vmscan.c revision bf02cf4b6cf931d060ad5c6ce9b960af6faefd2d
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h>	/* for try_to_release_page(),
26					buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36#include <linux/delay.h>
37#include <linux/kthread.h>
38
39#include <asm/tlbflush.h>
40#include <asm/div64.h>
41
42#include <linux/swapops.h>
43
44#include "internal.h"
45
46struct scan_control {
47	/* Incremented by the number of inactive pages that were scanned */
48	unsigned long nr_scanned;
49
50	/* This context's GFP mask */
51	gfp_t gfp_mask;
52
53	int may_writepage;
54
55	/* Can pages be swapped as part of reclaim? */
56	int may_swap;
57
58	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
59	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
60	 * In this context, it doesn't matter that we scan the
61	 * whole list at once. */
62	int swap_cluster_max;
63
64	int swappiness;
65};
66
67/*
68 * The list of shrinker callbacks used by to apply pressure to
69 * ageable caches.
70 */
71struct shrinker {
72	shrinker_t		shrinker;
73	struct list_head	list;
74	int			seeks;	/* seeks to recreate an obj */
75	long			nr;	/* objs pending delete */
76};
77
78#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
79
80#ifdef ARCH_HAS_PREFETCH
81#define prefetch_prev_lru_page(_page, _base, _field)			\
82	do {								\
83		if ((_page)->lru.prev != _base) {			\
84			struct page *prev;				\
85									\
86			prev = lru_to_page(&(_page->lru));		\
87			prefetch(&prev->_field);			\
88		}							\
89	} while (0)
90#else
91#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
92#endif
93
94#ifdef ARCH_HAS_PREFETCHW
95#define prefetchw_prev_lru_page(_page, _base, _field)			\
96	do {								\
97		if ((_page)->lru.prev != _base) {			\
98			struct page *prev;				\
99									\
100			prev = lru_to_page(&(_page->lru));		\
101			prefetchw(&prev->_field);			\
102		}							\
103	} while (0)
104#else
105#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
106#endif
107
108/*
109 * From 0 .. 100.  Higher means more swappy.
110 */
111int vm_swappiness = 60;
112long vm_total_pages;	/* The total number of pages which the VM controls */
113
114static LIST_HEAD(shrinker_list);
115static DECLARE_RWSEM(shrinker_rwsem);
116
117/*
118 * Add a shrinker callback to be called from the vm
119 */
120struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
121{
122        struct shrinker *shrinker;
123
124        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
125        if (shrinker) {
126	        shrinker->shrinker = theshrinker;
127	        shrinker->seeks = seeks;
128	        shrinker->nr = 0;
129	        down_write(&shrinker_rwsem);
130	        list_add_tail(&shrinker->list, &shrinker_list);
131	        up_write(&shrinker_rwsem);
132	}
133	return shrinker;
134}
135EXPORT_SYMBOL(set_shrinker);
136
137/*
138 * Remove one
139 */
140void remove_shrinker(struct shrinker *shrinker)
141{
142	down_write(&shrinker_rwsem);
143	list_del(&shrinker->list);
144	up_write(&shrinker_rwsem);
145	kfree(shrinker);
146}
147EXPORT_SYMBOL(remove_shrinker);
148
149#define SHRINK_BATCH 128
150/*
151 * Call the shrink functions to age shrinkable caches
152 *
153 * Here we assume it costs one seek to replace a lru page and that it also
154 * takes a seek to recreate a cache object.  With this in mind we age equal
155 * percentages of the lru and ageable caches.  This should balance the seeks
156 * generated by these structures.
157 *
158 * If the vm encounted mapped pages on the LRU it increase the pressure on
159 * slab to avoid swapping.
160 *
161 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
162 *
163 * `lru_pages' represents the number of on-LRU pages in all the zones which
164 * are eligible for the caller's allocation attempt.  It is used for balancing
165 * slab reclaim versus page reclaim.
166 *
167 * Returns the number of slab objects which we shrunk.
168 */
169unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
170			unsigned long lru_pages)
171{
172	struct shrinker *shrinker;
173	unsigned long ret = 0;
174
175	if (scanned == 0)
176		scanned = SWAP_CLUSTER_MAX;
177
178	if (!down_read_trylock(&shrinker_rwsem))
179		return 1;	/* Assume we'll be able to shrink next time */
180
181	list_for_each_entry(shrinker, &shrinker_list, list) {
182		unsigned long long delta;
183		unsigned long total_scan;
184		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
185
186		delta = (4 * scanned) / shrinker->seeks;
187		delta *= max_pass;
188		do_div(delta, lru_pages + 1);
189		shrinker->nr += delta;
190		if (shrinker->nr < 0) {
191			printk(KERN_ERR "%s: nr=%ld\n",
192					__FUNCTION__, shrinker->nr);
193			shrinker->nr = max_pass;
194		}
195
196		/*
197		 * Avoid risking looping forever due to too large nr value:
198		 * never try to free more than twice the estimate number of
199		 * freeable entries.
200		 */
201		if (shrinker->nr > max_pass * 2)
202			shrinker->nr = max_pass * 2;
203
204		total_scan = shrinker->nr;
205		shrinker->nr = 0;
206
207		while (total_scan >= SHRINK_BATCH) {
208			long this_scan = SHRINK_BATCH;
209			int shrink_ret;
210			int nr_before;
211
212			nr_before = (*shrinker->shrinker)(0, gfp_mask);
213			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
214			if (shrink_ret == -1)
215				break;
216			if (shrink_ret < nr_before)
217				ret += nr_before - shrink_ret;
218			mod_page_state(slabs_scanned, this_scan);
219			total_scan -= this_scan;
220
221			cond_resched();
222		}
223
224		shrinker->nr += total_scan;
225	}
226	up_read(&shrinker_rwsem);
227	return ret;
228}
229
230/* Called without lock on whether page is mapped, so answer is unstable */
231static inline int page_mapping_inuse(struct page *page)
232{
233	struct address_space *mapping;
234
235	/* Page is in somebody's page tables. */
236	if (page_mapped(page))
237		return 1;
238
239	/* Be more reluctant to reclaim swapcache than pagecache */
240	if (PageSwapCache(page))
241		return 1;
242
243	mapping = page_mapping(page);
244	if (!mapping)
245		return 0;
246
247	/* File is mmap'd by somebody? */
248	return mapping_mapped(mapping);
249}
250
251static inline int is_page_cache_freeable(struct page *page)
252{
253	return page_count(page) - !!PagePrivate(page) == 2;
254}
255
256static int may_write_to_queue(struct backing_dev_info *bdi)
257{
258	if (current->flags & PF_SWAPWRITE)
259		return 1;
260	if (!bdi_write_congested(bdi))
261		return 1;
262	if (bdi == current->backing_dev_info)
263		return 1;
264	return 0;
265}
266
267/*
268 * We detected a synchronous write error writing a page out.  Probably
269 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
270 * fsync(), msync() or close().
