vmscan.c revision d2ebd0f6b89567eb93ead4e2ca0cbe03021f344b
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/* Which cgroup do we reclaim from */
107	struct mem_cgroup *mem_cgroup;
108
109	/*
110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111	 * are scanned.
112	 */
113	nodemask_t	*nodemask;
114};
115
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field)			\
120	do {								\
121		if ((_page)->lru.prev != _base) {			\
122			struct page *prev;				\
123									\
124			prev = lru_to_page(&(_page->lru));		\
125			prefetch(&prev->_field);			\
126		}							\
127	} while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field)			\
134	do {								\
135		if ((_page)->lru.prev != _base) {			\
136			struct page *prev;				\
137									\
138			prev = lru_to_page(&(_page->lru));		\
139			prefetchw(&prev->_field);			\
140		}							\
141	} while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100.  Higher means more swappy.
148 */
149int vm_swappiness = 60;
150long vm_total_pages;	/* The total number of pages which the VM controls */
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157#else
158#define scanning_global_lru(sc)	(1)
159#endif
160
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162						  struct scan_control *sc)
163{
164	if (!scanning_global_lru(sc))
165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167	return &zone->reclaim_stat;
168}
169
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171				struct scan_control *sc, enum lru_list lru)
172{
173	if (!scanning_global_lru(sc))
174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177	return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
181/*
182 * Add a shrinker callback to be called from the vm
183 */
184void register_shrinker(struct shrinker *shrinker)
185{
186	shrinker->nr = 0;
187	down_write(&shrinker_rwsem);
188	list_add_tail(&shrinker->list, &shrinker_list);
189	up_write(&shrinker_rwsem);
190}
191EXPORT_SYMBOL(register_shrinker);
192
193/*
194 * Remove one
195 */
196void unregister_shrinker(struct shrinker *shrinker)
197{
198	down_write(&shrinker_rwsem);
199	list_del(&shrinker->list);
200	up_write(&shrinker_rwsem);
201}
202EXPORT_SYMBOL(unregister_shrinker);
203
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205				     struct shrink_control *sc,
206				     unsigned long nr_to_scan)
207{
208	sc->nr_to_scan = nr_to_scan;
209	return (*shrinker->shrink)(shrinker, sc);
210}
211
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object.  With this in mind we age equal
218 * percentages of the lru and ageable caches.  This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt.  It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232unsigned long shrink_slab(struct shrink_control *shrink,
233			  unsigned long nr_pages_scanned,
234			  unsigned long lru_pages)
235{
236	struct shrinker *shrinker;
237	unsigned long ret = 0;
238
239	if (nr_pages_scanned == 0)
240		nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242	if (!down_read_trylock(&shrinker_rwsem)) {
243		/* Assume we'll be able to shrink next time */
244		ret = 1;
245		goto out;
246	}
247
248	list_for_each_entry(shrinker, &shrinker_list, list) {
249		unsigned long long delta;
250		unsigned long total_scan;
251		unsigned long max_pass;
252		int shrink_ret = 0;
253		long nr;
254		long new_nr;
255		long batch_size = shrinker->batch ? shrinker->batch
256						  : SHRINK_BATCH;
257
258		/*
259		 * copy the current shrinker scan count into a local variable
260		 * and zero it so that other concurrent shrinker invocations
261		 * don't also do this scanning work.
262		 */
263		do {
264			nr = shrinker->nr;
265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267		total_scan = nr;
268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
270		delta *= max_pass;
271		do_div(delta, lru_pages + 1);
272		total_scan += delta;
273		if (total_scan < 0) {
274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
275			       "delete nr=%ld\n",
276			       shrinker->shrink, total_scan);
277			total_scan = max_pass;
278		}
279
280		/*
281		 * We need to avoid excessive windup on filesystem shrinkers
282		 * due to large numbers of GFP_NOFS allocations causing the
283		 * shrinkers to return -1 all the time. This results in a large
284		 * nr being built up so when a shrink that can do some work
285		 * comes along it empties the entire cache due to nr >>>
286		 * max_pass.  This is bad for sustaining a working set in
287		 * memory.
288		 *
289		 * Hence only allow the shrinker to scan the entire cache when
290		 * a large delta change is calculated directly.
291		 */
292		if (delta < max_pass / 4)
293			total_scan = min(total_scan, max_pass / 2);
294
295		/*
296		 * Avoid risking looping forever due to too large nr value:
297		 * never try to free more than twice the estimate number of
298		 * freeable entries.
299		 */
300		if (total_scan > max_pass * 2)
301			total_scan = max_pass * 2;
302
303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
304					nr_pages_scanned, lru_pages,
305					max_pass, delta, total_scan);
306
307		while (total_scan >= batch_size) {
308			int nr_before;
309
310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
312							batch_size);
313			if (shrink_ret == -1)
314				break;
315			if (shrink_ret < nr_before)
316				ret += nr_before - shrink_ret;
317			count_vm_events(SLABS_SCANNED, batch_size);
318			total_scan -= batch_size;
319
320			cond_resched();
321		}
322
323		/*
324		 * move the unused scan count back into the shrinker in a
325		 * manner that handles concurrent updates. If we exhausted the
326		 * scan, there is no need to do an update.
327		 */
328		do {
329			nr = shrinker->nr;
330			new_nr = total_scan + nr;
331			if (total_scan <= 0)
332				break;
333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336	}
337	up_read(&shrinker_rwsem);
338out:
339	cond_resched();
340	return ret;
341}
342
343static void set_reclaim_mode(int priority, struct scan_control *sc,
344				   bool sync)
345{
346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348	/*
349	 * Initially assume we are entering either lumpy reclaim or
350	 * reclaim/compaction.Depending on the order, we will either set the
351	 * sync mode or just reclaim order-0 pages later.
352	 */
353	if (COMPACTION_BUILD)
354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355	else
356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358	/*
359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360	 * restricting when its set to either costly allocations or when
361	 * under memory pressure
362	 */
363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364		sc->reclaim_mode |= syncmode;
365	else if (sc->order && priority < DEF_PRIORITY - 2)
366		sc->reclaim_mode |= syncmode;
367	else
368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369}
370
371static void reset_reclaim_mode(struct scan_control *sc)
372{
373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374}
375
376static inline int is_page_cache_freeable(struct page *page)
377{
378	/*
379	 * A freeable page cache page is referenced only by the caller
380	 * that isolated the page, the page cache radix tree and
381	 * optional buffer heads at page->private.
382	 */
383	return page_count(page) - page_has_private(page) == 2;
384}
385
386static int may_write_to_queue(struct backing_dev_info *bdi,
387			      struct scan_control *sc)
388{
389	if (current->flags & PF_SWAPWRITE)
390		return 1;
391	if (!bdi_write_congested(bdi))
392		return 1;
393	if (bdi == current->backing_dev_info)
394		return 1;
395
396	/* lumpy reclaim for hugepage often need a lot of write */
397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398		return 1;
399	return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out.  Probably
404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up.  But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415				struct page *page, int error)
416{
417	lock_page(page);
418	if (page_mapping(page) == mapping)
419		mapping_set_error(mapping, error);
420	unlock_page(page);
421}
422
423/* possible outcome of pageout() */
424typedef enum {
425	/* failed to write page out, page is locked */
426	PAGE_KEEP,
427	/* move page to the active list, page is locked */
428	PAGE_ACTIVATE,
429	/* page has been sent to the disk successfully, page is unlocked */
430	PAGE_SUCCESS,
431	/* page is clean and locked */
432	PAGE_CLEAN,
433} pageout_t;
434
435/*
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
438 */
439static pageout_t pageout(struct page *page, struct address_space *mapping,
440			 struct scan_control *sc)
441{
442	/*
443	 * If the page is dirty, only perform writeback if that write
444	 * will be non-blocking.  To prevent this allocation from being
445	 * stalled by pagecache activity.  But note that there may be
446	 * stalls if we need to run get_block().  We could test
447	 * PagePrivate for that.
448	 *
449	 * If this process is currently in __generic_file_aio_write() against
450	 * this page's queue, we can perform writeback even if that
451	 * will block.
452	 *
453	 * If the page is swapcache, write it back even if that would
454	 * block, for some throttling. This happens by accident, because
455	 * swap_backing_dev_info is bust: it doesn't reflect the
456	 * congestion state of the swapdevs.  Easy to fix, if needed.
457	 */
458	if (!is_page_cache_freeable(page))
459		return PAGE_KEEP;
460	if (!mapping) {
461		/*
462		 * Some data journaling orphaned pages can have
463		 * page->mapping == NULL while being dirty with clean buffers.
464		 */
465		if (page_has_private(page)) {
466			if (try_to_free_buffers(page)) {
467				ClearPageDirty(page);
468				printk("%s: orphaned page\n", __func__);
469				return PAGE_CLEAN;
470			}
471		}
472		return PAGE_KEEP;
473	}
474	if (mapping->a_ops->writepage == NULL)
475		return PAGE_ACTIVATE;
476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
477		return PAGE_KEEP;
478
479	if (clear_page_dirty_for_io(page)) {
480		int res;
481		struct writeback_control wbc = {
482			.sync_mode = WB_SYNC_NONE,
483			.nr_to_write = SWAP_CLUSTER_MAX,
484			.range_start = 0,
485			.range_end = LLONG_MAX,
486			.for_reclaim = 1,
487		};
488
489		SetPageReclaim(page);
490		res = mapping->a_ops->writepage(page, &wbc);
491		if (res < 0)
492			handle_write_error(mapping, page, res);
493		if (res == AOP_WRITEPAGE_ACTIVATE) {
494			ClearPageReclaim(page);
495			return PAGE_ACTIVATE;
496		}
497
498		if (!PageWriteback(page)) {
499			/* synchronous write or broken a_ops? */
500			ClearPageReclaim(page);
501		}
502		trace_mm_vmscan_writepage(page,
503			trace_reclaim_flags(page, sc->reclaim_mode));
504		inc_zone_page_state(page, NR_VMSCAN_WRITE);
505		return PAGE_SUCCESS;
506	}
507
508	return PAGE_CLEAN;
509}
510
511/*
512 * Same as remove_mapping, but if the page is removed from the mapping, it
513 * gets returned with a refcount of 0.
514 */
515static int __remove_mapping(struct address_space *mapping, struct page *page)
516{
517	BUG_ON(!PageLocked(page));
518	BUG_ON(mapping != page_mapping(page));
519
520	spin_lock_irq(&mapping->tree_lock);
521	/*
522	 * The non racy check for a busy page.
523	 *
524	 * Must be careful with the order of the tests. When someone has
525	 * a ref to the page, it may be possible that they dirty it then
526	 * drop the reference. So if PageDirty is tested before page_count
527	 * here, then the following race may occur:
528	 *
529	 * get_user_pages(&page);
530	 * [user mapping goes away]
531	 * write_to(page);
532	 *				!PageDirty(page)    [good]
533	 * SetPageDirty(page);
534	 * put_page(page);
535	 *				!page_count(page)   [good, discard it]
536	 *
537	 * [oops, our write_to data is lost]
538	 *
539	 * Reversing the order of the tests ensures such a situation cannot
540	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541	 * load is not satisfied before that of page->_count.
542	 *
543	 * Note that if SetPageDirty is always performed via set_page_dirty,
544	 * and thus under tree_lock, then this ordering is not required.
545	 */
546	if (!page_freeze_refs(page, 2))
547		goto cannot_free;
548	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549	if (unlikely(PageDirty(page))) {
550		page_unfreeze_refs(page, 2);
551		goto cannot_free;
552	}
553
554	if (PageSwapCache(page)) {
555		swp_entry_t swap = { .val = page_private(page) };
556		__delete_from_swap_cache(page);
557		spin_unlock_irq(&mapping->tree_lock);
558		swapcache_free(swap, page);
559	} else {
560		void (*freepage)(struct page *);
561
562		freepage = mapping->a_ops->freepage;
563
564		__delete_from_page_cache(page);
565		spin_unlock_irq(&mapping->tree_lock);
566		mem_cgroup_uncharge_cache_page(page);
567
568		if (freepage != NULL)
569			freepage(page);
570	}
571
572	return 1;
573
574cannot_free:
575	spin_unlock_irq(&mapping->tree_lock);
576	return 0;
577}
578
579/*
580 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581 * someone else has a ref on the page, abort and return 0.  If it was
582 * successfully detached, return 1.  Assumes the caller has a single ref on
583 * this page.
