vmscan.c revision bbfd28eee9fbd73e780b19beb3dc562befbb94fa
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42
43#include <asm/tlbflush.h>
44#include <asm/div64.h>
45
46#include <linux/swapops.h>
47
48#include "internal.h"
49
50struct scan_control {
51	/* Incremented by the number of inactive pages that were scanned */
52	unsigned long nr_scanned;
53
54	/* This context's GFP mask */
55	gfp_t gfp_mask;
56
57	int may_writepage;
58
59	/* Can pages be swapped as part of reclaim? */
60	int may_swap;
61
62	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
63	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64	 * In this context, it doesn't matter that we scan the
65	 * whole list at once. */
66	int swap_cluster_max;
67
68	int swappiness;
69
70	int all_unreclaimable;
71
72	int order;
73
74	/* Which cgroup do we reclaim from */
75	struct mem_cgroup *mem_cgroup;
76
77	/* Pluggable isolate pages callback */
78	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79			unsigned long *scanned, int order, int mode,
80			struct zone *z, struct mem_cgroup *mem_cont,
81			int active, int file);
82};
83
84#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85
86#ifdef ARCH_HAS_PREFETCH
87#define prefetch_prev_lru_page(_page, _base, _field)			\
88	do {								\
89		if ((_page)->lru.prev != _base) {			\
90			struct page *prev;				\
91									\
92			prev = lru_to_page(&(_page->lru));		\
93			prefetch(&prev->_field);			\
94		}							\
95	} while (0)
96#else
97#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98#endif
99
100#ifdef ARCH_HAS_PREFETCHW
101#define prefetchw_prev_lru_page(_page, _base, _field)			\
102	do {								\
103		if ((_page)->lru.prev != _base) {			\
104			struct page *prev;				\
105									\
106			prev = lru_to_page(&(_page->lru));		\
107			prefetchw(&prev->_field);			\
108		}							\
109	} while (0)
110#else
111#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114/*
115 * From 0 .. 100.  Higher means more swappy.
116 */
117int vm_swappiness = 60;
118long vm_total_pages;	/* The total number of pages which the VM controls */
119
120static LIST_HEAD(shrinker_list);
121static DECLARE_RWSEM(shrinker_rwsem);
122
123#ifdef CONFIG_CGROUP_MEM_RES_CTLR
124#define scan_global_lru(sc)	(!(sc)->mem_cgroup)
125#else
126#define scan_global_lru(sc)	(1)
127#endif
128
129/*
130 * Add a shrinker callback to be called from the vm
131 */
132void register_shrinker(struct shrinker *shrinker)
133{
134	shrinker->nr = 0;
135	down_write(&shrinker_rwsem);
136	list_add_tail(&shrinker->list, &shrinker_list);
137	up_write(&shrinker_rwsem);
138}
139EXPORT_SYMBOL(register_shrinker);
140
141/*
142 * Remove one
143 */
144void unregister_shrinker(struct shrinker *shrinker)
145{
146	down_write(&shrinker_rwsem);
147	list_del(&shrinker->list);
148	up_write(&shrinker_rwsem);
149}
150EXPORT_SYMBOL(unregister_shrinker);
151
152#define SHRINK_BATCH 128
153/*
154 * Call the shrink functions to age shrinkable caches
155 *
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object.  With this in mind we age equal
158 * percentages of the lru and ageable caches.  This should balance the seeks
159 * generated by these structures.
160 *
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
163 *
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165 *
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt.  It is used for balancing
168 * slab reclaim versus page reclaim.
169 *
170 * Returns the number of slab objects which we shrunk.
171 */
172unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173			unsigned long lru_pages)
174{
175	struct shrinker *shrinker;
176	unsigned long ret = 0;
177
178	if (scanned == 0)
179		scanned = SWAP_CLUSTER_MAX;
180
181	if (!down_read_trylock(&shrinker_rwsem))
182		return 1;	/* Assume we'll be able to shrink next time */
183
184	list_for_each_entry(shrinker, &shrinker_list, list) {
185		unsigned long long delta;
186		unsigned long total_scan;
187		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
188
189		delta = (4 * scanned) / shrinker->seeks;
190		delta *= max_pass;
191		do_div(delta, lru_pages + 1);
192		shrinker->nr += delta;
193		if (shrinker->nr < 0) {
194			printk(KERN_ERR "%s: nr=%ld\n",
195					__func__, shrinker->nr);
196			shrinker->nr = max_pass;
197		}
198
199		/*
200		 * Avoid risking looping forever due to too large nr value:
201		 * never try to free more than twice the estimate number of
202		 * freeable entries.
203		 */
204		if (shrinker->nr > max_pass * 2)
205			shrinker->nr = max_pass * 2;
206
207		total_scan = shrinker->nr;
208		shrinker->nr = 0;
209
210		while (total_scan >= SHRINK_BATCH) {
211			long this_scan = SHRINK_BATCH;
212			int shrink_ret;
213			int nr_before;
214
215			nr_before = (*shrinker->shrink)(0, gfp_mask);
216			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217			if (shrink_ret == -1)
218				break;
219			if (shrink_ret < nr_before)
220				ret += nr_before - shrink_ret;
221			count_vm_events(SLABS_SCANNED, this_scan);
222			total_scan -= this_scan;
223
224			cond_resched();
225		}
226
227		shrinker->nr += total_scan;
228	}
229	up_read(&shrinker_rwsem);
230	return ret;
231}
232
233/* Called without lock on whether page is mapped, so answer is unstable */
234static inline int page_mapping_inuse(struct page *page)
235{
236	struct address_space *mapping;
237
238	/* Page is in somebody's page tables. */
239	if (page_mapped(page))
240		return 1;
241
242	/* Be more reluctant to reclaim swapcache than pagecache */
243	if (PageSwapCache(page))
244		return 1;
245
246	mapping = page_mapping(page);
247	if (!mapping)
248		return 0;
249
250	/* File is mmap'd by somebody? */
251	return mapping_mapped(mapping);
252}
253
254static inline int is_page_cache_freeable(struct page *page)
255{
256	return page_count(page) - !!PagePrivate(page) == 2;
257}
258
259static int may_write_to_queue(struct backing_dev_info *bdi)
260{
261	if (current->flags & PF_SWAPWRITE)
262		return 1;
263	if (!bdi_write_congested(bdi))
264		return 1;
265	if (bdi == current->backing_dev_info)
266		return 1;
267	return 0;
268}
269
270/*
271 * We detected a synchronous write error writing a page out.  Probably
272 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
274 *
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up.  But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
278 *
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
281 */
282static void handle_write_error(struct address_space *mapping,
283				struct page *page, int error)
284{
285	lock_page(page);
286	if (page_mapping(page) == mapping)
287		mapping_set_error(mapping, error);
288	unlock_page(page);
289}
290
291/* Request for sync pageout. */
292enum pageout_io {
293	PAGEOUT_IO_ASYNC,
294	PAGEOUT_IO_SYNC,
295};
296
297/* possible outcome of pageout() */
298typedef enum {
299	/* failed to write page out, page is locked */
300	PAGE_KEEP,
301	/* move page to the active list, page is locked */
302	PAGE_ACTIVATE,
303	/* page has been sent to the disk successfully, page is unlocked */
304	PAGE_SUCCESS,
305	/* page is clean and locked */
306	PAGE_CLEAN,
307} pageout_t;
308
309/*
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
312 */
313static pageout_t pageout(struct page *page, struct address_space *mapping,
314						enum pageout_io sync_writeback)
315{
316	/*
317	 * If the page is dirty, only perform writeback if that write
318	 * will be non-blocking.  To prevent this allocation from being
319	 * stalled by pagecache activity.  But note that there may be
320	 * stalls if we need to run get_block().  We could test
321	 * PagePrivate for that.
322	 *
323	 * If this process is currently in generic_file_write() against
324	 * this page's queue, we can perform writeback even if that
325	 * will block.
326	 *
327	 * If the page is swapcache, write it back even if that would
328	 * block, for some throttling. This happens by accident, because
329	 * swap_backing_dev_info is bust: it doesn't reflect the
330	 * congestion state of the swapdevs.  Easy to fix, if needed.
331	 * See swapfile.c:page_queue_congested().
332	 */
333	if (!is_page_cache_freeable(page))
334		return PAGE_KEEP;
335	if (!mapping) {
336		/*
337		 * Some data journaling orphaned pages can have
338		 * page->mapping == NULL while being dirty with clean buffers.
