vmscan.c revision a433658c30974fc87ba3ff52d7e4e6299762aa3d
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int swappiness;
99
100	int order;
101
102	/*
103	 * Intend to reclaim enough continuous memory rather than reclaim
104	 * enough amount of memory. i.e, mode for high order allocation.
105	 */
106	reclaim_mode_t reclaim_mode;
107
108	/* Which cgroup do we reclaim from */
109	struct mem_cgroup *mem_cgroup;
110
111	/*
112	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113	 * are scanned.
114	 */
115	nodemask_t	*nodemask;
116};
117
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field)			\
122	do {								\
123		if ((_page)->lru.prev != _base) {			\
124			struct page *prev;				\
125									\
126			prev = lru_to_page(&(_page->lru));		\
127			prefetch(&prev->_field);			\
128		}							\
129	} while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field)			\
136	do {								\
137		if ((_page)->lru.prev != _base) {			\
138			struct page *prev;				\
139									\
140			prev = lru_to_page(&(_page->lru));		\
141			prefetchw(&prev->_field);			\
142		}							\
143	} while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100.  Higher means more swappy.
150 */
151int vm_swappiness = 60;
152long vm_total_pages;	/* The total number of pages which the VM controls */
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159#else
160#define scanning_global_lru(sc)	(1)
161#endif
162
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164						  struct scan_control *sc)
165{
166	if (!scanning_global_lru(sc))
167		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169	return &zone->reclaim_stat;
170}
171
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173				struct scan_control *sc, enum lru_list lru)
174{
175	if (!scanning_global_lru(sc))
176		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178	return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
182/*
183 * Add a shrinker callback to be called from the vm
184 */
185void register_shrinker(struct shrinker *shrinker)
186{
187	shrinker->nr = 0;
188	down_write(&shrinker_rwsem);
189	list_add_tail(&shrinker->list, &shrinker_list);
190	up_write(&shrinker_rwsem);
191}
192EXPORT_SYMBOL(register_shrinker);
193
194/*
195 * Remove one
196 */
197void unregister_shrinker(struct shrinker *shrinker)
198{
199	down_write(&shrinker_rwsem);
200	list_del(&shrinker->list);
201	up_write(&shrinker_rwsem);
202}
203EXPORT_SYMBOL(unregister_shrinker);
204
205static inline int do_shrinker_shrink(struct shrinker *shrinker,
206				     struct shrink_control *sc,
207				     unsigned long nr_to_scan)
208{
209	sc->nr_to_scan = nr_to_scan;
210	return (*shrinker->shrink)(shrinker, sc);
211}
212
213#define SHRINK_BATCH 128
214/*
215 * Call the shrink functions to age shrinkable caches
216 *
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object.  With this in mind we age equal
219 * percentages of the lru and ageable caches.  This should balance the seeks
220 * generated by these structures.
221 *
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
224 *
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 *
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt.  It is used for balancing
229 * slab reclaim versus page reclaim.
230 *
231 * Returns the number of slab objects which we shrunk.
232 */
233unsigned long shrink_slab(struct shrink_control *shrink,
234			  unsigned long nr_pages_scanned,
235			  unsigned long lru_pages)
236{
237	struct shrinker *shrinker;
238	unsigned long ret = 0;
239
240	if (nr_pages_scanned == 0)
241		nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243	if (!down_read_trylock(&shrinker_rwsem)) {
244		/* Assume we'll be able to shrink next time */
245		ret = 1;
246		goto out;
247	}
248
249	list_for_each_entry(shrinker, &shrinker_list, list) {
250		unsigned long long delta;
251		unsigned long total_scan;
252		unsigned long max_pass;
253
254		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
255		delta = (4 * nr_pages_scanned) / shrinker->seeks;
256		delta *= max_pass;
257		do_div(delta, lru_pages + 1);
258		shrinker->nr += delta;
259		if (shrinker->nr < 0) {
260			printk(KERN_ERR "shrink_slab: %pF negative objects to "
261			       "delete nr=%ld\n",
262			       shrinker->shrink, shrinker->nr);
263			shrinker->nr = max_pass;
264		}
265
266		/*
267		 * Avoid risking looping forever due to too large nr value:
268		 * never try to free more than twice the estimate number of
269		 * freeable entries.
270		 */
271		if (shrinker->nr > max_pass * 2)
272			shrinker->nr = max_pass * 2;
273
274		total_scan = shrinker->nr;
275		shrinker->nr = 0;
276
277		while (total_scan >= SHRINK_BATCH) {
278			long this_scan = SHRINK_BATCH;
279			int shrink_ret;
280			int nr_before;
281
282			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
283			shrink_ret = do_shrinker_shrink(shrinker, shrink,
284							this_scan);
285			if (shrink_ret == -1)
286				break;
287			if (shrink_ret < nr_before)
288				ret += nr_before - shrink_ret;
289			count_vm_events(SLABS_SCANNED, this_scan);
290			total_scan -= this_scan;
291
292			cond_resched();
293		}
294
295		shrinker->nr += total_scan;
296	}
297	up_read(&shrinker_rwsem);
298out:
299	cond_resched();
300	return ret;
301}
302
303static void set_reclaim_mode(int priority, struct scan_control *sc,
304				   bool sync)
305{
306	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
307
308	/*
309	 * Initially assume we are entering either lumpy reclaim or
310	 * reclaim/compaction.Depending on the order, we will either set the
311	 * sync mode or just reclaim order-0 pages later.
312	 */
313	if (COMPACTION_BUILD)
314		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
315	else
316		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
317
318	/*
319	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
320	 * restricting when its set to either costly allocations or when
321	 * under memory pressure
322	 */
323	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
324		sc->reclaim_mode |= syncmode;
325	else if (sc->order && priority < DEF_PRIORITY - 2)
326		sc->reclaim_mode |= syncmode;
327	else
328		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
329}
330
331static void reset_reclaim_mode(struct scan_control *sc)
332{
333	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
334}
335
336static inline int is_page_cache_freeable(struct page *page)
337{
338	/*
339	 * A freeable page cache page is referenced only by the caller
340	 * that isolated the page, the page cache radix tree and
341	 * optional buffer heads at page->private.
342	 */
343	return page_count(page) - page_has_private(page) == 2;
344}
345
346static int may_write_to_queue(struct backing_dev_info *bdi,
347			      struct scan_control *sc)
348{
349	if (current->flags & PF_SWAPWRITE)
350		return 1;
351	if (!bdi_write_congested(bdi))
352		return 1;
353	if (bdi == current->backing_dev_info)
354		return 1;
355
356	/* lumpy reclaim for hugepage often need a lot of write */
357	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
358		return 1;
359	return 0;
360}
361
362/*
363 * We detected a synchronous write error writing a page out.  Probably
364 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
365 * fsync(), msync() or close().
366 *
367 * The tricky part is that after writepage we cannot touch the mapping: nothing
368 * prevents it from being freed up.  But we have a ref on the page and once
369 * that page is locked, the mapping is pinned.
370 *
371 * We're allowed to run sleeping lock_page() here because we know the caller has
372 * __GFP_FS.
373 */
374static void handle_write_error(struct address_space *mapping,
375				struct page *page, int error)
376{
377	lock_page(page);
378	if (page_mapping(page) == mapping)
379		mapping_set_error(mapping, error);
380	unlock_page(page);
381}
382
383/* possible outcome of pageout() */
384typedef enum {
385	/* failed to write page out, page is locked */
386	PAGE_KEEP,
387	/* move page to the active list, page is locked */
388	PAGE_ACTIVATE,
389	/* page has been sent to the disk successfully, page is unlocked */
390	PAGE_SUCCESS,
391	/* page is clean and locked */
392	PAGE_CLEAN,
393} pageout_t;
394
395/*
396 * pageout is called by shrink_page_list() for each dirty page.
397 * Calls ->writepage().
398 */
399static pageout_t pageout(struct page *page, struct address_space *mapping,
400			 struct scan_control *sc)
401{
402	/*
403	 * If the page is dirty, only perform writeback if that write
404	 * will be non-blocking.  To prevent this allocation from being
405	 * stalled by pagecache activity.  But note that there may be
406	 * stalls if we need to run get_block().  We could test
407	 * PagePrivate for that.
408	 *
409	 * If this process is currently in __generic_file_aio_write() against
410	 * this page's queue, we can perform writeback even if that
411	 * will block.
412	 *
413	 * If the page is swapcache, write it back even if that would
414	 * block, for some throttling. This happens by accident, because
415	 * swap_backing_dev_info is bust: it doesn't reflect the
416	 * congestion state of the swapdevs.  Easy to fix, if needed.
417	 */
418	if (!is_page_cache_freeable(page))
419		return PAGE_KEEP;
420	if (!mapping) {
421		/*
422		 * Some data journaling orphaned pages can have
423		 * page->mapping == NULL while being dirty with clean buffers.
424		 */
425		if (page_has_private(page)) {
426			if (try_to_free_buffers(page)) {
427				ClearPageDirty(page);
428				printk("%s: orphaned page\n", __func__);
429				return PAGE_CLEAN;
430			}
431		}
432		return PAGE_KEEP;
433	}
434	if (mapping->a_ops->writepage == NULL)
435		return PAGE_ACTIVATE;
436	if (!may_write_to_queue(mapping->backing_dev_info, sc))
437		return PAGE_KEEP;
438
439	if (clear_page_dirty_for_io(page)) {
440		int res;
441		struct writeback_control wbc = {
442			.sync_mode = WB_SYNC_NONE,
443			.nr_to_write = SWAP_CLUSTER_MAX,
444			.range_start = 0,
445			.range_end = LLONG_MAX,
446			.for_reclaim = 1,
447		};
448
449		SetPageReclaim(page);
450		res = mapping->a_ops->writepage(page, &wbc);
451		if (res < 0)
452			handle_write_error(mapping, page, res);
453		if (res == AOP_WRITEPAGE_ACTIVATE) {
454			ClearPageReclaim(page);
455			return PAGE_ACTIVATE;
456		}
457
458		/*
459		 * Wait on writeback if requested to. This happens when
460		 * direct reclaiming a large contiguous area and the
461		 * first attempt to free a range of pages fails.
462		 */
463		if (PageWriteback(page) &&
464		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
465			wait_on_page_writeback(page);
466
467		if (!PageWriteback(page)) {
468			/* synchronous write or broken a_ops? */
469			ClearPageReclaim(page);
470		}
471		trace_mm_vmscan_writepage(page,
472			trace_reclaim_flags(page, sc->reclaim_mode));
473		inc_zone_page_state(page, NR_VMSCAN_WRITE);
474		return PAGE_SUCCESS;
475	}
476
477	return PAGE_CLEAN;
478}
479
480/*
481 * Same as remove_mapping, but if the page is removed from the mapping, it
482 * gets returned with a refcount of 0.
483 */
484static int __remove_mapping(struct address_space *mapping, struct page *page)
485{
486	BUG_ON(!PageLocked(page));
487	BUG_ON(mapping != page_mapping(page));
488
489	spin_lock_irq(&mapping->tree_lock);
490	/*
491	 * The non racy check for a busy page.
492	 *
493	 * Must be careful with the order of the tests. When someone has
494	 * a ref to the page, it may be possible that they dirty it then
495	 * drop the reference. So if PageDirty is tested before page_count
496	 * here, then the following race may occur:
497	 *
498	 * get_user_pages(&page);
499	 * [user mapping goes away]
500	 * write_to(page);
501	 *				!PageDirty(page)    [good]
502	 * SetPageDirty(page);
503	 * put_page(page);
504	 *				!page_count(page)   [good, discard it]
505	 *
506	 * [oops, our write_to data is lost]
507	 *
508	 * Reversing the order of the tests ensures such a situation cannot
509	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510	 * load is not satisfied before that of page->_count.
511	 *
512	 * Note that if SetPageDirty is always performed via set_page_dirty,
513	 * and thus under tree_lock, then this ordering is not required.
514	 */
515	if (!page_freeze_refs(page, 2))
516		goto cannot_free;
517	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518	if (unlikely(PageDirty(page))) {
519		page_unfreeze_refs(page, 2);
520		goto cannot_free;
521	}
522
523	if (PageSwapCache(page)) {
524		swp_entry_t swap = { .val = page_private(page) };
525		__delete_from_swap_cache(page);
526		spin_unlock_irq(&mapping->tree_lock);
527		swapcache_free(swap, page);
528	} else {
529		void (*freepage)(struct page *);
530
531		freepage = mapping->a_ops->freepage;
532
533		__delete_from_page_cache(page);
534		spin_unlock_irq(&mapping->tree_lock);
535		mem_cgroup_uncharge_cache_page(page);
536
537		if (freepage != NULL)
538			freepage(page);
539	}
540
541	return 1;
542
543cannot_free:
544	spin_unlock_irq(&mapping->tree_lock);
545	return 0;
546}
547
548/*
549 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
550 * someone else has a ref on the page, abort and return 0.  If it was
551 * successfully detached, return 1.  Assumes the caller has a single ref on
552 * this page.
