapd)
1547		return 0;
1548
1549	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1550	if (IS_ERR(pgdat->kswapd)) {
1551		/* failure at boot is fatal */
1552		BUG_ON(system_state == SYSTEM_BOOTING);
1553		printk("Failed to start kswapd on node %d\n",nid);
1554		ret = -1;
1555	}
1556	return ret;
1557}
1558
1559static int __init kswapd_init(void)
1560{
1561	int nid;
1562
1563	swap_setup();
1564	for_each_online_node(nid)
1565 		kswapd_run(nid);
1566	hotcpu_notifier(cpu_callback, 0);
1567	return 0;
1568}
1569
1570module_init(kswapd_init)
1571
1572#ifdef CONFIG_NUMA
1573/*
1574 * Zone reclaim mode
1575 *
1576 * If non-zero call zone_reclaim when the number of free pages falls below
1577 * the watermarks.
1578 */
1579int zone_reclaim_mode __read_mostly;
1580
1581#define RECLAIM_OFF 0
1582#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1583#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1584#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1585
1586/*
1587 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1588 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1589 * a zone.
1590 */
1591#define ZONE_RECLAIM_PRIORITY 4
1592
1593/*
1594 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1595 * occur.
1596 */
1597int sysctl_min_unmapped_ratio = 1;
1598
1599/*
1600 * If the number of slab pages in a zone grows beyond this percentage then
1601 * slab reclaim needs to occur.
1602 */
1603int sysctl_min_slab_ratio = 5;
1604
1605/*
1606 * Try to free up some pages from this zone through reclaim.
1607 */
1608static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1609{
1610	/* Minimum pages needed in order to stay on node */
1611	const unsigned long nr_pages = 1 << order;
1612	struct task_struct *p = current;
1613	struct reclaim_state reclaim_state;
1614	int priority;
1615	unsigned long nr_reclaimed = 0;
1616	struct scan_control sc = {
1617		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1618		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1619		.swap_cluster_max = max_t(unsigned long, nr_pages,
1620					SWAP_CLUSTER_MAX),
1621		.gfp_mask = gfp_mask,
1622		.swappiness = vm_swappiness,
1623	};
1624	unsigned long slab_reclaimable;
1625
1626	disable_swap_token();
1627	cond_resched();
1628	/*
1629	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1630	 * and we also need to be able to write out pages for RECLAIM_WRITE
1631	 * and RECLAIM_SWAP.
1632	 */
1633	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1634	reclaim_state.reclaimed_slab = 0;
1635	p->reclaim_state = &reclaim_state;
1636
1637	if (zone_page_state(zone, NR_FILE_PAGES) -
1638		zone_page_state(zone, NR_FILE_MAPPED) >
1639		zone->min_unmapped_pages) {
1640		/*
1641		 * Free memory by calling shrink zone with increasing
1642		 * priorities until we have enough memory freed.
1643		 */
1644		priority = ZONE_RECLAIM_PRIORITY;
1645		do {
1646			note_zone_scanning_priority(zone, priority);
1647			nr_reclaimed += shrink_zone(priority, zone, &sc);
1648			priority--;
1649		} while (priority >= 0 && nr_reclaimed < nr_pages);
1650	}
1651
1652	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1653	if (slab_reclaimable > zone->min_slab_pages) {
1654		/*
1655		 * shrink_slab() does not currently allow us to determine how
1656		 * many pages were freed in this zone. So we take the current
1657		 * number of slab pages and shake the slab until it is reduced
1658		 * by the same nr_pages that we used for reclaiming unmapped
1659		 * pages.
1660		 *
1661		 * Note that shrink_slab will free memory on all zones and may
1662		 * take a long time.
1663		 */
1664		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1665			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1666				slab_reclaimable - nr_pages)
1667			;
1668
1669		/*
1670		 * Update nr_reclaimed by the number of slab pages we
1671		 * reclaimed from this zone.
1672		 */
1673		nr_reclaimed += slab_reclaimable -
1674			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1675	}
1676
1677	p->reclaim_state = NULL;
1678	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1679	return nr_reclaimed >= nr_pages;
1680}
1681
1682int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1683{
1684	cpumask_t mask;
1685	int node_id;
1686
1687	/*
1688	 * Zone reclaim reclaims unmapped file backed pages and
1689	 * slab pages if we are over the defined limits.
1690	 *
1691	 * A small portion of unmapped file backed pages is needed for
1692	 * file I/O otherwise pages read by file I/O will be immediately
1693	 * thrown out if the zone is overallocated. So we do not reclaim
1694	 * if less than a specified percentage of the zone is used by
1695	 * unmapped file backed pages.
1696	 */
1697	if (zone_page_state(zone, NR_FILE_PAGES) -
1698	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1699	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1700			<= zone->min_slab_pages)
1701		return 0;
1702
1703	/*
1704	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1705	 * not have reclaimable pages and if we should not delay the allocation
1706	 * then do not scan.
1707	 */
1708	if (!(gfp_mask & __GFP_WAIT) ||
1709		zone->all_unreclaimable ||
1710		atomic_read(&zone->reclaim_in_progress) > 0 ||
1711		(current->flags & PF_MEMALLOC))
1712			return 0;
1713
1714	/*
1715	 * Only run zone reclaim on the local zone or on zones that do not
1716	 * have associated processors. This will favor the local processor
1717	 * over remote processors and spread off node memory allocations
1718	 * as wide as possible.
1719	 */
1720	node_id = zone_to_nid(zone);
1721	mask = node_to_cpumask(node_id);
1722	if (!cpus_empty(mask) && node_id != numa_node_id())
1723		return 0;
1724	return __zone_reclaim(zone, gfp_mask, order);
1725}
1726#endif
1727