vmscan.c revision a18bba061c789f5815c3efc3c80e6ac269911964
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/* Which cgroup do we reclaim from */
107	struct mem_cgroup *mem_cgroup;
108
109	/*
110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111	 * are scanned.
112	 */
113	nodemask_t	*nodemask;
114};
115
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field)			\
120	do {								\
121		if ((_page)->lru.prev != _base) {			\
122			struct page *prev;				\
123									\
124			prev = lru_to_page(&(_page->lru));		\
125			prefetch(&prev->_field);			\
126		}							\
127	} while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field)			\
134	do {								\
135		if ((_page)->lru.prev != _base) {			\
136			struct page *prev;				\
137									\
138			prev = lru_to_page(&(_page->lru));		\
139			prefetchw(&prev->_field);			\
140		}							\
141	} while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100.  Higher means more swappy.
148 */
149int vm_swappiness = 60;
150long vm_total_pages;	/* The total number of pages which the VM controls */
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157#else
158#define scanning_global_lru(sc)	(1)
159#endif
160
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162						  struct scan_control *sc)
163{
164	if (!scanning_global_lru(sc))
165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167	return &zone->reclaim_stat;
168}
169
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171				struct scan_control *sc, enum lru_list lru)
172{
173	if (!scanning_global_lru(sc))
174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177	return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
181/*
182 * Add a shrinker callback to be called from the vm
183 */
184void register_shrinker(struct shrinker *shrinker)
185{
186	shrinker->nr = 0;
187	down_write(&shrinker_rwsem);
188	list_add_tail(&shrinker->list, &shrinker_list);
189	up_write(&shrinker_rwsem);
190}
191EXPORT_SYMBOL(register_shrinker);
192
193/*
194 * Remove one
195 */
196void unregister_shrinker(struct shrinker *shrinker)
197{
198	down_write(&shrinker_rwsem);
199	list_del(&shrinker->list);
200	up_write(&shrinker_rwsem);
201}
202EXPORT_SYMBOL(unregister_shrinker);
203
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205				     struct shrink_control *sc,
206				     unsigned long nr_to_scan)
207{
208	sc->nr_to_scan = nr_to_scan;
209	return (*shrinker->shrink)(shrinker, sc);
210}
211
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object.  With this in mind we age equal
218 * percentages of the lru and ageable caches.  This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt.  It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232unsigned long shrink_slab(struct shrink_control *shrink,
233			  unsigned long nr_pages_scanned,
234			  unsigned long lru_pages)
235{
236	struct shrinker *shrinker;
237	unsigned long ret = 0;
238
239	if (nr_pages_scanned == 0)
240		nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242	if (!down_read_trylock(&shrinker_rwsem)) {
243		/* Assume we'll be able to shrink next time */
244		ret = 1;
245		goto out;
246	}
247
248	list_for_each_entry(shrinker, &shrinker_list, list) {
249		unsigned long long delta;
250		unsigned long total_scan;
251		unsigned long max_pass;
252		int shrink_ret = 0;
253		long nr;
254		long new_nr;
255		long batch_size = shrinker->batch ? shrinker->batch
256						  : SHRINK_BATCH;
257
258		/*
259		 * copy the current shrinker scan count into a local variable
260		 * and zero it so that other concurrent shrinker invocations
261		 * don't also do this scanning work.
262		 */
263		do {
264			nr = shrinker->nr;
265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267		total_scan = nr;
268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
270		delta *= max_pass;
271		do_div(delta, lru_pages + 1);
272		total_scan += delta;
273		if (total_scan < 0) {
274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
275			       "delete nr=%ld\n",
276			       shrinker->shrink, total_scan);
277			total_scan = max_pass;
278		}
279
280		/*
281		 * We need to avoid excessive windup on filesystem shrinkers
282		 * due to large numbers of GFP_NOFS allocations causing the
283		 * shrinkers to return -1 all the time. This results in a large
284		 * nr being built up so when a shrink that can do some work
285		 * comes along it empties the entire cache due to nr >>>
286		 * max_pass.  This is bad for sustaining a working set in
287		 * memory.
288		 *
289		 * Hence only allow the shrinker to scan the entire cache when
290		 * a large delta change is calculated directly.
291		 */
292		if (delta < max_pass / 4)
293			total_scan = min(total_scan, max_pass / 2);
294
295		/*
296		 * Avoid risking looping forever due to too large nr value:
297		 * never try to free more than twice the estimate number of
298		 * freeable entries.
299		 */
300		if (total_scan > max_pass * 2)
301			total_scan = max_pass * 2;
302
303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
304					nr_pages_scanned, lru_pages,
305					max_pass, delta, total_scan);
306
307		while (total_scan >= batch_size) {
308			int nr_before;
309
310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
312							batch_size);
313			if (shrink_ret == -1)
314				break;
315			if (shrink_ret < nr_before)
316				ret += nr_before - shrink_ret;
317			count_vm_events(SLABS_SCANNED, batch_size);
318			total_scan -= batch_size;
319
320			cond_resched();
321		}
322
323		/*
324		 * move the unused scan count back into the shrinker in a
325		 * manner that handles concurrent updates. If we exhausted the
326		 * scan, there is no need to do an update.
327		 */
328		do {
329			nr = shrinker->nr;
330			new_nr = total_scan + nr;
331			if (total_scan <= 0)
332				break;
333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336	}
337	up_read(&shrinker_rwsem);
338out:
339	cond_resched();
340	return ret;
341}
342
343static void set_reclaim_mode(int priority, struct scan_control *sc,
344				   bool sync)
345{
346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348	/*
349	 * Initially assume we are entering either lumpy reclaim or
350	 * reclaim/compaction.Depending on the order, we will either set the
351	 * sync mode or just reclaim order-0 pages later.
352	 */
353	if (COMPACTION_BUILD)
354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355	else
356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358	/*
359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360	 * restricting when its set to either costly allocations or when
361	 * under memory pressure
362	 */
363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364		sc->reclaim_mode |= syncmode;
365	else if (sc->order && priority < DEF_PRIORITY - 2)
366		sc->reclaim_mode |= syncmode;
367	else
368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369}
370
371static void reset_reclaim_mode(struct scan_control *sc)
372{
373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374}
375
376static inline int is_page_cache_freeable(struct page *page)
377{
378	/*
379	 * A freeable page cache page is referenced only by the caller
380	 * that isolated the page, the page cache radix tree and
381	 * optional buffer heads at page->private.
382	 */
383	return page_count(page) - page_has_private(page) == 2;
384}
385
386static int may_write_to_queue(struct backing_dev_info *bdi,
387			      struct scan_control *sc)
388{
389	if (current->flags & PF_SWAPWRITE)
390		return 1;
391	if (!bdi_write_congested(bdi))
392		return 1;
393	if (bdi == current->backing_dev_info)
394		return 1;
395
396	/* lumpy reclaim for hugepage often need a lot of write */
397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398		return 1;
399	return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out.  Probably
404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up.  But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415				struct page *page, int error)
416{
417	lock_page(page);
418	if (page_mapping(page) == mapping)
419		mapping_set_error(mapping, error);
420	unlock_page(page);
421}
422
423/* possible outcome of pageout() */
424typedef enum {
425	/* failed to write page out, page is locked */
426	PAGE_KEEP,
427	/* move page to the active list, page is locked */
428	PAGE_ACTIVATE,
429	/* page has been sent to the disk successfully, page is unlocked */
430	PAGE_SUCCESS,
431	/* page is clean and locked */
432	PAGE_CLEAN,
433} pageout_t;
434
435/*
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
438 */
439static pageout_t pageout(struct page *page, struct address_space *mapping,
440			 struct scan_control *sc)
441{
442	/*
443	 * If the page is dirty, only perform writeback if that write
444	 * will be non-blocking.  To prevent this allocation from being
445	 * stalled by pagecache activity.  But note that there may be
446	 * stalls if we need to run get_block().  We could test
447	 * PagePrivate for that.
448	 *
449	 * If this process is currently in __generic_file_aio_write() against
450	 * this page's queue, we can perform writeback even if that
451	 * will block.
452	 *
453	 * If the page is swapcache, write it back even if that would
454	 * block, for some throttling. This happens by accident, because
455	 * swap_backing_dev_info is bust: it doesn't reflect the
456	 * congestion state of the swapdevs.  Easy to fix, if needed.
457	 */
458	if (!is_page_cache_freeable(page))
459		return PAGE_KEEP;
460	if (!mapping) {
461		/*
462		 * Some data journaling orphaned pages can have
463		 * page->mapping == NULL while being dirty with clean buffers.
464		 */
465		if (page_has_private(page)) {
466			if (try_to_free_buffers(page)) {
467				ClearPageDirty(page);
468				printk("%s: orphaned page\n", __func__);
469				return PAGE_CLEAN;
470			}
471		}
472		return PAGE_KEEP;
473	}
474	if (mapping->a_ops->writepage == NULL)
475		return PAGE_ACTIVATE;
476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
477		return PAGE_KEEP;
478
479	if (clear_page_dirty_for_io(page)) {
480		int res;
481		struct writeback_control wbc = {
482			.sync_mode = WB_SYNC_NONE,
483			.nr_to_write = SWAP_CLUSTER_MAX,
484			.range_start = 0,
485			.range_end = LLONG_MAX,
486			.for_reclaim = 1,
487		};
488
489		SetPageReclaim(page);
490		res = mapping->a_ops->writepage(page, &wbc);
491		if (res < 0)
492			handle_write_error(mapping, page, res);
493		if (res == AOP_WRITEPAGE_ACTIVATE) {
494			ClearPageReclaim(page);
495			return PAGE_ACTIVATE;
496		}
497
498		if (!PageWriteback(page)) {
499			/* synchronous write or broken a_ops? */
500			ClearPageReclaim(page);
501		}
502		trace_mm_vmscan_writepage(page,
503			trace_reclaim_flags(page, sc->reclaim_mode));
504		inc_zone_page_state(page, NR_VMSCAN_WRITE);
505		return PAGE_SUCCESS;
506	}
507
508	return PAGE_CLEAN;
509}
510
511/*
512 * Same as remove_mapping, but if the page is removed from the mapping, it
513 * gets returned with a refcount of 0.
514 */
515static int __remove_mapping(struct address_space *mapping, struct page *page)
516{
517	BUG_ON(!PageLocked(page));
518	BUG_ON(mapping != page_mapping(page));
519
520	spin_lock_irq(&mapping->tree_lock);
521	/*
522	 * The non racy check for a busy page.
523	 *
524	 * Must be careful with the order of the tests. When someone has
525	 * a ref to the page, it may be possible that they dirty it then
526	 * drop the reference. So if PageDirty is tested before page_count
527	 * here, then the following race may occur:
528	 *
529	 * get_user_pages(&page);
530	 * [user mapping goes away]
531	 * write_to(page);
532	 *				!PageDirty(page)    [good]
533	 * SetPageDirty(page);
534	 * put_page(page);
535	 *				!page_count(page)   [good, discard it]
536	 *
537	 * [oops, our write_to data is lost]
538	 *
539	 * Reversing the order of the tests ensures such a situation cannot
540	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541	 * load is not satisfied before that of page->_count.
542	 *
543	 * Note that if SetPageDirty is always performed via set_page_dirty,
544	 * and thus under tree_lock, then this ordering is not required.
545	 */
546	if (!page_freeze_refs(page, 2))
547		goto cannot_free;
548	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549	if (unlikely(PageDirty(page))) {
550		page_unfreeze_refs(page, 2);
551		goto cannot_free;
552	}
553
554	if (PageSwapCache(page)) {
555		swp_entry_t swap = { .val = page_private(page) };
556		__delete_from_swap_cache(page);
557		spin_unlock_irq(&mapping->tree_lock);
558		swapcache_free(swap, page);
559	} else {
560		void (*freepage)(struct page *);
561
562		freepage = mapping->a_ops->freepage;
563
564		__delete_from_page_cache(page);
565		spin_unlock_irq(&mapping->tree_lock);
566		mem_cgroup_uncharge_cache_page(page);
567
568		if (freepage != NULL)
569			freepage(page);
570	}
571
572	return 1;
573
574cannot_free:
575	spin_unlock_irq(&mapping->tree_lock);
576	return 0;
577}
578
579/*
580 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581 * someone else has a ref on the page, abort and return 0.  If it was
582 * successfully detached, return 1.  Assumes the caller has a single ref on
583 * this page.
584 */
585int remove_mapping(struct address_space *mapping, struct page *page)
586{
587	if (__remove_mapping(mapping, page)) {
588		/*
589		 * Unfreezing the refcount with 1 rather than 2 effectively
590		 * drops the pagecache ref for us without requiring another
591		 * atomic operation.