553 */
554int remove_mapping(struct address_space *mapping, struct page *page)
555{
556	if (__remove_mapping(mapping, page)) {
557		/*
558		 * Unfreezing the refcount with 1 rather than 2 effectively
559		 * drops the pagecache ref for us without requiring another
560		 * atomic operation.
561		 */
562		page_unfreeze_refs(page, 1);
563		return 1;
564	}
565	return 0;
566}
567
568/**
569 * putback_lru_page - put previously isolated page onto appropriate LRU list
570 * @page: page to be put back to appropriate lru list
571 *
572 * Add previously isolated @page to appropriate LRU list.
573 * Page may still be unevictable for other reasons.
574 *
575 * lru_lock must not be held, interrupts must be enabled.
576 */
577void putback_lru_page(struct page *page)
578{
579	int lru;
580	int active = !!TestClearPageActive(page);
581	int was_unevictable = PageUnevictable(page);
582
583	VM_BUG_ON(PageLRU(page));
584
585redo:
586	ClearPageUnevictable(page);
587
588	if (page_evictable(page, NULL)) {
589		/*
590		 * For evictable pages, we can use the cache.
591		 * In event of a race, worst case is we end up with an
592		 * unevictable page on [in]active list.
593		 * We know how to handle that.
594		 */
595		lru = active + page_lru_base_type(page);
596		lru_cache_add_lru(page, lru);
597	} else {
598		/*
599		 * Put unevictable pages directly on zone's unevictable
600		 * list.
601		 */
602		lru = LRU_UNEVICTABLE;
603		add_page_to_unevictable_list(page);
604		/*
605		 * When racing with an mlock clearing (page is
606		 * unlocked), make sure that if the other thread does
607		 * not observe our setting of PG_lru and fails
608		 * isolation, we see PG_mlocked cleared below and move
609		 * the page back to the evictable list.
610		 *
611		 * The other side is TestClearPageMlocked().
612		 */
613		smp_mb();
614	}
615
616	/*
617	 * page's status can change while we move it among lru. If an evictable
618	 * page is on unevictable list, it never be freed. To avoid that,
619	 * check after we added it to the list, again.
620	 */
621	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
622		if (!isolate_lru_page(page)) {
623			put_page(page);
624			goto redo;
625		}
626		/* This means someone else dropped this page from LRU
627		 * So, it will be freed or putback to LRU again. There is
628		 * nothing to do here.
629		 */
630	}
631
632	if (was_unevictable && lru != LRU_UNEVICTABLE)
633		count_vm_event(UNEVICTABLE_PGRESCUED);
634	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
635		count_vm_event(UNEVICTABLE_PGCULLED);
636
637	put_page(page);		/* drop ref from isolate */
638}
639
640enum page_references {
641	PAGEREF_RECLAIM,
642	PAGEREF_RECLAIM_CLEAN,
643	PAGEREF_KEEP,
644	PAGEREF_ACTIVATE,
645};
646
647static enum page_references page_check_references(struct page *page,
648						  struct scan_control *sc)
649{
650	int referenced_ptes, referenced_page;
651	unsigned long vm_flags;
652
653	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
654	referenced_page = TestClearPageReferenced(page);
655
656	/* Lumpy reclaim - ignore references */
657	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
658		return PAGEREF_RECLAIM;
659
660	/*
661	 * Mlock lost the isolation race with us.  Let try_to_unmap()
662	 * move the page to the unevictable list.
663	 */
664	if (vm_flags & VM_LOCKED)
665		return PAGEREF_RECLAIM;
666
667	if (referenced_ptes) {
668		if (PageAnon(page))
669			return PAGEREF_ACTIVATE;
670		/*
671		 * All mapped pages start out with page table
672		 * references from the instantiating fault, so we need
673		 * to look twice if a mapped file page is used more
674		 * than once.
675		 *
676		 * Mark it and spare it for another trip around the
677		 * inactive list.  Another page table reference will
678		 * lead to its activation.
679		 *
680		 * Note: the mark is set for activated pages as well
681		 * so that recently deactivated but used pages are
682		 * quickly recovered.
683		 */
684		SetPageReferenced(page);
685
686		if (referenced_page)
687			return PAGEREF_ACTIVATE;
688
689		return PAGEREF_KEEP;
690	}
691
692	/* Reclaim if clean, defer dirty pages to writeback */
693	if (referenced_page && !PageSwapBacked(page))
694		return PAGEREF_RECLAIM_CLEAN;
695
696	return PAGEREF_RECLAIM;
697}
698
699static noinline_for_stack void free_page_list(struct list_head *free_pages)
700{
701	struct pagevec freed_pvec;
702	struct page *page, *tmp;
703
704	pagevec_init(&freed_pvec, 1);
705
706	list_for_each_entry_safe(page, tmp, free_pages, lru) {
707		list_del(&page->lru);
708		if (!pagevec_add(&freed_pvec, page)) {
709			__pagevec_free(&freed_pvec);
710			pagevec_reinit(&freed_pvec);
711		}
712	}
713
714	pagevec_free(&freed_pvec);
715}
716
717/*
718 * shrink_page_list() returns the number of reclaimed pages
719 */
720static unsigned long shrink_page_list(struct list_head *page_list,
721				      struct zone *zone,
722				      struct scan_control *sc)
723{
724	LIST_HEAD(ret_pages);
725	LIST_HEAD(free_pages);
726	int pgactivate = 0;
727	unsigned long nr_dirty = 0;
728	unsigned long nr_congested = 0;
729	unsigned long nr_reclaimed = 0;
730
731	cond_resched();
732
733	while (!list_empty(page_list)) {
734		enum page_references references;
735		struct address_space *mapping;
736		struct page *page;
737		int may_enter_fs;
738
739		cond_resched();
740
741		page = lru_to_page(page_list);
742		list_del(&page->lru);
743
744		if (!trylock_page(page))
745			goto keep;
746
747		VM_BUG_ON(PageActive(page));
748		VM_BUG_ON(page_zone(page) != zone);
749
750		sc->nr_scanned++;
751
752		if (unlikely(!page_evictable(page, NULL)))
753			goto cull_mlocked;
754
755		if (!sc->may_unmap && page_mapped(page))
756			goto keep_locked;
757
758		/* Double the slab pressure for mapped and swapcache pages */
759		if (page_mapped(page) || PageSwapCache(page))
760			sc->nr_scanned++;
761
762		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
763			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
764
765		if (PageWriteback(page)) {
766			/*
767			 * Synchronous reclaim is performed in two passes,
768			 * first an asynchronous pass over the list to
769			 * start parallel writeback, and a second synchronous
770			 * pass to wait for the IO to complete.  Wait here
771			 * for any page for which writeback has already
772			 * started.
773			 */
774			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
775			    may_enter_fs)
776				wait_on_page_writeback(page);
777			else {
778				unlock_page(page);
779				goto keep_lumpy;
780			}
781		}
782
783		references = page_check_references(page, sc);
784		switch (references) {
785		case PAGEREF_ACTIVATE:
786			goto activate_locked;
787		case PAGEREF_KEEP:
788			goto keep_locked;
789		case PAGEREF_RECLAIM:
790		case PAGEREF_RECLAIM_CLEAN:
791			; /* try to reclaim the page below */
792		}
793
794		/*
795		 * Anonymous process memory has backing store?
796		 * Try to allocate it some swap space here.
797		 */
798		if (PageAnon(page) && !PageSwapCache(page)) {
799			if (!(sc->gfp_mask & __GFP_IO))
800				goto keep_locked;
801			if (!add_to_swap(page))
802				goto activate_locked;
803			may_enter_fs = 1;
804		}
805
806		mapping = page_mapping(page);
807
808		/*
809		 * The page is mapped into the page tables of one or more
810		 * processes. Try to unmap it here.
811		 */
812		if (page_mapped(page) && mapping) {
813			switch (try_to_unmap(page, TTU_UNMAP)) {
814			case SWAP_FAIL:
815				goto activate_locked;
816			case SWAP_AGAIN:
817				goto keep_locked;
818			case SWAP_MLOCK:
819				goto cull_mlocked;
820			case SWAP_SUCCESS:
821				; /* try to free the page below */
822			}
823		}
824
825		if (PageDirty(page)) {
826			nr_dirty++;
827
828			if (references == PAGEREF_RECLAIM_CLEAN)
829				goto keep_locked;
830			if (!may_enter_fs)
831				goto keep_locked;
832			if (!sc->may_writepage)
833				goto keep_locked;
834
835			/* Page is dirty, try to write it out here */
836			switch (pageout(page, mapping, sc)) {
837			case PAGE_KEEP:
838				nr_congested++;
839				goto keep_locked;
840			case PAGE_ACTIVATE:
841				goto activate_locked;
842			case PAGE_SUCCESS:
843				if (PageWriteback(page))
844					goto keep_lumpy;
845				if (PageDirty(page))
846					goto keep;
847
848				/*
849				 * A synchronous write - probably a ramdisk.  Go
850				 * ahead and try to reclaim the page.
851				 */
852				if (!trylock_page(page))
853					goto keep;
854				if (PageDirty(page) || PageWriteback(page))
855					goto keep_locked;
856				mapping = page_mapping(page);
857			case PAGE_CLEAN:
858				; /* try to free the page below */
859			}
860		}
861
862		/*
863		 * If the page has buffers, try to free the buffer mappings
864		 * associated with this page. If we succeed we try to free
865		 * the page as well.
866		 *
867		 * We do this even if the page is PageDirty().
868		 * try_to_release_page() does not perform I/O, but it is
869		 * possible for a page to have PageDirty set, but it is actually
870		 * clean (all its buffers are clean).  This happens if the
871		 * buffers were written out directly, with submit_bh(). ext3
872		 * will do this, as well as the blockdev mapping.
873		 * try_to_release_page() will discover that cleanness and will
874		 * drop the buffers and mark the page clean - it can be freed.
875		 *
876		 * Rarely, pages can have buffers and no ->mapping.  These are
877		 * the pages which were not successfully invalidated in
878		 * truncate_complete_page().  We try to drop those buffers here
879		 * and if that worked, and the page is no longer mapped into
880		 * process address space (page_count == 1) it can be freed.
881		 * Otherwise, leave the page on the LRU so it is swappable.
882		 */
883		if (page_has_private(page)) {
884			if (!try_to_release_page(page, sc->gfp_mask))
885				goto activate_locked;
886			if (!mapping && page_count(page) == 1) {
887				unlock_page(page);
888				if (put_page_testzero(page))
889					goto free_it;
890				else {
891					/*
892					 * rare race with speculative reference.
893					 * the speculative reference will free
894					 * this page shortly, so we may
895					 * increment nr_reclaimed here (and
896					 * leave it off the LRU).
897					 */
898					nr_reclaimed++;
899					continue;
900				}
901			}
902		}
903
904		if (!mapping || !__remove_mapping(mapping, page))
905			goto keep_locked;
906
907		/*
908		 * At this point, we have no other references and there is
909		 * no way to pick any more up (removed from LRU, removed
910		 * from pagecache). Can use non-atomic bitops now (and
911		 * we obviously don't have to worry about waking up a process
912		 * waiting on the page lock, because there are no references.
913		 */
914		__clear_page_locked(page);
915free_it:
916		nr_reclaimed++;
917
918		/*
919		 * Is there need to periodically free_page_list? It would
920		 * appear not as the counts should be low
921		 */
922		list_add(&page->lru, &free_pages);
923		continue;
924
925cull_mlocked:
926		if (PageSwapCache(page))
927			try_to_free_swap(page);
928		unlock_page(page);
929		putback_lru_page(page);
930		reset_reclaim_mode(sc);
931		continue;
932
933activate_locked:
934		/* Not a candidate for swapping, so reclaim swap space. */
935		if (PageSwapCache(page) && vm_swap_full())
936			try_to_free_swap(page);
937		VM_BUG_ON(PageActive(page));
938		SetPageActive(page);
939		pgactivate++;
940keep_locked:
941		unlock_page(page);
942keep:
943		reset_reclaim_mode(sc);
944keep_lumpy:
945		list_add(&page->lru, &ret_pages);
946		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947	}
948
949	/*
950	 * Tag a zone as congested if all the dirty pages encountered were
951	 * backed by a congested BDI. In this case, reclaimers should just
952	 * back off and wait for congestion to clear because further reclaim
953	 * will encounter the same problem
954	 */
955	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
956		zone_set_flag(zone, ZONE_CONGESTED);
957
958	free_page_list(&free_pages);
959
960	list_splice(&ret_pages, page_list);
961	count_vm_events(PGACTIVATE, pgactivate);
962	return nr_reclaimed;
963}
964
965/*
966 * Attempt to remove the specified page from its LRU.  Only take this page
967 * if it is of the appropriate PageActive status.  Pages which are being
968 * freed elsewhere are also ignored.