584 */
585int remove_mapping(struct address_space *mapping, struct page *page)
586{
587	if (__remove_mapping(mapping, page)) {
588		/*
589		 * Unfreezing the refcount with 1 rather than 2 effectively
590		 * drops the pagecache ref for us without requiring another
591		 * atomic operation.
592		 */
593		page_unfreeze_refs(page, 1);
594		return 1;
595	}
596	return 0;
597}
598
599/**
600 * putback_lru_page - put previously isolated page onto appropriate LRU list
601 * @page: page to be put back to appropriate lru list
602 *
603 * Add previously isolated @page to appropriate LRU list.
604 * Page may still be unevictable for other reasons.
605 *
606 * lru_lock must not be held, interrupts must be enabled.
607 */
608void putback_lru_page(struct page *page)
609{
610	int lru;
611	int active = !!TestClearPageActive(page);
612	int was_unevictable = PageUnevictable(page);
613
614	VM_BUG_ON(PageLRU(page));
615
616redo:
617	ClearPageUnevictable(page);
618
619	if (page_evictable(page, NULL)) {
620		/*
621		 * For evictable pages, we can use the cache.
622		 * In event of a race, worst case is we end up with an
623		 * unevictable page on [in]active list.
624		 * We know how to handle that.
625		 */
626		lru = active + page_lru_base_type(page);
627		lru_cache_add_lru(page, lru);
628	} else {
629		/*
630		 * Put unevictable pages directly on zone's unevictable
631		 * list.
632		 */
633		lru = LRU_UNEVICTABLE;
634		add_page_to_unevictable_list(page);
635		/*
636		 * When racing with an mlock clearing (page is
637		 * unlocked), make sure that if the other thread does
638		 * not observe our setting of PG_lru and fails
639		 * isolation, we see PG_mlocked cleared below and move
640		 * the page back to the evictable list.
641		 *
642		 * The other side is TestClearPageMlocked().
643		 */
644		smp_mb();
645	}
646
647	/*
648	 * page's status can change while we move it among lru. If an evictable
649	 * page is on unevictable list, it never be freed. To avoid that,
650	 * check after we added it to the list, again.
651	 */
652	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653		if (!isolate_lru_page(page)) {
654			put_page(page);
655			goto redo;
656		}
657		/* This means someone else dropped this page from LRU
658		 * So, it will be freed or putback to LRU again. There is
659		 * nothing to do here.
660		 */
661	}
662
663	if (was_unevictable && lru != LRU_UNEVICTABLE)
664		count_vm_event(UNEVICTABLE_PGRESCUED);
665	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666		count_vm_event(UNEVICTABLE_PGCULLED);
667
668	put_page(page);		/* drop ref from isolate */
669}
670
671enum page_references {
672	PAGEREF_RECLAIM,
673	PAGEREF_RECLAIM_CLEAN,
674	PAGEREF_KEEP,
675	PAGEREF_ACTIVATE,
676};
677
678static enum page_references page_check_references(struct page *page,
679						  struct scan_control *sc)
680{
681	int referenced_ptes, referenced_page;
682	unsigned long vm_flags;
683
684	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685	referenced_page = TestClearPageReferenced(page);
686
687	/* Lumpy reclaim - ignore references */
688	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
689		return PAGEREF_RECLAIM;
690
691	/*
692	 * Mlock lost the isolation race with us.  Let try_to_unmap()
693	 * move the page to the unevictable list.
694	 */
695	if (vm_flags & VM_LOCKED)
696		return PAGEREF_RECLAIM;
697
698	if (referenced_ptes) {
699		if (PageAnon(page))
700			return PAGEREF_ACTIVATE;
701		/*
702		 * All mapped pages start out with page table
703		 * references from the instantiating fault, so we need
704		 * to look twice if a mapped file page is used more
705		 * than once.
706		 *
707		 * Mark it and spare it for another trip around the
708		 * inactive list.  Another page table reference will
709		 * lead to its activation.
710		 *
711		 * Note: the mark is set for activated pages as well
712		 * so that recently deactivated but used pages are
713		 * quickly recovered.
714		 */
715		SetPageReferenced(page);
716
717		if (referenced_page)
718			return PAGEREF_ACTIVATE;
719
720		return PAGEREF_KEEP;
721	}
722
723	/* Reclaim if clean, defer dirty pages to writeback */
724	if (referenced_page && !PageSwapBacked(page))
725		return PAGEREF_RECLAIM_CLEAN;
726
727	return PAGEREF_RECLAIM;
728}
729
730static noinline_for_stack void free_page_list(struct list_head *free_pages)
731{
732	struct pagevec freed_pvec;
733	struct page *page, *tmp;
734
735	pagevec_init(&freed_pvec, 1);
736
737	list_for_each_entry_safe(page, tmp, free_pages, lru) {
738		list_del(&page->lru);
739		if (!pagevec_add(&freed_pvec, page)) {
740			__pagevec_free(&freed_pvec);
741			pagevec_reinit(&freed_pvec);
742		}
743	}
744
745	pagevec_free(&freed_pvec);
746}
747
748/*
749 * shrink_page_list() returns the number of reclaimed pages
750 */
751static unsigned long shrink_page_list(struct list_head *page_list,
752				      struct zone *zone,
753				      struct scan_control *sc,
754				      int priority,
755				      unsigned long *ret_nr_dirty,
756				      unsigned long *ret_nr_writeback)
757{
758	LIST_HEAD(ret_pages);
759	LIST_HEAD(free_pages);
760	int pgactivate = 0;
761	unsigned long nr_dirty = 0;
762	unsigned long nr_congested = 0;
763	unsigned long nr_reclaimed = 0;
764	unsigned long nr_writeback = 0;
765
766	cond_resched();
767
768	while (!list_empty(page_list)) {
769		enum page_references references;
770		struct address_space *mapping;
771		struct page *page;
772		int may_enter_fs;
773
774		cond_resched();
775
776		page = lru_to_page(page_list);
777		list_del(&page->lru);
778
779		if (!trylock_page(page))
780			goto keep;
781
782		VM_BUG_ON(PageActive(page));
783		VM_BUG_ON(page_zone(page) != zone);
784
785		sc->nr_scanned++;
786
787		if (unlikely(!page_evictable(page, NULL)))
788			goto cull_mlocked;
789
790		if (!sc->may_unmap && page_mapped(page))
791			goto keep_locked;
792
793		/* Double the slab pressure for mapped and swapcache pages */
794		if (page_mapped(page) || PageSwapCache(page))
795			sc->nr_scanned++;
796
797		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
798			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
799
800		if (PageWriteback(page)) {
801			nr_writeback++;
802			/*
803			 * Synchronous reclaim cannot queue pages for
804			 * writeback due to the possibility of stack overflow
805			 * but if it encounters a page under writeback, wait
806			 * for the IO to complete.
807			 */
808			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
809			    may_enter_fs)
810				wait_on_page_writeback(page);
811			else {
812				unlock_page(page);
813				goto keep_lumpy;
814			}
815		}
816
817		references = page_check_references(page, sc);
818		switch (references) {
819		case PAGEREF_ACTIVATE:
820			goto activate_locked;
821		case PAGEREF_KEEP:
822			goto keep_locked;
823		case PAGEREF_RECLAIM:
824		case PAGEREF_RECLAIM_CLEAN:
825			; /* try to reclaim the page below */
826		}
827
828		/*
829		 * Anonymous process memory has backing store?
830		 * Try to allocate it some swap space here.
831		 */
832		if (PageAnon(page) && !PageSwapCache(page)) {
833			if (!(sc->gfp_mask & __GFP_IO))
834				goto keep_locked;
835			if (!add_to_swap(page))
836				goto activate_locked;
837			may_enter_fs = 1;
838		}
839
840		mapping = page_mapping(page);
841
842		/*
843		 * The page is mapped into the page tables of one or more
844		 * processes. Try to unmap it here.
845		 */
846		if (page_mapped(page) && mapping) {
847			switch (try_to_unmap(page, TTU_UNMAP)) {
848			case SWAP_FAIL:
849				goto activate_locked;
850			case SWAP_AGAIN:
851				goto keep_locked;
852			case SWAP_MLOCK:
853				goto cull_mlocked;
854			case SWAP_SUCCESS:
855				; /* try to free the page below */
856			}
857		}
858
859		if (PageDirty(page)) {
860			nr_dirty++;
861
862			/*
863			 * Only kswapd can writeback filesystem pages to
864			 * avoid risk of stack overflow but do not writeback
865			 * unless under significant pressure.
866			 */
867			if (page_is_file_cache(page) &&
868					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
869				/*
870				 * Immediately reclaim when written back.
871				 * Similar in principal to deactivate_page()
872				 * except we already have the page isolated
873				 * and know it's dirty
874				 */
875				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
876				SetPageReclaim(page);
877
878				goto keep_locked;
879			}
880
881			if (references == PAGEREF_RECLAIM_CLEAN)
882				goto keep_locked;
883			if (!may_enter_fs)
884				goto keep_locked;
885			if (!sc->may_writepage)
886				goto keep_locked;
887
888			/* Page is dirty, try to write it out here */
889			switch (pageout(page, mapping, sc)) {
890			case PAGE_KEEP:
891				nr_congested++;
892				goto keep_locked;
893			case PAGE_ACTIVATE:
894				goto activate_locked;
895			case PAGE_SUCCESS:
896				if (PageWriteback(page))
897					goto keep_lumpy;
898				if (PageDirty(page))
899					goto keep;
900
901				/*
902				 * A synchronous write - probably a ramdisk.  Go
903				 * ahead and try to reclaim the page.
904				 */
905				if (!trylock_page(page))
906					goto keep;
907				if (PageDirty(page) || PageWriteback(page))
908					goto keep_locked;
909				mapping = page_mapping(page);
910			case PAGE_CLEAN:
911				; /* try to free the page below */
912			}
913		}
914
915		/*
916		 * If the page has buffers, try to free the buffer mappings
917		 * associated with this page. If we succeed we try to free
918		 * the page as well.
919		 *
920		 * We do this even if the page is PageDirty().
921		 * try_to_release_page() does not perform I/O, but it is
922		 * possible for a page to have PageDirty set, but it is actually
923		 * clean (all its buffers are clean).  This happens if the
924		 * buffers were written out directly, with submit_bh(). ext3
925		 * will do this, as well as the blockdev mapping.
926		 * try_to_release_page() will discover that cleanness and will
927		 * drop the buffers and mark the page clean - it can be freed.
928		 *
929		 * Rarely, pages can have buffers and no ->mapping.  These are
930		 * the pages which were not successfully invalidated in
931		 * truncate_complete_page().  We try to drop those buffers here
932		 * and if that worked, and the page is no longer mapped into
933		 * process address space (page_count == 1) it can be freed.
934		 * Otherwise, leave the page on the LRU so it is swappable.
935		 */
936		if (page_has_private(page)) {
937			if (!try_to_release_page(page, sc->gfp_mask))
938				goto activate_locked;
939			if (!mapping && page_count(page) == 1) {
940				unlock_page(page);
941				if (put_page_testzero(page))
942					goto free_it;
943				else {
944					/*
945					 * rare race with speculative reference.
946					 * the speculative reference will free
947					 * this page shortly, so we may
948					 * increment nr_reclaimed here (and
949					 * leave it off the LRU).
950					 */
951					nr_reclaimed++;
952					continue;
953				}
954			}
955		}
956
957		if (!mapping || !__remove_mapping(mapping, page))
958			goto keep_locked;
959
960		/*
961		 * At this point, we have no other references and there is
962		 * no way to pick any more up (removed from LRU, removed
963		 * from pagecache). Can use non-atomic bitops now (and
964		 * we obviously don't have to worry about waking up a process
965		 * waiting on the page lock, because there are no references.