592		 */
593		page_unfreeze_refs(page, 1);
594		return 1;
595	}
596	return 0;
597}
598
599/**
600 * putback_lru_page - put previously isolated page onto appropriate LRU list
601 * @page: page to be put back to appropriate lru list
602 *
603 * Add previously isolated @page to appropriate LRU list.
604 * Page may still be unevictable for other reasons.
605 *
606 * lru_lock must not be held, interrupts must be enabled.
607 */
608void putback_lru_page(struct page *page)
609{
610	int lru;
611	int active = !!TestClearPageActive(page);
612	int was_unevictable = PageUnevictable(page);
613
614	VM_BUG_ON(PageLRU(page));
615
616redo:
617	ClearPageUnevictable(page);
618
619	if (page_evictable(page, NULL)) {
620		/*
621		 * For evictable pages, we can use the cache.
622		 * In event of a race, worst case is we end up with an
623		 * unevictable page on [in]active list.
624		 * We know how to handle that.
625		 */
626		lru = active + page_lru_base_type(page);
627		lru_cache_add_lru(page, lru);
628	} else {
629		/*
630		 * Put unevictable pages directly on zone's unevictable
631		 * list.
632		 */
633		lru = LRU_UNEVICTABLE;
634		add_page_to_unevictable_list(page);
635		/*
636		 * When racing with an mlock clearing (page is
637		 * unlocked), make sure that if the other thread does
638		 * not observe our setting of PG_lru and fails
639		 * isolation, we see PG_mlocked cleared below and move
640		 * the page back to the evictable list.
641		 *
642		 * The other side is TestClearPageMlocked().
643		 */
644		smp_mb();
645	}
646
647	/*
648	 * page's status can change while we move it among lru. If an evictable
649	 * page is on unevictable list, it never be freed. To avoid that,
650	 * check after we added it to the list, again.
651	 */
652	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653		if (!isolate_lru_page(page)) {
654			put_page(page);
655			goto redo;
656		}
657		/* This means someone else dropped this page from LRU
658		 * So, it will be freed or putback to LRU again. There is
659		 * nothing to do here.
660		 */
661	}
662
663	if (was_unevictable && lru != LRU_UNEVICTABLE)
664		count_vm_event(UNEVICTABLE_PGRESCUED);
665	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666		count_vm_event(UNEVICTABLE_PGCULLED);
667
668	put_page(page);		/* drop ref from isolate */
669}
670
671enum page_references {
672	PAGEREF_RECLAIM,
673	PAGEREF_RECLAIM_CLEAN,
674	PAGEREF_KEEP,
675	PAGEREF_ACTIVATE,
676};
677
678static enum page_references page_check_references(struct page *page,
679						  struct scan_control *sc)
680{
681	int referenced_ptes, referenced_page;
682	unsigned long vm_flags;
683
684	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685	referenced_page = TestClearPageReferenced(page);
686
687	/* Lumpy reclaim - ignore references */
688	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
689		return PAGEREF_RECLAIM;
690
691	/*
692	 * Mlock lost the isolation race with us.  Let try_to_unmap()
693	 * move the page to the unevictable list.
694	 */
695	if (vm_flags & VM_LOCKED)
696		return PAGEREF_RECLAIM;
697
698	if (referenced_ptes) {
699		if (PageAnon(page))
700			return PAGEREF_ACTIVATE;
701		/*
702		 * All mapped pages start out with page table
703		 * references from the instantiating fault, so we need
704		 * to look twice if a mapped file page is used more
705		 * than once.
706		 *
707		 * Mark it and spare it for another trip around the
708		 * inactive list.  Another page table reference will
709		 * lead to its activation.
710		 *
711		 * Note: the mark is set for activated pages as well
712		 * so that recently deactivated but used pages are
713		 * quickly recovered.
714		 */
715		SetPageReferenced(page);
716
717		if (referenced_page)
718			return PAGEREF_ACTIVATE;
719
720		return PAGEREF_KEEP;
721	}
722
723	/* Reclaim if clean, defer dirty pages to writeback */
724	if (referenced_page && !PageSwapBacked(page))
725		return PAGEREF_RECLAIM_CLEAN;
726
727	return PAGEREF_RECLAIM;
728}
729
730static noinline_for_stack void free_page_list(struct list_head *free_pages)
731{
732	struct pagevec freed_pvec;
733	struct page *page, *tmp;
734
735	pagevec_init(&freed_pvec, 1);
736
737	list_for_each_entry_safe(page, tmp, free_pages, lru) {
738		list_del(&page->lru);
739		if (!pagevec_add(&freed_pvec, page)) {
740			__pagevec_free(&freed_pvec);
741			pagevec_reinit(&freed_pvec);
742		}
743	}
744
745	pagevec_free(&freed_pvec);
746}
747
748/*
749 * shrink_page_list() returns the number of reclaimed pages
750 */
751static unsigned long shrink_page_list(struct list_head *page_list,
752				      struct zone *zone,
753				      struct scan_control *sc)
754{
755	LIST_HEAD(ret_pages);
756	LIST_HEAD(free_pages);
757	int pgactivate = 0;
758	unsigned long nr_dirty = 0;
759	unsigned long nr_congested = 0;
760	unsigned long nr_reclaimed = 0;
761
762	cond_resched();
763
764	while (!list_empty(page_list)) {
765		enum page_references references;
766		struct address_space *mapping;
767		struct page *page;
768		int may_enter_fs;
769
770		cond_resched();
771
772		page = lru_to_page(page_list);
773		list_del(&page->lru);
774
775		if (!trylock_page(page))
776			goto keep;
777
778		VM_BUG_ON(PageActive(page));
779		VM_BUG_ON(page_zone(page) != zone);
780
781		sc->nr_scanned++;
782
783		if (unlikely(!page_evictable(page, NULL)))
784			goto cull_mlocked;
785
786		if (!sc->may_unmap && page_mapped(page))
787			goto keep_locked;
788
789		/* Double the slab pressure for mapped and swapcache pages */
790		if (page_mapped(page) || PageSwapCache(page))
791			sc->nr_scanned++;
792
793		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
794			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
795
796		if (PageWriteback(page)) {
797			/*
798			 * Synchronous reclaim cannot queue pages for
799			 * writeback due to the possibility of stack overflow
800			 * but if it encounters a page under writeback, wait
801			 * for the IO to complete.
802			 */
803			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
804			    may_enter_fs)
805				wait_on_page_writeback(page);
806			else {
807				unlock_page(page);
808				goto keep_lumpy;
809			}
810		}
811
812		references = page_check_references(page, sc);
813		switch (references) {
814		case PAGEREF_ACTIVATE:
815			goto activate_locked;
816		case PAGEREF_KEEP:
817			goto keep_locked;
818		case PAGEREF_RECLAIM:
819		case PAGEREF_RECLAIM_CLEAN:
820			; /* try to reclaim the page below */
821		}
822
823		/*
824		 * Anonymous process memory has backing store?
825		 * Try to allocate it some swap space here.
826		 */
827		if (PageAnon(page) && !PageSwapCache(page)) {
828			if (!(sc->gfp_mask & __GFP_IO))
829				goto keep_locked;
830			if (!add_to_swap(page))
831				goto activate_locked;
832			may_enter_fs = 1;
833		}
834
835		mapping = page_mapping(page);
836
837		/*
838		 * The page is mapped into the page tables of one or more
839		 * processes. Try to unmap it here.
840		 */
841		if (page_mapped(page) && mapping) {
842			switch (try_to_unmap(page, TTU_UNMAP)) {
843			case SWAP_FAIL:
844				goto activate_locked;
845			case SWAP_AGAIN:
846				goto keep_locked;
847			case SWAP_MLOCK:
848				goto cull_mlocked;
849			case SWAP_SUCCESS:
850				; /* try to free the page below */
851			}
852		}
853
854		if (PageDirty(page)) {
855			nr_dirty++;
856
857			/*
858			 * Only kswapd can writeback filesystem pages to
859			 * avoid risk of stack overflow
860			 */
861			if (page_is_file_cache(page) && !current_is_kswapd()) {
862				inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
863				goto keep_locked;
864			}
865
866			if (references == PAGEREF_RECLAIM_CLEAN)
867				goto keep_locked;
868			if (!may_enter_fs)
869				goto keep_locked;
870			if (!sc->may_writepage)
871				goto keep_locked;
872
873			/* Page is dirty, try to write it out here */
874			switch (pageout(page, mapping, sc)) {
875			case PAGE_KEEP:
876				nr_congested++;
877				goto keep_locked;
878			case PAGE_ACTIVATE:
879				goto activate_locked;
880			case PAGE_SUCCESS:
881				if (PageWriteback(page))
882					goto keep_lumpy;
883				if (PageDirty(page))
884					goto keep;
885
886				/*
887				 * A synchronous write - probably a ramdisk.  Go
888				 * ahead and try to reclaim the page.
889				 */
890				if (!trylock_page(page))
891					goto keep;
892				if (PageDirty(page) || PageWriteback(page))
893					goto keep_locked;
894				mapping = page_mapping(page);
895			case PAGE_CLEAN:
896				; /* try to free the page below */
897			}
898		}
899
900		/*
901		 * If the page has buffers, try to free the buffer mappings
902		 * associated with this page. If we succeed we try to free
903		 * the page as well.
904		 *
905		 * We do this even if the page is PageDirty().
906		 * try_to_release_page() does not perform I/O, but it is
907		 * possible for a page to have PageDirty set, but it is actually
908		 * clean (all its buffers are clean).  This happens if the
909		 * buffers were written out directly, with submit_bh(). ext3
910		 * will do this, as well as the blockdev mapping.
911		 * try_to_release_page() will discover that cleanness and will
912		 * drop the buffers and mark the page clean - it can be freed.
913		 *
914		 * Rarely, pages can have buffers and no ->mapping.  These are
915		 * the pages which were not successfully invalidated in
916		 * truncate_complete_page().  We try to drop those buffers here
917		 * and if that worked, and the page is no longer mapped into
918		 * process address space (page_count == 1) it can be freed.
919		 * Otherwise, leave the page on the LRU so it is swappable.
920		 */
921		if (page_has_private(page)) {
922			if (!try_to_release_page(page, sc->gfp_mask))
923				goto activate_locked;
924			if (!mapping && page_count(page) == 1) {
925				unlock_page(page);
926				if (put_page_testzero(page))
927					goto free_it;
928				else {
929					/*
930					 * rare race with speculative reference.
931					 * the speculative reference will free
932					 * this page shortly, so we may
933					 * increment nr_reclaimed here (and
934					 * leave it off the LRU).
935					 */
936					nr_reclaimed++;
937					continue;
938				}
939			}
940		}
941
942		if (!mapping || !__remove_mapping(mapping, page))
943			goto keep_locked;
944
945		/*
946		 * At this point, we have no other references and there is
947		 * no way to pick any more up (removed from LRU, removed
948		 * from pagecache). Can use non-atomic bitops now (and
949		 * we obviously don't have to worry about waking up a process
950		 * waiting on the page lock, because there are no references.
951		 */
952		__clear_page_locked(page);
953free_it:
954		nr_reclaimed++;
955
956		/*
957		 * Is there need to periodically free_page_list? It would
958		 * appear not as the counts should be low
959		 */
960		list_add(&page->lru, &free_pages);
961		continue;
962
963cull_mlocked:
964		if (PageSwapCache(page))
965			try_to_free_swap(page);
966		unlock_page(page);
967		putback_lru_page(page);
968		reset_reclaim_mode(sc);
969		continue;
970
971activate_locked:
972		/* Not a candidate for swapping, so reclaim swap space. */
973		if (PageSwapCache(page) && vm_swap_full())
974			try_to_free_swap(page);
975		VM_BUG_ON(PageActive(page));
976		SetPageActive(page);
977		pgactivate++;
978keep_locked:
979		unlock_page(page);
980keep:
981		reset_reclaim_mode(sc);
982keep_lumpy:
983		list_add(&page->lru, &ret_pages);
984		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
985	}
986
987	/*
988	 * Tag a zone as congested if all the dirty pages encountered were
989	 * backed by a congested BDI. In this case, reclaimers should just
990	 * back off and wait for congestion to clear because further reclaim
991	 * will encounter the same problem
992	 */
993	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
994		zone_set_flag(zone, ZONE_CONGESTED);
995
996	free_page_list(&free_pages);
997
998	list_splice(&ret_pages, page_list);
999	count_vm_events(PGACTIVATE, pgactivate);
1000	return nr_reclaimed;
1001}
1002
1003/*
1004 * Attempt to remove the specified page from its LRU.  Only take this page
1005 * if it is of the appropriate PageActive status.  Pages which are being
1006 * freed elsewhere are also ignored.