969 *
970 * page:	page to consider
971 * mode:	one of the LRU isolation modes defined above
972 *
973 * returns 0 on success, -ve errno on failure.
974 */
975int __isolate_lru_page(struct page *page, int mode, int file)
976{
977	int ret = -EINVAL;
978
979	/* Only take pages on the LRU. */
980	if (!PageLRU(page))
981		return ret;
982
983	/*
984	 * When checking the active state, we need to be sure we are
985	 * dealing with comparible boolean values.  Take the logical not
986	 * of each.
987	 */
988	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
989		return ret;
990
991	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
992		return ret;
993
994	/*
995	 * When this function is being called for lumpy reclaim, we
996	 * initially look into all LRU pages, active, inactive and
997	 * unevictable; only give shrink_page_list evictable pages.
998	 */
999	if (PageUnevictable(page))
1000		return ret;
1001
1002	ret = -EBUSY;
1003
1004	if (likely(get_page_unless_zero(page))) {
1005		/*
1006		 * Be careful not to clear PageLRU until after we're
1007		 * sure the page is not being freed elsewhere -- the
1008		 * page release code relies on it.
1009		 */
1010		ClearPageLRU(page);
1011		ret = 0;
1012	}
1013
1014	return ret;
1015}
1016
1017/*
1018 * zone->lru_lock is heavily contended.  Some of the functions that
1019 * shrink the lists perform better by taking out a batch of pages
1020 * and working on them outside the LRU lock.
1021 *
1022 * For pagecache intensive workloads, this function is the hottest
1023 * spot in the kernel (apart from copy_*_user functions).
1024 *
1025 * Appropriate locks must be held before calling this function.
1026 *
1027 * @nr_to_scan:	The number of pages to look through on the list.
1028 * @src:	The LRU list to pull pages off.
1029 * @dst:	The temp list to put pages on to.
1030 * @scanned:	The number of pages that were scanned.
1031 * @order:	The caller's attempted allocation order
1032 * @mode:	One of the LRU isolation modes
1033 * @file:	True [1] if isolating file [!anon] pages
1034 *
1035 * returns how many pages were moved onto *@dst.
1036 */
1037static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1038		struct list_head *src, struct list_head *dst,
1039		unsigned long *scanned, int order, int mode, int file)
1040{
1041	unsigned long nr_taken = 0;
1042	unsigned long nr_lumpy_taken = 0;
1043	unsigned long nr_lumpy_dirty = 0;
1044	unsigned long nr_lumpy_failed = 0;
1045	unsigned long scan;
1046
1047	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1048		struct page *page;
1049		unsigned long pfn;
1050		unsigned long end_pfn;
1051		unsigned long page_pfn;
1052		int zone_id;
1053
1054		page = lru_to_page(src);
1055		prefetchw_prev_lru_page(page, src, flags);
1056
1057		VM_BUG_ON(!PageLRU(page));
1058
1059		switch (__isolate_lru_page(page, mode, file)) {
1060		case 0:
1061			list_move(&page->lru, dst);
1062			mem_cgroup_del_lru(page);
1063			nr_taken += hpage_nr_pages(page);
1064			break;
1065
1066		case -EBUSY:
1067			/* else it is being freed elsewhere */
1068			list_move(&page->lru, src);
1069			mem_cgroup_rotate_lru_list(page, page_lru(page));
1070			continue;
1071
1072		default:
1073			BUG();
1074		}
1075
1076		if (!order)
1077			continue;
1078
1079		/*
1080		 * Attempt to take all pages in the order aligned region
1081		 * surrounding the tag page.  Only take those pages of
1082		 * the same active state as that tag page.  We may safely
1083		 * round the target page pfn down to the requested order
1084		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1085		 * where that page is in a different zone we will detect
1086		 * it from its zone id and abort this block scan.
1087		 */
1088		zone_id = page_zone_id(page);
1089		page_pfn = page_to_pfn(page);
1090		pfn = page_pfn & ~((1 << order) - 1);
1091		end_pfn = pfn + (1 << order);
1092		for (; pfn < end_pfn; pfn++) {
1093			struct page *cursor_page;
1094
1095			/* The target page is in the block, ignore it. */
1096			if (unlikely(pfn == page_pfn))
1097				continue;
1098
1099			/* Avoid holes within the zone. */
1100			if (unlikely(!pfn_valid_within(pfn)))
1101				break;
1102
1103			cursor_page = pfn_to_page(pfn);
1104
1105			/* Check that we have not crossed a zone boundary. */
1106			if (unlikely(page_zone_id(cursor_page) != zone_id))
1107				break;
1108
1109			/*
1110			 * If we don't have enough swap space, reclaiming of
1111			 * anon page which don't already have a swap slot is
1112			 * pointless.
1113			 */
1114			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1115			    !PageSwapCache(cursor_page))
1116				break;
1117
1118			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1119				list_move(&cursor_page->lru, dst);
1120				mem_cgroup_del_lru(cursor_page);
1121				nr_taken += hpage_nr_pages(page);
1122				nr_lumpy_taken++;
1123				if (PageDirty(cursor_page))
1124					nr_lumpy_dirty++;
1125				scan++;
1126			} else {
1127				/* the page is freed already. */
1128				if (!page_count(cursor_page))
1129					continue;
1130				break;
1131			}
1132		}
1133
1134		/* If we break out of the loop above, lumpy reclaim failed */
1135		if (pfn < end_pfn)
1136			nr_lumpy_failed++;
1137	}
1138
1139	*scanned = scan;
1140
1141	trace_mm_vmscan_lru_isolate(order,
1142			nr_to_scan, scan,
1143			nr_taken,
1144			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1145			mode);
1146	return nr_taken;
1147}
1148
1149static unsigned long isolate_pages_global(unsigned long nr,
1150					struct list_head *dst,
1151					unsigned long *scanned, int order,
1152					int mode, struct zone *z,
1153					int active, int file)
1154{
1155	int lru = LRU_BASE;
1156	if (active)
1157		lru += LRU_ACTIVE;
1158	if (file)
1159		lru += LRU_FILE;
1160	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1161								mode, file);
1162}
1163
1164/*
1165 * clear_active_flags() is a helper for shrink_active_list(), clearing
1166 * any active bits from the pages in the list.
1167 */
1168static unsigned long clear_active_flags(struct list_head *page_list,
1169					unsigned int *count)
1170{
1171	int nr_active = 0;
1172	int lru;
1173	struct page *page;
1174
1175	list_for_each_entry(page, page_list, lru) {
1176		int numpages = hpage_nr_pages(page);
1177		lru = page_lru_base_type(page);
1178		if (PageActive(page)) {
1179			lru += LRU_ACTIVE;
1180			ClearPageActive(page);
1181			nr_active += numpages;
1182		}
1183		if (count)
1184			count[lru] += numpages;
1185	}
1186
1187	return nr_active;
1188}
1189
1190/**
1191 * isolate_lru_page - tries to isolate a page from its LRU list
1192 * @page: page to isolate from its LRU list
1193 *
1194 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1195 * vmstat statistic corresponding to whatever LRU list the page was on.
1196 *
1197 * Returns 0 if the page was removed from an LRU list.
1198 * Returns -EBUSY if the page was not on an LRU list.
1199 *
1200 * The returned page will have PageLRU() cleared.  If it was found on
1201 * the active list, it will have PageActive set.  If it was found on
1202 * the unevictable list, it will have the PageUnevictable bit set. That flag
1203 * may need to be cleared by the caller before letting the page go.
1204 *
1205 * The vmstat statistic corresponding to the list on which the page was
1206 * found will be decremented.
1207 *
1208 * Restrictions:
1209 * (1) Must be called with an elevated refcount on the page. This is a
1210 *     fundamentnal difference from isolate_lru_pages (which is called
1211 *     without a stable reference).
1212 * (2) the lru_lock must not be held.
1213 * (3) interrupts must be enabled.
1214 */
1215int isolate_lru_page(struct page *page)
1216{
1217	int ret = -EBUSY;
1218
1219	VM_BUG_ON(!page_count(page));
1220
1221	if (PageLRU(page)) {
1222		struct zone *zone = page_zone(page);
1223
1224		spin_lock_irq(&zone->lru_lock);
1225		if (PageLRU(page)) {
1226			int lru = page_lru(page);
1227			ret = 0;
1228			get_page(page);
1229			ClearPageLRU(page);
1230
1231			del_page_from_lru_list(zone, page, lru);
1232		}
1233		spin_unlock_irq(&zone->lru_lock);
1234	}
1235	return ret;
1236}
1237
1238/*
1239 * Are there way too many processes in the direct reclaim path already?
1240 */
1241static int too_many_isolated(struct zone *zone, int file,
1242		struct scan_control *sc)
1243{
1244	unsigned long inactive, isolated;
1245
1246	if (current_is_kswapd())
1247		return 0;
1248
1249	if (!scanning_global_lru(sc))
1250		return 0;
1251
1252	if (file) {
1253		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1254		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1255	} else {
1256		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1257		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1258	}
1259
1260	return isolated > inactive;
1261}
1262
1263/*
1264 * TODO: Try merging with migrations version of putback_lru_pages
1265 */
1266static noinline_for_stack void
1267putback_lru_pages(struct zone *zone, struct scan_control *sc,
1268				unsigned long nr_anon, unsigned long nr_file,
1269				struct list_head *page_list)
1270{
1271	struct page *page;
1272	struct pagevec pvec;
1273	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1274
1275	pagevec_init(&pvec, 1);
1276
1277	/*
1278	 * Put back any unfreeable pages.
1279	 */
1280	spin_lock(&zone->lru_lock);
1281	while (!list_empty(page_list)) {
1282		int lru;
1283		page = lru_to_page(page_list);
1284		VM_BUG_ON(PageLRU(page));
1285		list_del(&page->lru);
1286		if (unlikely(!page_evictable(page, NULL))) {
1287			spin_unlock_irq(&zone->lru_lock);
1288			putback_lru_page(page);
1289			spin_lock_irq(&zone->lru_lock);
1290			continue;
1291		}
1292		SetPageLRU(page);
1293		lru = page_lru(page);
1294		add_page_to_lru_list(zone, page, lru);
1295		if (is_active_lru(lru)) {
1296			int file = is_file_lru(lru);
1297			int numpages = hpage_nr_pages(page);
1298			reclaim_stat->recent_rotated[file] += numpages;
1299		}
1300		if (!pagevec_add(&pvec, page)) {
1301			spin_unlock_irq(&zone->lru_lock);
1302			__pagevec_release(&pvec);
1303			spin_lock_irq(&zone->lru_lock);
1304		}
1305	}
1306	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1307	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1308
1309	spin_unlock_irq(&zone->lru_lock);
1310	pagevec_release(&pvec);
1311}
1312
1313static noinline_for_stack void update_isolated_counts(struct zone *zone,
1314					struct scan_control *sc,
1315					unsigned long *nr_anon,
1316					unsigned long *nr_file,
1317					struct list_head *isolated_list)
1318{
1319	unsigned long nr_active;
1320	unsigned int count[NR_LRU_LISTS] = { 0, };
1321	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1322
1323	nr_active = clear_active_flags(isolated_list, count);
1324	__count_vm_events(PGDEACTIVATE, nr_active);
1325
1326	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1327			      -count[LRU_ACTIVE_FILE]);
1328	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1329			      -count[LRU_INACTIVE_FILE]);
1330	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1331			      -count[LRU_ACTIVE_ANON]);
1332	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1333			      -count[LRU_INACTIVE_ANON]);
1334
1335	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1336	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1337	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1338	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1339
1340	reclaim_stat->recent_scanned[0] += *nr_anon;
1341	reclaim_stat->recent_scanned[1] += *nr_file;
1342}
1343
1344/*
1345 * Returns true if the caller should wait to clean dirty/writeback pages.
1346 *
1347 * If we are direct reclaiming for contiguous pages and we do not reclaim
1348 * everything in the list, try again and wait for writeback IO to complete.