966		 */
967		__clear_page_locked(page);
968free_it:
969		nr_reclaimed++;
970
971		/*
972		 * Is there need to periodically free_page_list? It would
973		 * appear not as the counts should be low
974		 */
975		list_add(&page->lru, &free_pages);
976		continue;
977
978cull_mlocked:
979		if (PageSwapCache(page))
980			try_to_free_swap(page);
981		unlock_page(page);
982		putback_lru_page(page);
983		reset_reclaim_mode(sc);
984		continue;
985
986activate_locked:
987		/* Not a candidate for swapping, so reclaim swap space. */
988		if (PageSwapCache(page) && vm_swap_full())
989			try_to_free_swap(page);
990		VM_BUG_ON(PageActive(page));
991		SetPageActive(page);
992		pgactivate++;
993keep_locked:
994		unlock_page(page);
995keep:
996		reset_reclaim_mode(sc);
997keep_lumpy:
998		list_add(&page->lru, &ret_pages);
999		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1000	}
1001
1002	/*
1003	 * Tag a zone as congested if all the dirty pages encountered were
1004	 * backed by a congested BDI. In this case, reclaimers should just
1005	 * back off and wait for congestion to clear because further reclaim
1006	 * will encounter the same problem
1007	 */
1008	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1009		zone_set_flag(zone, ZONE_CONGESTED);
1010
1011	free_page_list(&free_pages);
1012
1013	list_splice(&ret_pages, page_list);
1014	count_vm_events(PGACTIVATE, pgactivate);
1015	*ret_nr_dirty += nr_dirty;
1016	*ret_nr_writeback += nr_writeback;
1017	return nr_reclaimed;
1018}
1019
1020/*
1021 * Attempt to remove the specified page from its LRU.  Only take this page
1022 * if it is of the appropriate PageActive status.  Pages which are being
1023 * freed elsewhere are also ignored.
1024 *
1025 * page:	page to consider
1026 * mode:	one of the LRU isolation modes defined above
1027 *
1028 * returns 0 on success, -ve errno on failure.
1029 */
1030int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1031{
1032	bool all_lru_mode;
1033	int ret = -EINVAL;
1034
1035	/* Only take pages on the LRU. */
1036	if (!PageLRU(page))
1037		return ret;
1038
1039	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1040		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1041
1042	/*
1043	 * When checking the active state, we need to be sure we are
1044	 * dealing with comparible boolean values.  Take the logical not
1045	 * of each.
1046	 */
1047	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1048		return ret;
1049
1050	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1051		return ret;
1052
1053	/*
1054	 * When this function is being called for lumpy reclaim, we
1055	 * initially look into all LRU pages, active, inactive and
1056	 * unevictable; only give shrink_page_list evictable pages.
1057	 */
1058	if (PageUnevictable(page))
1059		return ret;
1060
1061	ret = -EBUSY;
1062
1063	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1064		return ret;
1065
1066	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1067		return ret;
1068
1069	if (likely(get_page_unless_zero(page))) {
1070		/*
1071		 * Be careful not to clear PageLRU until after we're
1072		 * sure the page is not being freed elsewhere -- the
1073		 * page release code relies on it.
1074		 */
1075		ClearPageLRU(page);
1076		ret = 0;
1077	}
1078
1079	return ret;
1080}
1081
1082/*
1083 * zone->lru_lock is heavily contended.  Some of the functions that
1084 * shrink the lists perform better by taking out a batch of pages
1085 * and working on them outside the LRU lock.
1086 *
1087 * For pagecache intensive workloads, this function is the hottest
1088 * spot in the kernel (apart from copy_*_user functions).
1089 *
1090 * Appropriate locks must be held before calling this function.
1091 *
1092 * @nr_to_scan:	The number of pages to look through on the list.
1093 * @src:	The LRU list to pull pages off.
1094 * @dst:	The temp list to put pages on to.
1095 * @scanned:	The number of pages that were scanned.
1096 * @order:	The caller's attempted allocation order
1097 * @mode:	One of the LRU isolation modes
1098 * @file:	True [1] if isolating file [!anon] pages
1099 *
1100 * returns how many pages were moved onto *@dst.
1101 */
1102static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1103		struct list_head *src, struct list_head *dst,
1104		unsigned long *scanned, int order, isolate_mode_t mode,
1105		int file)
1106{
1107	unsigned long nr_taken = 0;
1108	unsigned long nr_lumpy_taken = 0;
1109	unsigned long nr_lumpy_dirty = 0;
1110	unsigned long nr_lumpy_failed = 0;
1111	unsigned long scan;
1112
1113	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1114		struct page *page;
1115		unsigned long pfn;
1116		unsigned long end_pfn;
1117		unsigned long page_pfn;
1118		int zone_id;
1119
1120		page = lru_to_page(src);
1121		prefetchw_prev_lru_page(page, src, flags);
1122
1123		VM_BUG_ON(!PageLRU(page));
1124
1125		switch (__isolate_lru_page(page, mode, file)) {
1126		case 0:
1127			list_move(&page->lru, dst);
1128			mem_cgroup_del_lru(page);
1129			nr_taken += hpage_nr_pages(page);
1130			break;
1131
1132		case -EBUSY:
1133			/* else it is being freed elsewhere */
1134			list_move(&page->lru, src);
1135			mem_cgroup_rotate_lru_list(page, page_lru(page));
1136			continue;
1137
1138		default:
1139			BUG();
1140		}
1141
1142		if (!order)
1143			continue;
1144
1145		/*
1146		 * Attempt to take all pages in the order aligned region
1147		 * surrounding the tag page.  Only take those pages of
1148		 * the same active state as that tag page.  We may safely
1149		 * round the target page pfn down to the requested order
1150		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1151		 * where that page is in a different zone we will detect
1152		 * it from its zone id and abort this block scan.
1153		 */
1154		zone_id = page_zone_id(page);
1155		page_pfn = page_to_pfn(page);
1156		pfn = page_pfn & ~((1 << order) - 1);
1157		end_pfn = pfn + (1 << order);
1158		for (; pfn < end_pfn; pfn++) {
1159			struct page *cursor_page;
1160
1161			/* The target page is in the block, ignore it. */
1162			if (unlikely(pfn == page_pfn))
1163				continue;
1164
1165			/* Avoid holes within the zone. */
1166			if (unlikely(!pfn_valid_within(pfn)))
1167				break;
1168
1169			cursor_page = pfn_to_page(pfn);
1170
1171			/* Check that we have not crossed a zone boundary. */
1172			if (unlikely(page_zone_id(cursor_page) != zone_id))
1173				break;
1174
1175			/*
1176			 * If we don't have enough swap space, reclaiming of
1177			 * anon page which don't already have a swap slot is
1178			 * pointless.
1179			 */
1180			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1181			    !PageSwapCache(cursor_page))
1182				break;
1183
1184			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1185				list_move(&cursor_page->lru, dst);
1186				mem_cgroup_del_lru(cursor_page);
1187				nr_taken += hpage_nr_pages(page);
1188				nr_lumpy_taken++;
1189				if (PageDirty(cursor_page))
1190					nr_lumpy_dirty++;
1191				scan++;
1192			} else {
1193				/*
1194				 * Check if the page is freed already.
1195				 *
1196				 * We can't use page_count() as that
1197				 * requires compound_head and we don't
1198				 * have a pin on the page here. If a
1199				 * page is tail, we may or may not
1200				 * have isolated the head, so assume
1201				 * it's not free, it'd be tricky to
1202				 * track the head status without a
1203				 * page pin.
1204				 */
1205				if (!PageTail(cursor_page) &&
1206				    !atomic_read(&cursor_page->_count))
1207					continue;
1208				break;
1209			}
1210		}
1211
1212		/* If we break out of the loop above, lumpy reclaim failed */
1213		if (pfn < end_pfn)
1214			nr_lumpy_failed++;
1215	}
1216
1217	*scanned = scan;
1218
1219	trace_mm_vmscan_lru_isolate(order,
1220			nr_to_scan, scan,
1221			nr_taken,
1222			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1223			mode);
1224	return nr_taken;
1225}
1226
1227static unsigned long isolate_pages_global(unsigned long nr,
1228					struct list_head *dst,
1229					unsigned long *scanned, int order,
1230					isolate_mode_t mode,
1231					struct zone *z,	int active, int file)
1232{
1233	int lru = LRU_BASE;
1234	if (active)
1235		lru += LRU_ACTIVE;
1236	if (file)
1237		lru += LRU_FILE;
1238	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1239								mode, file);
1240}
1241
1242/*
1243 * clear_active_flags() is a helper for shrink_active_list(), clearing
1244 * any active bits from the pages in the list.
1245 */
1246static unsigned long clear_active_flags(struct list_head *page_list,
1247					unsigned int *count)
1248{
1249	int nr_active = 0;
1250	int lru;
1251	struct page *page;
1252
1253	list_for_each_entry(page, page_list, lru) {
1254		int numpages = hpage_nr_pages(page);
1255		lru = page_lru_base_type(page);
1256		if (PageActive(page)) {
1257			lru += LRU_ACTIVE;
1258			ClearPageActive(page);
1259			nr_active += numpages;
1260		}
1261		if (count)
1262			count[lru] += numpages;
1263	}
1264
1265	return nr_active;
1266}
1267
1268/**
1269 * isolate_lru_page - tries to isolate a page from its LRU list
1270 * @page: page to isolate from its LRU list
1271 *
1272 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1273 * vmstat statistic corresponding to whatever LRU list the page was on.
1274 *
1275 * Returns 0 if the page was removed from an LRU list.
1276 * Returns -EBUSY if the page was not on an LRU list.
1277 *
1278 * The returned page will have PageLRU() cleared.  If it was found on
1279 * the active list, it will have PageActive set.  If it was found on
1280 * the unevictable list, it will have the PageUnevictable bit set. That flag
1281 * may need to be cleared by the caller before letting the page go.
1282 *
1283 * The vmstat statistic corresponding to the list on which the page was
1284 * found will be decremented.
1285 *
1286 * Restrictions:
1287 * (1) Must be called with an elevated refcount on the page. This is a
1288 *     fundamentnal difference from isolate_lru_pages (which is called
1289 *     without a stable reference).
1290 * (2) the lru_lock must not be held.
1291 * (3) interrupts must be enabled.
1292 */
1293int isolate_lru_page(struct page *page)
1294{
1295	int ret = -EBUSY;
1296
1297	VM_BUG_ON(!page_count(page));
1298
1299	if (PageLRU(page)) {
1300		struct zone *zone = page_zone(page);
1301
1302		spin_lock_irq(&zone->lru_lock);
1303		if (PageLRU(page)) {
1304			int lru = page_lru(page);
1305			ret = 0;
1306			get_page(page);
1307			ClearPageLRU(page);
1308
1309			del_page_from_lru_list(zone, page, lru);
1310		}
1311		spin_unlock_irq(&zone->lru_lock);
1312	}
1313	return ret;
1314}
1315
1316/*
1317 * Are there way too many processes in the direct reclaim path already?
1318 */
1319static int too_many_isolated(struct zone *zone, int file,
1320		struct scan_control *sc)
1321{
1322	unsigned long inactive, isolated;
1323
1324	if (current_is_kswapd())
1325		return 0;
1326
1327	if (!scanning_global_lru(sc))
1328		return 0;
1329
1330	if (file) {
1331		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1332		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1333	} else {
1334		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1335		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1336	}
1337
1338	return isolated > inactive;
1339}
1340
1341/*
1342 * TODO: Try merging with migrations version of putback_lru_pages
1343 */
1344static noinline_for_stack void
1345putback_lru_pages(struct zone *zone, struct scan_control *sc,
1346				unsigned long nr_anon, unsigned long nr_file,
1347				struct list_head *page_list)
1348{
1349	struct page *page;
1350	struct pagevec pvec;
1351	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1352
1353	pagevec_init(&pvec, 1);
1354
1355	/*
1356	 * Put back any unfreeable pages.