339		 */
340		if (PagePrivate(page)) {
341			if (try_to_free_buffers(page)) {
342				ClearPageDirty(page);
343				printk("%s: orphaned page\n", __func__);
344				return PAGE_CLEAN;
345			}
346		}
347		return PAGE_KEEP;
348	}
349	if (mapping->a_ops->writepage == NULL)
350		return PAGE_ACTIVATE;
351	if (!may_write_to_queue(mapping->backing_dev_info))
352		return PAGE_KEEP;
353
354	if (clear_page_dirty_for_io(page)) {
355		int res;
356		struct writeback_control wbc = {
357			.sync_mode = WB_SYNC_NONE,
358			.nr_to_write = SWAP_CLUSTER_MAX,
359			.range_start = 0,
360			.range_end = LLONG_MAX,
361			.nonblocking = 1,
362			.for_reclaim = 1,
363		};
364
365		SetPageReclaim(page);
366		res = mapping->a_ops->writepage(page, &wbc);
367		if (res < 0)
368			handle_write_error(mapping, page, res);
369		if (res == AOP_WRITEPAGE_ACTIVATE) {
370			ClearPageReclaim(page);
371			return PAGE_ACTIVATE;
372		}
373
374		/*
375		 * Wait on writeback if requested to. This happens when
376		 * direct reclaiming a large contiguous area and the
377		 * first attempt to free a range of pages fails.
378		 */
379		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380			wait_on_page_writeback(page);
381
382		if (!PageWriteback(page)) {
383			/* synchronous write or broken a_ops? */
384			ClearPageReclaim(page);
385		}
386		inc_zone_page_state(page, NR_VMSCAN_WRITE);
387		return PAGE_SUCCESS;
388	}
389
390	return PAGE_CLEAN;
391}
392
393/*
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
396 */
397static int __remove_mapping(struct address_space *mapping, struct page *page)
398{
399	BUG_ON(!PageLocked(page));
400	BUG_ON(mapping != page_mapping(page));
401
402	spin_lock_irq(&mapping->tree_lock);
403	/*
404	 * The non racy check for a busy page.
405	 *
406	 * Must be careful with the order of the tests. When someone has
407	 * a ref to the page, it may be possible that they dirty it then
408	 * drop the reference. So if PageDirty is tested before page_count
409	 * here, then the following race may occur:
410	 *
411	 * get_user_pages(&page);
412	 * [user mapping goes away]
413	 * write_to(page);
414	 *				!PageDirty(page)    [good]
415	 * SetPageDirty(page);
416	 * put_page(page);
417	 *				!page_count(page)   [good, discard it]
418	 *
419	 * [oops, our write_to data is lost]
420	 *
421	 * Reversing the order of the tests ensures such a situation cannot
422	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423	 * load is not satisfied before that of page->_count.
424	 *
425	 * Note that if SetPageDirty is always performed via set_page_dirty,
426	 * and thus under tree_lock, then this ordering is not required.
427	 */
428	if (!page_freeze_refs(page, 2))
429		goto cannot_free;
430	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431	if (unlikely(PageDirty(page))) {
432		page_unfreeze_refs(page, 2);
433		goto cannot_free;
434	}
435
436	if (PageSwapCache(page)) {
437		swp_entry_t swap = { .val = page_private(page) };
438		__delete_from_swap_cache(page);
439		spin_unlock_irq(&mapping->tree_lock);
440		swap_free(swap);
441	} else {
442		__remove_from_page_cache(page);
443		spin_unlock_irq(&mapping->tree_lock);
444	}
445
446	return 1;
447
448cannot_free:
449	spin_unlock_irq(&mapping->tree_lock);
450	return 0;
451}
452
453/*
454 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
455 * someone else has a ref on the page, abort and return 0.  If it was
456 * successfully detached, return 1.  Assumes the caller has a single ref on
457 * this page.
458 */
459int remove_mapping(struct address_space *mapping, struct page *page)
460{
461	if (__remove_mapping(mapping, page)) {
462		/*
463		 * Unfreezing the refcount with 1 rather than 2 effectively
464		 * drops the pagecache ref for us without requiring another
465		 * atomic operation.
466		 */
467		page_unfreeze_refs(page, 1);
468		return 1;
469	}
470	return 0;
471}
472
473/**
474 * putback_lru_page - put previously isolated page onto appropriate LRU list
475 * @page: page to be put back to appropriate lru list
476 *
477 * Add previously isolated @page to appropriate LRU list.
478 * Page may still be unevictable for other reasons.
479 *
480 * lru_lock must not be held, interrupts must be enabled.
481 */
482#ifdef CONFIG_UNEVICTABLE_LRU
483void putback_lru_page(struct page *page)
484{
485	int lru;
486	int active = !!TestClearPageActive(page);
487	int was_unevictable = PageUnevictable(page);
488
489	VM_BUG_ON(PageLRU(page));
490
491redo:
492	ClearPageUnevictable(page);
493
494	if (page_evictable(page, NULL)) {
495		/*
496		 * For evictable pages, we can use the cache.
497		 * In event of a race, worst case is we end up with an
498		 * unevictable page on [in]active list.
499		 * We know how to handle that.
500		 */
501		lru = active + page_is_file_cache(page);
502		lru_cache_add_lru(page, lru);
503	} else {
504		/*
505		 * Put unevictable pages directly on zone's unevictable
506		 * list.
507		 */
508		lru = LRU_UNEVICTABLE;
509		add_page_to_unevictable_list(page);
510	}
511	mem_cgroup_move_lists(page, lru);
512
513	/*
514	 * page's status can change while we move it among lru. If an evictable
515	 * page is on unevictable list, it never be freed. To avoid that,
516	 * check after we added it to the list, again.
517	 */
518	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
519		if (!isolate_lru_page(page)) {
520			put_page(page);
521			goto redo;
522		}
523		/* This means someone else dropped this page from LRU
524		 * So, it will be freed or putback to LRU again. There is
525		 * nothing to do here.
526		 */
527	}
528
529	if (was_unevictable && lru != LRU_UNEVICTABLE)
530		count_vm_event(UNEVICTABLE_PGRESCUED);
531	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
532		count_vm_event(UNEVICTABLE_PGCULLED);
533
534	put_page(page);		/* drop ref from isolate */
535}
536
537#else /* CONFIG_UNEVICTABLE_LRU */
538
539void putback_lru_page(struct page *page)
540{
541	int lru;
542	VM_BUG_ON(PageLRU(page));
543
544	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
545	lru_cache_add_lru(page, lru);
546	mem_cgroup_move_lists(page, lru);
547	put_page(page);
548}
549#endif /* CONFIG_UNEVICTABLE_LRU */
550
551
552/*
553 * shrink_page_list() returns the number of reclaimed pages
554 */
555static unsigned long shrink_page_list(struct list_head *page_list,
556					struct scan_control *sc,
557					enum pageout_io sync_writeback)
558{
559	LIST_HEAD(ret_pages);
560	struct pagevec freed_pvec;
561	int pgactivate = 0;
562	unsigned long nr_reclaimed = 0;
563
564	cond_resched();
565
566	pagevec_init(&freed_pvec, 1);
567	while (!list_empty(page_list)) {
568		struct address_space *mapping;
569		struct page *page;
570		int may_enter_fs;
571		int referenced;
572
573		cond_resched();
574
575		page = lru_to_page(page_list);
576		list_del(&page->lru);
577
578		if (!trylock_page(page))
579			goto keep;
580
581		VM_BUG_ON(PageActive(page));
582
583		sc->nr_scanned++;
584
585		if (unlikely(!page_evictable(page, NULL))) {
586			unlock_page(page);
587			putback_lru_page(page);
588			continue;
589		}
590
591		if (!sc->may_swap && page_mapped(page))
592			goto keep_locked;
593
594		/* Double the slab pressure for mapped and swapcache pages */
595		if (page_mapped(page) || PageSwapCache(page))
596			sc->nr_scanned++;
597
598		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
599			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
600
601		if (PageWriteback(page)) {
602			/*
603			 * Synchronous reclaim is performed in two passes,
604			 * first an asynchronous pass over the list to
605			 * start parallel writeback, and a second synchronous
606			 * pass to wait for the IO to complete.  Wait here
607			 * for any page for which writeback has already
608			 * started.
609			 */
610			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
611				wait_on_page_writeback(page);
612			else
613				goto keep_locked;
614		}
615
616		referenced = page_referenced(page, 1, sc->mem_cgroup);
617		/* In active use or really unfreeable?  Activate it. */
618		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
619					referenced && page_mapping_inuse(page))
620			goto activate_locked;
621
622#ifdef CONFIG_SWAP
623		/*
624		 * Anonymous process memory has backing store?
625		 * Try to allocate it some swap space here.
626		 */
627		if (PageAnon(page) && !PageSwapCache(page))
628			if (!add_to_swap(page, GFP_ATOMIC))
629				goto activate_locked;
630#endif /* CONFIG_SWAP */
631
632		mapping = page_mapping(page);
633
634		/*
635		 * The page is mapped into the page tables of one or more
636		 * processes. Try to unmap it here.
637		 */
638		if (page_mapped(page) && mapping) {
639			switch (try_to_unmap(page, 0)) {
640			case SWAP_FAIL:
641				goto activate_locked;
642			case SWAP_AGAIN:
643				goto keep_locked;
644			case SWAP_SUCCESS:
645				; /* try to free the page below */
646			}
647		}
648
649		if (PageDirty(page)) {
650			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
651				goto keep_locked;
652			if (!may_enter_fs)
653				goto keep_locked;
654			if (!sc->may_writepage)
655				goto keep_locked;
656
657			/* Page is dirty, try to write it out here */
658			switch (pageout(page, mapping, sync_writeback)) {
659			case PAGE_KEEP:
660				goto keep_locked;
661			case PAGE_ACTIVATE:
662				goto activate_locked;
663			case PAGE_SUCCESS:
664				if (PageWriteback(page) || PageDirty(page))
665					goto keep;
666				/*
667				 * A synchronous write - probably a ramdisk.  Go
668				 * ahead and try to reclaim the page.