271 *
272 * The tricky part is that after writepage we cannot touch the mapping: nothing
273 * prevents it from being freed up.  But we have a ref on the page and once
274 * that page is locked, the mapping is pinned.
275 *
276 * We're allowed to run sleeping lock_page() here because we know the caller has
277 * __GFP_FS.
278 */
279static void handle_write_error(struct address_space *mapping,
280				struct page *page, int error)
281{
282	lock_page(page);
283	if (page_mapping(page) == mapping) {
284		if (error == -ENOSPC)
285			set_bit(AS_ENOSPC, &mapping->flags);
286		else
287			set_bit(AS_EIO, &mapping->flags);
288	}
289	unlock_page(page);
290}
291
292/* possible outcome of pageout() */
293typedef enum {
294	/* failed to write page out, page is locked */
295	PAGE_KEEP,
296	/* move page to the active list, page is locked */
297	PAGE_ACTIVATE,
298	/* page has been sent to the disk successfully, page is unlocked */
299	PAGE_SUCCESS,
300	/* page is clean and locked */
301	PAGE_CLEAN,
302} pageout_t;
303
304/*
305 * pageout is called by shrink_page_list() for each dirty page.
306 * Calls ->writepage().
307 */
308static pageout_t pageout(struct page *page, struct address_space *mapping)
309{
310	/*
311	 * If the page is dirty, only perform writeback if that write
312	 * will be non-blocking.  To prevent this allocation from being
313	 * stalled by pagecache activity.  But note that there may be
314	 * stalls if we need to run get_block().  We could test
315	 * PagePrivate for that.
316	 *
317	 * If this process is currently in generic_file_write() against
318	 * this page's queue, we can perform writeback even if that
319	 * will block.
320	 *
321	 * If the page is swapcache, write it back even if that would
322	 * block, for some throttling. This happens by accident, because
323	 * swap_backing_dev_info is bust: it doesn't reflect the
324	 * congestion state of the swapdevs.  Easy to fix, if needed.
325	 * See swapfile.c:page_queue_congested().
326	 */
327	if (!is_page_cache_freeable(page))
328		return PAGE_KEEP;
329	if (!mapping) {
330		/*
331		 * Some data journaling orphaned pages can have
332		 * page->mapping == NULL while being dirty with clean buffers.
333		 */
334		if (PagePrivate(page)) {
335			if (try_to_free_buffers(page)) {
336				ClearPageDirty(page);
337				printk("%s: orphaned page\n", __FUNCTION__);
338				return PAGE_CLEAN;
339			}
340		}
341		return PAGE_KEEP;
342	}
343	if (mapping->a_ops->writepage == NULL)
344		return PAGE_ACTIVATE;
345	if (!may_write_to_queue(mapping->backing_dev_info))
346		return PAGE_KEEP;
347
348	if (clear_page_dirty_for_io(page)) {
349		int res;
350		struct writeback_control wbc = {
351			.sync_mode = WB_SYNC_NONE,
352			.nr_to_write = SWAP_CLUSTER_MAX,
353			.range_start = 0,
354			.range_end = LLONG_MAX,
355			.nonblocking = 1,
356			.for_reclaim = 1,
357		};
358
359		SetPageReclaim(page);
360		res = mapping->a_ops->writepage(page, &wbc);
361		if (res < 0)
362			handle_write_error(mapping, page, res);
363		if (res == AOP_WRITEPAGE_ACTIVATE) {
364			ClearPageReclaim(page);
365			return PAGE_ACTIVATE;
366		}
367		if (!PageWriteback(page)) {
368			/* synchronous write or broken a_ops? */
369			ClearPageReclaim(page);
370		}
371
372		return PAGE_SUCCESS;
373	}
374
375	return PAGE_CLEAN;
376}
377
378int remove_mapping(struct address_space *mapping, struct page *page)
379{
380	if (!mapping)
381		return 0;		/* truncate got there first */
382
383	write_lock_irq(&mapping->tree_lock);
384
385	/*
386	 * The non-racy check for busy page.  It is critical to check
387	 * PageDirty _after_ making sure that the page is freeable and
388	 * not in use by anybody. 	(pagecache + us == 2)
389	 */
390	if (unlikely(page_count(page) != 2))
391		goto cannot_free;
392	smp_rmb();
393	if (unlikely(PageDirty(page)))
394		goto cannot_free;
395
396	if (PageSwapCache(page)) {
397		swp_entry_t swap = { .val = page_private(page) };
398		__delete_from_swap_cache(page);
399		write_unlock_irq(&mapping->tree_lock);
400		swap_free(swap);
401		__put_page(page);	/* The pagecache ref */
402		return 1;
403	}
404
405	__remove_from_page_cache(page);
406	write_unlock_irq(&mapping->tree_lock);
407	__put_page(page);
408	return 1;
409
410cannot_free:
411	write_unlock_irq(&mapping->tree_lock);
412	return 0;
413}
414
415/*
416 * shrink_page_list() returns the number of reclaimed pages
417 */
418static unsigned long shrink_page_list(struct list_head *page_list,
419					struct scan_control *sc)
420{
421	LIST_HEAD(ret_pages);
422	struct pagevec freed_pvec;
423	int pgactivate = 0;
424	unsigned long nr_reclaimed = 0;
425
426	cond_resched();
427
428	pagevec_init(&freed_pvec, 1);
429	while (!list_empty(page_list)) {
430		struct address_space *mapping;
431		struct page *page;
432		int may_enter_fs;
433		int referenced;
434
435		cond_resched();
436
437		page = lru_to_page(page_list);
438		list_del(&page->lru);
439
440		if (TestSetPageLocked(page))
441			goto keep;
442
443		BUG_ON(PageActive(page));
444
445		sc->nr_scanned++;
446
447		if (!sc->may_swap && page_mapped(page))
448			goto keep_locked;
449
450		/* Double the slab pressure for mapped and swapcache pages */
451		if (page_mapped(page) || PageSwapCache(page))
452			sc->nr_scanned++;
453
454		if (PageWriteback(page))
455			goto keep_locked;
456
457		referenced = page_referenced(page, 1);
458		/* In active use or really unfreeable?  Activate it. */
459		if (referenced && page_mapping_inuse(page))
460			goto activate_locked;
461
462#ifdef CONFIG_SWAP
463		/*
464		 * Anonymous process memory has backing store?