1007 *
1008 * page:	page to consider
1009 * mode:	one of the LRU isolation modes defined above
1010 *
1011 * returns 0 on success, -ve errno on failure.
1012 */
1013int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1014{
1015	bool all_lru_mode;
1016	int ret = -EINVAL;
1017
1018	/* Only take pages on the LRU. */
1019	if (!PageLRU(page))
1020		return ret;
1021
1022	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1023		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1024
1025	/*
1026	 * When checking the active state, we need to be sure we are
1027	 * dealing with comparible boolean values.  Take the logical not
1028	 * of each.
1029	 */
1030	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1031		return ret;
1032
1033	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1034		return ret;
1035
1036	/*
1037	 * When this function is being called for lumpy reclaim, we
1038	 * initially look into all LRU pages, active, inactive and
1039	 * unevictable; only give shrink_page_list evictable pages.
1040	 */
1041	if (PageUnevictable(page))
1042		return ret;
1043
1044	ret = -EBUSY;
1045
1046	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1047		return ret;
1048
1049	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1050		return ret;
1051
1052	if (likely(get_page_unless_zero(page))) {
1053		/*
1054		 * Be careful not to clear PageLRU until after we're
1055		 * sure the page is not being freed elsewhere -- the
1056		 * page release code relies on it.
1057		 */
1058		ClearPageLRU(page);
1059		ret = 0;
1060	}
1061
1062	return ret;
1063}
1064
1065/*
1066 * zone->lru_lock is heavily contended.  Some of the functions that
1067 * shrink the lists perform better by taking out a batch of pages
1068 * and working on them outside the LRU lock.
1069 *
1070 * For pagecache intensive workloads, this function is the hottest
1071 * spot in the kernel (apart from copy_*_user functions).
1072 *
1073 * Appropriate locks must be held before calling this function.
1074 *
1075 * @nr_to_scan:	The number of pages to look through on the list.
1076 * @src:	The LRU list to pull pages off.
1077 * @dst:	The temp list to put pages on to.
1078 * @scanned:	The number of pages that were scanned.
1079 * @order:	The caller's attempted allocation order
1080 * @mode:	One of the LRU isolation modes
1081 * @file:	True [1] if isolating file [!anon] pages
1082 *
1083 * returns how many pages were moved onto *@dst.
1084 */
1085static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1086		struct list_head *src, struct list_head *dst,
1087		unsigned long *scanned, int order, isolate_mode_t mode,
1088		int file)
1089{
1090	unsigned long nr_taken = 0;
1091	unsigned long nr_lumpy_taken = 0;
1092	unsigned long nr_lumpy_dirty = 0;
1093	unsigned long nr_lumpy_failed = 0;
1094	unsigned long scan;
1095
1096	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1097		struct page *page;
1098		unsigned long pfn;
1099		unsigned long end_pfn;
1100		unsigned long page_pfn;
1101		int zone_id;
1102
1103		page = lru_to_page(src);
1104		prefetchw_prev_lru_page(page, src, flags);
1105
1106		VM_BUG_ON(!PageLRU(page));
1107
1108		switch (__isolate_lru_page(page, mode, file)) {
1109		case 0:
1110			list_move(&page->lru, dst);
1111			mem_cgroup_del_lru(page);
1112			nr_taken += hpage_nr_pages(page);
1113			break;
1114
1115		case -EBUSY:
1116			/* else it is being freed elsewhere */
1117			list_move(&page->lru, src);
1118			mem_cgroup_rotate_lru_list(page, page_lru(page));
1119			continue;
1120
1121		default:
1122			BUG();
1123		}
1124
1125		if (!order)
1126			continue;
1127
1128		/*
1129		 * Attempt to take all pages in the order aligned region
1130		 * surrounding the tag page.  Only take those pages of
1131		 * the same active state as that tag page.  We may safely
1132		 * round the target page pfn down to the requested order
1133		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1134		 * where that page is in a different zone we will detect
1135		 * it from its zone id and abort this block scan.
1136		 */
1137		zone_id = page_zone_id(page);
1138		page_pfn = page_to_pfn(page);
1139		pfn = page_pfn & ~((1 << order) - 1);
1140		end_pfn = pfn + (1 << order);
1141		for (; pfn < end_pfn; pfn++) {
1142			struct page *cursor_page;
1143
1144			/* The target page is in the block, ignore it. */
1145			if (unlikely(pfn == page_pfn))
1146				continue;
1147
1148			/* Avoid holes within the zone. */
1149			if (unlikely(!pfn_valid_within(pfn)))
1150				break;
1151
1152			cursor_page = pfn_to_page(pfn);
1153
1154			/* Check that we have not crossed a zone boundary. */
1155			if (unlikely(page_zone_id(cursor_page) != zone_id))
1156				break;
1157
1158			/*
1159			 * If we don't have enough swap space, reclaiming of
1160			 * anon page which don't already have a swap slot is
1161			 * pointless.
1162			 */
1163			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1164			    !PageSwapCache(cursor_page))
1165				break;
1166
1167			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1168				list_move(&cursor_page->lru, dst);
1169				mem_cgroup_del_lru(cursor_page);
1170				nr_taken += hpage_nr_pages(page);
1171				nr_lumpy_taken++;
1172				if (PageDirty(cursor_page))
1173					nr_lumpy_dirty++;
1174				scan++;
1175			} else {
1176				/*
1177				 * Check if the page is freed already.
1178				 *
1179				 * We can't use page_count() as that
1180				 * requires compound_head and we don't
1181				 * have a pin on the page here. If a
1182				 * page is tail, we may or may not
1183				 * have isolated the head, so assume
1184				 * it's not free, it'd be tricky to
1185				 * track the head status without a
1186				 * page pin.
1187				 */
1188				if (!PageTail(cursor_page) &&
1189				    !atomic_read(&cursor_page->_count))
1190					continue;
1191				break;
1192			}
1193		}
1194
1195		/* If we break out of the loop above, lumpy reclaim failed */
1196		if (pfn < end_pfn)
1197			nr_lumpy_failed++;
1198	}
1199
1200	*scanned = scan;
1201
1202	trace_mm_vmscan_lru_isolate(order,
1203			nr_to_scan, scan,
1204			nr_taken,
1205			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1206			mode);
1207	return nr_taken;
1208}
1209
1210static unsigned long isolate_pages_global(unsigned long nr,
1211					struct list_head *dst,
1212					unsigned long *scanned, int order,
1213					isolate_mode_t mode,
1214					struct zone *z,	int active, int file)
1215{
1216	int lru = LRU_BASE;
1217	if (active)
1218		lru += LRU_ACTIVE;
1219	if (file)
1220		lru += LRU_FILE;
1221	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1222								mode, file);
1223}
1224
1225/*
1226 * clear_active_flags() is a helper for shrink_active_list(), clearing
1227 * any active bits from the pages in the list.
1228 */
1229static unsigned long clear_active_flags(struct list_head *page_list,
1230					unsigned int *count)
1231{
1232	int nr_active = 0;
1233	int lru;
1234	struct page *page;
1235
1236	list_for_each_entry(page, page_list, lru) {
1237		int numpages = hpage_nr_pages(page);
1238		lru = page_lru_base_type(page);
1239		if (PageActive(page)) {
1240			lru += LRU_ACTIVE;
1241			ClearPageActive(page);
1242			nr_active += numpages;
1243		}
1244		if (count)
1245			count[lru] += numpages;
1246	}
1247
1248	return nr_active;
1249}
1250
1251/**
1252 * isolate_lru_page - tries to isolate a page from its LRU list
1253 * @page: page to isolate from its LRU list
1254 *
1255 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1256 * vmstat statistic corresponding to whatever LRU list the page was on.
1257 *
1258 * Returns 0 if the page was removed from an LRU list.
1259 * Returns -EBUSY if the page was not on an LRU list.
1260 *
1261 * The returned page will have PageLRU() cleared.  If it was found on
1262 * the active list, it will have PageActive set.  If it was found on
1263 * the unevictable list, it will have the PageUnevictable bit set. That flag
1264 * may need to be cleared by the caller before letting the page go.
1265 *
1266 * The vmstat statistic corresponding to the list on which the page was
1267 * found will be decremented.
1268 *
1269 * Restrictions:
1270 * (1) Must be called with an elevated refcount on the page. This is a
1271 *     fundamentnal difference from isolate_lru_pages (which is called
1272 *     without a stable reference).
1273 * (2) the lru_lock must not be held.
1274 * (3) interrupts must be enabled.
1275 */
1276int isolate_lru_page(struct page *page)
1277{
1278	int ret = -EBUSY;
1279
1280	VM_BUG_ON(!page_count(page));
1281
1282	if (PageLRU(page)) {
1283		struct zone *zone = page_zone(page);
1284
1285		spin_lock_irq(&zone->lru_lock);
1286		if (PageLRU(page)) {
1287			int lru = page_lru(page);
1288			ret = 0;
1289			get_page(page);
1290			ClearPageLRU(page);
1291
1292			del_page_from_lru_list(zone, page, lru);
1293		}
1294		spin_unlock_irq(&zone->lru_lock);
1295	}
1296	return ret;
1297}
1298
1299/*
1300 * Are there way too many processes in the direct reclaim path already?
1301 */
1302static int too_many_isolated(struct zone *zone, int file,
1303		struct scan_control *sc)
1304{
1305	unsigned long inactive, isolated;
1306
1307	if (current_is_kswapd())
1308		return 0;
1309
1310	if (!scanning_global_lru(sc))
1311		return 0;
1312
1313	if (file) {
1314		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1315		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1316	} else {
1317		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1318		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1319	}
1320
1321	return isolated > inactive;
1322}
1323
1324/*
1325 * TODO: Try merging with migrations version of putback_lru_pages
1326 */
1327static noinline_for_stack void
1328putback_lru_pages(struct zone *zone, struct scan_control *sc,
1329				unsigned long nr_anon, unsigned long nr_file,
1330				struct list_head *page_list)
1331{
1332	struct page *page;
1333	struct pagevec pvec;
1334	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1335
1336	pagevec_init(&pvec, 1);
1337
1338	/*
1339	 * Put back any unfreeable pages.
1340	 */
1341	spin_lock(&zone->lru_lock);
1342	while (!list_empty(page_list)) {
1343		int lru;
1344		page = lru_to_page(page_list);
1345		VM_BUG_ON(PageLRU(page));
1346		list_del(&page->lru);
1347		if (unlikely(!page_evictable(page, NULL))) {
1348			spin_unlock_irq(&zone->lru_lock);
1349			putback_lru_page(page);
1350			spin_lock_irq(&zone->lru_lock);
1351			continue;
1352		}
1353		SetPageLRU(page);
1354		lru = page_lru(page);
1355		add_page_to_lru_list(zone, page, lru);
1356		if (is_active_lru(lru)) {
1357			int file = is_file_lru(lru);
1358			int numpages = hpage_nr_pages(page);
1359			reclaim_stat->recent_rotated[file] += numpages;
1360		}
1361		if (!pagevec_add(&pvec, page)) {
1362			spin_unlock_irq(&zone->lru_lock);
1363			__pagevec_release(&pvec);
1364			spin_lock_irq(&zone->lru_lock);
1365		}
1366	}
1367	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1368	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1369
1370	spin_unlock_irq(&zone->lru_lock);
1371	pagevec_release(&pvec);
1372}
1373
1374static noinline_for_stack void update_isolated_counts(struct zone *zone,
1375					struct scan_control *sc,
1376					unsigned long *nr_anon,
1377					unsigned long *nr_file,
1378					struct list_head *isolated_list)
1379{
1380	unsigned long nr_active;
1381	unsigned int count[NR_LRU_LISTS] = { 0, };
1382	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1383
1384	nr_active = clear_active_flags(isolated_list, count);
1385	__count_vm_events(PGDEACTIVATE, nr_active);
1386
1387	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1388			      -count[LRU_ACTIVE_FILE]);
1389	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1390			      -count[LRU_INACTIVE_FILE]);
1391	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1392			      -count[LRU_ACTIVE_ANON]);
1393	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1394			      -count[LRU_INACTIVE_ANON]);
1395
1396	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1397	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1398	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1399	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1400
1401	reclaim_stat->recent_scanned[0] += *nr_anon;
1402	reclaim_stat->recent_scanned[1] += *nr_file;
1403}
1404
1405/*
1406 * Returns true if a direct reclaim should wait on pages under writeback.
1407 *
1408 * If we are direct reclaiming for contiguous pages and we do not reclaim
1409 * everything in the list, try again and wait for writeback IO to complete.
1410 * This will stall high-order allocations noticeably. Only do that when really
1411 * need to free the pages under high memory pressure.