669				 */
670				if (!trylock_page(page))
671					goto keep;
672				if (PageDirty(page) || PageWriteback(page))
673					goto keep_locked;
674				mapping = page_mapping(page);
675			case PAGE_CLEAN:
676				; /* try to free the page below */
677			}
678		}
679
680		/*
681		 * If the page has buffers, try to free the buffer mappings
682		 * associated with this page. If we succeed we try to free
683		 * the page as well.
684		 *
685		 * We do this even if the page is PageDirty().
686		 * try_to_release_page() does not perform I/O, but it is
687		 * possible for a page to have PageDirty set, but it is actually
688		 * clean (all its buffers are clean).  This happens if the
689		 * buffers were written out directly, with submit_bh(). ext3
690		 * will do this, as well as the blockdev mapping.
691		 * try_to_release_page() will discover that cleanness and will
692		 * drop the buffers and mark the page clean - it can be freed.
693		 *
694		 * Rarely, pages can have buffers and no ->mapping.  These are
695		 * the pages which were not successfully invalidated in
696		 * truncate_complete_page().  We try to drop those buffers here
697		 * and if that worked, and the page is no longer mapped into
698		 * process address space (page_count == 1) it can be freed.
699		 * Otherwise, leave the page on the LRU so it is swappable.
700		 */
701		if (PagePrivate(page)) {
702			if (!try_to_release_page(page, sc->gfp_mask))
703				goto activate_locked;
704			if (!mapping && page_count(page) == 1) {
705				unlock_page(page);
706				if (put_page_testzero(page))
707					goto free_it;
708				else {
709					/*
710					 * rare race with speculative reference.
711					 * the speculative reference will free
712					 * this page shortly, so we may
713					 * increment nr_reclaimed here (and
714					 * leave it off the LRU).
715					 */
716					nr_reclaimed++;
717					continue;
718				}
719			}
720		}
721
722		if (!mapping || !__remove_mapping(mapping, page))
723			goto keep_locked;
724
725		unlock_page(page);
726free_it:
727		nr_reclaimed++;
728		if (!pagevec_add(&freed_pvec, page)) {
729			__pagevec_free(&freed_pvec);
730			pagevec_reinit(&freed_pvec);
731		}
732		continue;
733
734activate_locked:
735		/* Not a candidate for swapping, so reclaim swap space. */
736		if (PageSwapCache(page) && vm_swap_full())
737			remove_exclusive_swap_page_ref(page);
738		VM_BUG_ON(PageActive(page));
739		SetPageActive(page);
740		pgactivate++;
741keep_locked:
742		unlock_page(page);
743keep:
744		list_add(&page->lru, &ret_pages);
745		VM_BUG_ON(PageLRU(page));
746	}
747	list_splice(&ret_pages, page_list);
748	if (pagevec_count(&freed_pvec))
749		__pagevec_free(&freed_pvec);
750	count_vm_events(PGACTIVATE, pgactivate);
751	return nr_reclaimed;
752}
753
754/* LRU Isolation modes. */
755#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
756#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
757#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
758
759/*
760 * Attempt to remove the specified page from its LRU.  Only take this page
761 * if it is of the appropriate PageActive status.  Pages which are being
762 * freed elsewhere are also ignored.
763 *
764 * page:	page to consider
765 * mode:	one of the LRU isolation modes defined above
766 *
767 * returns 0 on success, -ve errno on failure.
768 */
769int __isolate_lru_page(struct page *page, int mode, int file)
770{
771	int ret = -EINVAL;
772
773	/* Only take pages on the LRU. */
774	if (!PageLRU(page))
775		return ret;
776
777	/*
778	 * When checking the active state, we need to be sure we are
779	 * dealing with comparible boolean values.  Take the logical not
780	 * of each.
781	 */
782	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
783		return ret;
784
785	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
786		return ret;
787
788	/*
789	 * When this function is being called for lumpy reclaim, we
790	 * initially look into all LRU pages, active, inactive and
791	 * unevictable; only give shrink_page_list evictable pages.
792	 */
793	if (PageUnevictable(page))
794		return ret;
795
796	ret = -EBUSY;
797	if (likely(get_page_unless_zero(page))) {
798		/*
799		 * Be careful not to clear PageLRU until after we're
800		 * sure the page is not being freed elsewhere -- the
801		 * page release code relies on it.
802		 */
803		ClearPageLRU(page);
804		ret = 0;
805	}
806
807	return ret;
808}
809
810/*
811 * zone->lru_lock is heavily contended.  Some of the functions that
812 * shrink the lists perform better by taking out a batch of pages
813 * and working on them outside the LRU lock.
814 *
815 * For pagecache intensive workloads, this function is the hottest
816 * spot in the kernel (apart from copy_*_user functions).
817 *
818 * Appropriate locks must be held before calling this function.
819 *
820 * @nr_to_scan:	The number of pages to look through on the list.
821 * @src:	The LRU list to pull pages off.
822 * @dst:	The temp list to put pages on to.
823 * @scanned:	The number of pages that were scanned.
824 * @order:	The caller's attempted allocation order
825 * @mode:	One of the LRU isolation modes
826 * @file:	True [1] if isolating file [!anon] pages
827 *
828 * returns how many pages were moved onto *@dst.
829 */
830static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
831		struct list_head *src, struct list_head *dst,
832		unsigned long *scanned, int order, int mode, int file)
833{
834	unsigned long nr_taken = 0;
835	unsigned long scan;
836
837	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
838		struct page *page;
839		unsigned long pfn;
840		unsigned long end_pfn;
841		unsigned long page_pfn;
842		int zone_id;
843
844		page = lru_to_page(src);
845		prefetchw_prev_lru_page(page, src, flags);
846
847		VM_BUG_ON(!PageLRU(page));
848
849		switch (__isolate_lru_page(page, mode, file)) {
850		case 0:
851			list_move(&page->lru, dst);
852			nr_taken++;
853			break;
854
855		case -EBUSY:
856			/* else it is being freed elsewhere */
857			list_move(&page->lru, src);
858			continue;
859
860		default:
861			BUG();
862		}
863
864		if (!order)
865			continue;
866
867		/*
868		 * Attempt to take all pages in the order aligned region
869		 * surrounding the tag page.  Only take those pages of
870		 * the same active state as that tag page.  We may safely
871		 * round the target page pfn down to the requested order
872		 * as the mem_map is guarenteed valid out to MAX_ORDER,
873		 * where that page is in a different zone we will detect
874		 * it from its zone id and abort this block scan.
875		 */
876		zone_id = page_zone_id(page);
877		page_pfn = page_to_pfn(page);
878		pfn = page_pfn & ~((1 << order) - 1);
879		end_pfn = pfn + (1 << order);
880		for (; pfn < end_pfn; pfn++) {
881			struct page *cursor_page;
882
883			/* The target page is in the block, ignore it. */
884			if (unlikely(pfn == page_pfn))
885				continue;
886
887			/* Avoid holes within the zone. */
888			if (unlikely(!pfn_valid_within(pfn)))
889				break;
890
891			cursor_page = pfn_to_page(pfn);
892
893			/* Check that we have not crossed a zone boundary. */
894			if (unlikely(page_zone_id(cursor_page) != zone_id))
895				continue;
896			switch (__isolate_lru_page(cursor_page, mode, file)) {
897			case 0:
898				list_move(&cursor_page->lru, dst);
899				nr_taken++;
900				scan++;
901				break;
902
903			case -EBUSY:
904				/* else it is being freed elsewhere */
905				list_move(&cursor_page->lru, src);
906			default:
907				break;	/* ! on LRU or wrong list */
908			}
909		}
910	}
911
912	*scanned = scan;
913	return nr_taken;
914}
915
916static unsigned long isolate_pages_global(unsigned long nr,
917					struct list_head *dst,
918					unsigned long *scanned, int order,
919					int mode, struct zone *z,
920					struct mem_cgroup *mem_cont,
921					int active, int file)
922{
923	int lru = LRU_BASE;
924	if (active)
925		lru += LRU_ACTIVE;
926	if (file)
927		lru += LRU_FILE;
928	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
929								mode, !!file);
930}
931
932/*
933 * clear_active_flags() is a helper for shrink_active_list(), clearing
934 * any active bits from the pages in the list.
935 */
936static unsigned long clear_active_flags(struct list_head *page_list,
937					unsigned int *count)
938{
939	int nr_active = 0;
940	int lru;
941	struct page *page;
942
943	list_for_each_entry(page, page_list, lru) {
944		lru = page_is_file_cache(page);
945		if (PageActive(page)) {
946			lru += LRU_ACTIVE;
947			ClearPageActive(page);
948			nr_active++;
949		}
950		count[lru]++;
951	}
952
953	return nr_active;
954}
955
956/**
957 * isolate_lru_page - tries to isolate a page from its LRU list
958 * @page: page to isolate from its LRU list
959 *
960 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
961 * vmstat statistic corresponding to whatever LRU list the page was on.