465		 * Try to allocate it some swap space here.
466		 */
467		if (PageAnon(page) && !PageSwapCache(page))
468			if (!add_to_swap(page, GFP_ATOMIC))
469				goto activate_locked;
470#endif /* CONFIG_SWAP */
471
472		mapping = page_mapping(page);
473		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
474			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
475
476		/*
477		 * The page is mapped into the page tables of one or more
478		 * processes. Try to unmap it here.
479		 */
480		if (page_mapped(page) && mapping) {
481			switch (try_to_unmap(page, 0)) {
482			case SWAP_FAIL:
483				goto activate_locked;
484			case SWAP_AGAIN:
485				goto keep_locked;
486			case SWAP_SUCCESS:
487				; /* try to free the page below */
488			}
489		}
490
491		if (PageDirty(page)) {
492			if (referenced)
493				goto keep_locked;
494			if (!may_enter_fs)
495				goto keep_locked;
496			if (!sc->may_writepage)
497				goto keep_locked;
498
499			/* Page is dirty, try to write it out here */
500			switch(pageout(page, mapping)) {
501			case PAGE_KEEP:
502				goto keep_locked;
503			case PAGE_ACTIVATE:
504				goto activate_locked;
505			case PAGE_SUCCESS:
506				if (PageWriteback(page) || PageDirty(page))
507					goto keep;
508				/*
509				 * A synchronous write - probably a ramdisk.  Go
510				 * ahead and try to reclaim the page.
511				 */
512				if (TestSetPageLocked(page))
513					goto keep;
514				if (PageDirty(page) || PageWriteback(page))
515					goto keep_locked;
516				mapping = page_mapping(page);
517			case PAGE_CLEAN:
518				; /* try to free the page below */
519			}
520		}
521
522		/*
523		 * If the page has buffers, try to free the buffer mappings
524		 * associated with this page. If we succeed we try to free
525		 * the page as well.
526		 *
527		 * We do this even if the page is PageDirty().
528		 * try_to_release_page() does not perform I/O, but it is
529		 * possible for a page to have PageDirty set, but it is actually
530		 * clean (all its buffers are clean).  This happens if the
531		 * buffers were written out directly, with submit_bh(). ext3
532		 * will do this, as well as the blockdev mapping.
533		 * try_to_release_page() will discover that cleanness and will
534		 * drop the buffers and mark the page clean - it can be freed.
535		 *
536		 * Rarely, pages can have buffers and no ->mapping.  These are
537		 * the pages which were not successfully invalidated in
538		 * truncate_complete_page().  We try to drop those buffers here
539		 * and if that worked, and the page is no longer mapped into
540		 * process address space (page_count == 1) it can be freed.
541		 * Otherwise, leave the page on the LRU so it is swappable.
542		 */
543		if (PagePrivate(page)) {
544			if (!try_to_release_page(page, sc->gfp_mask))
545				goto activate_locked;
546			if (!mapping && page_count(page) == 1)
547				goto free_it;
548		}
549
550		if (!remove_mapping(mapping, page))
551			goto keep_locked;
552
553free_it:
554		unlock_page(page);
555		nr_reclaimed++;
556		if (!pagevec_add(&freed_pvec, page))
557			__pagevec_release_nonlru(&freed_pvec);
558		continue;
559
560activate_locked:
561		SetPageActive(page);
562		pgactivate++;
563keep_locked:
564		unlock_page(page);
565keep:
566		list_add(&page->lru, &ret_pages);
567		BUG_ON(PageLRU(page));
568	}
569	list_splice(&ret_pages, page_list);
570	if (pagevec_count(&freed_pvec))
571		__pagevec_release_nonlru(&freed_pvec);
572	mod_page_state(pgactivate, pgactivate);
573	return nr_reclaimed;
574}
575
576/*
577 * zone->lru_lock is heavily contended.  Some of the functions that
578 * shrink the lists perform better by taking out a batch of pages
579 * and working on them outside the LRU lock.
580 *
581 * For pagecache intensive workloads, this function is the hottest
582 * spot in the kernel (apart from copy_*_user functions).
583 *
584 * Appropriate locks must be held before calling this function.
585 *
586 * @nr_to_scan:	The number of pages to look through on the list.
587 * @src:	The LRU list to pull pages off.
588 * @dst:	The temp list to put pages on to.
589 * @scanned:	The number of pages that were scanned.
590 *
591 * returns how many pages were moved onto *@dst.
592 */
593static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
594		struct list_head *src, struct list_head *dst,
595		unsigned long *scanned)
596{
597	unsigned long nr_taken = 0;
598	struct page *page;
599	unsigned long scan;
600
601	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
602		struct list_head *target;
603		page = lru_to_page(src);
604		prefetchw_prev_lru_page(page, src, flags);
605
606		BUG_ON(!PageLRU(page));
607
608		list_del(&page->lru);
609		target = src;
610		if (likely(get_page_unless_zero(page))) {
611			/*
612			 * Be careful not to clear PageLRU until after we're
613			 * sure the page is not being freed elsewhere -- the
614			 * page release code relies on it.
615			 */
616			ClearPageLRU(page);
617			target = dst;
618			nr_taken++;
619		} /* else it is being freed elsewhere */
620
621		list_add(&page->lru, target);
622	}
623
624	*scanned = scan;
625	return nr_taken;
626}
627
628/*
629 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
630 * of reclaimed pages
631 */
632static unsigned long shrink_inactive_list(unsigned long max_scan,
633				struct zone *zone, struct scan_control *sc)
634{
635	LIST_HEAD(page_list);
636	struct pagevec pvec;
637	unsigned long nr_scanned = 0;
638	unsigned long nr_reclaimed = 0;
639
640	pagevec_init(&pvec, 1);
641
642	lru_add_drain();
643	spin_lock_irq(&zone->lru_lock);
644	do {
645		struct page *page;
646		unsigned long nr_taken;
647		unsigned long nr_scan;
648		unsigned long nr_freed;
649
650		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
651					     &zone->inactive_list,
652					     &page_list, &nr_scan);
653		zone->nr_inactive -= nr_taken;
654		zone->pages_scanned += nr_scan;
655		spin_unlock_irq(&zone->lru_lock);
656
657		nr_scanned += nr_scan;
658		nr_freed = shrink_page_list(&page_list, sc);
659		nr_reclaimed += nr_freed;
660		local_irq_disable();
661		if (current_is_kswapd()) {
662			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
663			__mod_page_state(kswapd_steal, nr_freed);
664		} else
665			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
666		__mod_page_state_zone(zone, pgsteal, nr_freed);
667
668		if (nr_taken == 0)
669			goto done;
670
671		spin_lock(&zone->lru_lock);
672		/*
673		 * Put back any unfreeable pages.