1357	 */
1358	spin_lock(&zone->lru_lock);
1359	while (!list_empty(page_list)) {
1360		int lru;
1361		page = lru_to_page(page_list);
1362		VM_BUG_ON(PageLRU(page));
1363		list_del(&page->lru);
1364		if (unlikely(!page_evictable(page, NULL))) {
1365			spin_unlock_irq(&zone->lru_lock);
1366			putback_lru_page(page);
1367			spin_lock_irq(&zone->lru_lock);
1368			continue;
1369		}
1370		SetPageLRU(page);
1371		lru = page_lru(page);
1372		add_page_to_lru_list(zone, page, lru);
1373		if (is_active_lru(lru)) {
1374			int file = is_file_lru(lru);
1375			int numpages = hpage_nr_pages(page);
1376			reclaim_stat->recent_rotated[file] += numpages;
1377		}
1378		if (!pagevec_add(&pvec, page)) {
1379			spin_unlock_irq(&zone->lru_lock);
1380			__pagevec_release(&pvec);
1381			spin_lock_irq(&zone->lru_lock);
1382		}
1383	}
1384	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1385	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1386
1387	spin_unlock_irq(&zone->lru_lock);
1388	pagevec_release(&pvec);
1389}
1390
1391static noinline_for_stack void update_isolated_counts(struct zone *zone,
1392					struct scan_control *sc,
1393					unsigned long *nr_anon,
1394					unsigned long *nr_file,
1395					struct list_head *isolated_list)
1396{
1397	unsigned long nr_active;
1398	unsigned int count[NR_LRU_LISTS] = { 0, };
1399	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1400
1401	nr_active = clear_active_flags(isolated_list, count);
1402	__count_vm_events(PGDEACTIVATE, nr_active);
1403
1404	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1405			      -count[LRU_ACTIVE_FILE]);
1406	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1407			      -count[LRU_INACTIVE_FILE]);
1408	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1409			      -count[LRU_ACTIVE_ANON]);
1410	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1411			      -count[LRU_INACTIVE_ANON]);
1412
1413	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1414	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1415	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1416	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1417
1418	reclaim_stat->recent_scanned[0] += *nr_anon;
1419	reclaim_stat->recent_scanned[1] += *nr_file;
1420}
1421
1422/*
1423 * Returns true if a direct reclaim should wait on pages under writeback.
1424 *
1425 * If we are direct reclaiming for contiguous pages and we do not reclaim
1426 * everything in the list, try again and wait for writeback IO to complete.
1427 * This will stall high-order allocations noticeably. Only do that when really
1428 * need to free the pages under high memory pressure.
1429 */
1430static inline bool should_reclaim_stall(unsigned long nr_taken,
1431					unsigned long nr_freed,
1432					int priority,
1433					struct scan_control *sc)
1434{
1435	int lumpy_stall_priority;
1436
1437	/* kswapd should not stall on sync IO */
1438	if (current_is_kswapd())
1439		return false;
1440
1441	/* Only stall on lumpy reclaim */
1442	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1443		return false;
1444
1445	/* If we have reclaimed everything on the isolated list, no stall */
1446	if (nr_freed == nr_taken)
1447		return false;
1448
1449	/*
1450	 * For high-order allocations, there are two stall thresholds.
1451	 * High-cost allocations stall immediately where as lower
1452	 * order allocations such as stacks require the scanning
1453	 * priority to be much higher before stalling.
1454	 */
1455	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1456		lumpy_stall_priority = DEF_PRIORITY;
1457	else
1458		lumpy_stall_priority = DEF_PRIORITY / 3;
1459
1460	return priority <= lumpy_stall_priority;
1461}
1462
1463/*
1464 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1465 * of reclaimed pages
1466 */
1467static noinline_for_stack unsigned long
1468shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1469			struct scan_control *sc, int priority, int file)
1470{
1471	LIST_HEAD(page_list);
1472	unsigned long nr_scanned;
1473	unsigned long nr_reclaimed = 0;
1474	unsigned long nr_taken;
1475	unsigned long nr_anon;
1476	unsigned long nr_file;
1477	unsigned long nr_dirty = 0;
1478	unsigned long nr_writeback = 0;
1479	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1480
1481	while (unlikely(too_many_isolated(zone, file, sc))) {
1482		congestion_wait(BLK_RW_ASYNC, HZ/10);
1483
1484		/* We are about to die and free our memory. Return now. */
1485		if (fatal_signal_pending(current))
1486			return SWAP_CLUSTER_MAX;
1487	}
1488
1489	set_reclaim_mode(priority, sc, false);
1490	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1491		reclaim_mode |= ISOLATE_ACTIVE;
1492
1493	lru_add_drain();
1494
1495	if (!sc->may_unmap)
1496		reclaim_mode |= ISOLATE_UNMAPPED;
1497	if (!sc->may_writepage)
1498		reclaim_mode |= ISOLATE_CLEAN;
1499
1500	spin_lock_irq(&zone->lru_lock);
1501
1502	if (scanning_global_lru(sc)) {
1503		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1504			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1505		zone->pages_scanned += nr_scanned;
1506		if (current_is_kswapd())
1507			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1508					       nr_scanned);
1509		else
1510			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1511					       nr_scanned);
1512	} else {
1513		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1514			&nr_scanned, sc->order, reclaim_mode, zone,
1515			sc->mem_cgroup, 0, file);
1516		/*
1517		 * mem_cgroup_isolate_pages() keeps track of
1518		 * scanned pages on its own.
1519		 */
1520	}
1521
1522	if (nr_taken == 0) {
1523		spin_unlock_irq(&zone->lru_lock);
1524		return 0;
1525	}
1526
1527	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1528
1529	spin_unlock_irq(&zone->lru_lock);
1530
1531	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1532						&nr_dirty, &nr_writeback);
1533
1534	/* Check if we should syncronously wait for writeback */
1535	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1536		set_reclaim_mode(priority, sc, true);
1537		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1538					priority, &nr_dirty, &nr_writeback);
1539	}
1540
1541	local_irq_disable();
1542	if (current_is_kswapd())
1543		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1544	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1545
1546	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1547
1548	/*
1549	 * If reclaim is isolating dirty pages under writeback, it implies
1550	 * that the long-lived page allocation rate is exceeding the page
1551	 * laundering rate. Either the global limits are not being effective
1552	 * at throttling processes due to the page distribution throughout
1553	 * zones or there is heavy usage of a slow backing device. The
1554	 * only option is to throttle from reclaim context which is not ideal
1555	 * as there is no guarantee the dirtying process is throttled in the
1556	 * same way balance_dirty_pages() manages.
1557	 *
1558	 * This scales the number of dirty pages that must be under writeback
1559	 * before throttling depending on priority. It is a simple backoff
1560	 * function that has the most effect in the range DEF_PRIORITY to
1561	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1562	 * in trouble and reclaim is considered to be in trouble.
1563	 *
1564	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1565	 * DEF_PRIORITY-1  50% must be PageWriteback
1566	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1567	 * ...
1568	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1569	 *                     isolated page is PageWriteback
1570	 */
1571	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1572		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1573
1574	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1575		zone_idx(zone),
1576		nr_scanned, nr_reclaimed,
1577		priority,
1578		trace_shrink_flags(file, sc->reclaim_mode));
1579	return nr_reclaimed;
1580}
1581
1582/*
1583 * This moves pages from the active list to the inactive list.
1584 *
1585 * We move them the other way if the page is referenced by one or more
1586 * processes, from rmap.
1587 *
1588 * If the pages are mostly unmapped, the processing is fast and it is
1589 * appropriate to hold zone->lru_lock across the whole operation.  But if
1590 * the pages are mapped, the processing is slow (page_referenced()) so we
1591 * should drop zone->lru_lock around each page.  It's impossible to balance
1592 * this, so instead we remove the pages from the LRU while processing them.
1593 * It is safe to rely on PG_active against the non-LRU pages in here because
1594 * nobody will play with that bit on a non-LRU page.
1595 *
1596 * The downside is that we have to touch page->_count against each page.
1597 * But we had to alter page->flags anyway.
1598 */
1599
1600static void move_active_pages_to_lru(struct zone *zone,
1601				     struct list_head *list,
1602				     enum lru_list lru)
1603{
1604	unsigned long pgmoved = 0;
1605	struct pagevec pvec;
1606	struct page *page;
1607
1608	pagevec_init(&pvec, 1);
1609
1610	while (!list_empty(list)) {
1611		page = lru_to_page(list);
1612
1613		VM_BUG_ON(PageLRU(page));
1614		SetPageLRU(page);
1615
1616		list_move(&page->lru, &zone->lru[lru].list);
1617		mem_cgroup_add_lru_list(page, lru);
1618		pgmoved += hpage_nr_pages(page);
1619
1620		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1621			spin_unlock_irq(&zone->lru_lock);
1622			if (buffer_heads_over_limit)
1623				pagevec_strip(&pvec);
1624			__pagevec_release(&pvec);
1625			spin_lock_irq(&zone->lru_lock);
1626		}
1627	}
1628	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1629	if (!is_active_lru(lru))
1630		__count_vm_events(PGDEACTIVATE, pgmoved);
1631}
1632
1633static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1634			struct scan_control *sc, int priority, int file)
1635{
1636	unsigned long nr_taken;
1637	unsigned long pgscanned;
1638	unsigned long vm_flags;
1639	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1640	LIST_HEAD(l_active);
1641	LIST_HEAD(l_inactive);
1642	struct page *page;
1643	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1644	unsigned long nr_rotated = 0;
1645	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1646
1647	lru_add_drain();
1648
1649	if (!sc->may_unmap)
1650		reclaim_mode |= ISOLATE_UNMAPPED;
1651	if (!sc->may_writepage)
1652		reclaim_mode |= ISOLATE_CLEAN;
1653
1654	spin_lock_irq(&zone->lru_lock);
1655	if (scanning_global_lru(sc)) {
1656		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1657						&pgscanned, sc->order,
1658						reclaim_mode, zone,
1659						1, file);
1660		zone->pages_scanned += pgscanned;
1661	} else {
1662		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1663						&pgscanned, sc->order,
1664						reclaim_mode, zone,
1665						sc->mem_cgroup, 1, file);
1666		/*
1667		 * mem_cgroup_isolate_pages() keeps track of
1668		 * scanned pages on its own.
1669		 */
1670	}
1671
1672	reclaim_stat->recent_scanned[file] += nr_taken;
1673
1674	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1675	if (file)
1676		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1677	else
1678		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1679	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1680	spin_unlock_irq(&zone->lru_lock);
1681
1682	while (!list_empty(&l_hold)) {
1683		cond_resched();
1684		page = lru_to_page(&l_hold);
1685		list_del(&page->lru);
1686
1687		if (unlikely(!page_evictable(page, NULL))) {
1688			putback_lru_page(page);
1689			continue;
1690		}
1691
1692		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1693			nr_rotated += hpage_nr_pages(page);
1694			/*
1695			 * Identify referenced, file-backed active pages and
1696			 * give them one more trip around the active list. So
1697			 * that executable code get better chances to stay in
1698			 * memory under moderate memory pressure.  Anon pages
1699			 * are not likely to be evicted by use-once streaming
1700			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1701			 * so we ignore them here.
1702			 */
1703			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1704				list_add(&page->lru, &l_active);
1705				continue;
1706			}
1707		}
1708
1709		ClearPageActive(page);	/* we are de-activating */
1710		list_add(&page->lru, &l_inactive);
1711	}
1712
1713	/*
1714	 * Move pages back to the lru list.
1715	 */
1716	spin_lock_irq(&zone->lru_lock);
1717	/*
1718	 * Count referenced pages from currently used mappings as rotated,
1719	 * even though only some of them are actually re-activated.  This
1720	 * helps balance scan pressure between file and anonymous pages in
1721	 * get_scan_ratio.
1722	 */
1723	reclaim_stat->recent_rotated[file] += nr_rotated;
1724
1725	move_active_pages_to_lru(zone, &l_active,
1726						LRU_ACTIVE + file * LRU_FILE);
1727	move_active_pages_to_lru(zone, &l_inactive,
1728						LRU_BASE   + file * LRU_FILE);
1729	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1730	spin_unlock_irq(&zone->lru_lock);
1731}
1732
1733#ifdef CONFIG_SWAP
1734static int inactive_anon_is_low_global(struct zone *zone)
1735{
1736	unsigned long active, inactive;
1737
1738	active = zone_page_state(zone, NR_ACTIVE_ANON);
1739	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1740
1741	if (inactive * zone->inactive_ratio < active)
1742		return 1;
1743
1744	return 0;
1745}
1746
1747/**
1748 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1749 * @zone: zone to check
1750 * @sc:   scan control of this context
1751 *
1752 * Returns true if the zone does not have enough inactive anon pages,
1753 * meaning some active anon pages need to be deactivated.
1754 */
1755static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1756{
1757	int low;
1758
1759	/*
1760	 * If we don't have swap space, anonymous page deactivation
1761	 * is pointless.