962 *
963 * Returns 0 if the page was removed from an LRU list.
964 * Returns -EBUSY if the page was not on an LRU list.
965 *
966 * The returned page will have PageLRU() cleared.  If it was found on
967 * the active list, it will have PageActive set.  If it was found on
968 * the unevictable list, it will have the PageUnevictable bit set. That flag
969 * may need to be cleared by the caller before letting the page go.
970 *
971 * The vmstat statistic corresponding to the list on which the page was
972 * found will be decremented.
973 *
974 * Restrictions:
975 * (1) Must be called with an elevated refcount on the page. This is a
976 *     fundamentnal difference from isolate_lru_pages (which is called
977 *     without a stable reference).
978 * (2) the lru_lock must not be held.
979 * (3) interrupts must be enabled.
980 */
981int isolate_lru_page(struct page *page)
982{
983	int ret = -EBUSY;
984
985	if (PageLRU(page)) {
986		struct zone *zone = page_zone(page);
987
988		spin_lock_irq(&zone->lru_lock);
989		if (PageLRU(page) && get_page_unless_zero(page)) {
990			int lru = page_lru(page);
991			ret = 0;
992			ClearPageLRU(page);
993
994			del_page_from_lru_list(zone, page, lru);
995		}
996		spin_unlock_irq(&zone->lru_lock);
997	}
998	return ret;
999}
1000
1001/*
1002 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1003 * of reclaimed pages
1004 */
1005static unsigned long shrink_inactive_list(unsigned long max_scan,
1006			struct zone *zone, struct scan_control *sc,
1007			int priority, int file)
1008{
1009	LIST_HEAD(page_list);
1010	struct pagevec pvec;
1011	unsigned long nr_scanned = 0;
1012	unsigned long nr_reclaimed = 0;
1013
1014	pagevec_init(&pvec, 1);
1015
1016	lru_add_drain();
1017	spin_lock_irq(&zone->lru_lock);
1018	do {
1019		struct page *page;
1020		unsigned long nr_taken;
1021		unsigned long nr_scan;
1022		unsigned long nr_freed;
1023		unsigned long nr_active;
1024		unsigned int count[NR_LRU_LISTS] = { 0, };
1025		int mode = ISOLATE_INACTIVE;
1026
1027		/*
1028		 * If we need a large contiguous chunk of memory, or have
1029		 * trouble getting a small set of contiguous pages, we
1030		 * will reclaim both active and inactive pages.
1031		 *
1032		 * We use the same threshold as pageout congestion_wait below.
1033		 */
1034		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1035			mode = ISOLATE_BOTH;
1036		else if (sc->order && priority < DEF_PRIORITY - 2)
1037			mode = ISOLATE_BOTH;
1038
1039		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1040			     &page_list, &nr_scan, sc->order, mode,
1041				zone, sc->mem_cgroup, 0, file);
1042		nr_active = clear_active_flags(&page_list, count);
1043		__count_vm_events(PGDEACTIVATE, nr_active);
1044
1045		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1046						-count[LRU_ACTIVE_FILE]);
1047		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1048						-count[LRU_INACTIVE_FILE]);
1049		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1050						-count[LRU_ACTIVE_ANON]);
1051		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1052						-count[LRU_INACTIVE_ANON]);
1053
1054		if (scan_global_lru(sc)) {
1055			zone->pages_scanned += nr_scan;
1056			zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1057			zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1058			zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1059			zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1060		}
1061		spin_unlock_irq(&zone->lru_lock);
1062
1063		nr_scanned += nr_scan;
1064		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1065
1066		/*
1067		 * If we are direct reclaiming for contiguous pages and we do
1068		 * not reclaim everything in the list, try again and wait
1069		 * for IO to complete. This will stall high-order allocations
1070		 * but that should be acceptable to the caller
1071		 */
1072		if (nr_freed < nr_taken && !current_is_kswapd() &&
1073					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1074			congestion_wait(WRITE, HZ/10);
1075
1076			/*
1077			 * The attempt at page out may have made some
1078			 * of the pages active, mark them inactive again.
1079			 */
1080			nr_active = clear_active_flags(&page_list, count);
1081			count_vm_events(PGDEACTIVATE, nr_active);
1082
1083			nr_freed += shrink_page_list(&page_list, sc,
1084							PAGEOUT_IO_SYNC);
1085		}
1086
1087		nr_reclaimed += nr_freed;
1088		local_irq_disable();
1089		if (current_is_kswapd()) {
1090			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1091			__count_vm_events(KSWAPD_STEAL, nr_freed);
1092		} else if (scan_global_lru(sc))
1093			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1094
1095		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1096
1097		if (nr_taken == 0)
1098			goto done;
1099
1100		spin_lock(&zone->lru_lock);
1101		/*
1102		 * Put back any unfreeable pages.
1103		 */
1104		while (!list_empty(&page_list)) {
1105			int lru;
1106			page = lru_to_page(&page_list);
1107			VM_BUG_ON(PageLRU(page));
1108			list_del(&page->lru);
1109			if (unlikely(!page_evictable(page, NULL))) {
1110				spin_unlock_irq(&zone->lru_lock);
1111				putback_lru_page(page);
1112				spin_lock_irq(&zone->lru_lock);
1113				continue;
1114			}
1115			SetPageLRU(page);
1116			lru = page_lru(page);
1117			add_page_to_lru_list(zone, page, lru);
1118			mem_cgroup_move_lists(page, lru);
1119			if (PageActive(page) && scan_global_lru(sc)) {
1120				int file = !!page_is_file_cache(page);
1121				zone->recent_rotated[file]++;
1122			}
1123			if (!pagevec_add(&pvec, page)) {
1124				spin_unlock_irq(&zone->lru_lock);
1125				__pagevec_release(&pvec);
1126				spin_lock_irq(&zone->lru_lock);
1127			}
1128		}
1129  	} while (nr_scanned < max_scan);
1130	spin_unlock(&zone->lru_lock);
1131done:
1132	local_irq_enable();
1133	pagevec_release(&pvec);
1134	return nr_reclaimed;
1135}
1136
1137/*
1138 * We are about to scan this zone at a certain priority level.  If that priority
1139 * level is smaller (ie: more urgent) than the previous priority, then note
1140 * that priority level within the zone.  This is done so that when the next
1141 * process comes in to scan this zone, it will immediately start out at this
1142 * priority level rather than having to build up its own scanning priority.
1143 * Here, this priority affects only the reclaim-mapped threshold.
1144 */
1145static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1146{
1147	if (priority < zone->prev_priority)
1148		zone->prev_priority = priority;
1149}
1150
1151static inline int zone_is_near_oom(struct zone *zone)
1152{
1153	return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1154}
1155
1156/*
1157 * This moves pages from the active list to the inactive list.
1158 *
1159 * We move them the other way if the page is referenced by one or more
1160 * processes, from rmap.
1161 *
1162 * If the pages are mostly unmapped, the processing is fast and it is
1163 * appropriate to hold zone->lru_lock across the whole operation.  But if
1164 * the pages are mapped, the processing is slow (page_referenced()) so we
1165 * should drop zone->lru_lock around each page.  It's impossible to balance
1166 * this, so instead we remove the pages from the LRU while processing them.
1167 * It is safe to rely on PG_active against the non-LRU pages in here because
1168 * nobody will play with that bit on a non-LRU page.
1169 *
1170 * The downside is that we have to touch page->_count against each page.
1171 * But we had to alter page->flags anyway.
1172 */
1173
1174
1175static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1176			struct scan_control *sc, int priority, int file)
1177{
1178	unsigned long pgmoved;
1179	int pgdeactivate = 0;
1180	unsigned long pgscanned;
1181	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1182	LIST_HEAD(l_inactive);
1183	struct page *page;
1184	struct pagevec pvec;
1185	enum lru_list lru;
1186
1187	lru_add_drain();
1188	spin_lock_irq(&zone->lru_lock);
1189	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1190					ISOLATE_ACTIVE, zone,
1191					sc->mem_cgroup, 1, file);
1192	/*
1193	 * zone->pages_scanned is used for detect zone's oom
1194	 * mem_cgroup remembers nr_scan by itself.
1195	 */
1196	if (scan_global_lru(sc)) {
1197		zone->pages_scanned += pgscanned;
1198		zone->recent_scanned[!!file] += pgmoved;
1199	}
1200
1201	if (file)
1202		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1203	else
1204		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1205	spin_unlock_irq(&zone->lru_lock);
1206
1207	pgmoved = 0;
1208	while (!list_empty(&l_hold)) {
1209		cond_resched();
1210		page = lru_to_page(&l_hold);
1211		list_del(&page->lru);
1212
1213		if (unlikely(!page_evictable(page, NULL))) {
1214			putback_lru_page(page);
1215			continue;
1216		}
1217
1218		/* page_referenced clears PageReferenced */
1219		if (page_mapping_inuse(page) &&
1220		    page_referenced(page, 0, sc->mem_cgroup))
1221			pgmoved++;
1222
1223		list_add(&page->lru, &l_inactive);
1224	}
1225
1226	/*
1227	 * Count referenced pages from currently used mappings as
1228	 * rotated, even though they are moved to the inactive list.