1412 */
1413static inline bool should_reclaim_stall(unsigned long nr_taken,
1414					unsigned long nr_freed,
1415					int priority,
1416					struct scan_control *sc)
1417{
1418	int lumpy_stall_priority;
1419
1420	/* kswapd should not stall on sync IO */
1421	if (current_is_kswapd())
1422		return false;
1423
1424	/* Only stall on lumpy reclaim */
1425	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1426		return false;
1427
1428	/* If we have reclaimed everything on the isolated list, no stall */
1429	if (nr_freed == nr_taken)
1430		return false;
1431
1432	/*
1433	 * For high-order allocations, there are two stall thresholds.
1434	 * High-cost allocations stall immediately where as lower
1435	 * order allocations such as stacks require the scanning
1436	 * priority to be much higher before stalling.
1437	 */
1438	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1439		lumpy_stall_priority = DEF_PRIORITY;
1440	else
1441		lumpy_stall_priority = DEF_PRIORITY / 3;
1442
1443	return priority <= lumpy_stall_priority;
1444}
1445
1446/*
1447 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1448 * of reclaimed pages
1449 */
1450static noinline_for_stack unsigned long
1451shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1452			struct scan_control *sc, int priority, int file)
1453{
1454	LIST_HEAD(page_list);
1455	unsigned long nr_scanned;
1456	unsigned long nr_reclaimed = 0;
1457	unsigned long nr_taken;
1458	unsigned long nr_anon;
1459	unsigned long nr_file;
1460	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1461
1462	while (unlikely(too_many_isolated(zone, file, sc))) {
1463		congestion_wait(BLK_RW_ASYNC, HZ/10);
1464
1465		/* We are about to die and free our memory. Return now. */
1466		if (fatal_signal_pending(current))
1467			return SWAP_CLUSTER_MAX;
1468	}
1469
1470	set_reclaim_mode(priority, sc, false);
1471	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1472		reclaim_mode |= ISOLATE_ACTIVE;
1473
1474	lru_add_drain();
1475
1476	if (!sc->may_unmap)
1477		reclaim_mode |= ISOLATE_UNMAPPED;
1478	if (!sc->may_writepage)
1479		reclaim_mode |= ISOLATE_CLEAN;
1480
1481	spin_lock_irq(&zone->lru_lock);
1482
1483	if (scanning_global_lru(sc)) {
1484		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1485			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1486		zone->pages_scanned += nr_scanned;
1487		if (current_is_kswapd())
1488			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1489					       nr_scanned);
1490		else
1491			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1492					       nr_scanned);
1493	} else {
1494		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1495			&nr_scanned, sc->order, reclaim_mode, zone,
1496			sc->mem_cgroup, 0, file);
1497		/*
1498		 * mem_cgroup_isolate_pages() keeps track of
1499		 * scanned pages on its own.
1500		 */
1501	}
1502
1503	if (nr_taken == 0) {
1504		spin_unlock_irq(&zone->lru_lock);
1505		return 0;
1506	}
1507
1508	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1509
1510	spin_unlock_irq(&zone->lru_lock);
1511
1512	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1513
1514	/* Check if we should syncronously wait for writeback */
1515	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1516		set_reclaim_mode(priority, sc, true);
1517		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1518	}
1519
1520	local_irq_disable();
1521	if (current_is_kswapd())
1522		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1523	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1524
1525	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1526
1527	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1528		zone_idx(zone),
1529		nr_scanned, nr_reclaimed,
1530		priority,
1531		trace_shrink_flags(file, sc->reclaim_mode));
1532	return nr_reclaimed;
1533}
1534
1535/*
1536 * This moves pages from the active list to the inactive list.
1537 *
1538 * We move them the other way if the page is referenced by one or more
1539 * processes, from rmap.
1540 *
1541 * If the pages are mostly unmapped, the processing is fast and it is
1542 * appropriate to hold zone->lru_lock across the whole operation.  But if
1543 * the pages are mapped, the processing is slow (page_referenced()) so we
1544 * should drop zone->lru_lock around each page.  It's impossible to balance
1545 * this, so instead we remove the pages from the LRU while processing them.
1546 * It is safe to rely on PG_active against the non-LRU pages in here because
1547 * nobody will play with that bit on a non-LRU page.
1548 *
1549 * The downside is that we have to touch page->_count against each page.
1550 * But we had to alter page->flags anyway.
1551 */
1552
1553static void move_active_pages_to_lru(struct zone *zone,
1554				     struct list_head *list,
1555				     enum lru_list lru)
1556{
1557	unsigned long pgmoved = 0;
1558	struct pagevec pvec;
1559	struct page *page;
1560
1561	pagevec_init(&pvec, 1);
1562
1563	while (!list_empty(list)) {
1564		page = lru_to_page(list);
1565
1566		VM_BUG_ON(PageLRU(page));
1567		SetPageLRU(page);
1568
1569		list_move(&page->lru, &zone->lru[lru].list);
1570		mem_cgroup_add_lru_list(page, lru);
1571		pgmoved += hpage_nr_pages(page);
1572
1573		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1574			spin_unlock_irq(&zone->lru_lock);
1575			if (buffer_heads_over_limit)
1576				pagevec_strip(&pvec);
1577			__pagevec_release(&pvec);
1578			spin_lock_irq(&zone->lru_lock);
1579		}
1580	}
1581	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1582	if (!is_active_lru(lru))
1583		__count_vm_events(PGDEACTIVATE, pgmoved);
1584}
1585
1586static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1587			struct scan_control *sc, int priority, int file)
1588{
1589	unsigned long nr_taken;
1590	unsigned long pgscanned;
1591	unsigned long vm_flags;
1592	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1593	LIST_HEAD(l_active);
1594	LIST_HEAD(l_inactive);
1595	struct page *page;
1596	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1597	unsigned long nr_rotated = 0;
1598	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1599
1600	lru_add_drain();
1601
1602	if (!sc->may_unmap)
1603		reclaim_mode |= ISOLATE_UNMAPPED;
1604	if (!sc->may_writepage)
1605		reclaim_mode |= ISOLATE_CLEAN;
1606
1607	spin_lock_irq(&zone->lru_lock);
1608	if (scanning_global_lru(sc)) {
1609		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1610						&pgscanned, sc->order,
1611						reclaim_mode, zone,
1612						1, file);
1613		zone->pages_scanned += pgscanned;
1614	} else {
1615		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1616						&pgscanned, sc->order,
1617						reclaim_mode, zone,
1618						sc->mem_cgroup, 1, file);
1619		/*
1620		 * mem_cgroup_isolate_pages() keeps track of
1621		 * scanned pages on its own.
1622		 */
1623	}
1624
1625	reclaim_stat->recent_scanned[file] += nr_taken;
1626
1627	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1628	if (file)
1629		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1630	else
1631		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1632	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1633	spin_unlock_irq(&zone->lru_lock);
1634
1635	while (!list_empty(&l_hold)) {
1636		cond_resched();
1637		page = lru_to_page(&l_hold);
1638		list_del(&page->lru);
1639
1640		if (unlikely(!page_evictable(page, NULL))) {
1641			putback_lru_page(page);
1642			continue;
1643		}
1644
1645		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1646			nr_rotated += hpage_nr_pages(page);
1647			/*
1648			 * Identify referenced, file-backed active pages and
1649			 * give them one more trip around the active list. So
1650			 * that executable code get better chances to stay in
1651			 * memory under moderate memory pressure.  Anon pages
1652			 * are not likely to be evicted by use-once streaming
1653			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1654			 * so we ignore them here.
1655			 */
1656			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1657				list_add(&page->lru, &l_active);
1658				continue;
1659			}
1660		}
1661
1662		ClearPageActive(page);	/* we are de-activating */
1663		list_add(&page->lru, &l_inactive);
1664	}
1665
1666	/*
1667	 * Move pages back to the lru list.
1668	 */
1669	spin_lock_irq(&zone->lru_lock);
1670	/*
1671	 * Count referenced pages from currently used mappings as rotated,
1672	 * even though only some of them are actually re-activated.  This
1673	 * helps balance scan pressure between file and anonymous pages in
1674	 * get_scan_ratio.
1675	 */
1676	reclaim_stat->recent_rotated[file] += nr_rotated;
1677
1678	move_active_pages_to_lru(zone, &l_active,
1679						LRU_ACTIVE + file * LRU_FILE);
1680	move_active_pages_to_lru(zone, &l_inactive,
1681						LRU_BASE   + file * LRU_FILE);
1682	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1683	spin_unlock_irq(&zone->lru_lock);
1684}
1685
1686#ifdef CONFIG_SWAP
1687static int inactive_anon_is_low_global(struct zone *zone)
1688{
1689	unsigned long active, inactive;
1690
1691	active = zone_page_state(zone, NR_ACTIVE_ANON);
1692	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1693
1694	if (inactive * zone->inactive_ratio < active)
1695		return 1;
1696
1697	return 0;
1698}
1699
1700/**
1701 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1702 * @zone: zone to check
1703 * @sc:   scan control of this context
1704 *
1705 * Returns true if the zone does not have enough inactive anon pages,
1706 * meaning some active anon pages need to be deactivated.
1707 */
1708static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1709{
1710	int low;
1711
1712	/*
1713	 * If we don't have swap space, anonymous page deactivation
1714	 * is pointless.
1715	 */
1716	if (!total_swap_pages)
1717		return 0;
1718
1719	if (scanning_global_lru(sc))
1720		low = inactive_anon_is_low_global(zone);
1721	else
1722		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1723	return low;
1724}
1725#else
1726static inline int inactive_anon_is_low(struct zone *zone,
1727					struct scan_control *sc)
1728{
1729	return 0;
1730}
1731#endif
1732
1733static int inactive_file_is_low_global(struct zone *zone)
1734{
1735	unsigned long active, inactive;
1736
1737	active = zone_page_state(zone, NR_ACTIVE_FILE);
1738	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1739
1740	return (active > inactive);
1741}
1742
1743/**
1744 * inactive_file_is_low - check if file pages need to be deactivated
1745 * @zone: zone to check
1746 * @sc:   scan control of this context
1747 *
1748 * When the system is doing streaming IO, memory pressure here
1749 * ensures that active file pages get deactivated, until more
1750 * than half of the file pages are on the inactive list.
1751 *
1752 * Once we get to that situation, protect the system's working
1753 * set from being evicted by disabling active file page aging.
1754 *
1755 * This uses a different ratio than the anonymous pages, because
1756 * the page cache uses a use-once replacement algorithm.
1757 */
1758static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1759{
1760	int low;
1761
1762	if (scanning_global_lru(sc))
1763		low = inactive_file_is_low_global(zone);
1764	else
1765		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1766	return low;
1767}
1768
1769static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1770				int file)
1771{
1772	if (file)
1773		return inactive_file_is_low(zone, sc);
1774	else
1775		return inactive_anon_is_low(zone, sc);
1776}
1777
1778static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1779	struct zone *zone, struct scan_control *sc, int priority)
1780{
1781	int file = is_file_lru(lru);
1782
1783	if (is_active_lru(lru)) {
1784		if (inactive_list_is_low(zone, sc, file))
1785		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1786		return 0;
1787	}
1788
1789	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1790}
1791
1792static int vmscan_swappiness(struct scan_control *sc)
1793{
1794	if (scanning_global_lru(sc))
1795		return vm_swappiness;
1796	return mem_cgroup_swappiness(sc->mem_cgroup);
1797}
1798
1799/*
1800 * Determine how aggressively the anon and file LRU lists should be
1801 * scanned.  The relative value of each set of LRU lists is determined
1802 * by looking at the fraction of the pages scanned we did rotate back
1803 * onto the active list instead of evict.
1804 *
1805 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1806 */
1807static void get_scan_count(struct zone *zone, struct scan_control *sc,
1808					unsigned long *nr, int priority)
1809{
1810	unsigned long anon, file, free;
1811	unsigned long anon_prio, file_prio;
1812	unsigned long ap, fp;
1813	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1814	u64 fraction[2], denominator;
1815	enum lru_list l;
1816	int noswap = 0;
1817	bool force_scan = false;
1818
1819	/*
1820	 * If the zone or memcg is small, nr[l] can be 0.  This
1821	 * results in no scanning on this priority and a potential
1822	 * priority drop.  Global direct reclaim can go to the next
1823	 * zone and tends to have no problems. Global kswapd is for
1824	 * zone balancing and it needs to scan a minimum amount. When
1825	 * reclaiming for a memcg, a priority drop can cause high
1826	 * latencies, so it's better to scan a minimum amount there as
1827	 * well.