1349 * This will stall high-order allocations noticeably. Only do that when really
1350 * need to free the pages under high memory pressure.
1351 */
1352static inline bool should_reclaim_stall(unsigned long nr_taken,
1353					unsigned long nr_freed,
1354					int priority,
1355					struct scan_control *sc)
1356{
1357	int lumpy_stall_priority;
1358
1359	/* kswapd should not stall on sync IO */
1360	if (current_is_kswapd())
1361		return false;
1362
1363	/* Only stall on lumpy reclaim */
1364	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1365		return false;
1366
1367	/* If we have relaimed everything on the isolated list, no stall */
1368	if (nr_freed == nr_taken)
1369		return false;
1370
1371	/*
1372	 * For high-order allocations, there are two stall thresholds.
1373	 * High-cost allocations stall immediately where as lower
1374	 * order allocations such as stacks require the scanning
1375	 * priority to be much higher before stalling.
1376	 */
1377	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1378		lumpy_stall_priority = DEF_PRIORITY;
1379	else
1380		lumpy_stall_priority = DEF_PRIORITY / 3;
1381
1382	return priority <= lumpy_stall_priority;
1383}
1384
1385/*
1386 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1387 * of reclaimed pages
1388 */
1389static noinline_for_stack unsigned long
1390shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1391			struct scan_control *sc, int priority, int file)
1392{
1393	LIST_HEAD(page_list);
1394	unsigned long nr_scanned;
1395	unsigned long nr_reclaimed = 0;
1396	unsigned long nr_taken;
1397	unsigned long nr_anon;
1398	unsigned long nr_file;
1399
1400	while (unlikely(too_many_isolated(zone, file, sc))) {
1401		congestion_wait(BLK_RW_ASYNC, HZ/10);
1402
1403		/* We are about to die and free our memory. Return now. */
1404		if (fatal_signal_pending(current))
1405			return SWAP_CLUSTER_MAX;
1406	}
1407
1408	set_reclaim_mode(priority, sc, false);
1409	lru_add_drain();
1410	spin_lock_irq(&zone->lru_lock);
1411
1412	if (scanning_global_lru(sc)) {
1413		nr_taken = isolate_pages_global(nr_to_scan,
1414			&page_list, &nr_scanned, sc->order,
1415			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1416					ISOLATE_BOTH : ISOLATE_INACTIVE,
1417			zone, 0, file);
1418		zone->pages_scanned += nr_scanned;
1419		if (current_is_kswapd())
1420			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1421					       nr_scanned);
1422		else
1423			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1424					       nr_scanned);
1425	} else {
1426		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1427			&page_list, &nr_scanned, sc->order,
1428			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1429					ISOLATE_BOTH : ISOLATE_INACTIVE,
1430			zone, sc->mem_cgroup,
1431			0, file);
1432		/*
1433		 * mem_cgroup_isolate_pages() keeps track of
1434		 * scanned pages on its own.
1435		 */
1436	}
1437
1438	if (nr_taken == 0) {
1439		spin_unlock_irq(&zone->lru_lock);
1440		return 0;
1441	}
1442
1443	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1444
1445	spin_unlock_irq(&zone->lru_lock);
1446
1447	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1448
1449	/* Check if we should syncronously wait for writeback */
1450	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1451		set_reclaim_mode(priority, sc, true);
1452		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1453	}
1454
1455	local_irq_disable();
1456	if (current_is_kswapd())
1457		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1458	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1459
1460	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1461
1462	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1463		zone_idx(zone),
1464		nr_scanned, nr_reclaimed,
1465		priority,
1466		trace_shrink_flags(file, sc->reclaim_mode));
1467	return nr_reclaimed;
1468}
1469
1470/*
1471 * This moves pages from the active list to the inactive list.
1472 *
1473 * We move them the other way if the page is referenced by one or more
1474 * processes, from rmap.
1475 *
1476 * If the pages are mostly unmapped, the processing is fast and it is
1477 * appropriate to hold zone->lru_lock across the whole operation.  But if
1478 * the pages are mapped, the processing is slow (page_referenced()) so we
1479 * should drop zone->lru_lock around each page.  It's impossible to balance
1480 * this, so instead we remove the pages from the LRU while processing them.
1481 * It is safe to rely on PG_active against the non-LRU pages in here because
1482 * nobody will play with that bit on a non-LRU page.
1483 *
1484 * The downside is that we have to touch page->_count against each page.
1485 * But we had to alter page->flags anyway.
1486 */
1487
1488static void move_active_pages_to_lru(struct zone *zone,
1489				     struct list_head *list,
1490				     enum lru_list lru)
1491{
1492	unsigned long pgmoved = 0;
1493	struct pagevec pvec;
1494	struct page *page;
1495
1496	pagevec_init(&pvec, 1);
1497
1498	while (!list_empty(list)) {
1499		page = lru_to_page(list);
1500
1501		VM_BUG_ON(PageLRU(page));
1502		SetPageLRU(page);
1503
1504		list_move(&page->lru, &zone->lru[lru].list);
1505		mem_cgroup_add_lru_list(page, lru);
1506		pgmoved += hpage_nr_pages(page);
1507
1508		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1509			spin_unlock_irq(&zone->lru_lock);
1510			if (buffer_heads_over_limit)
1511				pagevec_strip(&pvec);
1512			__pagevec_release(&pvec);
1513			spin_lock_irq(&zone->lru_lock);
1514		}
1515	}
1516	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1517	if (!is_active_lru(lru))
1518		__count_vm_events(PGDEACTIVATE, pgmoved);
1519}
1520
1521static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1522			struct scan_control *sc, int priority, int file)
1523{
1524	unsigned long nr_taken;
1525	unsigned long pgscanned;
1526	unsigned long vm_flags;
1527	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1528	LIST_HEAD(l_active);
1529	LIST_HEAD(l_inactive);
1530	struct page *page;
1531	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1532	unsigned long nr_rotated = 0;
1533
1534	lru_add_drain();
1535	spin_lock_irq(&zone->lru_lock);
1536	if (scanning_global_lru(sc)) {
1537		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1538						&pgscanned, sc->order,
1539						ISOLATE_ACTIVE, zone,
1540						1, file);
1541		zone->pages_scanned += pgscanned;
1542	} else {
1543		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1544						&pgscanned, sc->order,
1545						ISOLATE_ACTIVE, zone,
1546						sc->mem_cgroup, 1, file);
1547		/*
1548		 * mem_cgroup_isolate_pages() keeps track of
1549		 * scanned pages on its own.
1550		 */
1551	}
1552
1553	reclaim_stat->recent_scanned[file] += nr_taken;
1554
1555	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1556	if (file)
1557		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1558	else
1559		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1560	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1561	spin_unlock_irq(&zone->lru_lock);
1562
1563	while (!list_empty(&l_hold)) {
1564		cond_resched();
1565		page = lru_to_page(&l_hold);
1566		list_del(&page->lru);
1567
1568		if (unlikely(!page_evictable(page, NULL))) {
1569			putback_lru_page(page);
1570			continue;
1571		}
1572
1573		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1574			nr_rotated += hpage_nr_pages(page);
1575			/*
1576			 * Identify referenced, file-backed active pages and
1577			 * give them one more trip around the active list. So
1578			 * that executable code get better chances to stay in
1579			 * memory under moderate memory pressure.  Anon pages
1580			 * are not likely to be evicted by use-once streaming
1581			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1582			 * so we ignore them here.
1583			 */
1584			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1585				list_add(&page->lru, &l_active);
1586				continue;
1587			}
1588		}
1589
1590		ClearPageActive(page);	/* we are de-activating */
1591		list_add(&page->lru, &l_inactive);
1592	}
1593
1594	/*
1595	 * Move pages back to the lru list.
1596	 */
1597	spin_lock_irq(&zone->lru_lock);
1598	/*
1599	 * Count referenced pages from currently used mappings as rotated,
1600	 * even though only some of them are actually re-activated.  This
1601	 * helps balance scan pressure between file and anonymous pages in
1602	 * get_scan_ratio.
1603	 */
1604	reclaim_stat->recent_rotated[file] += nr_rotated;
1605
1606	move_active_pages_to_lru(zone, &l_active,
1607						LRU_ACTIVE + file * LRU_FILE);
1608	move_active_pages_to_lru(zone, &l_inactive,
1609						LRU_BASE   + file * LRU_FILE);
1610	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1611	spin_unlock_irq(&zone->lru_lock);
1612}
1613
1614#ifdef CONFIG_SWAP
1615static int inactive_anon_is_low_global(struct zone *zone)
1616{
1617	unsigned long active, inactive;
1618
1619	active = zone_page_state(zone, NR_ACTIVE_ANON);
1620	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1621
1622	if (inactive * zone->inactive_ratio < active)
1623		return 1;
1624
1625	return 0;
1626}
1627
1628/**
1629 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1630 * @zone: zone to check
1631 * @sc:   scan control of this context
1632 *
1633 * Returns true if the zone does not have enough inactive anon pages,
1634 * meaning some active anon pages need to be deactivated.
1635 */
1636static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1637{
1638	int low;
1639
1640	/*
1641	 * If we don't have swap space, anonymous page deactivation
1642	 * is pointless.
1643	 */
1644	if (!total_swap_pages)
1645		return 0;
1646
1647	if (scanning_global_lru(sc))
1648		low = inactive_anon_is_low_global(zone);
1649	else
1650		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1651	return low;
1652}
1653#else
1654static inline int inactive_anon_is_low(struct zone *zone,
1655					struct scan_control *sc)
1656{
1657	return 0;
1658}
1659#endif
1660
1661static int inactive_file_is_low_global(struct zone *zone)
1662{
1663	unsigned long active, inactive;
1664
1665	active = zone_page_state(zone, NR_ACTIVE_FILE);
1666	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1667
1668	return (active > inactive);
1669}
1670
1671/**
1672 * inactive_file_is_low - check if file pages need to be deactivated
1673 * @zone: zone to check
1674 * @sc:   scan control of this context
1675 *
1676 * When the system is doing streaming IO, memory pressure here
1677 * ensures that active file pages get deactivated, until more
1678 * than half of the file pages are on the inactive list.
1679 *
1680 * Once we get to that situation, protect the system's working
1681 * set from being evicted by disabling active file page aging.
1682 *
1683 * This uses a different ratio than the anonymous pages, because
1684 * the page cache uses a use-once replacement algorithm.
1685 */
1686static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1687{
1688	int low;
1689
1690	if (scanning_global_lru(sc))
1691		low = inactive_file_is_low_global(zone);
1692	else
1693		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1694	return low;
1695}
1696
1697static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1698				int file)
1699{
1700	if (file)
1701		return inactive_file_is_low(zone, sc);
1702	else
1703		return inactive_anon_is_low(zone, sc);
1704}
1705
1706static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1707	struct zone *zone, struct scan_control *sc, int priority)
1708{
1709	int file = is_file_lru(lru);
1710
1711	if (is_active_lru(lru)) {
1712		if (inactive_list_is_low(zone, sc, file))
1713		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1714		return 0;
1715	}
1716
1717	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1718}
1719
1720/*
1721 * Determine how aggressively the anon and file LRU lists should be
1722 * scanned.  The relative value of each set of LRU lists is determined
1723 * by looking at the fraction of the pages scanned we did rotate back
1724 * onto the active list instead of evict.
1725 *
1726 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1727 */
1728static void get_scan_count(struct zone *zone, struct scan_control *sc,
1729					unsigned long *nr, int priority)
1730{
1731	unsigned long anon, file, free;
1732	unsigned long anon_prio, file_prio;
1733	unsigned long ap, fp;
1734	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1735	u64 fraction[2], denominator;
1736	enum lru_list l;
1737	int noswap = 0;
1738	int force_scan = 0;
1739
1740
1741	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1742		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1743	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1744		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1745
1746	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1747		/* kswapd does zone balancing and need to scan this zone */
1748		if (scanning_global_lru(sc) && current_is_kswapd())
1749			force_scan = 1;
1750		/* memcg may have small limit and need to avoid priority drop */
1751		if (!scanning_global_lru(sc))
1752			force_scan = 1;
1753	}
1754
1755	/* If we have no swap space, do not bother scanning anon pages. */
1756	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1757		noswap = 1;
1758		fraction[0] = 0;
1759		fraction[1] = 1;
1760		denominator = 1;
1761		goto out;
1762	}
1763
1764	if (scanning_global_lru(sc)) {
1765		free  = zone_page_state(zone, NR_FREE_PAGES);
1766		/* If we have very few page cache pages,
1767		   force-scan anon pages. */
1768		if (unlikely(file + free <= high_wmark_pages(zone))) {
1769			fraction[0] = 1;
1770			fraction[1] = 0;
1771			denominator = 1;
1772			goto out;
1773		}
1774	}
1775
1776	/*
1777	 * With swappiness at 100, anonymous and file have the same priority.