1229	 * This helps balance scan pressure between file and anonymous
1230	 * pages in get_scan_ratio.
1231	 */
1232	zone->recent_rotated[!!file] += pgmoved;
1233
1234	/*
1235	 * Move the pages to the [file or anon] inactive list.
1236	 */
1237	pagevec_init(&pvec, 1);
1238
1239	pgmoved = 0;
1240	lru = LRU_BASE + file * LRU_FILE;
1241	spin_lock_irq(&zone->lru_lock);
1242	while (!list_empty(&l_inactive)) {
1243		page = lru_to_page(&l_inactive);
1244		prefetchw_prev_lru_page(page, &l_inactive, flags);
1245		VM_BUG_ON(PageLRU(page));
1246		SetPageLRU(page);
1247		VM_BUG_ON(!PageActive(page));
1248		ClearPageActive(page);
1249
1250		list_move(&page->lru, &zone->lru[lru].list);
1251		mem_cgroup_move_lists(page, lru);
1252		pgmoved++;
1253		if (!pagevec_add(&pvec, page)) {
1254			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1255			spin_unlock_irq(&zone->lru_lock);
1256			pgdeactivate += pgmoved;
1257			pgmoved = 0;
1258			if (buffer_heads_over_limit)
1259				pagevec_strip(&pvec);
1260			__pagevec_release(&pvec);
1261			spin_lock_irq(&zone->lru_lock);
1262		}
1263	}
1264	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1265	pgdeactivate += pgmoved;
1266	if (buffer_heads_over_limit) {
1267		spin_unlock_irq(&zone->lru_lock);
1268		pagevec_strip(&pvec);
1269		spin_lock_irq(&zone->lru_lock);
1270	}
1271	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1272	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1273	spin_unlock_irq(&zone->lru_lock);
1274	if (vm_swap_full())
1275		pagevec_swap_free(&pvec);
1276
1277	pagevec_release(&pvec);
1278}
1279
1280static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1281	struct zone *zone, struct scan_control *sc, int priority)
1282{
1283	int file = is_file_lru(lru);
1284
1285	if (lru == LRU_ACTIVE_FILE) {
1286		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1287		return 0;
1288	}
1289
1290	if (lru == LRU_ACTIVE_ANON &&
1291	    (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1292		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1293		return 0;
1294	}
1295	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1296}
1297
1298/*
1299 * Determine how aggressively the anon and file LRU lists should be
1300 * scanned.  The relative value of each set of LRU lists is determined
1301 * by looking at the fraction of the pages scanned we did rotate back
1302 * onto the active list instead of evict.
1303 *
1304 * percent[0] specifies how much pressure to put on ram/swap backed
1305 * memory, while percent[1] determines pressure on the file LRUs.
1306 */
1307static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1308					unsigned long *percent)
1309{
1310	unsigned long anon, file, free;
1311	unsigned long anon_prio, file_prio;
1312	unsigned long ap, fp;
1313
1314	anon  = zone_page_state(zone, NR_ACTIVE_ANON) +
1315		zone_page_state(zone, NR_INACTIVE_ANON);
1316	file  = zone_page_state(zone, NR_ACTIVE_FILE) +
1317		zone_page_state(zone, NR_INACTIVE_FILE);
1318	free  = zone_page_state(zone, NR_FREE_PAGES);
1319
1320	/* If we have no swap space, do not bother scanning anon pages. */
1321	if (nr_swap_pages <= 0) {
1322		percent[0] = 0;
1323		percent[1] = 100;
1324		return;
1325	}
1326
1327	/* If we have very few page cache pages, force-scan anon pages. */
1328	if (unlikely(file + free <= zone->pages_high)) {
1329		percent[0] = 100;
1330		percent[1] = 0;
1331		return;
1332	}
1333
1334	/*
1335	 * OK, so we have swap space and a fair amount of page cache
1336	 * pages.  We use the recently rotated / recently scanned
1337	 * ratios to determine how valuable each cache is.
1338	 *
1339	 * Because workloads change over time (and to avoid overflow)
1340	 * we keep these statistics as a floating average, which ends
1341	 * up weighing recent references more than old ones.
1342	 *
1343	 * anon in [0], file in [1]
1344	 */
1345	if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1346		spin_lock_irq(&zone->lru_lock);
1347		zone->recent_scanned[0] /= 2;
1348		zone->recent_rotated[0] /= 2;
1349		spin_unlock_irq(&zone->lru_lock);
1350	}
1351
1352	if (unlikely(zone->recent_scanned[1] > file / 4)) {
1353		spin_lock_irq(&zone->lru_lock);
1354		zone->recent_scanned[1] /= 2;
1355		zone->recent_rotated[1] /= 2;
1356		spin_unlock_irq(&zone->lru_lock);
1357	}
1358
1359	/*
1360	 * With swappiness at 100, anonymous and file have the same priority.
1361	 * This scanning priority is essentially the inverse of IO cost.
1362	 */
1363	anon_prio = sc->swappiness;
1364	file_prio = 200 - sc->swappiness;
1365
1366	/*
1367	 *                  anon       recent_rotated[0]
1368	 * %anon = 100 * ----------- / ----------------- * IO cost
1369	 *               anon + file      rotate_sum
1370	 */
1371	ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1372	ap /= zone->recent_rotated[0] + 1;
1373
1374	fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1375	fp /= zone->recent_rotated[1] + 1;
1376
1377	/* Normalize to percentages */
1378	percent[0] = 100 * ap / (ap + fp + 1);
1379	percent[1] = 100 - percent[0];
1380}
1381
1382
1383/*
1384 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1385 */
1386static unsigned long shrink_zone(int priority, struct zone *zone,
1387				struct scan_control *sc)
1388{
1389	unsigned long nr[NR_LRU_LISTS];
1390	unsigned long nr_to_scan;
1391	unsigned long nr_reclaimed = 0;
1392	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1393	enum lru_list l;
1394
1395	get_scan_ratio(zone, sc, percent);
1396
1397	for_each_evictable_lru(l) {
1398		if (scan_global_lru(sc)) {
1399			int file = is_file_lru(l);
1400			int scan;
1401			/*
1402			 * Add one to nr_to_scan just to make sure that the
1403			 * kernel will slowly sift through each list.
1404			 */
1405			scan = zone_page_state(zone, NR_LRU_BASE + l);
1406			if (priority) {
1407				scan >>= priority;
1408				scan = (scan * percent[file]) / 100;
1409			}
1410			zone->lru[l].nr_scan += scan + 1;
1411			nr[l] = zone->lru[l].nr_scan;
1412			if (nr[l] >= sc->swap_cluster_max)
1413				zone->lru[l].nr_scan = 0;
1414			else
1415				nr[l] = 0;
1416		} else {
1417			/*
1418			 * This reclaim occurs not because zone memory shortage
1419			 * but because memory controller hits its limit.
1420			 * Don't modify zone reclaim related data.
1421			 */
1422			nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1423								priority, l);
1424		}
1425	}
1426
1427	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1428					nr[LRU_INACTIVE_FILE]) {
1429		for_each_evictable_lru(l) {
1430			if (nr[l]) {
1431				nr_to_scan = min(nr[l],
1432					(unsigned long)sc->swap_cluster_max);
1433				nr[l] -= nr_to_scan;
1434
1435				nr_reclaimed += shrink_list(l, nr_to_scan,
1436							zone, sc, priority);
1437			}
1438		}
1439	}
1440
1441	/*
1442	 * Even if we did not try to evict anon pages at all, we want to
1443	 * rebalance the anon lru active/inactive ratio.
1444	 */
1445	if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1446		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1447	else if (!scan_global_lru(sc))
1448		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1449
1450	throttle_vm_writeout(sc->gfp_mask);
1451	return nr_reclaimed;
1452}
1453
1454/*
1455 * This is the direct reclaim path, for page-allocating processes.  We only
1456 * try to reclaim pages from zones which will satisfy the caller's allocation
1457 * request.
1458 *
1459 * We reclaim from a zone even if that zone is over pages_high.  Because:
1460 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1461 *    allocation or
1462 * b) The zones may be over pages_high but they must go *over* pages_high to
1463 *    satisfy the `incremental min' zone defense algorithm.
1464 *
1465 * Returns the number of reclaimed pages.
1466 *
1467 * If a zone is deemed to be full of pinned pages then just give it a light
1468 * scan then give up on it.
1469 */
1470static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1471					struct scan_control *sc)
1472{
1473	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1474	unsigned long nr_reclaimed = 0;
1475	struct zoneref *z;
1476	struct zone *zone;
1477
1478	sc->all_unreclaimable = 1;
1479	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1480		if (!populated_zone(zone))
1481			continue;
1482		/*
1483		 * Take care memory controller reclaiming has small influence
1484		 * to global LRU.