1762	 */
1763	if (!total_swap_pages)
1764		return 0;
1765
1766	if (scanning_global_lru(sc))
1767		low = inactive_anon_is_low_global(zone);
1768	else
1769		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1770	return low;
1771}
1772#else
1773static inline int inactive_anon_is_low(struct zone *zone,
1774					struct scan_control *sc)
1775{
1776	return 0;
1777}
1778#endif
1779
1780static int inactive_file_is_low_global(struct zone *zone)
1781{
1782	unsigned long active, inactive;
1783
1784	active = zone_page_state(zone, NR_ACTIVE_FILE);
1785	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1786
1787	return (active > inactive);
1788}
1789
1790/**
1791 * inactive_file_is_low - check if file pages need to be deactivated
1792 * @zone: zone to check
1793 * @sc:   scan control of this context
1794 *
1795 * When the system is doing streaming IO, memory pressure here
1796 * ensures that active file pages get deactivated, until more
1797 * than half of the file pages are on the inactive list.
1798 *
1799 * Once we get to that situation, protect the system's working
1800 * set from being evicted by disabling active file page aging.
1801 *
1802 * This uses a different ratio than the anonymous pages, because
1803 * the page cache uses a use-once replacement algorithm.
1804 */
1805static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1806{
1807	int low;
1808
1809	if (scanning_global_lru(sc))
1810		low = inactive_file_is_low_global(zone);
1811	else
1812		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1813	return low;
1814}
1815
1816static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1817				int file)
1818{
1819	if (file)
1820		return inactive_file_is_low(zone, sc);
1821	else
1822		return inactive_anon_is_low(zone, sc);
1823}
1824
1825static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1826	struct zone *zone, struct scan_control *sc, int priority)
1827{
1828	int file = is_file_lru(lru);
1829
1830	if (is_active_lru(lru)) {
1831		if (inactive_list_is_low(zone, sc, file))
1832		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1833		return 0;
1834	}
1835
1836	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1837}
1838
1839static int vmscan_swappiness(struct scan_control *sc)
1840{
1841	if (scanning_global_lru(sc))
1842		return vm_swappiness;
1843	return mem_cgroup_swappiness(sc->mem_cgroup);
1844}
1845
1846/*
1847 * Determine how aggressively the anon and file LRU lists should be
1848 * scanned.  The relative value of each set of LRU lists is determined
1849 * by looking at the fraction of the pages scanned we did rotate back
1850 * onto the active list instead of evict.
1851 *
1852 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1853 */
1854static void get_scan_count(struct zone *zone, struct scan_control *sc,
1855					unsigned long *nr, int priority)
1856{
1857	unsigned long anon, file, free;
1858	unsigned long anon_prio, file_prio;
1859	unsigned long ap, fp;
1860	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1861	u64 fraction[2], denominator;
1862	enum lru_list l;
1863	int noswap = 0;
1864	bool force_scan = false;
1865
1866	/*
1867	 * If the zone or memcg is small, nr[l] can be 0.  This
1868	 * results in no scanning on this priority and a potential
1869	 * priority drop.  Global direct reclaim can go to the next
1870	 * zone and tends to have no problems. Global kswapd is for
1871	 * zone balancing and it needs to scan a minimum amount. When
1872	 * reclaiming for a memcg, a priority drop can cause high
1873	 * latencies, so it's better to scan a minimum amount there as
1874	 * well.
1875	 */
1876	if (scanning_global_lru(sc) && current_is_kswapd())
1877		force_scan = true;
1878	if (!scanning_global_lru(sc))
1879		force_scan = true;
1880
1881	/* If we have no swap space, do not bother scanning anon pages. */
1882	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1883		noswap = 1;
1884		fraction[0] = 0;
1885		fraction[1] = 1;
1886		denominator = 1;
1887		goto out;
1888	}
1889
1890	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1891		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1892	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1893		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1894
1895	if (scanning_global_lru(sc)) {
1896		free  = zone_page_state(zone, NR_FREE_PAGES);
1897		/* If we have very few page cache pages,
1898		   force-scan anon pages. */
1899		if (unlikely(file + free <= high_wmark_pages(zone))) {
1900			fraction[0] = 1;
1901			fraction[1] = 0;
1902			denominator = 1;
1903			goto out;
1904		}
1905	}
1906
1907	/*
1908	 * With swappiness at 100, anonymous and file have the same priority.
1909	 * This scanning priority is essentially the inverse of IO cost.
1910	 */
1911	anon_prio = vmscan_swappiness(sc);
1912	file_prio = 200 - vmscan_swappiness(sc);
1913
1914	/*
1915	 * OK, so we have swap space and a fair amount of page cache
1916	 * pages.  We use the recently rotated / recently scanned
1917	 * ratios to determine how valuable each cache is.
1918	 *
1919	 * Because workloads change over time (and to avoid overflow)
1920	 * we keep these statistics as a floating average, which ends
1921	 * up weighing recent references more than old ones.
1922	 *
1923	 * anon in [0], file in [1]
1924	 */
1925	spin_lock_irq(&zone->lru_lock);
1926	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1927		reclaim_stat->recent_scanned[0] /= 2;
1928		reclaim_stat->recent_rotated[0] /= 2;
1929	}
1930
1931	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1932		reclaim_stat->recent_scanned[1] /= 2;
1933		reclaim_stat->recent_rotated[1] /= 2;
1934	}
1935
1936	/*
1937	 * The amount of pressure on anon vs file pages is inversely
1938	 * proportional to the fraction of recently scanned pages on
1939	 * each list that were recently referenced and in active use.
1940	 */
1941	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1942	ap /= reclaim_stat->recent_rotated[0] + 1;
1943
1944	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1945	fp /= reclaim_stat->recent_rotated[1] + 1;
1946	spin_unlock_irq(&zone->lru_lock);
1947
1948	fraction[0] = ap;
1949	fraction[1] = fp;
1950	denominator = ap + fp + 1;
1951out:
1952	for_each_evictable_lru(l) {
1953		int file = is_file_lru(l);
1954		unsigned long scan;
1955
1956		scan = zone_nr_lru_pages(zone, sc, l);
1957		if (priority || noswap) {
1958			scan >>= priority;
1959			if (!scan && force_scan)
1960				scan = SWAP_CLUSTER_MAX;
1961			scan = div64_u64(scan * fraction[file], denominator);
1962		}
1963		nr[l] = scan;
1964	}
1965}
1966
1967/*
1968 * Reclaim/compaction depends on a number of pages being freed. To avoid
1969 * disruption to the system, a small number of order-0 pages continue to be
1970 * rotated and reclaimed in the normal fashion. However, by the time we get
1971 * back to the allocator and call try_to_compact_zone(), we ensure that
1972 * there are enough free pages for it to be likely successful
1973 */
1974static inline bool should_continue_reclaim(struct zone *zone,
1975					unsigned long nr_reclaimed,
1976					unsigned long nr_scanned,
1977					struct scan_control *sc)
1978{
1979	unsigned long pages_for_compaction;
1980	unsigned long inactive_lru_pages;
1981
1982	/* If not in reclaim/compaction mode, stop */
1983	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1984		return false;
1985
1986	/* Consider stopping depending on scan and reclaim activity */
1987	if (sc->gfp_mask & __GFP_REPEAT) {
1988		/*
1989		 * For __GFP_REPEAT allocations, stop reclaiming if the
1990		 * full LRU list has been scanned and we are still failing
1991		 * to reclaim pages. This full LRU scan is potentially
1992		 * expensive but a __GFP_REPEAT caller really wants to succeed
1993		 */
1994		if (!nr_reclaimed && !nr_scanned)
1995			return false;
1996	} else {
1997		/*
1998		 * For non-__GFP_REPEAT allocations which can presumably
1999		 * fail without consequence, stop if we failed to reclaim
2000		 * any pages from the last SWAP_CLUSTER_MAX number of
2001		 * pages that were scanned. This will return to the
2002		 * caller faster at the risk reclaim/compaction and
2003		 * the resulting allocation attempt fails
2004		 */
2005		if (!nr_reclaimed)
2006			return false;
2007	}
2008
2009	/*
2010	 * If we have not reclaimed enough pages for compaction and the
2011	 * inactive lists are large enough, continue reclaiming
2012	 */
2013	pages_for_compaction = (2UL << sc->order);
2014	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2015				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2016	if (sc->nr_reclaimed < pages_for_compaction &&
2017			inactive_lru_pages > pages_for_compaction)
2018		return true;
2019
2020	/* If compaction would go ahead or the allocation would succeed, stop */
2021	switch (compaction_suitable(zone, sc->order)) {
2022	case COMPACT_PARTIAL:
2023	case COMPACT_CONTINUE:
2024		return false;
2025	default:
2026		return true;
2027	}
2028}
2029
2030/*
2031 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2032 */
2033static void shrink_zone(int priority, struct zone *zone,
2034				struct scan_control *sc)
2035{
2036	unsigned long nr[NR_LRU_LISTS];
2037	unsigned long nr_to_scan;
2038	enum lru_list l;
2039	unsigned long nr_reclaimed, nr_scanned;
2040	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2041	struct blk_plug plug;
2042
2043restart:
2044	nr_reclaimed = 0;
2045	nr_scanned = sc->nr_scanned;
2046	get_scan_count(zone, sc, nr, priority);
2047
2048	blk_start_plug(&plug);
2049	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2050					nr[LRU_INACTIVE_FILE]) {
2051		for_each_evictable_lru(l) {
2052			if (nr[l]) {
2053				nr_to_scan = min_t(unsigned long,
2054						   nr[l], SWAP_CLUSTER_MAX);
2055				nr[l] -= nr_to_scan;
2056
2057				nr_reclaimed += shrink_list(l, nr_to_scan,
2058							    zone, sc, priority);
2059			}
2060		}
2061		/*
2062		 * On large memory systems, scan >> priority can become
2063		 * really large. This is fine for the starting priority;
2064		 * we want to put equal scanning pressure on each zone.
2065		 * However, if the VM has a harder time of freeing pages,
2066		 * with multiple processes reclaiming pages, the total
2067		 * freeing target can get unreasonably large.
2068		 */
2069		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2070			break;
2071	}
2072	blk_finish_plug(&plug);
2073	sc->nr_reclaimed += nr_reclaimed;
2074
2075	/*
2076	 * Even if we did not try to evict anon pages at all, we want to
2077	 * rebalance the anon lru active/inactive ratio.
2078	 */
2079	if (inactive_anon_is_low(zone, sc))
2080		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2081
2082	/* reclaim/compaction might need reclaim to continue */
2083	if (should_continue_reclaim(zone, nr_reclaimed,
2084					sc->nr_scanned - nr_scanned, sc))
2085		goto restart;
2086
2087	throttle_vm_writeout(sc->gfp_mask);
2088}
2089
2090/*
2091 * This is the direct reclaim path, for page-allocating processes.  We only
2092 * try to reclaim pages from zones which will satisfy the caller's allocation
2093 * request.
2094 *
2095 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2096 * Because:
2097 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2098 *    allocation or
2099 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2100 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2101 *    zone defense algorithm.
2102 *
2103 * If a zone is deemed to be full of pinned pages then just give it a light
2104 * scan then give up on it.
2105 */
2106static void shrink_zones(int priority, struct zonelist *zonelist,
2107					struct scan_control *sc)
2108{
2109	struct zoneref *z;
2110	struct zone *zone;
2111	unsigned long nr_soft_reclaimed;
2112	unsigned long nr_soft_scanned;
2113
2114	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2115					gfp_zone(sc->gfp_mask), sc->nodemask) {
2116		if (!populated_zone(zone))
2117			continue;
2118		/*
2119		 * Take care memory controller reclaiming has small influence
2120		 * to global LRU.
2121		 */
2122		if (scanning_global_lru(sc)) {
2123			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2124				continue;
2125			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2126				continue;	/* Let kswapd poll it */
2127			/*
2128			 * This steals pages from memory cgroups over softlimit
2129			 * and returns the number of reclaimed pages and
2130			 * scanned pages. This works for global memory pressure
2131			 * and balancing, not for a memcg's limit.