1778	 * This scanning priority is essentially the inverse of IO cost.
1779	 */
1780	anon_prio = sc->swappiness;
1781	file_prio = 200 - sc->swappiness;
1782
1783	/*
1784	 * OK, so we have swap space and a fair amount of page cache
1785	 * pages.  We use the recently rotated / recently scanned
1786	 * ratios to determine how valuable each cache is.
1787	 *
1788	 * Because workloads change over time (and to avoid overflow)
1789	 * we keep these statistics as a floating average, which ends
1790	 * up weighing recent references more than old ones.
1791	 *
1792	 * anon in [0], file in [1]
1793	 */
1794	spin_lock_irq(&zone->lru_lock);
1795	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1796		reclaim_stat->recent_scanned[0] /= 2;
1797		reclaim_stat->recent_rotated[0] /= 2;
1798	}
1799
1800	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1801		reclaim_stat->recent_scanned[1] /= 2;
1802		reclaim_stat->recent_rotated[1] /= 2;
1803	}
1804
1805	/*
1806	 * The amount of pressure on anon vs file pages is inversely
1807	 * proportional to the fraction of recently scanned pages on
1808	 * each list that were recently referenced and in active use.
1809	 */
1810	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1811	ap /= reclaim_stat->recent_rotated[0] + 1;
1812
1813	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1814	fp /= reclaim_stat->recent_rotated[1] + 1;
1815	spin_unlock_irq(&zone->lru_lock);
1816
1817	fraction[0] = ap;
1818	fraction[1] = fp;
1819	denominator = ap + fp + 1;
1820out:
1821	for_each_evictable_lru(l) {
1822		int file = is_file_lru(l);
1823		unsigned long scan;
1824
1825		scan = zone_nr_lru_pages(zone, sc, l);
1826		if (priority || noswap) {
1827			scan >>= priority;
1828			scan = div64_u64(scan * fraction[file], denominator);
1829		}
1830
1831		/*
1832		 * If zone is small or memcg is small, nr[l] can be 0.
1833		 * This results no-scan on this priority and priority drop down.
1834		 * For global direct reclaim, it can visit next zone and tend
1835		 * not to have problems. For global kswapd, it's for zone
1836		 * balancing and it need to scan a small amounts. When using
1837		 * memcg, priority drop can cause big latency. So, it's better
1838		 * to scan small amount. See may_noscan above.
1839		 */
1840		if (!scan && force_scan) {
1841			if (file)
1842				scan = SWAP_CLUSTER_MAX;
1843			else if (!noswap)
1844				scan = SWAP_CLUSTER_MAX;
1845		}
1846		nr[l] = scan;
1847	}
1848}
1849
1850/*
1851 * Reclaim/compaction depends on a number of pages being freed. To avoid
1852 * disruption to the system, a small number of order-0 pages continue to be
1853 * rotated and reclaimed in the normal fashion. However, by the time we get
1854 * back to the allocator and call try_to_compact_zone(), we ensure that
1855 * there are enough free pages for it to be likely successful
1856 */
1857static inline bool should_continue_reclaim(struct zone *zone,
1858					unsigned long nr_reclaimed,
1859					unsigned long nr_scanned,
1860					struct scan_control *sc)
1861{
1862	unsigned long pages_for_compaction;
1863	unsigned long inactive_lru_pages;
1864
1865	/* If not in reclaim/compaction mode, stop */
1866	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1867		return false;
1868
1869	/* Consider stopping depending on scan and reclaim activity */
1870	if (sc->gfp_mask & __GFP_REPEAT) {
1871		/*
1872		 * For __GFP_REPEAT allocations, stop reclaiming if the
1873		 * full LRU list has been scanned and we are still failing
1874		 * to reclaim pages. This full LRU scan is potentially
1875		 * expensive but a __GFP_REPEAT caller really wants to succeed
1876		 */
1877		if (!nr_reclaimed && !nr_scanned)
1878			return false;
1879	} else {
1880		/*
1881		 * For non-__GFP_REPEAT allocations which can presumably
1882		 * fail without consequence, stop if we failed to reclaim
1883		 * any pages from the last SWAP_CLUSTER_MAX number of
1884		 * pages that were scanned. This will return to the
1885		 * caller faster at the risk reclaim/compaction and
1886		 * the resulting allocation attempt fails
1887		 */
1888		if (!nr_reclaimed)
1889			return false;
1890	}
1891
1892	/*
1893	 * If we have not reclaimed enough pages for compaction and the
1894	 * inactive lists are large enough, continue reclaiming
1895	 */
1896	pages_for_compaction = (2UL << sc->order);
1897	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1898				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1899	if (sc->nr_reclaimed < pages_for_compaction &&
1900			inactive_lru_pages > pages_for_compaction)
1901		return true;
1902
1903	/* If compaction would go ahead or the allocation would succeed, stop */
1904	switch (compaction_suitable(zone, sc->order)) {
1905	case COMPACT_PARTIAL:
1906	case COMPACT_CONTINUE:
1907		return false;
1908	default:
1909		return true;
1910	}
1911}
1912
1913/*
1914 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1915 */
1916static void shrink_zone(int priority, struct zone *zone,
1917				struct scan_control *sc)
1918{
1919	unsigned long nr[NR_LRU_LISTS];
1920	unsigned long nr_to_scan;
1921	enum lru_list l;
1922	unsigned long nr_reclaimed, nr_scanned;
1923	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1924
1925restart:
1926	nr_reclaimed = 0;
1927	nr_scanned = sc->nr_scanned;
1928	get_scan_count(zone, sc, nr, priority);
1929
1930	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1931					nr[LRU_INACTIVE_FILE]) {
1932		for_each_evictable_lru(l) {
1933			if (nr[l]) {
1934				nr_to_scan = min_t(unsigned long,
1935						   nr[l], SWAP_CLUSTER_MAX);
1936				nr[l] -= nr_to_scan;
1937
1938				nr_reclaimed += shrink_list(l, nr_to_scan,
1939							    zone, sc, priority);
1940			}
1941		}
1942		/*
1943		 * On large memory systems, scan >> priority can become
1944		 * really large. This is fine for the starting priority;
1945		 * we want to put equal scanning pressure on each zone.
1946		 * However, if the VM has a harder time of freeing pages,
1947		 * with multiple processes reclaiming pages, the total
1948		 * freeing target can get unreasonably large.
1949		 */
1950		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1951			break;
1952	}
1953	sc->nr_reclaimed += nr_reclaimed;
1954
1955	/*
1956	 * Even if we did not try to evict anon pages at all, we want to
1957	 * rebalance the anon lru active/inactive ratio.
1958	 */
1959	if (inactive_anon_is_low(zone, sc))
1960		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1961
1962	/* reclaim/compaction might need reclaim to continue */
1963	if (should_continue_reclaim(zone, nr_reclaimed,
1964					sc->nr_scanned - nr_scanned, sc))
1965		goto restart;
1966
1967	throttle_vm_writeout(sc->gfp_mask);
1968}
1969
1970/*
1971 * This is the direct reclaim path, for page-allocating processes.  We only
1972 * try to reclaim pages from zones which will satisfy the caller's allocation
1973 * request.
1974 *
1975 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1976 * Because:
1977 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1978 *    allocation or
1979 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1980 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1981 *    zone defense algorithm.
1982 *
1983 * If a zone is deemed to be full of pinned pages then just give it a light
1984 * scan then give up on it.
1985 */
1986static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1987					struct scan_control *sc)
1988{
1989	struct zoneref *z;
1990	struct zone *zone;
1991	unsigned long nr_soft_reclaimed;
1992	unsigned long nr_soft_scanned;
1993	unsigned long total_scanned = 0;
1994
1995	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1996					gfp_zone(sc->gfp_mask), sc->nodemask) {
1997		if (!populated_zone(zone))
1998			continue;
1999		/*
2000		 * Take care memory controller reclaiming has small influence
2001		 * to global LRU.
2002		 */
2003		if (scanning_global_lru(sc)) {
2004			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2005				continue;
2006			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2007				continue;	/* Let kswapd poll it */
2008		}
2009
2010		nr_soft_scanned = 0;
2011		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2012							sc->order, sc->gfp_mask,
2013							&nr_soft_scanned);
2014		sc->nr_reclaimed += nr_soft_reclaimed;
2015		total_scanned += nr_soft_scanned;
2016
2017		shrink_zone(priority, zone, sc);
2018	}
2019
2020	return total_scanned;
2021}
2022
2023static bool zone_reclaimable(struct zone *zone)
2024{
2025	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2026}
2027
2028/* All zones in zonelist are unreclaimable? */
2029static bool all_unreclaimable(struct zonelist *zonelist,
2030		struct scan_control *sc)
2031{
2032	struct zoneref *z;
2033	struct zone *zone;
2034
2035	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2036			gfp_zone(sc->gfp_mask), sc->nodemask) {
2037		if (!populated_zone(zone))
2038			continue;
2039		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2040			continue;
2041		if (!zone->all_unreclaimable)
2042			return false;
2043	}
2044
2045	return true;
2046}
2047
2048/*
2049 * This is the main entry point to direct page reclaim.
2050 *
2051 * If a full scan of the inactive list fails to free enough memory then we
2052 * are "out of memory" and something needs to be killed.
2053 *
2054 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2055 * high - the zone may be full of dirty or under-writeback pages, which this
2056 * caller can't do much about.  We kick the writeback threads and take explicit
2057 * naps in the hope that some of these pages can be written.  But if the
2058 * allocating task holds filesystem locks which prevent writeout this might not
2059 * work, and the allocation attempt will fail.
2060 *
2061 * returns:	0, if no pages reclaimed
2062 * 		else, the number of pages reclaimed
2063 */
2064static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2065					struct scan_control *sc,
2066					struct shrink_control *shrink)
2067{
2068	int priority;
2069	unsigned long total_scanned = 0;
2070	struct reclaim_state *reclaim_state = current->reclaim_state;
2071	struct zoneref *z;
2072	struct zone *zone;
2073	unsigned long writeback_threshold;
2074
2075	get_mems_allowed();
2076	delayacct_freepages_start();
2077
2078	if (scanning_global_lru(sc))
2079		count_vm_event(ALLOCSTALL);
2080
2081	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2082		sc->nr_scanned = 0;
2083		if (!priority)
2084			disable_swap_token(sc->mem_cgroup);
2085		total_scanned += shrink_zones(priority, zonelist, sc);
2086		/*
2087		 * Don't shrink slabs when reclaiming memory from
2088		 * over limit cgroups
2089		 */
2090		if (scanning_global_lru(sc)) {
2091			unsigned long lru_pages = 0;
2092			for_each_zone_zonelist(zone, z, zonelist,
2093					gfp_zone(sc->gfp_mask)) {
2094				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2095					continue;
2096
2097				lru_pages += zone_reclaimable_pages(zone);
2098			}
2099
2100			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2101			if (reclaim_state) {
2102				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2103				reclaim_state->reclaimed_slab = 0;
2104			}
2105		}
2106		total_scanned += sc->nr_scanned;
2107		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2108			goto out;
2109
2110		/*
2111		 * Try to write back as many pages as we just scanned.  This
2112		 * tends to cause slow streaming writers to write data to the
2113		 * disk smoothly, at the dirtying rate, which is nice.   But
2114		 * that's undesirable in laptop mode, where we *want* lumpy
2115		 * writeout.  So in laptop mode, write out the whole world.
2116		 */
2117		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2118		if (total_scanned > writeback_threshold) {
2119			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2120			sc->may_writepage = 1;
2121		}
2122
2123		/* Take a nap, wait for some writeback to complete */
2124		if (!sc->hibernation_mode && sc->nr_scanned &&
2125		    priority < DEF_PRIORITY - 2) {
2126			struct zone *preferred_zone;
2127
2128			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2129						&cpuset_current_mems_allowed,
2130						&preferred_zone);
2131			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2132		}
2133	}
2134
2135out:
2136	delayacct_freepages_end();
2137	put_mems_allowed();
2138
2139	if (sc->nr_reclaimed)
2140		return sc->nr_reclaimed;
2141
2142	/*
2143	 * As hibernation is going on, kswapd is freezed so that it can't mark
2144	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2145	 * check.