1485		 */
1486		if (scan_global_lru(sc)) {
1487			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1488				continue;
1489			note_zone_scanning_priority(zone, priority);
1490
1491			if (zone_is_all_unreclaimable(zone) &&
1492						priority != DEF_PRIORITY)
1493				continue;	/* Let kswapd poll it */
1494			sc->all_unreclaimable = 0;
1495		} else {
1496			/*
1497			 * Ignore cpuset limitation here. We just want to reduce
1498			 * # of used pages by us regardless of memory shortage.
1499			 */
1500			sc->all_unreclaimable = 0;
1501			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1502							priority);
1503		}
1504
1505		nr_reclaimed += shrink_zone(priority, zone, sc);
1506	}
1507
1508	return nr_reclaimed;
1509}
1510
1511/*
1512 * This is the main entry point to direct page reclaim.
1513 *
1514 * If a full scan of the inactive list fails to free enough memory then we
1515 * are "out of memory" and something needs to be killed.
1516 *
1517 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1518 * high - the zone may be full of dirty or under-writeback pages, which this
1519 * caller can't do much about.  We kick pdflush and take explicit naps in the
1520 * hope that some of these pages can be written.  But if the allocating task
1521 * holds filesystem locks which prevent writeout this might not work, and the
1522 * allocation attempt will fail.
1523 *
1524 * returns:	0, if no pages reclaimed
1525 * 		else, the number of pages reclaimed
1526 */
1527static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1528					struct scan_control *sc)
1529{
1530	int priority;
1531	unsigned long ret = 0;
1532	unsigned long total_scanned = 0;
1533	unsigned long nr_reclaimed = 0;
1534	struct reclaim_state *reclaim_state = current->reclaim_state;
1535	unsigned long lru_pages = 0;
1536	struct zoneref *z;
1537	struct zone *zone;
1538	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1539
1540	delayacct_freepages_start();
1541
1542	if (scan_global_lru(sc))
1543		count_vm_event(ALLOCSTALL);
1544	/*
1545	 * mem_cgroup will not do shrink_slab.
1546	 */
1547	if (scan_global_lru(sc)) {
1548		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1549
1550			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1551				continue;
1552
1553			lru_pages += zone_lru_pages(zone);
1554		}
1555	}
1556
1557	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1558		sc->nr_scanned = 0;
1559		if (!priority)
1560			disable_swap_token();
1561		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1562		/*
1563		 * Don't shrink slabs when reclaiming memory from
1564		 * over limit cgroups
1565		 */
1566		if (scan_global_lru(sc)) {
1567			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1568			if (reclaim_state) {
1569				nr_reclaimed += reclaim_state->reclaimed_slab;
1570				reclaim_state->reclaimed_slab = 0;
1571			}
1572		}
1573		total_scanned += sc->nr_scanned;
1574		if (nr_reclaimed >= sc->swap_cluster_max) {
1575			ret = nr_reclaimed;
1576			goto out;
1577		}
1578
1579		/*
1580		 * Try to write back as many pages as we just scanned.  This
1581		 * tends to cause slow streaming writers to write data to the
1582		 * disk smoothly, at the dirtying rate, which is nice.   But
1583		 * that's undesirable in laptop mode, where we *want* lumpy
1584		 * writeout.  So in laptop mode, write out the whole world.
1585		 */
1586		if (total_scanned > sc->swap_cluster_max +
1587					sc->swap_cluster_max / 2) {
1588			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1589			sc->may_writepage = 1;
1590		}
1591
1592		/* Take a nap, wait for some writeback to complete */
1593		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1594			congestion_wait(WRITE, HZ/10);
1595	}
1596	/* top priority shrink_zones still had more to do? don't OOM, then */
1597	if (!sc->all_unreclaimable && scan_global_lru(sc))
1598		ret = nr_reclaimed;
1599out:
1600	/*
1601	 * Now that we've scanned all the zones at this priority level, note
1602	 * that level within the zone so that the next thread which performs
1603	 * scanning of this zone will immediately start out at this priority
1604	 * level.  This affects only the decision whether or not to bring
1605	 * mapped pages onto the inactive list.
1606	 */
1607	if (priority < 0)
1608		priority = 0;
1609
1610	if (scan_global_lru(sc)) {
1611		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1612
1613			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1614				continue;
1615
1616			zone->prev_priority = priority;
1617		}
1618	} else
1619		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1620
1621	delayacct_freepages_end();
1622
1623	return ret;
1624}
1625
1626unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1627								gfp_t gfp_mask)
1628{
1629	struct scan_control sc = {
1630		.gfp_mask = gfp_mask,
1631		.may_writepage = !laptop_mode,
1632		.swap_cluster_max = SWAP_CLUSTER_MAX,
1633		.may_swap = 1,
1634		.swappiness = vm_swappiness,
1635		.order = order,
1636		.mem_cgroup = NULL,
1637		.isolate_pages = isolate_pages_global,
1638	};
1639
1640	return do_try_to_free_pages(zonelist, &sc);
1641}
1642
1643#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1644
1645unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1646						gfp_t gfp_mask)
1647{
1648	struct scan_control sc = {
1649		.may_writepage = !laptop_mode,
1650		.may_swap = 1,
1651		.swap_cluster_max = SWAP_CLUSTER_MAX,
1652		.swappiness = vm_swappiness,
1653		.order = 0,
1654		.mem_cgroup = mem_cont,
1655		.isolate_pages = mem_cgroup_isolate_pages,
1656	};
1657	struct zonelist *zonelist;
1658
1659	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1660			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1661	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1662	return do_try_to_free_pages(zonelist, &sc);
1663}
1664#endif
1665
1666/*
1667 * For kswapd, balance_pgdat() will work across all this node's zones until
1668 * they are all at pages_high.
1669 *
1670 * Returns the number of pages which were actually freed.
1671 *
1672 * There is special handling here for zones which are full of pinned pages.
1673 * This can happen if the pages are all mlocked, or if they are all used by
1674 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1675 * What we do is to detect the case where all pages in the zone have been
1676 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1677 * dead and from now on, only perform a short scan.  Basically we're polling
1678 * the zone for when the problem goes away.
1679 *
1680 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1681 * zones which have free_pages > pages_high, but once a zone is found to have
1682 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1683 * of the number of free pages in the lower zones.  This interoperates with
1684 * the page allocator fallback scheme to ensure that aging of pages is balanced
1685 * across the zones.
1686 */
1687static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1688{
1689	int all_zones_ok;
1690	int priority;
1691	int i;
1692	unsigned long total_scanned;
1693	unsigned long nr_reclaimed;
1694	struct reclaim_state *reclaim_state = current->reclaim_state;
1695	struct scan_control sc = {
1696		.gfp_mask = GFP_KERNEL,
1697		.may_swap = 1,
1698		.swap_cluster_max = SWAP_CLUSTER_MAX,
1699		.swappiness = vm_swappiness,
1700		.order = order,
1701		.mem_cgroup = NULL,
1702		.isolate_pages = isolate_pages_global,
1703	};
1704	/*
1705	 * temp_priority is used to remember the scanning priority at which
1706	 * this zone was successfully refilled to free_pages == pages_high.
1707	 */
1708	int temp_priority[MAX_NR_ZONES];
1709
1710loop_again:
1711	total_scanned = 0;
1712	nr_reclaimed = 0;
1713	sc.may_writepage = !laptop_mode;
1714	count_vm_event(PAGEOUTRUN);
1715
1716	for (i = 0; i < pgdat->nr_zones; i++)
1717		temp_priority[i] = DEF_PRIORITY;
1718
1719	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1720		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1721		unsigned long lru_pages = 0;
1722
1723		/* The swap token gets in the way of swapout... */
1724		if (!priority)
1725			disable_swap_token();
1726
1727		all_zones_ok = 1;
1728
1729		/*
1730		 * Scan in the highmem->dma direction for the highest
1731		 * zone which needs scanning
1732		 */
1733		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1734			struct zone *zone = pgdat->node_zones + i;
1735
1736			if (!populated_zone(zone))
1737				continue;
1738
1739			if (zone_is_all_unreclaimable(zone) &&
1740			    priority != DEF_PRIORITY)
1741				continue;
1742
1743			/*
1744			 * Do some background aging of the anon list, to give
1745			 * pages a chance to be referenced before reclaiming.
1746			 */
1747			if (inactive_anon_is_low(zone))
1748				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1749							&sc, priority, 0);
1750
1751			if (!zone_watermark_ok(zone, order, zone->pages_high,
1752					       0, 0)) {
1753				end_zone = i;
1754				break;
1755			}
1756		}
1757		if (i < 0)
1758			goto out;
1759
1760		for (i = 0; i <= end_zone; i++) {
1761			struct zone *zone = pgdat->node_zones + i;
1762
1763			lru_pages += zone_lru_pages(zone);
1764		}
1765
1766		/*
1767		 * Now scan the zone in the dma->highmem direction, stopping
1768		 * at the last zone which needs scanning.