1828	 */
1829	if (scanning_global_lru(sc) && current_is_kswapd())
1830		force_scan = true;
1831	if (!scanning_global_lru(sc))
1832		force_scan = true;
1833
1834	/* If we have no swap space, do not bother scanning anon pages. */
1835	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1836		noswap = 1;
1837		fraction[0] = 0;
1838		fraction[1] = 1;
1839		denominator = 1;
1840		goto out;
1841	}
1842
1843	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1844		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1845	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1846		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1847
1848	if (scanning_global_lru(sc)) {
1849		free  = zone_page_state(zone, NR_FREE_PAGES);
1850		/* If we have very few page cache pages,
1851		   force-scan anon pages. */
1852		if (unlikely(file + free <= high_wmark_pages(zone))) {
1853			fraction[0] = 1;
1854			fraction[1] = 0;
1855			denominator = 1;
1856			goto out;
1857		}
1858	}
1859
1860	/*
1861	 * With swappiness at 100, anonymous and file have the same priority.
1862	 * This scanning priority is essentially the inverse of IO cost.
1863	 */
1864	anon_prio = vmscan_swappiness(sc);
1865	file_prio = 200 - vmscan_swappiness(sc);
1866
1867	/*
1868	 * OK, so we have swap space and a fair amount of page cache
1869	 * pages.  We use the recently rotated / recently scanned
1870	 * ratios to determine how valuable each cache is.
1871	 *
1872	 * Because workloads change over time (and to avoid overflow)
1873	 * we keep these statistics as a floating average, which ends
1874	 * up weighing recent references more than old ones.
1875	 *
1876	 * anon in [0], file in [1]
1877	 */
1878	spin_lock_irq(&zone->lru_lock);
1879	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1880		reclaim_stat->recent_scanned[0] /= 2;
1881		reclaim_stat->recent_rotated[0] /= 2;
1882	}
1883
1884	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1885		reclaim_stat->recent_scanned[1] /= 2;
1886		reclaim_stat->recent_rotated[1] /= 2;
1887	}
1888
1889	/*
1890	 * The amount of pressure on anon vs file pages is inversely
1891	 * proportional to the fraction of recently scanned pages on
1892	 * each list that were recently referenced and in active use.
1893	 */
1894	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1895	ap /= reclaim_stat->recent_rotated[0] + 1;
1896
1897	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1898	fp /= reclaim_stat->recent_rotated[1] + 1;
1899	spin_unlock_irq(&zone->lru_lock);
1900
1901	fraction[0] = ap;
1902	fraction[1] = fp;
1903	denominator = ap + fp + 1;
1904out:
1905	for_each_evictable_lru(l) {
1906		int file = is_file_lru(l);
1907		unsigned long scan;
1908
1909		scan = zone_nr_lru_pages(zone, sc, l);
1910		if (priority || noswap) {
1911			scan >>= priority;
1912			if (!scan && force_scan)
1913				scan = SWAP_CLUSTER_MAX;
1914			scan = div64_u64(scan * fraction[file], denominator);
1915		}
1916		nr[l] = scan;
1917	}
1918}
1919
1920/*
1921 * Reclaim/compaction depends on a number of pages being freed. To avoid
1922 * disruption to the system, a small number of order-0 pages continue to be
1923 * rotated and reclaimed in the normal fashion. However, by the time we get
1924 * back to the allocator and call try_to_compact_zone(), we ensure that
1925 * there are enough free pages for it to be likely successful
1926 */
1927static inline bool should_continue_reclaim(struct zone *zone,
1928					unsigned long nr_reclaimed,
1929					unsigned long nr_scanned,
1930					struct scan_control *sc)
1931{
1932	unsigned long pages_for_compaction;
1933	unsigned long inactive_lru_pages;
1934
1935	/* If not in reclaim/compaction mode, stop */
1936	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1937		return false;
1938
1939	/* Consider stopping depending on scan and reclaim activity */
1940	if (sc->gfp_mask & __GFP_REPEAT) {
1941		/*
1942		 * For __GFP_REPEAT allocations, stop reclaiming if the
1943		 * full LRU list has been scanned and we are still failing
1944		 * to reclaim pages. This full LRU scan is potentially
1945		 * expensive but a __GFP_REPEAT caller really wants to succeed
1946		 */
1947		if (!nr_reclaimed && !nr_scanned)
1948			return false;
1949	} else {
1950		/*
1951		 * For non-__GFP_REPEAT allocations which can presumably
1952		 * fail without consequence, stop if we failed to reclaim
1953		 * any pages from the last SWAP_CLUSTER_MAX number of
1954		 * pages that were scanned. This will return to the
1955		 * caller faster at the risk reclaim/compaction and
1956		 * the resulting allocation attempt fails
1957		 */
1958		if (!nr_reclaimed)
1959			return false;
1960	}
1961
1962	/*
1963	 * If we have not reclaimed enough pages for compaction and the
1964	 * inactive lists are large enough, continue reclaiming
1965	 */
1966	pages_for_compaction = (2UL << sc->order);
1967	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1968				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1969	if (sc->nr_reclaimed < pages_for_compaction &&
1970			inactive_lru_pages > pages_for_compaction)
1971		return true;
1972
1973	/* If compaction would go ahead or the allocation would succeed, stop */
1974	switch (compaction_suitable(zone, sc->order)) {
1975	case COMPACT_PARTIAL:
1976	case COMPACT_CONTINUE:
1977		return false;
1978	default:
1979		return true;
1980	}
1981}
1982
1983/*
1984 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1985 */
1986static void shrink_zone(int priority, struct zone *zone,
1987				struct scan_control *sc)
1988{
1989	unsigned long nr[NR_LRU_LISTS];
1990	unsigned long nr_to_scan;
1991	enum lru_list l;
1992	unsigned long nr_reclaimed, nr_scanned;
1993	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1994	struct blk_plug plug;
1995
1996restart:
1997	nr_reclaimed = 0;
1998	nr_scanned = sc->nr_scanned;
1999	get_scan_count(zone, sc, nr, priority);
2000
2001	blk_start_plug(&plug);
2002	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2003					nr[LRU_INACTIVE_FILE]) {
2004		for_each_evictable_lru(l) {
2005			if (nr[l]) {
2006				nr_to_scan = min_t(unsigned long,
2007						   nr[l], SWAP_CLUSTER_MAX);
2008				nr[l] -= nr_to_scan;
2009
2010				nr_reclaimed += shrink_list(l, nr_to_scan,
2011							    zone, sc, priority);
2012			}
2013		}
2014		/*
2015		 * On large memory systems, scan >> priority can become
2016		 * really large. This is fine for the starting priority;
2017		 * we want to put equal scanning pressure on each zone.
2018		 * However, if the VM has a harder time of freeing pages,
2019		 * with multiple processes reclaiming pages, the total
2020		 * freeing target can get unreasonably large.
2021		 */
2022		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2023			break;
2024	}
2025	blk_finish_plug(&plug);
2026	sc->nr_reclaimed += nr_reclaimed;
2027
2028	/*
2029	 * Even if we did not try to evict anon pages at all, we want to
2030	 * rebalance the anon lru active/inactive ratio.
2031	 */
2032	if (inactive_anon_is_low(zone, sc))
2033		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2034
2035	/* reclaim/compaction might need reclaim to continue */
2036	if (should_continue_reclaim(zone, nr_reclaimed,
2037					sc->nr_scanned - nr_scanned, sc))
2038		goto restart;
2039
2040	throttle_vm_writeout(sc->gfp_mask);
2041}
2042
2043/*
2044 * This is the direct reclaim path, for page-allocating processes.  We only
2045 * try to reclaim pages from zones which will satisfy the caller's allocation
2046 * request.
2047 *
2048 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2049 * Because:
2050 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2051 *    allocation or
2052 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2053 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2054 *    zone defense algorithm.
2055 *
2056 * If a zone is deemed to be full of pinned pages then just give it a light
2057 * scan then give up on it.
2058 */
2059static void shrink_zones(int priority, struct zonelist *zonelist,
2060					struct scan_control *sc)
2061{
2062	struct zoneref *z;
2063	struct zone *zone;
2064	unsigned long nr_soft_reclaimed;
2065	unsigned long nr_soft_scanned;
2066
2067	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2068					gfp_zone(sc->gfp_mask), sc->nodemask) {
2069		if (!populated_zone(zone))
2070			continue;
2071		/*
2072		 * Take care memory controller reclaiming has small influence
2073		 * to global LRU.
2074		 */
2075		if (scanning_global_lru(sc)) {
2076			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2077				continue;
2078			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2079				continue;	/* Let kswapd poll it */
2080			/*
2081			 * This steals pages from memory cgroups over softlimit
2082			 * and returns the number of reclaimed pages and
2083			 * scanned pages. This works for global memory pressure
2084			 * and balancing, not for a memcg's limit.
2085			 */
2086			nr_soft_scanned = 0;
2087			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2088						sc->order, sc->gfp_mask,
2089						&nr_soft_scanned);
2090			sc->nr_reclaimed += nr_soft_reclaimed;
2091			sc->nr_scanned += nr_soft_scanned;
2092			/* need some check for avoid more shrink_zone() */
2093		}
2094
2095		shrink_zone(priority, zone, sc);
2096	}
2097}
2098
2099static bool zone_reclaimable(struct zone *zone)
2100{
2101	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2102}
2103
2104/* All zones in zonelist are unreclaimable? */
2105static bool all_unreclaimable(struct zonelist *zonelist,
2106		struct scan_control *sc)
2107{
2108	struct zoneref *z;
2109	struct zone *zone;
2110
2111	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2112			gfp_zone(sc->gfp_mask), sc->nodemask) {
2113		if (!populated_zone(zone))
2114			continue;
2115		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2116			continue;
2117		if (!zone->all_unreclaimable)
2118			return false;
2119	}
2120
2121	return true;
2122}
2123
2124/*
2125 * This is the main entry point to direct page reclaim.
2126 *
2127 * If a full scan of the inactive list fails to free enough memory then we
2128 * are "out of memory" and something needs to be killed.
2129 *
2130 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2131 * high - the zone may be full of dirty or under-writeback pages, which this
2132 * caller can't do much about.  We kick the writeback threads and take explicit
2133 * naps in the hope that some of these pages can be written.  But if the
2134 * allocating task holds filesystem locks which prevent writeout this might not
2135 * work, and the allocation attempt will fail.
2136 *
2137 * returns:	0, if no pages reclaimed
2138 * 		else, the number of pages reclaimed
2139 */
2140static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2141					struct scan_control *sc,
2142					struct shrink_control *shrink)
2143{
2144	int priority;
2145	unsigned long total_scanned = 0;
2146	struct reclaim_state *reclaim_state = current->reclaim_state;
2147	struct zoneref *z;
2148	struct zone *zone;
2149	unsigned long writeback_threshold;
2150
2151	get_mems_allowed();
2152	delayacct_freepages_start();
2153
2154	if (scanning_global_lru(sc))
2155		count_vm_event(ALLOCSTALL);
2156
2157	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2158		sc->nr_scanned = 0;
2159		if (!priority)
2160			disable_swap_token(sc->mem_cgroup);
2161		shrink_zones(priority, zonelist, sc);
2162		/*
2163		 * Don't shrink slabs when reclaiming memory from
2164		 * over limit cgroups
2165		 */
2166		if (scanning_global_lru(sc)) {
2167			unsigned long lru_pages = 0;
2168			for_each_zone_zonelist(zone, z, zonelist,
2169					gfp_zone(sc->gfp_mask)) {
2170				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2171					continue;
2172
2173				lru_pages += zone_reclaimable_pages(zone);
2174			}
2175
2176			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2177			if (reclaim_state) {
2178				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2179				reclaim_state->reclaimed_slab = 0;
2180			}
2181		}
2182		total_scanned += sc->nr_scanned;
2183		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2184			goto out;
2185
2186		/*
2187		 * Try to write back as many pages as we just scanned.  This
2188		 * tends to cause slow streaming writers to write data to the
2189		 * disk smoothly, at the dirtying rate, which is nice.   But
2190		 * that's undesirable in laptop mode, where we *want* lumpy
2191		 * writeout.  So in laptop mode, write out the whole world.
2192		 */
2193		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2194		if (total_scanned > writeback_threshold) {
2195			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2196			sc->may_writepage = 1;
2197		}
2198
2199		/* Take a nap, wait for some writeback to complete */
2200		if (!sc->hibernation_mode && sc->nr_scanned &&
2201		    priority < DEF_PRIORITY - 2) {
2202			struct zone *preferred_zone;
2203
2204			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2205						&cpuset_current_mems_allowed,
2206						&preferred_zone);
2207			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2208		}
2209	}
2210
2211out:
2212	delayacct_freepages_end();
2213	put_mems_allowed();
2214
2215	if (sc->nr_reclaimed)
2216		return sc->nr_reclaimed;
2217
2218	/*
2219	 * As hibernation is going on, kswapd is freezed so that it can't mark
2220	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2221	 * check.