674		 */
675		while (!list_empty(&page_list)) {
676			page = lru_to_page(&page_list);
677			BUG_ON(PageLRU(page));
678			SetPageLRU(page);
679			list_del(&page->lru);
680			if (PageActive(page))
681				add_page_to_active_list(zone, page);
682			else
683				add_page_to_inactive_list(zone, page);
684			if (!pagevec_add(&pvec, page)) {
685				spin_unlock_irq(&zone->lru_lock);
686				__pagevec_release(&pvec);
687				spin_lock_irq(&zone->lru_lock);
688			}
689		}
690  	} while (nr_scanned < max_scan);
691	spin_unlock(&zone->lru_lock);
692done:
693	local_irq_enable();
694	pagevec_release(&pvec);
695	return nr_reclaimed;
696}
697
698/*
699 * This moves pages from the active list to the inactive list.
700 *
701 * We move them the other way if the page is referenced by one or more
702 * processes, from rmap.
703 *
704 * If the pages are mostly unmapped, the processing is fast and it is
705 * appropriate to hold zone->lru_lock across the whole operation.  But if
706 * the pages are mapped, the processing is slow (page_referenced()) so we
707 * should drop zone->lru_lock around each page.  It's impossible to balance
708 * this, so instead we remove the pages from the LRU while processing them.
709 * It is safe to rely on PG_active against the non-LRU pages in here because
710 * nobody will play with that bit on a non-LRU page.
711 *
712 * The downside is that we have to touch page->_count against each page.
713 * But we had to alter page->flags anyway.
714 */
715static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
716				struct scan_control *sc)
717{
718	unsigned long pgmoved;
719	int pgdeactivate = 0;
720	unsigned long pgscanned;
721	LIST_HEAD(l_hold);	/* The pages which were snipped off */
722	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
723	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
724	struct page *page;
725	struct pagevec pvec;
726	int reclaim_mapped = 0;
727
728	if (sc->may_swap) {
729		long mapped_ratio;
730		long distress;
731		long swap_tendency;
732
733		/*
734		 * `distress' is a measure of how much trouble we're having
735		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
736		 */
737		distress = 100 >> zone->prev_priority;
738
739		/*
740		 * The point of this algorithm is to decide when to start
741		 * reclaiming mapped memory instead of just pagecache.  Work out
742		 * how much memory
743		 * is mapped.
744		 */
745		mapped_ratio = (global_page_state(NR_FILE_MAPPED) * 100) /
746					vm_total_pages;
747
748		/*
749		 * Now decide how much we really want to unmap some pages.  The
750		 * mapped ratio is downgraded - just because there's a lot of
751		 * mapped memory doesn't necessarily mean that page reclaim
752		 * isn't succeeding.
753		 *
754		 * The distress ratio is important - we don't want to start
755		 * going oom.
756		 *
757		 * A 100% value of vm_swappiness overrides this algorithm
758		 * altogether.
759		 */
760		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
761
762		/*
763		 * Now use this metric to decide whether to start moving mapped
764		 * memory onto the inactive list.
765		 */
766		if (swap_tendency >= 100)
767			reclaim_mapped = 1;
768	}
769
770	lru_add_drain();
771	spin_lock_irq(&zone->lru_lock);
772	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
773				    &l_hold, &pgscanned);
774	zone->pages_scanned += pgscanned;
775	zone->nr_active -= pgmoved;
776	spin_unlock_irq(&zone->lru_lock);
777
778	while (!list_empty(&l_hold)) {
779		cond_resched();
780		page = lru_to_page(&l_hold);
781		list_del(&page->lru);
782		if (page_mapped(page)) {
783			if (!reclaim_mapped ||
784			    (total_swap_pages == 0 && PageAnon(page)) ||
785			    page_referenced(page, 0)) {
786				list_add(&page->lru, &l_active);
787				continue;
788			}
789		}
790		list_add(&page->lru, &l_inactive);
791	}
792
793	pagevec_init(&pvec, 1);
794	pgmoved = 0;
795	spin_lock_irq(&zone->lru_lock);
796	while (!list_empty(&l_inactive)) {
797		page = lru_to_page(&l_inactive);
798		prefetchw_prev_lru_page(page, &l_inactive, flags);
799		BUG_ON(PageLRU(page));
800		SetPageLRU(page);
801		BUG_ON(!PageActive(page));
802		ClearPageActive(page);
803
804		list_move(&page->lru, &zone->inactive_list);
805		pgmoved++;
806		if (!pagevec_add(&pvec, page)) {
807			zone->nr_inactive += pgmoved;
808			spin_unlock_irq(&zone->lru_lock);
809			pgdeactivate += pgmoved;
810			pgmoved = 0;
811			if (buffer_heads_over_limit)
812				pagevec_strip(&pvec);
813			__pagevec_release(&pvec);
814			spin_lock_irq(&zone->lru_lock);
815		}
816	}
817	zone->nr_inactive += pgmoved;
818	pgdeactivate += pgmoved;
819	if (buffer_heads_over_limit) {
820		spin_unlock_irq(&zone->lru_lock);
821		pagevec_strip(&pvec);
822		spin_lock_irq(&zone->lru_lock);
823	}
824
825	pgmoved = 0;
826	while (!list_empty(&l_active)) {
827		page = lru_to_page(&l_active);
828		prefetchw_prev_lru_page(page, &l_active, flags);
829		BUG_ON(PageLRU(page));
830		SetPageLRU(page);
831		BUG_ON(!PageActive(page));
832		list_move(&page->lru, &zone->active_list);
833		pgmoved++;
834		if (!pagevec_add(&pvec, page)) {
835			zone->nr_active += pgmoved;
836			pgmoved = 0;
837			spin_unlock_irq(&zone->lru_lock);
838			__pagevec_release(&pvec);
839			spin_lock_irq(&zone->lru_lock);
840		}
841	}
842	zone->nr_active += pgmoved;
843	spin_unlock(&zone->lru_lock);
844
845	__mod_page_state_zone(zone, pgrefill, pgscanned);
846	__mod_page_state(pgdeactivate, pgdeactivate);
847	local_irq_enable();
848
849	pagevec_release(&pvec);
850}
851
852/*
853 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
854 */
855static unsigned long shrink_zone(int priority, struct zone *zone,
856				struct scan_control *sc)
857{
858	unsigned long nr_active;
859	unsigned long nr_inactive;
860	unsigned long nr_to_scan;
861	unsigned long nr_reclaimed = 0;
862
863	atomic_inc(&zone->reclaim_in_progress);
864
865	/*
866	 * Add one to `nr_to_scan' just to make sure that the kernel will
867	 * slowly sift through the active list.