1769		 *
1770		 * We do this because the page allocator works in the opposite
1771		 * direction.  This prevents the page allocator from allocating
1772		 * pages behind kswapd's direction of progress, which would
1773		 * cause too much scanning of the lower zones.
1774		 */
1775		for (i = 0; i <= end_zone; i++) {
1776			struct zone *zone = pgdat->node_zones + i;
1777			int nr_slab;
1778
1779			if (!populated_zone(zone))
1780				continue;
1781
1782			if (zone_is_all_unreclaimable(zone) &&
1783					priority != DEF_PRIORITY)
1784				continue;
1785
1786			if (!zone_watermark_ok(zone, order, zone->pages_high,
1787					       end_zone, 0))
1788				all_zones_ok = 0;
1789			temp_priority[i] = priority;
1790			sc.nr_scanned = 0;
1791			note_zone_scanning_priority(zone, priority);
1792			/*
1793			 * We put equal pressure on every zone, unless one
1794			 * zone has way too many pages free already.
1795			 */
1796			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1797						end_zone, 0))
1798				nr_reclaimed += shrink_zone(priority, zone, &sc);
1799			reclaim_state->reclaimed_slab = 0;
1800			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1801						lru_pages);
1802			nr_reclaimed += reclaim_state->reclaimed_slab;
1803			total_scanned += sc.nr_scanned;
1804			if (zone_is_all_unreclaimable(zone))
1805				continue;
1806			if (nr_slab == 0 && zone->pages_scanned >=
1807						(zone_lru_pages(zone) * 6))
1808					zone_set_flag(zone,
1809						      ZONE_ALL_UNRECLAIMABLE);
1810			/*
1811			 * If we've done a decent amount of scanning and
1812			 * the reclaim ratio is low, start doing writepage
1813			 * even in laptop mode
1814			 */
1815			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1816			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1817				sc.may_writepage = 1;
1818		}
1819		if (all_zones_ok)
1820			break;		/* kswapd: all done */
1821		/*
1822		 * OK, kswapd is getting into trouble.  Take a nap, then take
1823		 * another pass across the zones.
1824		 */
1825		if (total_scanned && priority < DEF_PRIORITY - 2)
1826			congestion_wait(WRITE, HZ/10);
1827
1828		/*
1829		 * We do this so kswapd doesn't build up large priorities for
1830		 * example when it is freeing in parallel with allocators. It
1831		 * matches the direct reclaim path behaviour in terms of impact
1832		 * on zone->*_priority.
1833		 */
1834		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1835			break;
1836	}
1837out:
1838	/*
1839	 * Note within each zone the priority level at which this zone was
1840	 * brought into a happy state.  So that the next thread which scans this
1841	 * zone will start out at that priority level.
1842	 */
1843	for (i = 0; i < pgdat->nr_zones; i++) {
1844		struct zone *zone = pgdat->node_zones + i;
1845
1846		zone->prev_priority = temp_priority[i];
1847	}
1848	if (!all_zones_ok) {
1849		cond_resched();
1850
1851		try_to_freeze();
1852
1853		goto loop_again;
1854	}
1855
1856	return nr_reclaimed;
1857}
1858
1859/*
1860 * The background pageout daemon, started as a kernel thread
1861 * from the init process.
1862 *
1863 * This basically trickles out pages so that we have _some_
1864 * free memory available even if there is no other activity
1865 * that frees anything up. This is needed for things like routing
1866 * etc, where we otherwise might have all activity going on in
1867 * asynchronous contexts that cannot page things out.
1868 *
1869 * If there are applications that are active memory-allocators
1870 * (most normal use), this basically shouldn't matter.
1871 */
1872static int kswapd(void *p)
1873{
1874	unsigned long order;
1875	pg_data_t *pgdat = (pg_data_t*)p;
1876	struct task_struct *tsk = current;
1877	DEFINE_WAIT(wait);
1878	struct reclaim_state reclaim_state = {
1879		.reclaimed_slab = 0,
1880	};
1881	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1882
1883	if (!cpus_empty(*cpumask))
1884		set_cpus_allowed_ptr(tsk, cpumask);
1885	current->reclaim_state = &reclaim_state;
1886
1887	/*
1888	 * Tell the memory management that we're a "memory allocator",
1889	 * and that if we need more memory we should get access to it
1890	 * regardless (see "__alloc_pages()"). "kswapd" should
1891	 * never get caught in the normal page freeing logic.
1892	 *
1893	 * (Kswapd normally doesn't need memory anyway, but sometimes
1894	 * you need a small amount of memory in order to be able to
1895	 * page out something else, and this flag essentially protects
1896	 * us from recursively trying to free more memory as we're
1897	 * trying to free the first piece of memory in the first place).
1898	 */
1899	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1900	set_freezable();
1901
1902	order = 0;
1903	for ( ; ; ) {
1904		unsigned long new_order;
1905
1906		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1907		new_order = pgdat->kswapd_max_order;
1908		pgdat->kswapd_max_order = 0;
1909		if (order < new_order) {
1910			/*
1911			 * Don't sleep if someone wants a larger 'order'
1912			 * allocation
1913			 */
1914			order = new_order;
1915		} else {
1916			if (!freezing(current))
1917				schedule();
1918
1919			order = pgdat->kswapd_max_order;
1920		}
1921		finish_wait(&pgdat->kswapd_wait, &wait);
1922
1923		if (!try_to_freeze()) {
1924			/* We can speed up thawing tasks if we don't call
1925			 * balance_pgdat after returning from the refrigerator
1926			 */
1927			balance_pgdat(pgdat, order);
1928		}
1929	}
1930	return 0;
1931}
1932
1933/*
1934 * A zone is low on free memory, so wake its kswapd task to service it.
1935 */
1936void wakeup_kswapd(struct zone *zone, int order)
1937{
1938	pg_data_t *pgdat;
1939
1940	if (!populated_zone(zone))
1941		return;
1942
1943	pgdat = zone->zone_pgdat;
1944	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1945		return;
1946	if (pgdat->kswapd_max_order < order)
1947		pgdat->kswapd_max_order = order;
1948	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1949		return;
1950	if (!waitqueue_active(&pgdat->kswapd_wait))
1951		return;
1952	wake_up_interruptible(&pgdat->kswapd_wait);
1953}
1954
1955unsigned long global_lru_pages(void)
1956{
1957	return global_page_state(NR_ACTIVE_ANON)
1958		+ global_page_state(NR_ACTIVE_FILE)
1959		+ global_page_state(NR_INACTIVE_ANON)
1960		+ global_page_state(NR_INACTIVE_FILE);
1961}
1962
1963#ifdef CONFIG_PM
1964/*
1965 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1966 * from LRU lists system-wide, for given pass and priority, and returns the
1967 * number of reclaimed pages
1968 *
1969 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1970 */
1971static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1972				      int pass, struct scan_control *sc)
1973{
1974	struct zone *zone;
1975	unsigned long nr_to_scan, ret = 0;
1976	enum lru_list l;
1977
1978	for_each_zone(zone) {
1979
1980		if (!populated_zone(zone))
1981			continue;
1982
1983		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1984			continue;
1985
1986		for_each_evictable_lru(l) {
1987			/* For pass = 0, we don't shrink the active list */
1988			if (pass == 0 &&
1989				(l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
1990				continue;
1991
1992			zone->lru[l].nr_scan +=
1993				(zone_page_state(zone, NR_LRU_BASE + l)
1994								>> prio) + 1;
1995			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1996				zone->lru[l].nr_scan = 0;
1997				nr_to_scan = min(nr_pages,
1998					zone_page_state(zone,
1999							NR_LRU_BASE + l));
2000				ret += shrink_list(l, nr_to_scan, zone,
2001								sc, prio);
2002				if (ret >= nr_pages)
2003					return ret;
2004			}
2005		}
2006	}
2007
2008	return ret;
2009}
2010
2011/*
2012 * Try to free `nr_pages' of memory, system-wide, and return the number of
2013 * freed pages.