2222	 */
2223	if (oom_killer_disabled)
2224		return 0;
2225
2226	/* top priority shrink_zones still had more to do? don't OOM, then */
2227	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2228		return 1;
2229
2230	return 0;
2231}
2232
2233unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2234				gfp_t gfp_mask, nodemask_t *nodemask)
2235{
2236	unsigned long nr_reclaimed;
2237	struct scan_control sc = {
2238		.gfp_mask = gfp_mask,
2239		.may_writepage = !laptop_mode,
2240		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2241		.may_unmap = 1,
2242		.may_swap = 1,
2243		.order = order,
2244		.mem_cgroup = NULL,
2245		.nodemask = nodemask,
2246	};
2247	struct shrink_control shrink = {
2248		.gfp_mask = sc.gfp_mask,
2249	};
2250
2251	trace_mm_vmscan_direct_reclaim_begin(order,
2252				sc.may_writepage,
2253				gfp_mask);
2254
2255	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2256
2257	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2258
2259	return nr_reclaimed;
2260}
2261
2262#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2263
2264unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2265						gfp_t gfp_mask, bool noswap,
2266						struct zone *zone,
2267						unsigned long *nr_scanned)
2268{
2269	struct scan_control sc = {
2270		.nr_scanned = 0,
2271		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2272		.may_writepage = !laptop_mode,
2273		.may_unmap = 1,
2274		.may_swap = !noswap,
2275		.order = 0,
2276		.mem_cgroup = mem,
2277	};
2278
2279	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2280			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2281
2282	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2283						      sc.may_writepage,
2284						      sc.gfp_mask);
2285
2286	/*
2287	 * NOTE: Although we can get the priority field, using it
2288	 * here is not a good idea, since it limits the pages we can scan.
2289	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2290	 * will pick up pages from other mem cgroup's as well. We hack
2291	 * the priority and make it zero.
2292	 */
2293	shrink_zone(0, zone, &sc);
2294
2295	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2296
2297	*nr_scanned = sc.nr_scanned;
2298	return sc.nr_reclaimed;
2299}
2300
2301unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2302					   gfp_t gfp_mask,
2303					   bool noswap)
2304{
2305	struct zonelist *zonelist;
2306	unsigned long nr_reclaimed;
2307	int nid;
2308	struct scan_control sc = {
2309		.may_writepage = !laptop_mode,
2310		.may_unmap = 1,
2311		.may_swap = !noswap,
2312		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2313		.order = 0,
2314		.mem_cgroup = mem_cont,
2315		.nodemask = NULL, /* we don't care the placement */
2316		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2317				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2318	};
2319	struct shrink_control shrink = {
2320		.gfp_mask = sc.gfp_mask,
2321	};
2322
2323	/*
2324	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2325	 * take care of from where we get pages. So the node where we start the
2326	 * scan does not need to be the current node.
2327	 */
2328	nid = mem_cgroup_select_victim_node(mem_cont);
2329
2330	zonelist = NODE_DATA(nid)->node_zonelists;
2331
2332	trace_mm_vmscan_memcg_reclaim_begin(0,
2333					    sc.may_writepage,
2334					    sc.gfp_mask);
2335
2336	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2337
2338	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2339
2340	return nr_reclaimed;
2341}
2342#endif
2343
2344/*
2345 * pgdat_balanced is used when checking if a node is balanced for high-order
2346 * allocations. Only zones that meet watermarks and are in a zone allowed
2347 * by the callers classzone_idx are added to balanced_pages. The total of
2348 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2349 * for the node to be considered balanced. Forcing all zones to be balanced
2350 * for high orders can cause excessive reclaim when there are imbalanced zones.
2351 * The choice of 25% is due to
2352 *   o a 16M DMA zone that is balanced will not balance a zone on any
2353 *     reasonable sized machine
2354 *   o On all other machines, the top zone must be at least a reasonable
2355 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2356 *     would need to be at least 256M for it to be balance a whole node.
2357 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2358 *     to balance a node on its own. These seemed like reasonable ratios.
2359 */
2360static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2361						int classzone_idx)
2362{
2363	unsigned long present_pages = 0;
2364	int i;
2365
2366	for (i = 0; i <= classzone_idx; i++)
2367		present_pages += pgdat->node_zones[i].present_pages;
2368
2369	/* A special case here: if zone has no page, we think it's balanced */
2370	return balanced_pages >= (present_pages >> 2);
2371}
2372
2373/* is kswapd sleeping prematurely? */
2374static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2375					int classzone_idx)
2376{
2377	int i;
2378	unsigned long balanced = 0;
2379	bool all_zones_ok = true;
2380
2381	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2382	if (remaining)
2383		return true;
2384
2385	/* Check the watermark levels */
2386	for (i = 0; i <= classzone_idx; i++) {
2387		struct zone *zone = pgdat->node_zones + i;
2388
2389		if (!populated_zone(zone))
2390			continue;
2391
2392		/*
2393		 * balance_pgdat() skips over all_unreclaimable after
2394		 * DEF_PRIORITY. Effectively, it considers them balanced so
2395		 * they must be considered balanced here as well if kswapd
2396		 * is to sleep
2397		 */
2398		if (zone->all_unreclaimable) {
2399			balanced += zone->present_pages;
2400			continue;
2401		}
2402
2403		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2404							i, 0))
2405			all_zones_ok = false;
2406		else
2407			balanced += zone->present_pages;
2408	}
2409
2410	/*
2411	 * For high-order requests, the balanced zones must contain at least
2412	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2413	 * must be balanced
2414	 */
2415	if (order)
2416		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2417	else
2418		return !all_zones_ok;
2419}
2420
2421/*
2422 * For kswapd, balance_pgdat() will work across all this node's zones until
2423 * they are all at high_wmark_pages(zone).
2424 *
2425 * Returns the final order kswapd was reclaiming at
2426 *
2427 * There is special handling here for zones which are full of pinned pages.
2428 * This can happen if the pages are all mlocked, or if they are all used by
2429 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2430 * What we do is to detect the case where all pages in the zone have been
2431 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2432 * dead and from now on, only perform a short scan.  Basically we're polling
2433 * the zone for when the problem goes away.
2434 *
2435 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2436 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2437 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2438 * lower zones regardless of the number of free pages in the lower zones. This
2439 * interoperates with the page allocator fallback scheme to ensure that aging
2440 * of pages is balanced across the zones.
2441 */
2442static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2443							int *classzone_idx)
2444{
2445	int all_zones_ok;
2446	unsigned long balanced;
2447	int priority;
2448	int i;
2449	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2450	unsigned long total_scanned;
2451	struct reclaim_state *reclaim_state = current->reclaim_state;
2452	unsigned long nr_soft_reclaimed;
2453	unsigned long nr_soft_scanned;
2454	struct scan_control sc = {
2455		.gfp_mask = GFP_KERNEL,
2456		.may_unmap = 1,
2457		.may_swap = 1,
2458		/*
2459		 * kswapd doesn't want to be bailed out while reclaim. because
2460		 * we want to put equal scanning pressure on each zone.
2461		 */
2462		.nr_to_reclaim = ULONG_MAX,
2463		.order = order,
2464		.mem_cgroup = NULL,
2465	};
2466	struct shrink_control shrink = {
2467		.gfp_mask = sc.gfp_mask,
2468	};
2469loop_again:
2470	total_scanned = 0;
2471	sc.nr_reclaimed = 0;
2472	sc.may_writepage = !laptop_mode;
2473	count_vm_event(PAGEOUTRUN);
2474
2475	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2476		unsigned long lru_pages = 0;
2477		int has_under_min_watermark_zone = 0;
2478
2479		/* The swap token gets in the way of swapout... */
2480		if (!priority)
2481			disable_swap_token(NULL);
2482
2483		all_zones_ok = 1;
2484		balanced = 0;
2485
2486		/*
2487		 * Scan in the highmem->dma direction for the highest
2488		 * zone which needs scanning
2489		 */
2490		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2491			struct zone *zone = pgdat->node_zones + i;
2492
2493			if (!populated_zone(zone))
2494				continue;
2495
2496			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2497				continue;
2498
2499			/*
2500			 * Do some background aging of the anon list, to give
2501			 * pages a chance to be referenced before reclaiming.
2502			 */
2503			if (inactive_anon_is_low(zone, &sc))
2504				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2505							&sc, priority, 0);
2506
2507			if (!zone_watermark_ok_safe(zone, order,
2508					high_wmark_pages(zone), 0, 0)) {
2509				end_zone = i;
2510				break;
2511			} else {
2512				/* If balanced, clear the congested flag */
2513				zone_clear_flag(zone, ZONE_CONGESTED);
2514			}
2515		}
2516		if (i < 0)
2517			goto out;
2518
2519		for (i = 0; i <= end_zone; i++) {
2520			struct zone *zone = pgdat->node_zones + i;
2521
2522			lru_pages += zone_reclaimable_pages(zone);
2523		}
2524
2525		/*
2526		 * Now scan the zone in the dma->highmem direction, stopping
2527		 * at the last zone which needs scanning.
2528		 *
2529		 * We do this because the page allocator works in the opposite
2530		 * direction.  This prevents the page allocator from allocating
2531		 * pages behind kswapd's direction of progress, which would
2532		 * cause too much scanning of the lower zones.
2533		 */
2534		for (i = 0; i <= end_zone; i++) {
2535			struct zone *zone = pgdat->node_zones + i;
2536			int nr_slab;
2537			unsigned long balance_gap;
2538
2539			if (!populated_zone(zone))
2540				continue;
2541
2542			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2543				continue;
2544
2545			sc.nr_scanned = 0;
2546
2547			nr_soft_scanned = 0;
2548			/*
2549			 * Call soft limit reclaim before calling shrink_zone.
2550			 */
2551			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2552							order, sc.gfp_mask,
2553							&nr_soft_scanned);
2554			sc.nr_reclaimed += nr_soft_reclaimed;
2555			total_scanned += nr_soft_scanned;
2556
2557			/*
2558			 * We put equal pressure on every zone, unless
2559			 * one zone has way too many pages free
2560			 * already. The "too many pages" is defined
2561			 * as the high wmark plus a "gap" where the
2562			 * gap is either the low watermark or 1%
2563			 * of the zone, whichever is smaller.
2564			 */
2565			balance_gap = min(low_wmark_pages(zone),
2566				(zone->present_pages +
2567					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2568				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2569			if (!zone_watermark_ok_safe(zone, order,
2570					high_wmark_pages(zone) + balance_gap,
2571					end_zone, 0)) {
2572				shrink_zone(priority, zone, &sc);
2573
2574				reclaim_state->reclaimed_slab = 0;
2575				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2576				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2577				total_scanned += sc.nr_scanned;
2578
2579				if (nr_slab == 0 && !zone_reclaimable(zone))
2580					zone->all_unreclaimable = 1;
2581			}
2582
2583			/*
2584			 * If we've done a decent amount of scanning and
2585			 * the reclaim ratio is low, start doing writepage
2586			 * even in laptop mode
2587			 */
2588			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2589			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2590				sc.may_writepage = 1;
2591
2592			if (zone->all_unreclaimable) {
2593				if (end_zone && end_zone == i)
2594					end_zone--;
2595				continue;
2596			}
2597
2598			if (!zone_watermark_ok_safe(zone, order,
2599					high_wmark_pages(zone), end_zone, 0)) {
2600				all_zones_ok = 0;
2601				/*
2602				 * We are still under min water mark.  This
2603				 * means that we have a GFP_ATOMIC allocation
2604				 * failure risk. Hurry up!
2605				 */
2606				if (!zone_watermark_ok_safe(zone, order,
2607					    min_wmark_pages(zone), end_zone, 0))
2608					has_under_min_watermark_zone = 1;
2609			} else {
2610				/*
2611				 * If a zone reaches its high watermark,
2612				 * consider it to be no longer congested. It's
2613				 * possible there are dirty pages backed by
2614				 * congested BDIs but as pressure is relieved,
2615				 * spectulatively avoid congestion waits
2616				 */
2617				zone_clear_flag(zone, ZONE_CONGESTED);
2618				if (i <= *classzone_idx)
2619					balanced += zone->present_pages;
2620			}
2621
2622		}
2623		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2624			break;		/* kswapd: all done */
2625		/*
2626		 * OK, kswapd is getting into trouble.  Take a nap, then take
2627		 * another pass across the zones.
2628		 */
2629		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2630			if (has_under_min_watermark_zone)
2631				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2632			else
2633				congestion_wait(BLK_RW_ASYNC, HZ/10);
2634		}
2635
2636		/*
2637		 * We do this so kswapd doesn't build up large priorities for
2638		 * example when it is freeing in parallel with allocators. It
2639		 * matches the direct reclaim path behaviour in terms of impact
2640		 * on zone->*_priority.