2146	 */
2147	if (oom_killer_disabled)
2148		return 0;
2149
2150	/* top priority shrink_zones still had more to do? don't OOM, then */
2151	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2152		return 1;
2153
2154	return 0;
2155}
2156
2157unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2158				gfp_t gfp_mask, nodemask_t *nodemask)
2159{
2160	unsigned long nr_reclaimed;
2161	struct scan_control sc = {
2162		.gfp_mask = gfp_mask,
2163		.may_writepage = !laptop_mode,
2164		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2165		.may_unmap = 1,
2166		.may_swap = 1,
2167		.swappiness = vm_swappiness,
2168		.order = order,
2169		.mem_cgroup = NULL,
2170		.nodemask = nodemask,
2171	};
2172	struct shrink_control shrink = {
2173		.gfp_mask = sc.gfp_mask,
2174	};
2175
2176	trace_mm_vmscan_direct_reclaim_begin(order,
2177				sc.may_writepage,
2178				gfp_mask);
2179
2180	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2181
2182	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2183
2184	return nr_reclaimed;
2185}
2186
2187#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2188
2189unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2190						gfp_t gfp_mask, bool noswap,
2191						unsigned int swappiness,
2192						struct zone *zone,
2193						unsigned long *nr_scanned)
2194{
2195	struct scan_control sc = {
2196		.nr_scanned = 0,
2197		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2198		.may_writepage = !laptop_mode,
2199		.may_unmap = 1,
2200		.may_swap = !noswap,
2201		.swappiness = swappiness,
2202		.order = 0,
2203		.mem_cgroup = mem,
2204	};
2205
2206	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2207			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2208
2209	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2210						      sc.may_writepage,
2211						      sc.gfp_mask);
2212
2213	/*
2214	 * NOTE: Although we can get the priority field, using it
2215	 * here is not a good idea, since it limits the pages we can scan.
2216	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2217	 * will pick up pages from other mem cgroup's as well. We hack
2218	 * the priority and make it zero.
2219	 */
2220	shrink_zone(0, zone, &sc);
2221
2222	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2223
2224	*nr_scanned = sc.nr_scanned;
2225	return sc.nr_reclaimed;
2226}
2227
2228unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2229					   gfp_t gfp_mask,
2230					   bool noswap,
2231					   unsigned int swappiness)
2232{
2233	struct zonelist *zonelist;
2234	unsigned long nr_reclaimed;
2235	int nid;
2236	struct scan_control sc = {
2237		.may_writepage = !laptop_mode,
2238		.may_unmap = 1,
2239		.may_swap = !noswap,
2240		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2241		.swappiness = swappiness,
2242		.order = 0,
2243		.mem_cgroup = mem_cont,
2244		.nodemask = NULL, /* we don't care the placement */
2245		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2246				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2247	};
2248	struct shrink_control shrink = {
2249		.gfp_mask = sc.gfp_mask,
2250	};
2251
2252	/*
2253	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2254	 * take care of from where we get pages. So the node where we start the
2255	 * scan does not need to be the current node.
2256	 */
2257	nid = mem_cgroup_select_victim_node(mem_cont);
2258
2259	zonelist = NODE_DATA(nid)->node_zonelists;
2260
2261	trace_mm_vmscan_memcg_reclaim_begin(0,
2262					    sc.may_writepage,
2263					    sc.gfp_mask);
2264
2265	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2266
2267	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2268
2269	return nr_reclaimed;
2270}
2271#endif
2272
2273/*
2274 * pgdat_balanced is used when checking if a node is balanced for high-order
2275 * allocations. Only zones that meet watermarks and are in a zone allowed
2276 * by the callers classzone_idx are added to balanced_pages. The total of
2277 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2278 * for the node to be considered balanced. Forcing all zones to be balanced
2279 * for high orders can cause excessive reclaim when there are imbalanced zones.
2280 * The choice of 25% is due to
2281 *   o a 16M DMA zone that is balanced will not balance a zone on any
2282 *     reasonable sized machine
2283 *   o On all other machines, the top zone must be at least a reasonable
2284 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2285 *     would need to be at least 256M for it to be balance a whole node.
2286 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2287 *     to balance a node on its own. These seemed like reasonable ratios.
2288 */
2289static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2290						int classzone_idx)
2291{
2292	unsigned long present_pages = 0;
2293	int i;
2294
2295	for (i = 0; i <= classzone_idx; i++)
2296		present_pages += pgdat->node_zones[i].present_pages;
2297
2298	return balanced_pages > (present_pages >> 2);
2299}
2300
2301/* is kswapd sleeping prematurely? */
2302static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2303					int classzone_idx)
2304{
2305	int i;
2306	unsigned long balanced = 0;
2307	bool all_zones_ok = true;
2308
2309	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2310	if (remaining)
2311		return true;
2312
2313	/* Check the watermark levels */
2314	for (i = 0; i < pgdat->nr_zones; i++) {
2315		struct zone *zone = pgdat->node_zones + i;
2316
2317		if (!populated_zone(zone))
2318			continue;
2319
2320		/*
2321		 * balance_pgdat() skips over all_unreclaimable after
2322		 * DEF_PRIORITY. Effectively, it considers them balanced so
2323		 * they must be considered balanced here as well if kswapd
2324		 * is to sleep
2325		 */
2326		if (zone->all_unreclaimable) {
2327			balanced += zone->present_pages;
2328			continue;
2329		}
2330
2331		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2332							classzone_idx, 0))
2333			all_zones_ok = false;
2334		else
2335			balanced += zone->present_pages;
2336	}
2337
2338	/*
2339	 * For high-order requests, the balanced zones must contain at least
2340	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2341	 * must be balanced
2342	 */
2343	if (order)
2344		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2345	else
2346		return !all_zones_ok;
2347}
2348
2349/*
2350 * For kswapd, balance_pgdat() will work across all this node's zones until
2351 * they are all at high_wmark_pages(zone).
2352 *
2353 * Returns the final order kswapd was reclaiming at
2354 *
2355 * There is special handling here for zones which are full of pinned pages.
2356 * This can happen if the pages are all mlocked, or if they are all used by
2357 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2358 * What we do is to detect the case where all pages in the zone have been
2359 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2360 * dead and from now on, only perform a short scan.  Basically we're polling
2361 * the zone for when the problem goes away.
2362 *
2363 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2364 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2365 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2366 * lower zones regardless of the number of free pages in the lower zones. This
2367 * interoperates with the page allocator fallback scheme to ensure that aging
2368 * of pages is balanced across the zones.
2369 */
2370static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2371							int *classzone_idx)
2372{
2373	int all_zones_ok;
2374	unsigned long balanced;
2375	int priority;
2376	int i;
2377	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2378	unsigned long total_scanned;
2379	struct reclaim_state *reclaim_state = current->reclaim_state;
2380	unsigned long nr_soft_reclaimed;
2381	unsigned long nr_soft_scanned;
2382	struct scan_control sc = {
2383		.gfp_mask = GFP_KERNEL,
2384		.may_unmap = 1,
2385		.may_swap = 1,
2386		/*
2387		 * kswapd doesn't want to be bailed out while reclaim. because
2388		 * we want to put equal scanning pressure on each zone.
2389		 */
2390		.nr_to_reclaim = ULONG_MAX,
2391		.swappiness = vm_swappiness,
2392		.order = order,
2393		.mem_cgroup = NULL,
2394	};
2395	struct shrink_control shrink = {
2396		.gfp_mask = sc.gfp_mask,
2397	};
2398loop_again:
2399	total_scanned = 0;
2400	sc.nr_reclaimed = 0;
2401	sc.may_writepage = !laptop_mode;
2402	count_vm_event(PAGEOUTRUN);
2403
2404	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2405		unsigned long lru_pages = 0;
2406		int has_under_min_watermark_zone = 0;
2407
2408		/* The swap token gets in the way of swapout... */
2409		if (!priority)
2410			disable_swap_token(NULL);
2411
2412		all_zones_ok = 1;
2413		balanced = 0;
2414
2415		/*
2416		 * Scan in the highmem->dma direction for the highest
2417		 * zone which needs scanning
2418		 */
2419		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2420			struct zone *zone = pgdat->node_zones + i;
2421
2422			if (!populated_zone(zone))
2423				continue;
2424
2425			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2426				continue;
2427
2428			/*
2429			 * Do some background aging of the anon list, to give
2430			 * pages a chance to be referenced before reclaiming.
2431			 */
2432			if (inactive_anon_is_low(zone, &sc))
2433				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2434							&sc, priority, 0);
2435
2436			if (!zone_watermark_ok_safe(zone, order,
2437					high_wmark_pages(zone), 0, 0)) {
2438				end_zone = i;
2439				*classzone_idx = i;
2440				break;
2441			}
2442		}
2443		if (i < 0)
2444			goto out;
2445
2446		for (i = 0; i <= end_zone; i++) {
2447			struct zone *zone = pgdat->node_zones + i;
2448
2449			lru_pages += zone_reclaimable_pages(zone);
2450		}
2451
2452		/*
2453		 * Now scan the zone in the dma->highmem direction, stopping
2454		 * at the last zone which needs scanning.
2455		 *
2456		 * We do this because the page allocator works in the opposite
2457		 * direction.  This prevents the page allocator from allocating
2458		 * pages behind kswapd's direction of progress, which would
2459		 * cause too much scanning of the lower zones.
2460		 */
2461		for (i = 0; i <= end_zone; i++) {
2462			struct zone *zone = pgdat->node_zones + i;
2463			int nr_slab;
2464			unsigned long balance_gap;
2465
2466			if (!populated_zone(zone))
2467				continue;
2468
2469			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2470				continue;
2471
2472			sc.nr_scanned = 0;
2473
2474			nr_soft_scanned = 0;
2475			/*
2476			 * Call soft limit reclaim before calling shrink_zone.
2477			 */
2478			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2479							order, sc.gfp_mask,
2480							&nr_soft_scanned);
2481			sc.nr_reclaimed += nr_soft_reclaimed;
2482			total_scanned += nr_soft_scanned;
2483
2484			/*
2485			 * We put equal pressure on every zone, unless
2486			 * one zone has way too many pages free
2487			 * already. The "too many pages" is defined
2488			 * as the high wmark plus a "gap" where the
2489			 * gap is either the low watermark or 1%
2490			 * of the zone, whichever is smaller.
2491			 */
2492			balance_gap = min(low_wmark_pages(zone),
2493				(zone->present_pages +
2494					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2495				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2496			if (!zone_watermark_ok_safe(zone, order,
2497					high_wmark_pages(zone) + balance_gap,
2498					end_zone, 0))
2499				shrink_zone(priority, zone, &sc);
2500			reclaim_state->reclaimed_slab = 0;
2501			nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2502			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2503			total_scanned += sc.nr_scanned;
2504
2505			if (zone->all_unreclaimable)
2506				continue;
2507			if (nr_slab == 0 &&
2508			    !zone_reclaimable(zone))
2509				zone->all_unreclaimable = 1;
2510			/*
2511			 * If we've done a decent amount of scanning and
2512			 * the reclaim ratio is low, start doing writepage
2513			 * even in laptop mode
2514			 */
2515			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2516			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2517				sc.may_writepage = 1;
2518
2519			if (!zone_watermark_ok_safe(zone, order,
2520					high_wmark_pages(zone), end_zone, 0)) {
2521				all_zones_ok = 0;
2522				/*
2523				 * We are still under min water mark.  This
2524				 * means that we have a GFP_ATOMIC allocation
2525				 * failure risk. Hurry up!
2526				 */
2527				if (!zone_watermark_ok_safe(zone, order,
2528					    min_wmark_pages(zone), end_zone, 0))
2529					has_under_min_watermark_zone = 1;
2530			} else {
2531				/*
2532				 * If a zone reaches its high watermark,
2533				 * consider it to be no longer congested. It's
2534				 * possible there are dirty pages backed by
2535				 * congested BDIs but as pressure is relieved,
2536				 * spectulatively avoid congestion waits
2537				 */
2538				zone_clear_flag(zone, ZONE_CONGESTED);
2539				if (i <= *classzone_idx)
2540					balanced += zone->present_pages;
2541			}
2542
2543		}
2544		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2545			break;		/* kswapd: all done */
2546		/*
2547		 * OK, kswapd is getting into trouble.  Take a nap, then take
2548		 * another pass across the zones.
2549		 */
2550		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2551			if (has_under_min_watermark_zone)
2552				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2553			else
2554				congestion_wait(BLK_RW_ASYNC, HZ/10);
2555		}
2556
2557		/*
2558		 * We do this so kswapd doesn't build up large priorities for
2559		 * example when it is freeing in parallel with allocators. It
2560		 * matches the direct reclaim path behaviour in terms of impact
2561		 * on zone->*_priority.