2132			 */
2133			nr_soft_scanned = 0;
2134			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2135						sc->order, sc->gfp_mask,
2136						&nr_soft_scanned);
2137			sc->nr_reclaimed += nr_soft_reclaimed;
2138			sc->nr_scanned += nr_soft_scanned;
2139			/* need some check for avoid more shrink_zone() */
2140		}
2141
2142		shrink_zone(priority, zone, sc);
2143	}
2144}
2145
2146static bool zone_reclaimable(struct zone *zone)
2147{
2148	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2149}
2150
2151/* All zones in zonelist are unreclaimable? */
2152static bool all_unreclaimable(struct zonelist *zonelist,
2153		struct scan_control *sc)
2154{
2155	struct zoneref *z;
2156	struct zone *zone;
2157
2158	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2159			gfp_zone(sc->gfp_mask), sc->nodemask) {
2160		if (!populated_zone(zone))
2161			continue;
2162		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2163			continue;
2164		if (!zone->all_unreclaimable)
2165			return false;
2166	}
2167
2168	return true;
2169}
2170
2171/*
2172 * This is the main entry point to direct page reclaim.
2173 *
2174 * If a full scan of the inactive list fails to free enough memory then we
2175 * are "out of memory" and something needs to be killed.
2176 *
2177 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2178 * high - the zone may be full of dirty or under-writeback pages, which this
2179 * caller can't do much about.  We kick the writeback threads and take explicit
2180 * naps in the hope that some of these pages can be written.  But if the
2181 * allocating task holds filesystem locks which prevent writeout this might not
2182 * work, and the allocation attempt will fail.
2183 *
2184 * returns:	0, if no pages reclaimed
2185 * 		else, the number of pages reclaimed
2186 */
2187static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2188					struct scan_control *sc,
2189					struct shrink_control *shrink)
2190{
2191	int priority;
2192	unsigned long total_scanned = 0;
2193	struct reclaim_state *reclaim_state = current->reclaim_state;
2194	struct zoneref *z;
2195	struct zone *zone;
2196	unsigned long writeback_threshold;
2197
2198	get_mems_allowed();
2199	delayacct_freepages_start();
2200
2201	if (scanning_global_lru(sc))
2202		count_vm_event(ALLOCSTALL);
2203
2204	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2205		sc->nr_scanned = 0;
2206		if (!priority)
2207			disable_swap_token(sc->mem_cgroup);
2208		shrink_zones(priority, zonelist, sc);
2209		/*
2210		 * Don't shrink slabs when reclaiming memory from
2211		 * over limit cgroups
2212		 */
2213		if (scanning_global_lru(sc)) {
2214			unsigned long lru_pages = 0;
2215			for_each_zone_zonelist(zone, z, zonelist,
2216					gfp_zone(sc->gfp_mask)) {
2217				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2218					continue;
2219
2220				lru_pages += zone_reclaimable_pages(zone);
2221			}
2222
2223			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2224			if (reclaim_state) {
2225				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2226				reclaim_state->reclaimed_slab = 0;
2227			}
2228		}
2229		total_scanned += sc->nr_scanned;
2230		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2231			goto out;
2232
2233		/*
2234		 * Try to write back as many pages as we just scanned.  This
2235		 * tends to cause slow streaming writers to write data to the
2236		 * disk smoothly, at the dirtying rate, which is nice.   But
2237		 * that's undesirable in laptop mode, where we *want* lumpy
2238		 * writeout.  So in laptop mode, write out the whole world.
2239		 */
2240		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2241		if (total_scanned > writeback_threshold) {
2242			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2243			sc->may_writepage = 1;
2244		}
2245
2246		/* Take a nap, wait for some writeback to complete */
2247		if (!sc->hibernation_mode && sc->nr_scanned &&
2248		    priority < DEF_PRIORITY - 2) {
2249			struct zone *preferred_zone;
2250
2251			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2252						&cpuset_current_mems_allowed,
2253						&preferred_zone);
2254			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2255		}
2256	}
2257
2258out:
2259	delayacct_freepages_end();
2260	put_mems_allowed();
2261
2262	if (sc->nr_reclaimed)
2263		return sc->nr_reclaimed;
2264
2265	/*
2266	 * As hibernation is going on, kswapd is freezed so that it can't mark
2267	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2268	 * check.
2269	 */
2270	if (oom_killer_disabled)
2271		return 0;
2272
2273	/* top priority shrink_zones still had more to do? don't OOM, then */
2274	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2275		return 1;
2276
2277	return 0;
2278}
2279
2280unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2281				gfp_t gfp_mask, nodemask_t *nodemask)
2282{
2283	unsigned long nr_reclaimed;
2284	struct scan_control sc = {
2285		.gfp_mask = gfp_mask,
2286		.may_writepage = !laptop_mode,
2287		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2288		.may_unmap = 1,
2289		.may_swap = 1,
2290		.order = order,
2291		.mem_cgroup = NULL,
2292		.nodemask = nodemask,
2293	};
2294	struct shrink_control shrink = {
2295		.gfp_mask = sc.gfp_mask,
2296	};
2297
2298	trace_mm_vmscan_direct_reclaim_begin(order,
2299				sc.may_writepage,
2300				gfp_mask);
2301
2302	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2303
2304	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2305
2306	return nr_reclaimed;
2307}
2308
2309#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2310
2311unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2312						gfp_t gfp_mask, bool noswap,
2313						struct zone *zone,
2314						unsigned long *nr_scanned)
2315{
2316	struct scan_control sc = {
2317		.nr_scanned = 0,
2318		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2319		.may_writepage = !laptop_mode,
2320		.may_unmap = 1,
2321		.may_swap = !noswap,
2322		.order = 0,
2323		.mem_cgroup = mem,
2324	};
2325
2326	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2327			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2328
2329	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2330						      sc.may_writepage,
2331						      sc.gfp_mask);
2332
2333	/*
2334	 * NOTE: Although we can get the priority field, using it
2335	 * here is not a good idea, since it limits the pages we can scan.
2336	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2337	 * will pick up pages from other mem cgroup's as well. We hack
2338	 * the priority and make it zero.
2339	 */
2340	shrink_zone(0, zone, &sc);
2341
2342	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2343
2344	*nr_scanned = sc.nr_scanned;
2345	return sc.nr_reclaimed;
2346}
2347
2348unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2349					   gfp_t gfp_mask,
2350					   bool noswap)
2351{
2352	struct zonelist *zonelist;
2353	unsigned long nr_reclaimed;
2354	int nid;
2355	struct scan_control sc = {
2356		.may_writepage = !laptop_mode,
2357		.may_unmap = 1,
2358		.may_swap = !noswap,
2359		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2360		.order = 0,
2361		.mem_cgroup = mem_cont,
2362		.nodemask = NULL, /* we don't care the placement */
2363		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2364				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2365	};
2366	struct shrink_control shrink = {
2367		.gfp_mask = sc.gfp_mask,
2368	};
2369
2370	/*
2371	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2372	 * take care of from where we get pages. So the node where we start the
2373	 * scan does not need to be the current node.
2374	 */
2375	nid = mem_cgroup_select_victim_node(mem_cont);
2376
2377	zonelist = NODE_DATA(nid)->node_zonelists;
2378
2379	trace_mm_vmscan_memcg_reclaim_begin(0,
2380					    sc.may_writepage,
2381					    sc.gfp_mask);
2382
2383	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2384
2385	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2386
2387	return nr_reclaimed;
2388}
2389#endif
2390
2391/*
2392 * pgdat_balanced is used when checking if a node is balanced for high-order
2393 * allocations. Only zones that meet watermarks and are in a zone allowed
2394 * by the callers classzone_idx are added to balanced_pages. The total of
2395 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2396 * for the node to be considered balanced. Forcing all zones to be balanced
2397 * for high orders can cause excessive reclaim when there are imbalanced zones.
2398 * The choice of 25% is due to
2399 *   o a 16M DMA zone that is balanced will not balance a zone on any
2400 *     reasonable sized machine
2401 *   o On all other machines, the top zone must be at least a reasonable
2402 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2403 *     would need to be at least 256M for it to be balance a whole node.
2404 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2405 *     to balance a node on its own. These seemed like reasonable ratios.
2406 */
2407static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2408						int classzone_idx)
2409{
2410	unsigned long present_pages = 0;
2411	int i;
2412
2413	for (i = 0; i <= classzone_idx; i++)
2414		present_pages += pgdat->node_zones[i].present_pages;
2415
2416	/* A special case here: if zone has no page, we think it's balanced */
2417	return balanced_pages >= (present_pages >> 2);
2418}
2419
2420/* is kswapd sleeping prematurely? */
2421static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2422					int classzone_idx)
2423{
2424	int i;
2425	unsigned long balanced = 0;
2426	bool all_zones_ok = true;
2427
2428	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2429	if (remaining)
2430		return true;
2431
2432	/* Check the watermark levels */
2433	for (i = 0; i <= classzone_idx; i++) {
2434		struct zone *zone = pgdat->node_zones + i;
2435
2436		if (!populated_zone(zone))
2437			continue;
2438
2439		/*
2440		 * balance_pgdat() skips over all_unreclaimable after
2441		 * DEF_PRIORITY. Effectively, it considers them balanced so
2442		 * they must be considered balanced here as well if kswapd
2443		 * is to sleep
2444		 */
2445		if (zone->all_unreclaimable) {
2446			balanced += zone->present_pages;
2447			continue;
2448		}
2449
2450		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2451							i, 0))
2452			all_zones_ok = false;
2453		else
2454			balanced += zone->present_pages;
2455	}
2456
2457	/*
2458	 * For high-order requests, the balanced zones must contain at least
2459	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2460	 * must be balanced
2461	 */
2462	if (order)
2463		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2464	else
2465		return !all_zones_ok;
2466}
2467
2468/*
2469 * For kswapd, balance_pgdat() will work across all this node's zones until
2470 * they are all at high_wmark_pages(zone).
2471 *
2472 * Returns the final order kswapd was reclaiming at
2473 *
2474 * There is special handling here for zones which are full of pinned pages.
2475 * This can happen if the pages are all mlocked, or if they are all used by
2476 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2477 * What we do is to detect the case where all pages in the zone have been
2478 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2479 * dead and from now on, only perform a short scan.  Basically we're polling
2480 * the zone for when the problem goes away.
2481 *
2482 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2483 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2484 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2485 * lower zones regardless of the number of free pages in the lower zones. This
2486 * interoperates with the page allocator fallback scheme to ensure that aging
2487 * of pages is balanced across the zones.
2488 */
2489static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2490							int *classzone_idx)
2491{
2492	int all_zones_ok;
2493	unsigned long balanced;
2494	int priority;
2495	int i;
2496	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2497	unsigned long total_scanned;
2498	struct reclaim_state *reclaim_state = current->reclaim_state;
2499	unsigned long nr_soft_reclaimed;
2500	unsigned long nr_soft_scanned;
2501	struct scan_control sc = {
2502		.gfp_mask = GFP_KERNEL,
2503		.may_unmap = 1,
2504		.may_swap = 1,
2505		/*
2506		 * kswapd doesn't want to be bailed out while reclaim. because
2507		 * we want to put equal scanning pressure on each zone.
2508		 */
2509		.nr_to_reclaim = ULONG_MAX,
2510		.order = order,
2511		.mem_cgroup = NULL,
2512	};
2513	struct shrink_control shrink = {
2514		.gfp_mask = sc.gfp_mask,
2515	};
2516loop_again:
2517	total_scanned = 0;
2518	sc.nr_reclaimed = 0;
2519	sc.may_writepage = !laptop_mode;
2520	count_vm_event(PAGEOUTRUN);
2521
2522	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2523		unsigned long lru_pages = 0;
2524		int has_under_min_watermark_zone = 0;
2525
2526		/* The swap token gets in the way of swapout... */
2527		if (!priority)
2528			disable_swap_token(NULL);
2529
2530		all_zones_ok = 1;
2531		balanced = 0;
2532
2533		/*
2534		 * Scan in the highmem->dma direction for the highest
2535		 * zone which needs scanning
2536		 */
2537		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2538			struct zone *zone = pgdat->node_zones + i;
2539
2540			if (!populated_zone(zone))
2541				continue;
2542
2543			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2544				continue;
2545
2546			/*
2547			 * Do some background aging of the anon list, to give
2548			 * pages a chance to be referenced before reclaiming.