2014 *
2015 * Rather than trying to age LRUs the aim is to preserve the overall
2016 * LRU order by reclaiming preferentially
2017 * inactive > active > active referenced > active mapped
2018 */
2019unsigned long shrink_all_memory(unsigned long nr_pages)
2020{
2021	unsigned long lru_pages, nr_slab;
2022	unsigned long ret = 0;
2023	int pass;
2024	struct reclaim_state reclaim_state;
2025	struct scan_control sc = {
2026		.gfp_mask = GFP_KERNEL,
2027		.may_swap = 0,
2028		.swap_cluster_max = nr_pages,
2029		.may_writepage = 1,
2030		.swappiness = vm_swappiness,
2031		.isolate_pages = isolate_pages_global,
2032	};
2033
2034	current->reclaim_state = &reclaim_state;
2035
2036	lru_pages = global_lru_pages();
2037	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2038	/* If slab caches are huge, it's better to hit them first */
2039	while (nr_slab >= lru_pages) {
2040		reclaim_state.reclaimed_slab = 0;
2041		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2042		if (!reclaim_state.reclaimed_slab)
2043			break;
2044
2045		ret += reclaim_state.reclaimed_slab;
2046		if (ret >= nr_pages)
2047			goto out;
2048
2049		nr_slab -= reclaim_state.reclaimed_slab;
2050	}
2051
2052	/*
2053	 * We try to shrink LRUs in 5 passes:
2054	 * 0 = Reclaim from inactive_list only
2055	 * 1 = Reclaim from active list but don't reclaim mapped
2056	 * 2 = 2nd pass of type 1
2057	 * 3 = Reclaim mapped (normal reclaim)
2058	 * 4 = 2nd pass of type 3
2059	 */
2060	for (pass = 0; pass < 5; pass++) {
2061		int prio;
2062
2063		/* Force reclaiming mapped pages in the passes #3 and #4 */
2064		if (pass > 2) {
2065			sc.may_swap = 1;
2066			sc.swappiness = 100;
2067		}
2068
2069		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2070			unsigned long nr_to_scan = nr_pages - ret;
2071
2072			sc.nr_scanned = 0;
2073			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2074			if (ret >= nr_pages)
2075				goto out;
2076
2077			reclaim_state.reclaimed_slab = 0;
2078			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2079					global_lru_pages());
2080			ret += reclaim_state.reclaimed_slab;
2081			if (ret >= nr_pages)
2082				goto out;
2083
2084			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2085				congestion_wait(WRITE, HZ / 10);
2086		}
2087	}
2088
2089	/*
2090	 * If ret = 0, we could not shrink LRUs, but there may be something
2091	 * in slab caches
2092	 */
2093	if (!ret) {
2094		do {
2095			reclaim_state.reclaimed_slab = 0;
2096			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2097			ret += reclaim_state.reclaimed_slab;
2098		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2099	}
2100
2101out:
2102	current->reclaim_state = NULL;
2103
2104	return ret;
2105}
2106#endif
2107
2108/* It's optimal to keep kswapds on the same CPUs as their memory, but
2109   not required for correctness.  So if the last cpu in a node goes
2110   away, we get changed to run anywhere: as the first one comes back,
2111   restore their cpu bindings. */
2112static int __devinit cpu_callback(struct notifier_block *nfb,
2113				  unsigned long action, void *hcpu)
2114{
2115	int nid;
2116
2117	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2118		for_each_node_state(nid, N_HIGH_MEMORY) {
2119			pg_data_t *pgdat = NODE_DATA(nid);
2120			node_to_cpumask_ptr(mask, pgdat->node_id);
2121
2122			if (any_online_cpu(*mask) < nr_cpu_ids)
2123				/* One of our CPUs online: restore mask */
2124				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2125		}
2126	}
2127	return NOTIFY_OK;
2128}
2129
2130/*
2131 * This kswapd start function will be called by init and node-hot-add.
2132 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2133 */
2134int kswapd_run(int nid)
2135{
2136	pg_data_t *pgdat = NODE_DATA(nid);
2137	int ret = 0;
2138
2139	if (pgdat->kswapd)
2140		return 0;
2141
2142	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2143	if (IS_ERR(pgdat->kswapd)) {
2144		/* failure at boot is fatal */
2145		BUG_ON(system_state == SYSTEM_BOOTING);
2146		printk("Failed to start kswapd on node %d\n",nid);
2147		ret = -1;
2148	}
2149	return ret;
2150}
2151
2152static int __init kswapd_init(void)
2153{
2154	int nid;
2155
2156	swap_setup();
2157	for_each_node_state(nid, N_HIGH_MEMORY)
2158 		kswapd_run(nid);
2159	hotcpu_notifier(cpu_callback, 0);
2160	return 0;
2161}
2162
2163module_init(kswapd_init)
2164
2165#ifdef CONFIG_NUMA
2166/*
2167 * Zone reclaim mode
2168 *
2169 * If non-zero call zone_reclaim when the number of free pages falls below
2170 * the watermarks.
2171 */
2172int zone_reclaim_mode __read_mostly;
2173
2174#define RECLAIM_OFF 0
2175#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2176#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2177#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2178
2179/*
2180 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2181 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2182 * a zone.
2183 */
2184#define ZONE_RECLAIM_PRIORITY 4
2185
2186/*
2187 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2188 * occur.
2189 */
2190int sysctl_min_unmapped_ratio = 1;
2191
2192/*
2193 * If the number of slab pages in a zone grows beyond this percentage then
2194 * slab reclaim needs to occur.
2195 */
2196int sysctl_min_slab_ratio = 5;
2197
2198/*
2199 * Try to free up some pages from this zone through reclaim.
2200 */
2201static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2202{
2203	/* Minimum pages needed in order to stay on node */
2204	const unsigned long nr_pages = 1 << order;
2205	struct task_struct *p = current;
2206	struct reclaim_state reclaim_state;
2207	int priority;
2208	unsigned long nr_reclaimed = 0;
2209	struct scan_control sc = {
2210		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2211		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2212		.swap_cluster_max = max_t(unsigned long, nr_pages,
2213					SWAP_CLUSTER_MAX),
2214		.gfp_mask = gfp_mask,
2215		.swappiness = vm_swappiness,
2216		.isolate_pages = isolate_pages_global,
2217	};
2218	unsigned long slab_reclaimable;
2219
2220	disable_swap_token();
2221	cond_resched();
2222	/*
2223	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2224	 * and we also need to be able to write out pages for RECLAIM_WRITE
2225	 * and RECLAIM_SWAP.
2226	 */
2227	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2228	reclaim_state.reclaimed_slab = 0;
2229	p->reclaim_state = &reclaim_state;
2230
2231	if (zone_page_state(zone, NR_FILE_PAGES) -
2232		zone_page_state(zone, NR_FILE_MAPPED) >
2233		zone->min_unmapped_pages) {
2234		/*
2235		 * Free memory by calling shrink zone with increasing
2236		 * priorities until we have enough memory freed.
2237		 */
2238		priority = ZONE_RECLAIM_PRIORITY;
2239		do {
2240			note_zone_scanning_priority(zone, priority);
2241			nr_reclaimed += shrink_zone(priority, zone, &sc);
2242			priority--;
2243		} while (priority >= 0 && nr_reclaimed < nr_pages);
2244	}
2245
2246	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2247	if (slab_reclaimable > zone->min_slab_pages) {
2248		/*
2249		 * shrink_slab() does not currently allow us to determine how
2250		 * many pages were freed in this zone. So we take the current
2251		 * number of slab pages and shake the slab until it is reduced
2252		 * by the same nr_pages that we used for reclaiming unmapped
2253		 * pages.
2254		 *
2255		 * Note that shrink_slab will free memory on all zones and may
2256		 * take a long time.
2257		 */
2258		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2259			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2260				slab_reclaimable - nr_pages)
2261			;
2262
2263		/*
2264		 * Update nr_reclaimed by the number of slab pages we
2265		 * reclaimed from this zone.
2266		 */
2267		nr_reclaimed += slab_reclaimable -
2268			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2269	}
2270
2271	p->reclaim_state = NULL;
2272	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2273	return nr_reclaimed >= nr_pages;
2274}
2275
2276int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2277{
2278	int node_id;
2279	int ret;
2280
2281	/*
2282	 * Zone reclaim reclaims unmapped file backed pages and
2283	 * slab pages if we are over the defined limits.
2284	 *
2285	 * A small portion of unmapped file backed pages is needed for
2286	 * file I/O otherwise pages read by file I/O will be immediately
2287	 * thrown out if the zone is overallocated. So we do not reclaim
2288	 * if less than a specified percentage of the zone is used by
2289	 * unmapped file backed pages.
2290	 */
2291	if (zone_page_state(zone, NR_FILE_PAGES) -
2292	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2293	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2294			<= zone->min_slab_pages)
2295		return 0;
2296
2297	if (zone_is_all_unreclaimable(zone))
2298		return 0;
2299
2300	/*
2301	 * Do not scan if the allocation should not be delayed.
2302	 */
2303	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2304			return 0;
2305
2306	/*
2307	 * Only run zone reclaim on the local zone or on zones that do not
2308	 * have associated processors. This will favor the local processor
2309	 * over remote processors and spread off node memory allocations
2310	 * as wide as possible.
2311	 */
2312	node_id = zone_to_nid(zone);
2313	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2314		return 0;
2315
2316	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2317		return 0;
2318	ret = __zone_reclaim(zone, gfp_mask, order);
2319	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2320
2321	return ret;
2322}
2323#endif
2324
2325#ifdef CONFIG_UNEVICTABLE_LRU
2326/*
2327 * page_evictable - test whether a page is evictable
2328 * @page: the page to test
2329 * @vma: the VMA in which the page is or will be mapped, may be NULL
2330 *
2331 * Test whether page is evictable--i.e., should be placed on active/inactive
2332 * lists vs unevictable list.
2333 *
2334 * Reasons page might not be evictable:
2335 * TODO - later patches
2336 */
2337int page_evictable(struct page *page, struct vm_area_struct *vma)
2338{
2339
2340	/* TODO:  test page [!]evictable conditions */
2341
2342	return 1;
2343}
2344#endif
2345