2562		 */
2563		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2564			break;
2565	}
2566out:
2567
2568	/*
2569	 * order-0: All zones must meet high watermark for a balanced node
2570	 * high-order: Balanced zones must make up at least 25% of the node
2571	 *             for the node to be balanced
2572	 */
2573	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2574		cond_resched();
2575
2576		try_to_freeze();
2577
2578		/*
2579		 * Fragmentation may mean that the system cannot be
2580		 * rebalanced for high-order allocations in all zones.
2581		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2582		 * it means the zones have been fully scanned and are still
2583		 * not balanced. For high-order allocations, there is
2584		 * little point trying all over again as kswapd may
2585		 * infinite loop.
2586		 *
2587		 * Instead, recheck all watermarks at order-0 as they
2588		 * are the most important. If watermarks are ok, kswapd will go
2589		 * back to sleep. High-order users can still perform direct
2590		 * reclaim if they wish.
2591		 */
2592		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2593			order = sc.order = 0;
2594
2595		goto loop_again;
2596	}
2597
2598	/*
2599	 * If kswapd was reclaiming at a higher order, it has the option of
2600	 * sleeping without all zones being balanced. Before it does, it must
2601	 * ensure that the watermarks for order-0 on *all* zones are met and
2602	 * that the congestion flags are cleared. The congestion flag must
2603	 * be cleared as kswapd is the only mechanism that clears the flag
2604	 * and it is potentially going to sleep here.
2605	 */
2606	if (order) {
2607		for (i = 0; i <= end_zone; i++) {
2608			struct zone *zone = pgdat->node_zones + i;
2609
2610			if (!populated_zone(zone))
2611				continue;
2612
2613			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2614				continue;
2615
2616			/* Confirm the zone is balanced for order-0 */
2617			if (!zone_watermark_ok(zone, 0,
2618					high_wmark_pages(zone), 0, 0)) {
2619				order = sc.order = 0;
2620				goto loop_again;
2621			}
2622
2623			/* If balanced, clear the congested flag */
2624			zone_clear_flag(zone, ZONE_CONGESTED);
2625		}
2626	}
2627
2628	/*
2629	 * Return the order we were reclaiming at so sleeping_prematurely()
2630	 * makes a decision on the order we were last reclaiming at. However,
2631	 * if another caller entered the allocator slow path while kswapd
2632	 * was awake, order will remain at the higher level
2633	 */
2634	*classzone_idx = end_zone;
2635	return order;
2636}
2637
2638static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2639{
2640	long remaining = 0;
2641	DEFINE_WAIT(wait);
2642
2643	if (freezing(current) || kthread_should_stop())
2644		return;
2645
2646	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2647
2648	/* Try to sleep for a short interval */
2649	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2650		remaining = schedule_timeout(HZ/10);
2651		finish_wait(&pgdat->kswapd_wait, &wait);
2652		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2653	}
2654
2655	/*
2656	 * After a short sleep, check if it was a premature sleep. If not, then
2657	 * go fully to sleep until explicitly woken up.
2658	 */
2659	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2660		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2661
2662		/*
2663		 * vmstat counters are not perfectly accurate and the estimated
2664		 * value for counters such as NR_FREE_PAGES can deviate from the
2665		 * true value by nr_online_cpus * threshold. To avoid the zone
2666		 * watermarks being breached while under pressure, we reduce the
2667		 * per-cpu vmstat threshold while kswapd is awake and restore
2668		 * them before going back to sleep.
2669		 */
2670		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2671		schedule();
2672		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2673	} else {
2674		if (remaining)
2675			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2676		else
2677			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2678	}
2679	finish_wait(&pgdat->kswapd_wait, &wait);
2680}
2681
2682/*
2683 * The background pageout daemon, started as a kernel thread
2684 * from the init process.
2685 *
2686 * This basically trickles out pages so that we have _some_
2687 * free memory available even if there is no other activity
2688 * that frees anything up. This is needed for things like routing
2689 * etc, where we otherwise might have all activity going on in
2690 * asynchronous contexts that cannot page things out.
2691 *
2692 * If there are applications that are active memory-allocators
2693 * (most normal use), this basically shouldn't matter.
2694 */
2695static int kswapd(void *p)
2696{
2697	unsigned long order;
2698	int classzone_idx;
2699	pg_data_t *pgdat = (pg_data_t*)p;
2700	struct task_struct *tsk = current;
2701
2702	struct reclaim_state reclaim_state = {
2703		.reclaimed_slab = 0,
2704	};
2705	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2706
2707	lockdep_set_current_reclaim_state(GFP_KERNEL);
2708
2709	if (!cpumask_empty(cpumask))
2710		set_cpus_allowed_ptr(tsk, cpumask);
2711	current->reclaim_state = &reclaim_state;
2712
2713	/*
2714	 * Tell the memory management that we're a "memory allocator",
2715	 * and that if we need more memory we should get access to it
2716	 * regardless (see "__alloc_pages()"). "kswapd" should
2717	 * never get caught in the normal page freeing logic.
2718	 *
2719	 * (Kswapd normally doesn't need memory anyway, but sometimes
2720	 * you need a small amount of memory in order to be able to
2721	 * page out something else, and this flag essentially protects
2722	 * us from recursively trying to free more memory as we're
2723	 * trying to free the first piece of memory in the first place).
2724	 */
2725	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2726	set_freezable();
2727
2728	order = 0;
2729	classzone_idx = MAX_NR_ZONES - 1;
2730	for ( ; ; ) {
2731		unsigned long new_order;
2732		int new_classzone_idx;
2733		int ret;
2734
2735		new_order = pgdat->kswapd_max_order;
2736		new_classzone_idx = pgdat->classzone_idx;
2737		pgdat->kswapd_max_order = 0;
2738		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2739		if (order < new_order || classzone_idx > new_classzone_idx) {
2740			/*
2741			 * Don't sleep if someone wants a larger 'order'
2742			 * allocation or has tigher zone constraints
2743			 */
2744			order = new_order;
2745			classzone_idx = new_classzone_idx;
2746		} else {
2747			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2748			order = pgdat->kswapd_max_order;
2749			classzone_idx = pgdat->classzone_idx;
2750			pgdat->kswapd_max_order = 0;
2751			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2752		}
2753
2754		ret = try_to_freeze();
2755		if (kthread_should_stop())
2756			break;
2757
2758		/*
2759		 * We can speed up thawing tasks if we don't call balance_pgdat
2760		 * after returning from the refrigerator
2761		 */
2762		if (!ret) {
2763			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2764			order = balance_pgdat(pgdat, order, &classzone_idx);
2765		}
2766	}
2767	return 0;
2768}
2769
2770/*
2771 * A zone is low on free memory, so wake its kswapd task to service it.
2772 */
2773void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2774{
2775	pg_data_t *pgdat;
2776
2777	if (!populated_zone(zone))
2778		return;
2779
2780	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2781		return;
2782	pgdat = zone->zone_pgdat;
2783	if (pgdat->kswapd_max_order < order) {
2784		pgdat->kswapd_max_order = order;
2785		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2786	}
2787	if (!waitqueue_active(&pgdat->kswapd_wait))
2788		return;
2789	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2790		return;
2791
2792	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2793	wake_up_interruptible(&pgdat->kswapd_wait);
2794}
2795
2796/*
2797 * The reclaimable count would be mostly accurate.
2798 * The less reclaimable pages may be
2799 * - mlocked pages, which will be moved to unevictable list when encountered
2800 * - mapped pages, which may require several travels to be reclaimed
2801 * - dirty pages, which is not "instantly" reclaimable
2802 */
2803unsigned long global_reclaimable_pages(void)
2804{
2805	int nr;
2806
2807	nr = global_page_state(NR_ACTIVE_FILE) +
2808	     global_page_state(NR_INACTIVE_FILE);
2809
2810	if (nr_swap_pages > 0)
2811		nr += global_page_state(NR_ACTIVE_ANON) +
2812		      global_page_state(NR_INACTIVE_ANON);
2813
2814	return nr;
2815}
2816
2817unsigned long zone_reclaimable_pages(struct zone *zone)
2818{
2819	int nr;
2820
2821	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2822	     zone_page_state(zone, NR_INACTIVE_FILE);
2823
2824	if (nr_swap_pages > 0)
2825		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2826		      zone_page_state(zone, NR_INACTIVE_ANON);
2827
2828	return nr;
2829}
2830
2831#ifdef CONFIG_HIBERNATION
2832/*
2833 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2834 * freed pages.
2835 *
2836 * Rather than trying to age LRUs the aim is to preserve the overall
2837 * LRU order by reclaiming preferentially
2838 * inactive > active > active referenced > active mapped
2839 */
2840unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2841{
2842	struct reclaim_state reclaim_state;
2843	struct scan_control sc = {
2844		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2845		.may_swap = 1,
2846		.may_unmap = 1,
2847		.may_writepage = 1,
2848		.nr_to_reclaim = nr_to_reclaim,
2849		.hibernation_mode = 1,
2850		.swappiness = vm_swappiness,
2851		.order = 0,
2852	};
2853	struct shrink_control shrink = {
2854		.gfp_mask = sc.gfp_mask,
2855	};
2856	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2857	struct task_struct *p = current;
2858	unsigned long nr_reclaimed;
2859
2860	p->flags |= PF_MEMALLOC;
2861	lockdep_set_current_reclaim_state(sc.gfp_mask);
2862	reclaim_state.reclaimed_slab = 0;
2863	p->reclaim_state = &reclaim_state;
2864
2865	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2866
2867	p->reclaim_state = NULL;
2868	lockdep_clear_current_reclaim_state();
2869	p->flags &= ~PF_MEMALLOC;
2870
2871	return nr_reclaimed;
2872}
2873#endif /* CONFIG_HIBERNATION */
2874
2875/* It's optimal to keep kswapds on the same CPUs as their memory, but
2876   not required for correctness.  So if the last cpu in a node goes
2877   away, we get changed to run anywhere: as the first one comes back,
2878   restore their cpu bindings. */
2879static int __devinit cpu_callback(struct notifier_block *nfb,
2880				  unsigned long action, void *hcpu)
2881{
2882	int nid;
2883
2884	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2885		for_each_node_state(nid, N_HIGH_MEMORY) {
2886			pg_data_t *pgdat = NODE_DATA(nid);
2887			const struct cpumask *mask;
2888
2889			mask = cpumask_of_node(pgdat->node_id);
2890
2891			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2892				/* One of our CPUs online: restore mask */
2893				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2894		}
2895	}
2896	return NOTIFY_OK;
2897}
2898
2899/*
2900 * This kswapd start function will be called by init and node-hot-add.
2901 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2902 */
2903int kswapd_run(int nid)
2904{
2905	pg_data_t *pgdat = NODE_DATA(nid);
2906	int ret = 0;
2907
2908	if (pgdat->kswapd)
2909		return 0;
2910
2911	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2912	if (IS_ERR(pgdat->kswapd)) {
2913		/* failure at boot is fatal */
2914		BUG_ON(system_state == SYSTEM_BOOTING);
2915		printk("Failed to start kswapd on node %d\n",nid);
2916		ret = -1;
2917	}
2918	return ret;
2919}
2920
2921/*
2922 * Called by memory hotplug when all memory in a node is offlined.
2923 */
2924void kswapd_stop(int nid)
2925{
2926	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2927
2928	if (kswapd)
2929		kthread_stop(kswapd);
2930}
2931
2932static int __init kswapd_init(void)
2933{
2934	int nid;
2935
2936	swap_setup();
2937	for_each_node_state(nid, N_HIGH_MEMORY)
2938 		kswapd_run(nid);
2939	hotcpu_notifier(cpu_callback, 0);
2940	return 0;
2941}
2942
2943module_init(kswapd_init)
2944
2945#ifdef CONFIG_NUMA
2946/*
2947 * Zone reclaim mode
2948 *
2949 * If non-zero call zone_reclaim when the number of free pages falls below
2950 * the watermarks.
2951 */
2952int zone_reclaim_mode __read_mostly;
2953
2954#define RECLAIM_OFF 0
2955#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2956#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2957#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2958
2959/*
2960 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2961 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2962 * a zone.
2963 */
2964#define ZONE_RECLAIM_PRIORITY 4
2965
2966/*
2967 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2968 * occur.
2969 */
2970int sysctl_min_unmapped_ratio = 1;
2971
2972/*
2973 * If the number of slab pages in a zone grows beyond this percentage then
2974 * slab reclaim needs to occur.