2549			 */
2550			if (inactive_anon_is_low(zone, &sc))
2551				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2552							&sc, priority, 0);
2553
2554			if (!zone_watermark_ok_safe(zone, order,
2555					high_wmark_pages(zone), 0, 0)) {
2556				end_zone = i;
2557				break;
2558			} else {
2559				/* If balanced, clear the congested flag */
2560				zone_clear_flag(zone, ZONE_CONGESTED);
2561			}
2562		}
2563		if (i < 0)
2564			goto out;
2565
2566		for (i = 0; i <= end_zone; i++) {
2567			struct zone *zone = pgdat->node_zones + i;
2568
2569			lru_pages += zone_reclaimable_pages(zone);
2570		}
2571
2572		/*
2573		 * Now scan the zone in the dma->highmem direction, stopping
2574		 * at the last zone which needs scanning.
2575		 *
2576		 * We do this because the page allocator works in the opposite
2577		 * direction.  This prevents the page allocator from allocating
2578		 * pages behind kswapd's direction of progress, which would
2579		 * cause too much scanning of the lower zones.
2580		 */
2581		for (i = 0; i <= end_zone; i++) {
2582			struct zone *zone = pgdat->node_zones + i;
2583			int nr_slab;
2584			unsigned long balance_gap;
2585
2586			if (!populated_zone(zone))
2587				continue;
2588
2589			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2590				continue;
2591
2592			sc.nr_scanned = 0;
2593
2594			nr_soft_scanned = 0;
2595			/*
2596			 * Call soft limit reclaim before calling shrink_zone.
2597			 */
2598			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2599							order, sc.gfp_mask,
2600							&nr_soft_scanned);
2601			sc.nr_reclaimed += nr_soft_reclaimed;
2602			total_scanned += nr_soft_scanned;
2603
2604			/*
2605			 * We put equal pressure on every zone, unless
2606			 * one zone has way too many pages free
2607			 * already. The "too many pages" is defined
2608			 * as the high wmark plus a "gap" where the
2609			 * gap is either the low watermark or 1%
2610			 * of the zone, whichever is smaller.
2611			 */
2612			balance_gap = min(low_wmark_pages(zone),
2613				(zone->present_pages +
2614					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2615				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2616			if (!zone_watermark_ok_safe(zone, order,
2617					high_wmark_pages(zone) + balance_gap,
2618					end_zone, 0)) {
2619				shrink_zone(priority, zone, &sc);
2620
2621				reclaim_state->reclaimed_slab = 0;
2622				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2623				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2624				total_scanned += sc.nr_scanned;
2625
2626				if (nr_slab == 0 && !zone_reclaimable(zone))
2627					zone->all_unreclaimable = 1;
2628			}
2629
2630			/*
2631			 * If we've done a decent amount of scanning and
2632			 * the reclaim ratio is low, start doing writepage
2633			 * even in laptop mode
2634			 */
2635			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2636			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2637				sc.may_writepage = 1;
2638
2639			if (zone->all_unreclaimable) {
2640				if (end_zone && end_zone == i)
2641					end_zone--;
2642				continue;
2643			}
2644
2645			if (!zone_watermark_ok_safe(zone, order,
2646					high_wmark_pages(zone), end_zone, 0)) {
2647				all_zones_ok = 0;
2648				/*
2649				 * We are still under min water mark.  This
2650				 * means that we have a GFP_ATOMIC allocation
2651				 * failure risk. Hurry up!
2652				 */
2653				if (!zone_watermark_ok_safe(zone, order,
2654					    min_wmark_pages(zone), end_zone, 0))
2655					has_under_min_watermark_zone = 1;
2656			} else {
2657				/*
2658				 * If a zone reaches its high watermark,
2659				 * consider it to be no longer congested. It's
2660				 * possible there are dirty pages backed by
2661				 * congested BDIs but as pressure is relieved,
2662				 * spectulatively avoid congestion waits
2663				 */
2664				zone_clear_flag(zone, ZONE_CONGESTED);
2665				if (i <= *classzone_idx)
2666					balanced += zone->present_pages;
2667			}
2668
2669		}
2670		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2671			break;		/* kswapd: all done */
2672		/*
2673		 * OK, kswapd is getting into trouble.  Take a nap, then take
2674		 * another pass across the zones.
2675		 */
2676		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2677			if (has_under_min_watermark_zone)
2678				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2679			else
2680				congestion_wait(BLK_RW_ASYNC, HZ/10);
2681		}
2682
2683		/*
2684		 * We do this so kswapd doesn't build up large priorities for
2685		 * example when it is freeing in parallel with allocators. It
2686		 * matches the direct reclaim path behaviour in terms of impact
2687		 * on zone->*_priority.
2688		 */
2689		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2690			break;
2691	}
2692out:
2693
2694	/*
2695	 * order-0: All zones must meet high watermark for a balanced node
2696	 * high-order: Balanced zones must make up at least 25% of the node
2697	 *             for the node to be balanced
2698	 */
2699	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2700		cond_resched();
2701
2702		try_to_freeze();
2703
2704		/*
2705		 * Fragmentation may mean that the system cannot be
2706		 * rebalanced for high-order allocations in all zones.
2707		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2708		 * it means the zones have been fully scanned and are still
2709		 * not balanced. For high-order allocations, there is
2710		 * little point trying all over again as kswapd may
2711		 * infinite loop.
2712		 *
2713		 * Instead, recheck all watermarks at order-0 as they
2714		 * are the most important. If watermarks are ok, kswapd will go
2715		 * back to sleep. High-order users can still perform direct
2716		 * reclaim if they wish.
2717		 */
2718		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2719			order = sc.order = 0;
2720
2721		goto loop_again;
2722	}
2723
2724	/*
2725	 * If kswapd was reclaiming at a higher order, it has the option of
2726	 * sleeping without all zones being balanced. Before it does, it must
2727	 * ensure that the watermarks for order-0 on *all* zones are met and
2728	 * that the congestion flags are cleared. The congestion flag must
2729	 * be cleared as kswapd is the only mechanism that clears the flag
2730	 * and it is potentially going to sleep here.
2731	 */
2732	if (order) {
2733		for (i = 0; i <= end_zone; i++) {
2734			struct zone *zone = pgdat->node_zones + i;
2735
2736			if (!populated_zone(zone))
2737				continue;
2738
2739			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2740				continue;
2741
2742			/* Confirm the zone is balanced for order-0 */
2743			if (!zone_watermark_ok(zone, 0,
2744					high_wmark_pages(zone), 0, 0)) {
2745				order = sc.order = 0;
2746				goto loop_again;
2747			}
2748
2749			/* If balanced, clear the congested flag */
2750			zone_clear_flag(zone, ZONE_CONGESTED);
2751			if (i <= *classzone_idx)
2752				balanced += zone->present_pages;
2753		}
2754	}
2755
2756	/*
2757	 * Return the order we were reclaiming at so sleeping_prematurely()
2758	 * makes a decision on the order we were last reclaiming at. However,
2759	 * if another caller entered the allocator slow path while kswapd
2760	 * was awake, order will remain at the higher level
2761	 */
2762	*classzone_idx = end_zone;
2763	return order;
2764}
2765
2766static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2767{
2768	long remaining = 0;
2769	DEFINE_WAIT(wait);
2770
2771	if (freezing(current) || kthread_should_stop())
2772		return;
2773
2774	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2775
2776	/* Try to sleep for a short interval */
2777	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2778		remaining = schedule_timeout(HZ/10);
2779		finish_wait(&pgdat->kswapd_wait, &wait);
2780		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2781	}
2782
2783	/*
2784	 * After a short sleep, check if it was a premature sleep. If not, then
2785	 * go fully to sleep until explicitly woken up.
2786	 */
2787	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2788		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2789
2790		/*
2791		 * vmstat counters are not perfectly accurate and the estimated
2792		 * value for counters such as NR_FREE_PAGES can deviate from the
2793		 * true value by nr_online_cpus * threshold. To avoid the zone
2794		 * watermarks being breached while under pressure, we reduce the
2795		 * per-cpu vmstat threshold while kswapd is awake and restore
2796		 * them before going back to sleep.
2797		 */
2798		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2799		schedule();
2800		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2801	} else {
2802		if (remaining)
2803			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2804		else
2805			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2806	}
2807	finish_wait(&pgdat->kswapd_wait, &wait);
2808}
2809
2810/*
2811 * The background pageout daemon, started as a kernel thread
2812 * from the init process.
2813 *
2814 * This basically trickles out pages so that we have _some_
2815 * free memory available even if there is no other activity
2816 * that frees anything up. This is needed for things like routing
2817 * etc, where we otherwise might have all activity going on in
2818 * asynchronous contexts that cannot page things out.
2819 *
2820 * If there are applications that are active memory-allocators
2821 * (most normal use), this basically shouldn't matter.
2822 */
2823static int kswapd(void *p)
2824{
2825	unsigned long order, new_order;
2826	unsigned balanced_order;
2827	int classzone_idx, new_classzone_idx;
2828	int balanced_classzone_idx;
2829	pg_data_t *pgdat = (pg_data_t*)p;
2830	struct task_struct *tsk = current;
2831
2832	struct reclaim_state reclaim_state = {
2833		.reclaimed_slab = 0,
2834	};
2835	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2836
2837	lockdep_set_current_reclaim_state(GFP_KERNEL);
2838
2839	if (!cpumask_empty(cpumask))
2840		set_cpus_allowed_ptr(tsk, cpumask);
2841	current->reclaim_state = &reclaim_state;
2842
2843	/*
2844	 * Tell the memory management that we're a "memory allocator",
2845	 * and that if we need more memory we should get access to it
2846	 * regardless (see "__alloc_pages()"). "kswapd" should
2847	 * never get caught in the normal page freeing logic.
2848	 *
2849	 * (Kswapd normally doesn't need memory anyway, but sometimes
2850	 * you need a small amount of memory in order to be able to
2851	 * page out something else, and this flag essentially protects
2852	 * us from recursively trying to free more memory as we're
2853	 * trying to free the first piece of memory in the first place).
2854	 */
2855	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2856	set_freezable();
2857
2858	order = new_order = 0;
2859	balanced_order = 0;
2860	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2861	balanced_classzone_idx = classzone_idx;
2862	for ( ; ; ) {
2863		int ret;
2864
2865		/*
2866		 * If the last balance_pgdat was unsuccessful it's unlikely a
2867		 * new request of a similar or harder type will succeed soon
2868		 * so consider going to sleep on the basis we reclaimed at
2869		 */
2870		if (balanced_classzone_idx >= new_classzone_idx &&
2871					balanced_order == new_order) {
2872			new_order = pgdat->kswapd_max_order;
2873			new_classzone_idx = pgdat->classzone_idx;
2874			pgdat->kswapd_max_order =  0;
2875			pgdat->classzone_idx = pgdat->nr_zones - 1;
2876		}
2877
2878		if (order < new_order || classzone_idx > new_classzone_idx) {
2879			/*
2880			 * Don't sleep if someone wants a larger 'order'
2881			 * allocation or has tigher zone constraints
2882			 */
2883			order = new_order;
2884			classzone_idx = new_classzone_idx;
2885		} else {
2886			kswapd_try_to_sleep(pgdat, balanced_order,
2887						balanced_classzone_idx);
2888			order = pgdat->kswapd_max_order;
2889			classzone_idx = pgdat->classzone_idx;
2890			pgdat->kswapd_max_order = 0;
2891			pgdat->classzone_idx = pgdat->nr_zones - 1;
2892		}
2893
2894		ret = try_to_freeze();
2895		if (kthread_should_stop())
2896			break;
2897
2898		/*
2899		 * We can speed up thawing tasks if we don't call balance_pgdat
2900		 * after returning from the refrigerator
2901		 */
2902		if (!ret) {
2903			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2904			balanced_classzone_idx = classzone_idx;
2905			balanced_order = balance_pgdat(pgdat, order,
2906						&balanced_classzone_idx);
2907		}
2908	}
2909	return 0;
2910}
2911
2912/*
2913 * A zone is low on free memory, so wake its kswapd task to service it.
2914 */
2915void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2916{
2917	pg_data_t *pgdat;
2918
2919	if (!populated_zone(zone))
2920		return;
2921
2922	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2923		return;
2924	pgdat = zone->zone_pgdat;
2925	if (pgdat->kswapd_max_order < order) {
2926		pgdat->kswapd_max_order = order;
2927		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2928	}
2929	if (!waitqueue_active(&pgdat->kswapd_wait))
2930		return;
2931	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2932		return;
2933
2934	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2935	wake_up_interruptible(&pgdat->kswapd_wait);
2936}
2937
2938/*
2939 * The reclaimable count would be mostly accurate.