868	 */
869	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
870	nr_active = zone->nr_scan_active;
871	if (nr_active >= sc->swap_cluster_max)
872		zone->nr_scan_active = 0;
873	else
874		nr_active = 0;
875
876	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
877	nr_inactive = zone->nr_scan_inactive;
878	if (nr_inactive >= sc->swap_cluster_max)
879		zone->nr_scan_inactive = 0;
880	else
881		nr_inactive = 0;
882
883	while (nr_active || nr_inactive) {
884		if (nr_active) {
885			nr_to_scan = min(nr_active,
886					(unsigned long)sc->swap_cluster_max);
887			nr_active -= nr_to_scan;
888			shrink_active_list(nr_to_scan, zone, sc);
889		}
890
891		if (nr_inactive) {
892			nr_to_scan = min(nr_inactive,
893					(unsigned long)sc->swap_cluster_max);
894			nr_inactive -= nr_to_scan;
895			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
896								sc);
897		}
898	}
899
900	throttle_vm_writeout();
901
902	atomic_dec(&zone->reclaim_in_progress);
903	return nr_reclaimed;
904}
905
906/*
907 * This is the direct reclaim path, for page-allocating processes.  We only
908 * try to reclaim pages from zones which will satisfy the caller's allocation
909 * request.
910 *
911 * We reclaim from a zone even if that zone is over pages_high.  Because:
912 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
913 *    allocation or
914 * b) The zones may be over pages_high but they must go *over* pages_high to
915 *    satisfy the `incremental min' zone defense algorithm.
916 *
917 * Returns the number of reclaimed pages.
918 *
919 * If a zone is deemed to be full of pinned pages then just give it a light
920 * scan then give up on it.
921 */
922static unsigned long shrink_zones(int priority, struct zone **zones,
923					struct scan_control *sc)
924{
925	unsigned long nr_reclaimed = 0;
926	int i;
927
928	for (i = 0; zones[i] != NULL; i++) {
929		struct zone *zone = zones[i];
930
931		if (!populated_zone(zone))
932			continue;
933
934		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
935			continue;
936
937		zone->temp_priority = priority;
938		if (zone->prev_priority > priority)
939			zone->prev_priority = priority;
940
941		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
942			continue;	/* Let kswapd poll it */
943
944		nr_reclaimed += shrink_zone(priority, zone, sc);
945	}
946	return nr_reclaimed;
947}
948
949/*
950 * This is the main entry point to direct page reclaim.
951 *
952 * If a full scan of the inactive list fails to free enough memory then we
953 * are "out of memory" and something needs to be killed.
954 *
955 * If the caller is !__GFP_FS then the probability of a failure is reasonably
956 * high - the zone may be full of dirty or under-writeback pages, which this
957 * caller can't do much about.  We kick pdflush and take explicit naps in the
958 * hope that some of these pages can be written.  But if the allocating task
959 * holds filesystem locks which prevent writeout this might not work, and the
960 * allocation attempt will fail.
961 */
962unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
963{
964	int priority;
965	int ret = 0;
966	unsigned long total_scanned = 0;
967	unsigned long nr_reclaimed = 0;
968	struct reclaim_state *reclaim_state = current->reclaim_state;
969	unsigned long lru_pages = 0;
970	int i;
971	struct scan_control sc = {
972		.gfp_mask = gfp_mask,
973		.may_writepage = !laptop_mode,
974		.swap_cluster_max = SWAP_CLUSTER_MAX,
975		.may_swap = 1,
976		.swappiness = vm_swappiness,
977	};
978
979	inc_page_state(allocstall);
980
981	for (i = 0; zones[i] != NULL; i++) {
982		struct zone *zone = zones[i];
983
984		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
985			continue;
986
987		zone->temp_priority = DEF_PRIORITY;
988		lru_pages += zone->nr_active + zone->nr_inactive;
989	}
990
991	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
992		sc.nr_scanned = 0;
993		if (!priority)
994			disable_swap_token();
995		nr_reclaimed += shrink_zones(priority, zones, &sc);
996		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
997		if (reclaim_state) {
998			nr_reclaimed += reclaim_state->reclaimed_slab;
999			reclaim_state->reclaimed_slab = 0;
1000		}
1001		total_scanned += sc.nr_scanned;
1002		if (nr_reclaimed >= sc.swap_cluster_max) {
1003			ret = 1;
1004			goto out;
1005		}
1006
1007		/*
1008		 * Try to write back as many pages as we just scanned.  This
1009		 * tends to cause slow streaming writers to write data to the
1010		 * disk smoothly, at the dirtying rate, which is nice.   But
1011		 * that's undesirable in laptop mode, where we *want* lumpy
1012		 * writeout.  So in laptop mode, write out the whole world.
1013		 */
1014		if (total_scanned > sc.swap_cluster_max +
1015					sc.swap_cluster_max / 2) {
1016			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1017			sc.may_writepage = 1;
1018		}
1019
1020		/* Take a nap, wait for some writeback to complete */
1021		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1022			blk_congestion_wait(WRITE, HZ/10);
1023	}
1024out:
1025	for (i = 0; zones[i] != 0; i++) {
1026		struct zone *zone = zones[i];
1027
1028		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1029			continue;
1030
1031		zone->prev_priority = zone->temp_priority;
1032	}
1033	return ret;
1034}
1035
1036/*
1037 * For kswapd, balance_pgdat() will work across all this node's zones until
1038 * they are all at pages_high.
1039 *
1040 * Returns the number of pages which were actually freed.
1041 *
1042 * There is special handling here for zones which are full of pinned pages.