2975 */
2976int sysctl_min_slab_ratio = 5;
2977
2978static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2979{
2980	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2981	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2982		zone_page_state(zone, NR_ACTIVE_FILE);
2983
2984	/*
2985	 * It's possible for there to be more file mapped pages than
2986	 * accounted for by the pages on the file LRU lists because
2987	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2988	 */
2989	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2990}
2991
2992/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2993static long zone_pagecache_reclaimable(struct zone *zone)
2994{
2995	long nr_pagecache_reclaimable;
2996	long delta = 0;
2997
2998	/*
2999	 * If RECLAIM_SWAP is set, then all file pages are considered
3000	 * potentially reclaimable. Otherwise, we have to worry about
3001	 * pages like swapcache and zone_unmapped_file_pages() provides
3002	 * a better estimate
3003	 */
3004	if (zone_reclaim_mode & RECLAIM_SWAP)
3005		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3006	else
3007		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3008
3009	/* If we can't clean pages, remove dirty pages from consideration */
3010	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3011		delta += zone_page_state(zone, NR_FILE_DIRTY);
3012
3013	/* Watch for any possible underflows due to delta */
3014	if (unlikely(delta > nr_pagecache_reclaimable))
3015		delta = nr_pagecache_reclaimable;
3016
3017	return nr_pagecache_reclaimable - delta;
3018}
3019
3020/*
3021 * Try to free up some pages from this zone through reclaim.
3022 */
3023static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3024{
3025	/* Minimum pages needed in order to stay on node */
3026	const unsigned long nr_pages = 1 << order;
3027	struct task_struct *p = current;
3028	struct reclaim_state reclaim_state;
3029	int priority;
3030	struct scan_control sc = {
3031		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3032		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3033		.may_swap = 1,
3034		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3035				       SWAP_CLUSTER_MAX),
3036		.gfp_mask = gfp_mask,
3037		.swappiness = vm_swappiness,
3038		.order = order,
3039	};
3040	struct shrink_control shrink = {
3041		.gfp_mask = sc.gfp_mask,
3042	};
3043	unsigned long nr_slab_pages0, nr_slab_pages1;
3044
3045	cond_resched();
3046	/*
3047	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3048	 * and we also need to be able to write out pages for RECLAIM_WRITE
3049	 * and RECLAIM_SWAP.
3050	 */
3051	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3052	lockdep_set_current_reclaim_state(gfp_mask);
3053	reclaim_state.reclaimed_slab = 0;
3054	p->reclaim_state = &reclaim_state;
3055
3056	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3057		/*
3058		 * Free memory by calling shrink zone with increasing
3059		 * priorities until we have enough memory freed.
3060		 */
3061		priority = ZONE_RECLAIM_PRIORITY;
3062		do {
3063			shrink_zone(priority, zone, &sc);
3064			priority--;
3065		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3066	}
3067
3068	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3069	if (nr_slab_pages0 > zone->min_slab_pages) {
3070		/*
3071		 * shrink_slab() does not currently allow us to determine how
3072		 * many pages were freed in this zone. So we take the current
3073		 * number of slab pages and shake the slab until it is reduced
3074		 * by the same nr_pages that we used for reclaiming unmapped
3075		 * pages.
3076		 *
3077		 * Note that shrink_slab will free memory on all zones and may
3078		 * take a long time.
3079		 */
3080		for (;;) {
3081			unsigned long lru_pages = zone_reclaimable_pages(zone);
3082
3083			/* No reclaimable slab or very low memory pressure */
3084			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3085				break;
3086
3087			/* Freed enough memory */
3088			nr_slab_pages1 = zone_page_state(zone,
3089							NR_SLAB_RECLAIMABLE);
3090			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3091				break;
3092		}
3093
3094		/*
3095		 * Update nr_reclaimed by the number of slab pages we
3096		 * reclaimed from this zone.
3097		 */
3098		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3099		if (nr_slab_pages1 < nr_slab_pages0)
3100			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3101	}
3102
3103	p->reclaim_state = NULL;
3104	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3105	lockdep_clear_current_reclaim_state();
3106	return sc.nr_reclaimed >= nr_pages;
3107}
3108
3109int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3110{
3111	int node_id;
3112	int ret;
3113
3114	/*
3115	 * Zone reclaim reclaims unmapped file backed pages and
3116	 * slab pages if we are over the defined limits.
3117	 *
3118	 * A small portion of unmapped file backed pages is needed for
3119	 * file I/O otherwise pages read by file I/O will be immediately
3120	 * thrown out if the zone is overallocated. So we do not reclaim
3121	 * if less than a specified percentage of the zone is used by
3122	 * unmapped file backed pages.
3123	 */
3124	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3125	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3126		return ZONE_RECLAIM_FULL;
3127
3128	if (zone->all_unreclaimable)
3129		return ZONE_RECLAIM_FULL;
3130
3131	/*
3132	 * Do not scan if the allocation should not be delayed.
3133	 */
3134	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3135		return ZONE_RECLAIM_NOSCAN;
3136
3137	/*
3138	 * Only run zone reclaim on the local zone or on zones that do not
3139	 * have associated processors. This will favor the local processor
3140	 * over remote processors and spread off node memory allocations
3141	 * as wide as possible.
3142	 */
3143	node_id = zone_to_nid(zone);
3144	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3145		return ZONE_RECLAIM_NOSCAN;
3146
3147	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3148		return ZONE_RECLAIM_NOSCAN;
3149
3150	ret = __zone_reclaim(zone, gfp_mask, order);
3151	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3152
3153	if (!ret)
3154		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3155
3156	return ret;
3157}
3158#endif
3159
3160/*
3161 * page_evictable - test whether a page is evictable
3162 * @page: the page to test
3163 * @vma: the VMA in which the page is or will be mapped, may be NULL
3164 *
3165 * Test whether page is evictable--i.e., should be placed on active/inactive
3166 * lists vs unevictable list.  The vma argument is !NULL when called from the
3167 * fault path to determine how to instantate a new page.
3168 *
3169 * Reasons page might not be evictable:
3170 * (1) page's mapping marked unevictable
3171 * (2) page is part of an mlocked VMA
3172 *
3173 */
3174int page_evictable(struct page *page, struct vm_area_struct *vma)
3175{
3176
3177	if (mapping_unevictable(page_mapping(page)))
3178		return 0;
3179
3180	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3181		return 0;
3182
3183	return 1;
3184}
3185
3186/**
3187 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3188 * @page: page to check evictability and move to appropriate lru list
3189 * @zone: zone page is in
3190 *
3191 * Checks a page for evictability and moves the page to the appropriate
3192 * zone lru list.
3193 *
3194 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3195 * have PageUnevictable set.
3196 */
3197static void check_move_unevictable_page(struct page *page, struct zone *zone)
3198{
3199	VM_BUG_ON(PageActive(page));
3200
3201retry:
3202	ClearPageUnevictable(page);
3203	if (page_evictable(page, NULL)) {
3204		enum lru_list l = page_lru_base_type(page);
3205
3206		__dec_zone_state(zone, NR_UNEVICTABLE);
3207		list_move(&page->lru, &zone->lru[l].list);
3208		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3209		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3210		__count_vm_event(UNEVICTABLE_PGRESCUED);
3211	} else {
3212		/*
3213		 * rotate unevictable list
3214		 */
3215		SetPageUnevictable(page);
3216		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3217		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3218		if (page_evictable(page, NULL))
3219			goto retry;
3220	}
3221}
3222
3223/**
3224 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3225 * @mapping: struct address_space to scan for evictable pages
3226 *
3227 * Scan all pages in mapping.  Check unevictable pages for
3228 * evictability and move them to the appropriate zone lru list.
3229 */
3230void scan_mapping_unevictable_pages(struct address_space *mapping)
3231{
3232	pgoff_t next = 0;
3233	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3234			 PAGE_CACHE_SHIFT;
3235	struct zone *zone;
3236	struct pagevec pvec;
3237
3238	if (mapping->nrpages == 0)
3239		return;
3240
3241	pagevec_init(&pvec, 0);
3242	while (next < end &&
3243		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3244		int i;
3245		int pg_scanned = 0;
3246
3247		zone = NULL;
3248
3249		for (i = 0; i < pagevec_count(&pvec); i++) {
3250			struct page *page = pvec.pages[i];
3251			pgoff_t page_index = page->index;
3252			struct zone *pagezone = page_zone(page);
3253
3254			pg_scanned++;
3255			if (page_index > next)
3256				next = page_index;
3257			next++;
3258
3259			if (pagezone != zone) {
3260				if (zone)
3261					spin_unlock_irq(&zone->lru_lock);
3262				zone = pagezone;
3263				spin_lock_irq(&zone->lru_lock);
3264			}
3265
3266			if (PageLRU(page) && PageUnevictable(page))
3267				check_move_unevictable_page(page, zone);
3268		}
3269		if (zone)
3270			spin_unlock_irq(&zone->lru_lock);
3271		pagevec_release(&pvec);
3272
3273		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3274	}
3275
3276}
3277
3278/**
3279 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3280 * @zone - zone of which to scan the unevictable list
3281 *
3282 * Scan @zone's unevictable LRU lists to check for pages that have become
3283 * evictable.  Move those that have to @zone's inactive list where they
3284 * become candidates for reclaim, unless shrink_inactive_zone() decides
3285 * to reactivate them.  Pages that are still unevictable are rotated
3286 * back onto @zone's unevictable list.
3287 */
3288#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3289static void scan_zone_unevictable_pages(struct zone *zone)
3290{
3291	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3292	unsigned long scan;
3293	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3294
3295	while (nr_to_scan > 0) {
3296		unsigned long batch_size = min(nr_to_scan,
3297						SCAN_UNEVICTABLE_BATCH_SIZE);
3298
3299		spin_lock_irq(&zone->lru_lock);
3300		for (scan = 0;  scan < batch_size; scan++) {
3301			struct page *page = lru_to_page(l_unevictable);
3302
3303			if (!trylock_page(page))
3304				continue;
3305
3306			prefetchw_prev_lru_page(page, l_unevictable, flags);
3307
3308			if (likely(PageLRU(page) && PageUnevictable(page)))
3309				check_move_unevictable_page(page, zone);
3310
3311			unlock_page(page);
3312		}
3313		spin_unlock_irq(&zone->lru_lock);
3314
3315		nr_to_scan -= batch_size;
3316	}
3317}
3318
3319
3320/**
3321 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3322 *
3323 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3324 * pages that have become evictable.  Move those back to the zones'
3325 * inactive list where they become candidates for reclaim.
3326 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3327 * and we add swap to the system.  As such, it runs in the context of a task
3328 * that has possibly/probably made some previously unevictable pages
3329 * evictable.
3330 */
3331static void scan_all_zones_unevictable_pages(void)
3332{
3333	struct zone *zone;
3334
3335	for_each_zone(zone) {
3336		scan_zone_unevictable_pages(zone);
3337	}
3338}
3339
3340/*
3341 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3342 * all nodes' unevictable lists for evictable pages
3343 */
3344unsigned long scan_unevictable_pages;
3345
3346int scan_unevictable_handler(struct ctl_table *table, int write,
3347			   void __user *buffer,
3348			   size_t *length, loff_t *ppos)
3349{
3350	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3351
3352	if (write && *(unsigned long *)table->data)
3353		scan_all_zones_unevictable_pages();
3354
3355	scan_unevictable_pages = 0;
3356	return 0;
3357}
3358
3359#ifdef CONFIG_NUMA
3360/*
3361 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3362 * a specified node's per zone unevictable lists for evictable pages.
3363 */
3364
3365static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3366					  struct sysdev_attribute *attr,
3367					  char *buf)
3368{
3369	return sprintf(buf, "0\n");	/* always zero; should fit... */
3370}
3371
3372static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3373					   struct sysdev_attribute *attr,
3374					const char *buf, size_t count)
3375{
3376	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3377	struct zone *zone;
3378	unsigned long res;
3379	unsigned long req = strict_strtoul(buf, 10, &res);
3380
3381	if (!req)
3382		return 1;	/* zero is no-op */
3383
3384	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3385		if (!populated_zone(zone))
3386			continue;
3387		scan_zone_unevictable_pages(zone);
3388	}
3389	return 1;
3390}
3391
3392
3393static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3394			read_scan_unevictable_node,
3395			write_scan_unevictable_node);
3396
3397int scan_unevictable_register_node(struct node *node)
3398{
3399	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3400}
3401
3402void scan_unevictable_unregister_node(struct node *node)
3403{
3404	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3405}
3406#endif
3407