2641		 */
2642		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2643			break;
2644	}
2645out:
2646
2647	/*
2648	 * order-0: All zones must meet high watermark for a balanced node
2649	 * high-order: Balanced zones must make up at least 25% of the node
2650	 *             for the node to be balanced
2651	 */
2652	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2653		cond_resched();
2654
2655		try_to_freeze();
2656
2657		/*
2658		 * Fragmentation may mean that the system cannot be
2659		 * rebalanced for high-order allocations in all zones.
2660		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2661		 * it means the zones have been fully scanned and are still
2662		 * not balanced. For high-order allocations, there is
2663		 * little point trying all over again as kswapd may
2664		 * infinite loop.
2665		 *
2666		 * Instead, recheck all watermarks at order-0 as they
2667		 * are the most important. If watermarks are ok, kswapd will go
2668		 * back to sleep. High-order users can still perform direct
2669		 * reclaim if they wish.
2670		 */
2671		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2672			order = sc.order = 0;
2673
2674		goto loop_again;
2675	}
2676
2677	/*
2678	 * If kswapd was reclaiming at a higher order, it has the option of
2679	 * sleeping without all zones being balanced. Before it does, it must
2680	 * ensure that the watermarks for order-0 on *all* zones are met and
2681	 * that the congestion flags are cleared. The congestion flag must
2682	 * be cleared as kswapd is the only mechanism that clears the flag
2683	 * and it is potentially going to sleep here.
2684	 */
2685	if (order) {
2686		for (i = 0; i <= end_zone; i++) {
2687			struct zone *zone = pgdat->node_zones + i;
2688
2689			if (!populated_zone(zone))
2690				continue;
2691
2692			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2693				continue;
2694
2695			/* Confirm the zone is balanced for order-0 */
2696			if (!zone_watermark_ok(zone, 0,
2697					high_wmark_pages(zone), 0, 0)) {
2698				order = sc.order = 0;
2699				goto loop_again;
2700			}
2701
2702			/* If balanced, clear the congested flag */
2703			zone_clear_flag(zone, ZONE_CONGESTED);
2704		}
2705	}
2706
2707	/*
2708	 * Return the order we were reclaiming at so sleeping_prematurely()
2709	 * makes a decision on the order we were last reclaiming at. However,
2710	 * if another caller entered the allocator slow path while kswapd
2711	 * was awake, order will remain at the higher level
2712	 */
2713	*classzone_idx = end_zone;
2714	return order;
2715}
2716
2717static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2718{
2719	long remaining = 0;
2720	DEFINE_WAIT(wait);
2721
2722	if (freezing(current) || kthread_should_stop())
2723		return;
2724
2725	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2726
2727	/* Try to sleep for a short interval */
2728	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2729		remaining = schedule_timeout(HZ/10);
2730		finish_wait(&pgdat->kswapd_wait, &wait);
2731		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2732	}
2733
2734	/*
2735	 * After a short sleep, check if it was a premature sleep. If not, then
2736	 * go fully to sleep until explicitly woken up.
2737	 */
2738	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2739		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2740
2741		/*
2742		 * vmstat counters are not perfectly accurate and the estimated
2743		 * value for counters such as NR_FREE_PAGES can deviate from the
2744		 * true value by nr_online_cpus * threshold. To avoid the zone
2745		 * watermarks being breached while under pressure, we reduce the
2746		 * per-cpu vmstat threshold while kswapd is awake and restore
2747		 * them before going back to sleep.
2748		 */
2749		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2750		schedule();
2751		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2752	} else {
2753		if (remaining)
2754			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2755		else
2756			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2757	}
2758	finish_wait(&pgdat->kswapd_wait, &wait);
2759}
2760
2761/*
2762 * The background pageout daemon, started as a kernel thread
2763 * from the init process.
2764 *
2765 * This basically trickles out pages so that we have _some_
2766 * free memory available even if there is no other activity
2767 * that frees anything up. This is needed for things like routing
2768 * etc, where we otherwise might have all activity going on in
2769 * asynchronous contexts that cannot page things out.
2770 *
2771 * If there are applications that are active memory-allocators
2772 * (most normal use), this basically shouldn't matter.
2773 */
2774static int kswapd(void *p)
2775{
2776	unsigned long order, new_order;
2777	int classzone_idx, new_classzone_idx;
2778	pg_data_t *pgdat = (pg_data_t*)p;
2779	struct task_struct *tsk = current;
2780
2781	struct reclaim_state reclaim_state = {
2782		.reclaimed_slab = 0,
2783	};
2784	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2785
2786	lockdep_set_current_reclaim_state(GFP_KERNEL);
2787
2788	if (!cpumask_empty(cpumask))
2789		set_cpus_allowed_ptr(tsk, cpumask);
2790	current->reclaim_state = &reclaim_state;
2791
2792	/*
2793	 * Tell the memory management that we're a "memory allocator",
2794	 * and that if we need more memory we should get access to it
2795	 * regardless (see "__alloc_pages()"). "kswapd" should
2796	 * never get caught in the normal page freeing logic.
2797	 *
2798	 * (Kswapd normally doesn't need memory anyway, but sometimes
2799	 * you need a small amount of memory in order to be able to
2800	 * page out something else, and this flag essentially protects
2801	 * us from recursively trying to free more memory as we're
2802	 * trying to free the first piece of memory in the first place).
2803	 */
2804	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2805	set_freezable();
2806
2807	order = new_order = 0;
2808	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2809	for ( ; ; ) {
2810		int ret;
2811
2812		/*
2813		 * If the last balance_pgdat was unsuccessful it's unlikely a
2814		 * new request of a similar or harder type will succeed soon
2815		 * so consider going to sleep on the basis we reclaimed at
2816		 */
2817		if (classzone_idx >= new_classzone_idx && order == new_order) {
2818			new_order = pgdat->kswapd_max_order;
2819			new_classzone_idx = pgdat->classzone_idx;
2820			pgdat->kswapd_max_order =  0;
2821			pgdat->classzone_idx = pgdat->nr_zones - 1;
2822		}
2823
2824		if (order < new_order || classzone_idx > new_classzone_idx) {
2825			/*
2826			 * Don't sleep if someone wants a larger 'order'
2827			 * allocation or has tigher zone constraints
2828			 */
2829			order = new_order;
2830			classzone_idx = new_classzone_idx;
2831		} else {
2832			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2833			order = pgdat->kswapd_max_order;
2834			classzone_idx = pgdat->classzone_idx;
2835			pgdat->kswapd_max_order = 0;
2836			pgdat->classzone_idx = pgdat->nr_zones - 1;
2837		}
2838
2839		ret = try_to_freeze();
2840		if (kthread_should_stop())
2841			break;
2842
2843		/*
2844		 * We can speed up thawing tasks if we don't call balance_pgdat
2845		 * after returning from the refrigerator
2846		 */
2847		if (!ret) {
2848			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2849			order = balance_pgdat(pgdat, order, &classzone_idx);
2850		}
2851	}
2852	return 0;
2853}
2854
2855/*
2856 * A zone is low on free memory, so wake its kswapd task to service it.
2857 */
2858void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2859{
2860	pg_data_t *pgdat;
2861
2862	if (!populated_zone(zone))
2863		return;
2864
2865	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2866		return;
2867	pgdat = zone->zone_pgdat;
2868	if (pgdat->kswapd_max_order < order) {
2869		pgdat->kswapd_max_order = order;
2870		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2871	}
2872	if (!waitqueue_active(&pgdat->kswapd_wait))
2873		return;
2874	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2875		return;
2876
2877	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2878	wake_up_interruptible(&pgdat->kswapd_wait);
2879}
2880
2881/*
2882 * The reclaimable count would be mostly accurate.
2883 * The less reclaimable pages may be
2884 * - mlocked pages, which will be moved to unevictable list when encountered
2885 * - mapped pages, which may require several travels to be reclaimed
2886 * - dirty pages, which is not "instantly" reclaimable
2887 */
2888unsigned long global_reclaimable_pages(void)
2889{
2890	int nr;
2891
2892	nr = global_page_state(NR_ACTIVE_FILE) +
2893	     global_page_state(NR_INACTIVE_FILE);
2894
2895	if (nr_swap_pages > 0)
2896		nr += global_page_state(NR_ACTIVE_ANON) +
2897		      global_page_state(NR_INACTIVE_ANON);
2898
2899	return nr;
2900}
2901
2902unsigned long zone_reclaimable_pages(struct zone *zone)
2903{
2904	int nr;
2905
2906	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2907	     zone_page_state(zone, NR_INACTIVE_FILE);
2908
2909	if (nr_swap_pages > 0)
2910		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2911		      zone_page_state(zone, NR_INACTIVE_ANON);
2912
2913	return nr;
2914}
2915
2916#ifdef CONFIG_HIBERNATION
2917/*
2918 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2919 * freed pages.
2920 *
2921 * Rather than trying to age LRUs the aim is to preserve the overall
2922 * LRU order by reclaiming preferentially
2923 * inactive > active > active referenced > active mapped
2924 */
2925unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2926{
2927	struct reclaim_state reclaim_state;
2928	struct scan_control sc = {
2929		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2930		.may_swap = 1,
2931		.may_unmap = 1,
2932		.may_writepage = 1,
2933		.nr_to_reclaim = nr_to_reclaim,
2934		.hibernation_mode = 1,
2935		.order = 0,
2936	};
2937	struct shrink_control shrink = {
2938		.gfp_mask = sc.gfp_mask,
2939	};
2940	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2941	struct task_struct *p = current;
2942	unsigned long nr_reclaimed;
2943
2944	p->flags |= PF_MEMALLOC;
2945	lockdep_set_current_reclaim_state(sc.gfp_mask);
2946	reclaim_state.reclaimed_slab = 0;
2947	p->reclaim_state = &reclaim_state;
2948
2949	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2950
2951	p->reclaim_state = NULL;
2952	lockdep_clear_current_reclaim_state();
2953	p->flags &= ~PF_MEMALLOC;
2954
2955	return nr_reclaimed;
2956}
2957#endif /* CONFIG_HIBERNATION */
2958
2959/* It's optimal to keep kswapds on the same CPUs as their memory, but
2960   not required for correctness.  So if the last cpu in a node goes
2961   away, we get changed to run anywhere: as the first one comes back,
2962   restore their cpu bindings. */
2963static int __devinit cpu_callback(struct notifier_block *nfb,
2964				  unsigned long action, void *hcpu)
2965{
2966	int nid;
2967
2968	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2969		for_each_node_state(nid, N_HIGH_MEMORY) {
2970			pg_data_t *pgdat = NODE_DATA(nid);
2971			const struct cpumask *mask;
2972
2973			mask = cpumask_of_node(pgdat->node_id);
2974
2975			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2976				/* One of our CPUs online: restore mask */
2977				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2978		}
2979	}
2980	return NOTIFY_OK;
2981}
2982
2983/*
2984 * This kswapd start function will be called by init and node-hot-add.
2985 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2986 */
2987int kswapd_run(int nid)
2988{
2989	pg_data_t *pgdat = NODE_DATA(nid);
2990	int ret = 0;
2991
2992	if (pgdat->kswapd)
2993		return 0;
2994
2995	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2996	if (IS_ERR(pgdat->kswapd)) {
2997		/* failure at boot is fatal */
2998		BUG_ON(system_state == SYSTEM_BOOTING);
2999		printk("Failed to start kswapd on node %d\n",nid);
3000		ret = -1;
3001	}
3002	return ret;
3003}
3004
3005/*
3006 * Called by memory hotplug when all memory in a node is offlined.
3007 */
3008void kswapd_stop(int nid)
3009{
3010	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3011
3012	if (kswapd)
3013		kthread_stop(kswapd);
3014}
3015
3016static int __init kswapd_init(void)
3017{
3018	int nid;
3019
3020	swap_setup();
3021	for_each_node_state(nid, N_HIGH_MEMORY)
3022 		kswapd_run(nid);
3023	hotcpu_notifier(cpu_callback, 0);
3024	return 0;
3025}
3026
3027module_init(kswapd_init)
3028
3029#ifdef CONFIG_NUMA
3030/*
3031 * Zone reclaim mode
3032 *
3033 * If non-zero call zone_reclaim when the number of free pages falls below
3034 * the watermarks.
3035 */
3036int zone_reclaim_mode __read_mostly;
3037
3038#define RECLAIM_OFF 0
3039#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3040#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3041#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3042
3043/*
3044 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3045 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3046 * a zone.
3047 */
3048#define ZONE_RECLAIM_PRIORITY 4
3049
3050/*
3051 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3052 * occur.