1043 * This can happen if the pages are all mlocked, or if they are all used by
1044 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1045 * What we do is to detect the case where all pages in the zone have been
1046 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1047 * dead and from now on, only perform a short scan.  Basically we're polling
1048 * the zone for when the problem goes away.
1049 *
1050 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1051 * zones which have free_pages > pages_high, but once a zone is found to have
1052 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1053 * of the number of free pages in the lower zones.  This interoperates with
1054 * the page allocator fallback scheme to ensure that aging of pages is balanced
1055 * across the zones.
1056 */
1057static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1058{
1059	int all_zones_ok;
1060	int priority;
1061	int i;
1062	unsigned long total_scanned;
1063	unsigned long nr_reclaimed;
1064	struct reclaim_state *reclaim_state = current->reclaim_state;
1065	struct scan_control sc = {
1066		.gfp_mask = GFP_KERNEL,
1067		.may_swap = 1,
1068		.swap_cluster_max = SWAP_CLUSTER_MAX,
1069		.swappiness = vm_swappiness,
1070	};
1071
1072loop_again:
1073	total_scanned = 0;
1074	nr_reclaimed = 0;
1075	sc.may_writepage = !laptop_mode;
1076	inc_page_state(pageoutrun);
1077
1078	for (i = 0; i < pgdat->nr_zones; i++) {
1079		struct zone *zone = pgdat->node_zones + i;
1080
1081		zone->temp_priority = DEF_PRIORITY;
1082	}
1083
1084	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1085		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1086		unsigned long lru_pages = 0;
1087
1088		/* The swap token gets in the way of swapout... */
1089		if (!priority)
1090			disable_swap_token();
1091
1092		all_zones_ok = 1;
1093
1094		/*
1095		 * Scan in the highmem->dma direction for the highest
1096		 * zone which needs scanning
1097		 */
1098		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1099			struct zone *zone = pgdat->node_zones + i;
1100
1101			if (!populated_zone(zone))
1102				continue;
1103
1104			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1105				continue;
1106
1107			if (!zone_watermark_ok(zone, order, zone->pages_high,
1108					       0, 0)) {
1109				end_zone = i;
1110				goto scan;
1111			}
1112		}
1113		goto out;
1114scan:
1115		for (i = 0; i <= end_zone; i++) {
1116			struct zone *zone = pgdat->node_zones + i;
1117
1118			lru_pages += zone->nr_active + zone->nr_inactive;
1119		}
1120
1121		/*
1122		 * Now scan the zone in the dma->highmem direction, stopping
1123		 * at the last zone which needs scanning.
1124		 *
1125		 * We do this because the page allocator works in the opposite
1126		 * direction.  This prevents the page allocator from allocating
1127		 * pages behind kswapd's direction of progress, which would
1128		 * cause too much scanning of the lower zones.
1129		 */
1130		for (i = 0; i <= end_zone; i++) {
1131			struct zone *zone = pgdat->node_zones + i;
1132			int nr_slab;
1133
1134			if (!populated_zone(zone))
1135				continue;
1136
1137			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1138				continue;
1139
1140			if (!zone_watermark_ok(zone, order, zone->pages_high,
1141					       end_zone, 0))
1142				all_zones_ok = 0;
1143			zone->temp_priority = priority;
1144			if (zone->prev_priority > priority)
1145				zone->prev_priority = priority;
1146			sc.nr_scanned = 0;
1147			nr_reclaimed += shrink_zone(priority, zone, &sc);
1148			reclaim_state->reclaimed_slab = 0;
1149			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1150						lru_pages);
1151			nr_reclaimed += reclaim_state->reclaimed_slab;
1152			total_scanned += sc.nr_scanned;
1153			if (zone->all_unreclaimable)
1154				continue;
1155			if (nr_slab == 0 && zone->pages_scanned >=
1156				    (zone->nr_active + zone->nr_inactive) * 4)
1157				zone->all_unreclaimable = 1;
1158			/*
1159			 * If we've done a decent amount of scanning and
1160			 * the reclaim ratio is low, start doing writepage
1161			 * even in laptop mode
1162			 */
1163			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1164			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1165				sc.may_writepage = 1;
1166		}
1167		if (all_zones_ok)
1168			break;		/* kswapd: all done */
1169		/*
1170		 * OK, kswapd is getting into trouble.  Take a nap, then take
1171		 * another pass across the zones.
1172		 */
1173		if (total_scanned && priority < DEF_PRIORITY - 2)
1174			blk_congestion_wait(WRITE, HZ/10);
1175
1176		/*
1177		 * We do this so kswapd doesn't build up large priorities for
1178		 * example when it is freeing in parallel with allocators. It
1179		 * matches the direct reclaim path behaviour in terms of impact
1180		 * on zone->*_priority.
1181		 */
1182		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1183			break;
1184	}
1185out:
1186	for (i = 0; i < pgdat->nr_zones; i++) {
1187		struct zone *zone = pgdat->node_zones + i;
1188
1189		zone->prev_priority = zone->temp_priority;
1190	}
1191	if (!all_zones_ok) {
1192		cond_resched();
1193		goto loop_again;
1194	}
1195
1196	return nr_reclaimed;
1197}
1198
1199/*
1200 * The background pageout daemon, started as a kernel thread
1201 * from the init process.
1202 *
1203 * This basically trickles out pages so that we have _some_
1204 * free memory available even if there is no other activity
1205 * that frees anything up. This is needed for things like routing
1206 * etc, where we otherwise might have all activity going on in
1207 * asynchronous contexts that cannot page things out.
1208 *
1209 * If there are applications that are active memory-allocators
1210 * (most normal use), this basically shouldn't matter.
1211 */
1212static int kswapd(void *p)
1213{
1214	unsigned long order;
1215	pg_data_t *pgdat = (pg_data_t*)p;
1216	struct task_struct *tsk = current;
1217	DEFINE_WAIT(wait);
1218	struct reclaim_state reclaim_state = {
1219		.reclaimed_slab = 0,
1220	};
1221	cpumask_t cpumask;
1222
1223	cpumask = node_to_cpumask(pgdat->node_id);
1224	if (!cpus_empty(cpumask))
1225		set_cpus_allowed(tsk, cpumask);
1226	current->reclaim_state = &reclaim_state;
1227
1228	/*
1229	 * Tell the memory management that we're a "memory allocator",
1230	 * and that if we need more memory we should get access to it
1231	 * regardless (see "__alloc_pages()"). "kswapd" should
1232	 * never get caught in the normal page freeing logic.
1233	 *
1234	 * (Kswapd normally doesn't need memory anyway, but sometimes
1235	 * you need a small amount of memory in order to be able to
1236	 * page out something else, and this flag essentially protects
1237	 * us from recursively trying to free more memory as we're
1238	 * trying to free the first piece of memory in the first place).
1239	 */
1240	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1241
1242	order = 0;
1243	for ( ; ; ) {
1244		unsigned long new_order;
1245
1246		try_to_freeze();
1247
1248		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1249		new_order = pgdat->kswapd_max_order;
1250		pgdat->kswapd_max_order = 0;
1251		if (order < new_order) {
1252			/*
1253			 * Don't sleep if someone wants a larger 'order'
1254			 * allocation
1255			 */
1256			order = new_order;
1257		} else {
1258			schedule();
1259			order = pgdat->kswapd_max_order;
1260		}
1261		finish_wait(&pgdat->kswapd_wait, &wait);
1262
1263		balance_pgdat(pgdat, order);
1264	}
1265	return 0;
1266}
1267
1268/*
1269 * A zone is low on free memory, so wake its kswapd task to service it.
1270 */
1271void wakeup_kswapd(struct zone *zone, int order)
1272{
1273	pg_data_t *pgdat;
1274
1275	if (!populated_zone(zone))
1276		return;
1277
1278	pgdat = zone->zone_pgdat;
1279	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1280		return;
1281	if (pgdat->kswapd_max_order < order)
1282		pgdat->kswapd_max_order = order;
1283	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1284		return;
1285	if (!waitqueue_active(&pgdat->kswapd_wait))
1286		return;
1287	wake_up_interruptible(&pgdat->kswapd_wait);
1288}
1289
1290#ifdef CONFIG_PM
1291/*
1292 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1293 * from LRU lists system-wide, for given pass and priority, and returns the
1294 * number of reclaimed pages
1295 *
1296 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1297 */
1298static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1299				      int prio, struct scan_control *sc)
1300{
1301	struct zone *zone;
1302	unsigned long nr_to_scan, ret = 0;
1303
1304	for_each_zone(zone) {
1305
1306		if (!populated_zone(zone))
1307			continue;
1308
1309		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1310			continue;
1311
1312		/* For pass = 0 we don't shrink the active list */
1313		if (pass > 0) {
1314			zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1315			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1316				zone->nr_scan_active = 0;
1317				nr_to_scan = min(nr_pages, zone->nr_active);
1318				shrink_active_list(nr_to_scan, zone, sc);
1319			}
1320		}
1321
1322		zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1323		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1324			zone->nr_scan_inactive = 0;
1325			nr_to_scan = min(nr_pages, zone->nr_inactive);
1326			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1327			if (ret >= nr_pages)
1328				return ret;
1329		}
1330	}
1331
1332	return ret;
1333}
1334
1335/*
1336 * Try to free `nr_pages' of memory, system-wide, and return the number of
1337 * freed pages.
1338 *
1339 * Rather than trying to age LRUs the aim is to preserve the overall
1340 * LRU order by reclaiming preferentially
1341 * inactive > active > active referenced > active mapped
1342 */
1343unsigned long shrink_all_memory(unsigned long nr_pages)
1344{
1345	unsigned long lru_pages, nr_slab;
1346	unsigned long ret = 0;
1347	int pass;
1348	struct reclaim_state reclaim_state;
1349	struct zone *zone;
1350	struct scan_control sc = {
1351		.gfp_mask = GFP_KERNEL,
1352		.may_swap = 0,
1353		.swap_cluster_max = nr_pages,
1354		.may_writepage = 1,
1355		.swappiness = vm_swappiness,
1356	};
1357
1358	current->reclaim_state = &reclaim_state;
1359
1360	lru_pages = 0;
1361	for_each_zone(zone)
1362		lru_pages += zone->nr_active + zone->nr_inactive;
1363
1364	nr_slab = read_page_state(nr_slab);
1365	/* If slab caches are huge, it's better to hit them first */
1366	while (nr_slab >= lru_pages) {
1367		reclaim_state.reclaimed_slab = 0;
1368		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1369		if (!reclaim_state.reclaimed_slab)
1370			break;
1371
1372		ret += reclaim_state.reclaimed_slab;
1373		if (ret >= nr_pages)
1374			goto out;
1375
1376		nr_slab -= reclaim_state.reclaimed_slab;
1377	}
1378
1379	/*
1380	 * We try to shrink LRUs in 5 passes:
1381	 * 0 = Reclaim from inactive_list only
1382	 * 1 = Reclaim from active list but don't reclaim mapped
1383	 * 2 = 2nd pass of type 1
1384	 * 3 = Reclaim mapped (normal reclaim)
1385	 * 4 = 2nd pass of type 3
1386	 */
1387	for (pass = 0; pass < 5; pass++) {
1388		int prio;
1389
1390		/* Needed for shrinking slab caches later on */
1391		if (!lru_pages)
1392			for_each_zone(zone) {
1393				lru_pages += zone->nr_active;
1394				lru_pages += zone->nr_inactive;
1395			}
1396
1397		/* Force reclaiming mapped pages in the passes #3 and #4 */
1398		if (pass > 2) {
1399			sc.may_swap = 1;
1400			sc.swappiness = 100;
1401		}
1402
1403		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1404			unsigned long nr_to_scan = nr_pages - ret;
1405
1406			sc.nr_scanned = 0;
1407			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1408			if (ret >= nr_pages)
1409				goto out;
1410
1411			reclaim_state.reclaimed_slab = 0;
1412			shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1413			ret += reclaim_state.reclaimed_slab;
1414			if (ret >= nr_pages)
1415				goto out;
1416
1417			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1418				blk_congestion_wait(WRITE, HZ / 10);
1419		}
1420
1421		lru_pages = 0;
1422	}
1423
1424	/*
1425	 * If ret = 0, we could not shrink LRUs, but there may be something
1426	 * in slab caches
1427	 */
1428	if (!ret)
1429		do {
1430			reclaim_state.reclaimed_slab = 0;
1431			shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1432			ret += reclaim_state.reclaimed_slab;
1433		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1434
1435out:
1436	current->reclaim_state = NULL;
1437
1438	return ret;
1439}
1440#endif
1441
1442#ifdef CONFIG_HOTPLUG_CPU
1443/* It's optimal to keep kswapds on the same CPUs as their memory, but
1444   not required for correctness.  So if the last cpu in a node goes
1445   away, we get changed to run anywhere: as the first one comes back,
1446   restore their cpu bindings. */
1447static int __devinit cpu_callback(struct notifier_block *nfb,
1448				  unsigned long action, void *hcpu)
1449{
1450	pg_data_t *pgdat;
1451	cpumask_t mask;
1452
1453	if (action == CPU_ONLINE) {
1454		for_each_online_pgdat(pgdat) {
1455			mask = node_to_cpumask(pgdat->node_id);
1456			if (any_online_cpu(mask) != NR_CPUS)
1457				/* One of our CPUs online: restore mask */
1458				set_cpus_allowed(pgdat->kswapd, mask);
1459		}
1460	}
1461	return NOTIFY_OK;
1462}
1463#endif /* CONFIG_HOTPLUG_CPU */
1464
1465/*
1466 * This kswapd start function will be called by init and node-hot-add.