3053 */
3054int sysctl_min_unmapped_ratio = 1;
3055
3056/*
3057 * If the number of slab pages in a zone grows beyond this percentage then
3058 * slab reclaim needs to occur.
3059 */
3060int sysctl_min_slab_ratio = 5;
3061
3062static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3063{
3064	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3065	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3066		zone_page_state(zone, NR_ACTIVE_FILE);
3067
3068	/*
3069	 * It's possible for there to be more file mapped pages than
3070	 * accounted for by the pages on the file LRU lists because
3071	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3072	 */
3073	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3074}
3075
3076/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3077static long zone_pagecache_reclaimable(struct zone *zone)
3078{
3079	long nr_pagecache_reclaimable;
3080	long delta = 0;
3081
3082	/*
3083	 * If RECLAIM_SWAP is set, then all file pages are considered
3084	 * potentially reclaimable. Otherwise, we have to worry about
3085	 * pages like swapcache and zone_unmapped_file_pages() provides
3086	 * a better estimate
3087	 */
3088	if (zone_reclaim_mode & RECLAIM_SWAP)
3089		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3090	else
3091		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3092
3093	/* If we can't clean pages, remove dirty pages from consideration */
3094	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3095		delta += zone_page_state(zone, NR_FILE_DIRTY);
3096
3097	/* Watch for any possible underflows due to delta */
3098	if (unlikely(delta > nr_pagecache_reclaimable))
3099		delta = nr_pagecache_reclaimable;
3100
3101	return nr_pagecache_reclaimable - delta;
3102}
3103
3104/*
3105 * Try to free up some pages from this zone through reclaim.
3106 */
3107static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3108{
3109	/* Minimum pages needed in order to stay on node */
3110	const unsigned long nr_pages = 1 << order;
3111	struct task_struct *p = current;
3112	struct reclaim_state reclaim_state;
3113	int priority;
3114	struct scan_control sc = {
3115		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3116		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3117		.may_swap = 1,
3118		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3119				       SWAP_CLUSTER_MAX),
3120		.gfp_mask = gfp_mask,
3121		.order = order,
3122	};
3123	struct shrink_control shrink = {
3124		.gfp_mask = sc.gfp_mask,
3125	};
3126	unsigned long nr_slab_pages0, nr_slab_pages1;
3127
3128	cond_resched();
3129	/*
3130	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3131	 * and we also need to be able to write out pages for RECLAIM_WRITE
3132	 * and RECLAIM_SWAP.
3133	 */
3134	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3135	lockdep_set_current_reclaim_state(gfp_mask);
3136	reclaim_state.reclaimed_slab = 0;
3137	p->reclaim_state = &reclaim_state;
3138
3139	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3140		/*
3141		 * Free memory by calling shrink zone with increasing
3142		 * priorities until we have enough memory freed.
3143		 */
3144		priority = ZONE_RECLAIM_PRIORITY;
3145		do {
3146			shrink_zone(priority, zone, &sc);
3147			priority--;
3148		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3149	}
3150
3151	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3152	if (nr_slab_pages0 > zone->min_slab_pages) {
3153		/*
3154		 * shrink_slab() does not currently allow us to determine how
3155		 * many pages were freed in this zone. So we take the current
3156		 * number of slab pages and shake the slab until it is reduced
3157		 * by the same nr_pages that we used for reclaiming unmapped
3158		 * pages.
3159		 *
3160		 * Note that shrink_slab will free memory on all zones and may
3161		 * take a long time.
3162		 */
3163		for (;;) {
3164			unsigned long lru_pages = zone_reclaimable_pages(zone);
3165
3166			/* No reclaimable slab or very low memory pressure */
3167			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3168				break;
3169
3170			/* Freed enough memory */
3171			nr_slab_pages1 = zone_page_state(zone,
3172							NR_SLAB_RECLAIMABLE);
3173			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3174				break;
3175		}
3176
3177		/*
3178		 * Update nr_reclaimed by the number of slab pages we
3179		 * reclaimed from this zone.
3180		 */
3181		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3182		if (nr_slab_pages1 < nr_slab_pages0)
3183			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3184	}
3185
3186	p->reclaim_state = NULL;
3187	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3188	lockdep_clear_current_reclaim_state();
3189	return sc.nr_reclaimed >= nr_pages;
3190}
3191
3192int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3193{
3194	int node_id;
3195	int ret;
3196
3197	/*
3198	 * Zone reclaim reclaims unmapped file backed pages and
3199	 * slab pages if we are over the defined limits.
3200	 *
3201	 * A small portion of unmapped file backed pages is needed for
3202	 * file I/O otherwise pages read by file I/O will be immediately
3203	 * thrown out if the zone is overallocated. So we do not reclaim
3204	 * if less than a specified percentage of the zone is used by
3205	 * unmapped file backed pages.
3206	 */
3207	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3208	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3209		return ZONE_RECLAIM_FULL;
3210
3211	if (zone->all_unreclaimable)
3212		return ZONE_RECLAIM_FULL;
3213
3214	/*
3215	 * Do not scan if the allocation should not be delayed.
3216	 */
3217	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3218		return ZONE_RECLAIM_NOSCAN;
3219
3220	/*
3221	 * Only run zone reclaim on the local zone or on zones that do not
3222	 * have associated processors. This will favor the local processor
3223	 * over remote processors and spread off node memory allocations
3224	 * as wide as possible.
3225	 */
3226	node_id = zone_to_nid(zone);
3227	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3228		return ZONE_RECLAIM_NOSCAN;
3229
3230	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3231		return ZONE_RECLAIM_NOSCAN;
3232
3233	ret = __zone_reclaim(zone, gfp_mask, order);
3234	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3235
3236	if (!ret)
3237		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3238
3239	return ret;
3240}
3241#endif
3242
3243/*
3244 * page_evictable - test whether a page is evictable
3245 * @page: the page to test
3246 * @vma: the VMA in which the page is or will be mapped, may be NULL
3247 *
3248 * Test whether page is evictable--i.e., should be placed on active/inactive
3249 * lists vs unevictable list.  The vma argument is !NULL when called from the
3250 * fault path to determine how to instantate a new page.
3251 *
3252 * Reasons page might not be evictable:
3253 * (1) page's mapping marked unevictable
3254 * (2) page is part of an mlocked VMA
3255 *
3256 */
3257int page_evictable(struct page *page, struct vm_area_struct *vma)
3258{
3259
3260	if (mapping_unevictable(page_mapping(page)))
3261		return 0;
3262
3263	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3264		return 0;
3265
3266	return 1;
3267}
3268
3269/**
3270 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3271 * @page: page to check evictability and move to appropriate lru list
3272 * @zone: zone page is in
3273 *
3274 * Checks a page for evictability and moves the page to the appropriate
3275 * zone lru list.
3276 *
3277 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3278 * have PageUnevictable set.
3279 */
3280static void check_move_unevictable_page(struct page *page, struct zone *zone)
3281{
3282	VM_BUG_ON(PageActive(page));
3283
3284retry:
3285	ClearPageUnevictable(page);
3286	if (page_evictable(page, NULL)) {
3287		enum lru_list l = page_lru_base_type(page);
3288
3289		__dec_zone_state(zone, NR_UNEVICTABLE);
3290		list_move(&page->lru, &zone->lru[l].list);
3291		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3292		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3293		__count_vm_event(UNEVICTABLE_PGRESCUED);
3294	} else {
3295		/*
3296		 * rotate unevictable list
3297		 */
3298		SetPageUnevictable(page);
3299		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3300		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3301		if (page_evictable(page, NULL))
3302			goto retry;
3303	}
3304}
3305
3306/**
3307 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3308 * @mapping: struct address_space to scan for evictable pages
3309 *
3310 * Scan all pages in mapping.  Check unevictable pages for
3311 * evictability and move them to the appropriate zone lru list.
3312 */
3313void scan_mapping_unevictable_pages(struct address_space *mapping)
3314{
3315	pgoff_t next = 0;
3316	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3317			 PAGE_CACHE_SHIFT;
3318	struct zone *zone;
3319	struct pagevec pvec;
3320
3321	if (mapping->nrpages == 0)
3322		return;
3323
3324	pagevec_init(&pvec, 0);
3325	while (next < end &&
3326		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3327		int i;
3328		int pg_scanned = 0;
3329
3330		zone = NULL;
3331
3332		for (i = 0; i < pagevec_count(&pvec); i++) {
3333			struct page *page = pvec.pages[i];
3334			pgoff_t page_index = page->index;
3335			struct zone *pagezone = page_zone(page);
3336
3337			pg_scanned++;
3338			if (page_index > next)
3339				next = page_index;
3340			next++;
3341
3342			if (pagezone != zone) {
3343				if (zone)
3344					spin_unlock_irq(&zone->lru_lock);
3345				zone = pagezone;
3346				spin_lock_irq(&zone->lru_lock);
3347			}
3348
3349			if (PageLRU(page) && PageUnevictable(page))
3350				check_move_unevictable_page(page, zone);
3351		}
3352		if (zone)
3353			spin_unlock_irq(&zone->lru_lock);
3354		pagevec_release(&pvec);
3355
3356		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3357	}
3358
3359}
3360
3361/**
3362 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3363 * @zone - zone of which to scan the unevictable list
3364 *
3365 * Scan @zone's unevictable LRU lists to check for pages that have become
3366 * evictable.  Move those that have to @zone's inactive list where they
3367 * become candidates for reclaim, unless shrink_inactive_zone() decides
3368 * to reactivate them.  Pages that are still unevictable are rotated
3369 * back onto @zone's unevictable list.
3370 */
3371#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3372static void scan_zone_unevictable_pages(struct zone *zone)
3373{
3374	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3375	unsigned long scan;
3376	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3377
3378	while (nr_to_scan > 0) {
3379		unsigned long batch_size = min(nr_to_scan,
3380						SCAN_UNEVICTABLE_BATCH_SIZE);
3381
3382		spin_lock_irq(&zone->lru_lock);
3383		for (scan = 0;  scan < batch_size; scan++) {
3384			struct page *page = lru_to_page(l_unevictable);
3385
3386			if (!trylock_page(page))
3387				continue;
3388
3389			prefetchw_prev_lru_page(page, l_unevictable, flags);
3390
3391			if (likely(PageLRU(page) && PageUnevictable(page)))
3392				check_move_unevictable_page(page, zone);
3393
3394			unlock_page(page);
3395		}
3396		spin_unlock_irq(&zone->lru_lock);
3397
3398		nr_to_scan -= batch_size;
3399	}
3400}
3401
3402
3403/**
3404 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3405 *
3406 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3407 * pages that have become evictable.  Move those back to the zones'
3408 * inactive list where they become candidates for reclaim.
3409 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3410 * and we add swap to the system.  As such, it runs in the context of a task
3411 * that has possibly/probably made some previously unevictable pages
3412 * evictable.
3413 */
3414static void scan_all_zones_unevictable_pages(void)
3415{
3416	struct zone *zone;
3417
3418	for_each_zone(zone) {
3419		scan_zone_unevictable_pages(zone);
3420	}
3421}
3422
3423/*
3424 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3425 * all nodes' unevictable lists for evictable pages
3426 */
3427unsigned long scan_unevictable_pages;
3428
3429int scan_unevictable_handler(struct ctl_table *table, int write,
3430			   void __user *buffer,
3431			   size_t *length, loff_t *ppos)
3432{
3433	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3434
3435	if (write && *(unsigned long *)table->data)
3436		scan_all_zones_unevictable_pages();
3437
3438	scan_unevictable_pages = 0;
3439	return 0;
3440}
3441
3442#ifdef CONFIG_NUMA
3443/*
3444 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3445 * a specified node's per zone unevictable lists for evictable pages.
3446 */
3447
3448static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3449					  struct sysdev_attribute *attr,
3450					  char *buf)
3451{
3452	return sprintf(buf, "0\n");	/* always zero; should fit... */
3453}
3454
3455static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3456					   struct sysdev_attribute *attr,
3457					const char *buf, size_t count)
3458{
3459	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3460	struct zone *zone;
3461	unsigned long res;
3462	unsigned long req = strict_strtoul(buf, 10, &res);
3463
3464	if (!req)
3465		return 1;	/* zero is no-op */
3466
3467	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3468		if (!populated_zone(zone))
3469			continue;
3470		scan_zone_unevictable_pages(zone);
3471	}
3472	return 1;
3473}
3474
3475
3476static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3477			read_scan_unevictable_node,
3478			write_scan_unevictable_node);
3479
3480int scan_unevictable_register_node(struct node *node)
3481{
3482	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3483}
3484
3485void scan_unevictable_unregister_node(struct node *node)
3486{
3487	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3488}
3489#endif
3490