1467 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1468 */
1469int kswapd_run(int nid)
1470{
1471	pg_data_t *pgdat = NODE_DATA(nid);
1472	int ret = 0;
1473
1474	if (pgdat->kswapd)
1475		return 0;
1476
1477	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1478	if (IS_ERR(pgdat->kswapd)) {
1479		/* failure at boot is fatal */
1480		BUG_ON(system_state == SYSTEM_BOOTING);
1481		printk("Failed to start kswapd on node %d\n",nid);
1482		ret = -1;
1483	}
1484	return ret;
1485}
1486
1487static int __init kswapd_init(void)
1488{
1489	int nid;
1490
1491	swap_setup();
1492	for_each_online_node(nid)
1493 		kswapd_run(nid);
1494	hotcpu_notifier(cpu_callback, 0);
1495	return 0;
1496}
1497
1498module_init(kswapd_init)
1499
1500#ifdef CONFIG_NUMA
1501/*
1502 * Zone reclaim mode
1503 *
1504 * If non-zero call zone_reclaim when the number of free pages falls below
1505 * the watermarks.
1506 *
1507 * In the future we may add flags to the mode. However, the page allocator
1508 * should only have to check that zone_reclaim_mode != 0 before calling
1509 * zone_reclaim().
1510 */
1511int zone_reclaim_mode __read_mostly;
1512
1513#define RECLAIM_OFF 0
1514#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1515#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1516#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1517#define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1518
1519/*
1520 * Mininum time between zone reclaim scans
1521 */
1522int zone_reclaim_interval __read_mostly = 30*HZ;
1523
1524/*
1525 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1526 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1527 * a zone.
1528 */
1529#define ZONE_RECLAIM_PRIORITY 4
1530
1531/*
1532 * Try to free up some pages from this zone through reclaim.
1533 */
1534static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1535{
1536	/* Minimum pages needed in order to stay on node */
1537	const unsigned long nr_pages = 1 << order;
1538	struct task_struct *p = current;
1539	struct reclaim_state reclaim_state;
1540	int priority;
1541	unsigned long nr_reclaimed = 0;
1542	struct scan_control sc = {
1543		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1544		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1545		.swap_cluster_max = max_t(unsigned long, nr_pages,
1546					SWAP_CLUSTER_MAX),
1547		.gfp_mask = gfp_mask,
1548		.swappiness = vm_swappiness,
1549	};
1550
1551	disable_swap_token();
1552	cond_resched();
1553	/*
1554	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1555	 * and we also need to be able to write out pages for RECLAIM_WRITE
1556	 * and RECLAIM_SWAP.
1557	 */
1558	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1559	reclaim_state.reclaimed_slab = 0;
1560	p->reclaim_state = &reclaim_state;
1561
1562	/*
1563	 * Free memory by calling shrink zone with increasing priorities
1564	 * until we have enough memory freed.
1565	 */
1566	priority = ZONE_RECLAIM_PRIORITY;
1567	do {
1568		nr_reclaimed += shrink_zone(priority, zone, &sc);
1569		priority--;
1570	} while (priority >= 0 && nr_reclaimed < nr_pages);
1571
1572	if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1573		/*
1574		 * shrink_slab() does not currently allow us to determine how
1575		 * many pages were freed in this zone. So we just shake the slab
1576		 * a bit and then go off node for this particular allocation
1577		 * despite possibly having freed enough memory to allocate in
1578		 * this zone.  If we freed local memory then the next
1579		 * allocations will be local again.
1580		 *
1581		 * shrink_slab will free memory on all zones and may take
1582		 * a long time.
1583		 */
1584		shrink_slab(sc.nr_scanned, gfp_mask, order);
1585	}
1586
1587	p->reclaim_state = NULL;
1588	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1589
1590	if (nr_reclaimed == 0) {
1591		/*
1592		 * We were unable to reclaim enough pages to stay on node.  We
1593		 * now allow off node accesses for a certain time period before
1594		 * trying again to reclaim pages from the local zone.
1595		 */
1596		zone->last_unsuccessful_zone_reclaim = jiffies;
1597	}
1598
1599	return nr_reclaimed >= nr_pages;
1600}
1601
1602int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1603{
1604	cpumask_t mask;
1605	int node_id;
1606
1607	/*
1608	 * Do not reclaim if there was a recent unsuccessful attempt at zone
1609	 * reclaim.  In that case we let allocations go off node for the
1610	 * zone_reclaim_interval.  Otherwise we would scan for each off-node
1611	 * page allocation.
1612	 */
1613	if (time_before(jiffies,
1614		zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1615			return 0;
1616
1617	/*
1618	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1619	 * not have reclaimable pages and if we should not delay the allocation
1620	 * then do not scan.
1621	 */
1622	if (!(gfp_mask & __GFP_WAIT) ||
1623		zone->all_unreclaimable ||
1624		atomic_read(&zone->reclaim_in_progress) > 0 ||
1625		(current->flags & PF_MEMALLOC))
1626			return 0;
1627
1628	/*
1629	 * Only run zone reclaim on the local zone or on zones that do not
1630	 * have associated processors. This will favor the local processor
1631	 * over remote processors and spread off node memory allocations
1632	 * as wide as possible.
1633	 */
1634	node_id = zone->zone_pgdat->node_id;
1635	mask = node_to_cpumask(node_id);
1636	if (!cpus_empty(mask) && node_id != numa_node_id())
1637		return 0;
1638	return __zone_reclaim(zone, gfp_mask, order);
1639}
1640#endif
1641