2940 * The less reclaimable pages may be
2941 * - mlocked pages, which will be moved to unevictable list when encountered
2942 * - mapped pages, which may require several travels to be reclaimed
2943 * - dirty pages, which is not "instantly" reclaimable
2944 */
2945unsigned long global_reclaimable_pages(void)
2946{
2947	int nr;
2948
2949	nr = global_page_state(NR_ACTIVE_FILE) +
2950	     global_page_state(NR_INACTIVE_FILE);
2951
2952	if (nr_swap_pages > 0)
2953		nr += global_page_state(NR_ACTIVE_ANON) +
2954		      global_page_state(NR_INACTIVE_ANON);
2955
2956	return nr;
2957}
2958
2959unsigned long zone_reclaimable_pages(struct zone *zone)
2960{
2961	int nr;
2962
2963	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2964	     zone_page_state(zone, NR_INACTIVE_FILE);
2965
2966	if (nr_swap_pages > 0)
2967		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2968		      zone_page_state(zone, NR_INACTIVE_ANON);
2969
2970	return nr;
2971}
2972
2973#ifdef CONFIG_HIBERNATION
2974/*
2975 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2976 * freed pages.
2977 *
2978 * Rather than trying to age LRUs the aim is to preserve the overall
2979 * LRU order by reclaiming preferentially
2980 * inactive > active > active referenced > active mapped
2981 */
2982unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2983{
2984	struct reclaim_state reclaim_state;
2985	struct scan_control sc = {
2986		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2987		.may_swap = 1,
2988		.may_unmap = 1,
2989		.may_writepage = 1,
2990		.nr_to_reclaim = nr_to_reclaim,
2991		.hibernation_mode = 1,
2992		.order = 0,
2993	};
2994	struct shrink_control shrink = {
2995		.gfp_mask = sc.gfp_mask,
2996	};
2997	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2998	struct task_struct *p = current;
2999	unsigned long nr_reclaimed;
3000
3001	p->flags |= PF_MEMALLOC;
3002	lockdep_set_current_reclaim_state(sc.gfp_mask);
3003	reclaim_state.reclaimed_slab = 0;
3004	p->reclaim_state = &reclaim_state;
3005
3006	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3007
3008	p->reclaim_state = NULL;
3009	lockdep_clear_current_reclaim_state();
3010	p->flags &= ~PF_MEMALLOC;
3011
3012	return nr_reclaimed;
3013}
3014#endif /* CONFIG_HIBERNATION */
3015
3016/* It's optimal to keep kswapds on the same CPUs as their memory, but
3017   not required for correctness.  So if the last cpu in a node goes
3018   away, we get changed to run anywhere: as the first one comes back,
3019   restore their cpu bindings. */
3020static int __devinit cpu_callback(struct notifier_block *nfb,
3021				  unsigned long action, void *hcpu)
3022{
3023	int nid;
3024
3025	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3026		for_each_node_state(nid, N_HIGH_MEMORY) {
3027			pg_data_t *pgdat = NODE_DATA(nid);
3028			const struct cpumask *mask;
3029
3030			mask = cpumask_of_node(pgdat->node_id);
3031
3032			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3033				/* One of our CPUs online: restore mask */
3034				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3035		}
3036	}
3037	return NOTIFY_OK;
3038}
3039
3040/*
3041 * This kswapd start function will be called by init and node-hot-add.
3042 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3043 */
3044int kswapd_run(int nid)
3045{
3046	pg_data_t *pgdat = NODE_DATA(nid);
3047	int ret = 0;
3048
3049	if (pgdat->kswapd)
3050		return 0;
3051
3052	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3053	if (IS_ERR(pgdat->kswapd)) {
3054		/* failure at boot is fatal */
3055		BUG_ON(system_state == SYSTEM_BOOTING);
3056		printk("Failed to start kswapd on node %d\n",nid);
3057		ret = -1;
3058	}
3059	return ret;
3060}
3061
3062/*
3063 * Called by memory hotplug when all memory in a node is offlined.
3064 */
3065void kswapd_stop(int nid)
3066{
3067	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3068
3069	if (kswapd)
3070		kthread_stop(kswapd);
3071}
3072
3073static int __init kswapd_init(void)
3074{
3075	int nid;
3076
3077	swap_setup();
3078	for_each_node_state(nid, N_HIGH_MEMORY)
3079 		kswapd_run(nid);
3080	hotcpu_notifier(cpu_callback, 0);
3081	return 0;
3082}
3083
3084module_init(kswapd_init)
3085
3086#ifdef CONFIG_NUMA
3087/*
3088 * Zone reclaim mode
3089 *
3090 * If non-zero call zone_reclaim when the number of free pages falls below
3091 * the watermarks.
3092 */
3093int zone_reclaim_mode __read_mostly;
3094
3095#define RECLAIM_OFF 0
3096#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3097#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3098#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3099
3100/*
3101 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3102 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3103 * a zone.
3104 */
3105#define ZONE_RECLAIM_PRIORITY 4
3106
3107/*
3108 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3109 * occur.
3110 */
3111int sysctl_min_unmapped_ratio = 1;
3112
3113/*
3114 * If the number of slab pages in a zone grows beyond this percentage then
3115 * slab reclaim needs to occur.
3116 */
3117int sysctl_min_slab_ratio = 5;
3118
3119static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3120{
3121	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3122	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3123		zone_page_state(zone, NR_ACTIVE_FILE);
3124
3125	/*
3126	 * It's possible for there to be more file mapped pages than
3127	 * accounted for by the pages on the file LRU lists because
3128	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3129	 */
3130	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3131}
3132
3133/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3134static long zone_pagecache_reclaimable(struct zone *zone)
3135{
3136	long nr_pagecache_reclaimable;
3137	long delta = 0;
3138
3139	/*
3140	 * If RECLAIM_SWAP is set, then all file pages are considered
3141	 * potentially reclaimable. Otherwise, we have to worry about
3142	 * pages like swapcache and zone_unmapped_file_pages() provides
3143	 * a better estimate
3144	 */
3145	if (zone_reclaim_mode & RECLAIM_SWAP)
3146		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3147	else
3148		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3149
3150	/* If we can't clean pages, remove dirty pages from consideration */
3151	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3152		delta += zone_page_state(zone, NR_FILE_DIRTY);
3153
3154	/* Watch for any possible underflows due to delta */
3155	if (unlikely(delta > nr_pagecache_reclaimable))
3156		delta = nr_pagecache_reclaimable;
3157
3158	return nr_pagecache_reclaimable - delta;
3159}
3160
3161/*
3162 * Try to free up some pages from this zone through reclaim.
3163 */
3164static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3165{
3166	/* Minimum pages needed in order to stay on node */
3167	const unsigned long nr_pages = 1 << order;
3168	struct task_struct *p = current;
3169	struct reclaim_state reclaim_state;
3170	int priority;
3171	struct scan_control sc = {
3172		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3173		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3174		.may_swap = 1,
3175		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3176				       SWAP_CLUSTER_MAX),
3177		.gfp_mask = gfp_mask,
3178		.order = order,
3179	};
3180	struct shrink_control shrink = {
3181		.gfp_mask = sc.gfp_mask,
3182	};
3183	unsigned long nr_slab_pages0, nr_slab_pages1;
3184
3185	cond_resched();
3186	/*
3187	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3188	 * and we also need to be able to write out pages for RECLAIM_WRITE
3189	 * and RECLAIM_SWAP.
3190	 */
3191	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3192	lockdep_set_current_reclaim_state(gfp_mask);
3193	reclaim_state.reclaimed_slab = 0;
3194	p->reclaim_state = &reclaim_state;
3195
3196	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3197		/*
3198		 * Free memory by calling shrink zone with increasing
3199		 * priorities until we have enough memory freed.
3200		 */
3201		priority = ZONE_RECLAIM_PRIORITY;
3202		do {
3203			shrink_zone(priority, zone, &sc);
3204			priority--;
3205		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3206	}
3207
3208	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3209	if (nr_slab_pages0 > zone->min_slab_pages) {
3210		/*
3211		 * shrink_slab() does not currently allow us to determine how
3212		 * many pages were freed in this zone. So we take the current
3213		 * number of slab pages and shake the slab until it is reduced
3214		 * by the same nr_pages that we used for reclaiming unmapped
3215		 * pages.
3216		 *
3217		 * Note that shrink_slab will free memory on all zones and may
3218		 * take a long time.
3219		 */
3220		for (;;) {
3221			unsigned long lru_pages = zone_reclaimable_pages(zone);
3222
3223			/* No reclaimable slab or very low memory pressure */
3224			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3225				break;
3226
3227			/* Freed enough memory */
3228			nr_slab_pages1 = zone_page_state(zone,
3229							NR_SLAB_RECLAIMABLE);
3230			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3231				break;
3232		}
3233
3234		/*
3235		 * Update nr_reclaimed by the number of slab pages we
3236		 * reclaimed from this zone.
3237		 */
3238		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3239		if (nr_slab_pages1 < nr_slab_pages0)
3240			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3241	}
3242
3243	p->reclaim_state = NULL;
3244	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3245	lockdep_clear_current_reclaim_state();
3246	return sc.nr_reclaimed >= nr_pages;
3247}
3248
3249int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3250{
3251	int node_id;
3252	int ret;
3253
3254	/*
3255	 * Zone reclaim reclaims unmapped file backed pages and
3256	 * slab pages if we are over the defined limits.
3257	 *
3258	 * A small portion of unmapped file backed pages is needed for
3259	 * file I/O otherwise pages read by file I/O will be immediately
3260	 * thrown out if the zone is overallocated. So we do not reclaim
3261	 * if less than a specified percentage of the zone is used by
3262	 * unmapped file backed pages.
3263	 */
3264	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3265	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3266		return ZONE_RECLAIM_FULL;
3267
3268	if (zone->all_unreclaimable)
3269		return ZONE_RECLAIM_FULL;
3270
3271	/*
3272	 * Do not scan if the allocation should not be delayed.
3273	 */
3274	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3275		return ZONE_RECLAIM_NOSCAN;
3276
3277	/*
3278	 * Only run zone reclaim on the local zone or on zones that do not
3279	 * have associated processors. This will favor the local processor
3280	 * over remote processors and spread off node memory allocations
3281	 * as wide as possible.
3282	 */
3283	node_id = zone_to_nid(zone);
3284	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3285		return ZONE_RECLAIM_NOSCAN;
3286
3287	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3288		return ZONE_RECLAIM_NOSCAN;
3289
3290	ret = __zone_reclaim(zone, gfp_mask, order);
3291	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3292
3293	if (!ret)
3294		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3295
3296	return ret;
3297}
3298#endif
3299
3300/*
3301 * page_evictable - test whether a page is evictable
3302 * @page: the page to test
3303 * @vma: the VMA in which the page is or will be mapped, may be NULL
3304 *
3305 * Test whether page is evictable--i.e., should be placed on active/inactive
3306 * lists vs unevictable list.  The vma argument is !NULL when called from the
3307 * fault path to determine how to instantate a new page.
3308 *
3309 * Reasons page might not be evictable:
3310 * (1) page's mapping marked unevictable
3311 * (2) page is part of an mlocked VMA
3312 *
3313 */
3314int page_evictable(struct page *page, struct vm_area_struct *vma)
3315{
3316
3317	if (mapping_unevictable(page_mapping(page)))
3318		return 0;
3319
3320	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3321		return 0;
3322
3323	return 1;
3324}
3325
3326/**
3327 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3328 * @page: page to check evictability and move to appropriate lru list
3329 * @zone: zone page is in
3330 *
3331 * Checks a page for evictability and moves the page to the appropriate
3332 * zone lru list.
3333 *
3334 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3335 * have PageUnevictable set.
3336 */
3337static void check_move_unevictable_page(struct page *page, struct zone *zone)
3338{
3339	VM_BUG_ON(PageActive(page));
3340
3341retry:
3342	ClearPageUnevictable(page);
3343	if (page_evictable(page, NULL)) {
3344		enum lru_list l = page_lru_base_type(page);
3345
3346		__dec_zone_state(zone, NR_UNEVICTABLE);
3347		list_move(&page->lru, &zone->lru[l].list);
3348		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3349		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3350		__count_vm_event(UNEVICTABLE_PGRESCUED);
3351	} else {
3352		/*
3353		 * rotate unevictable list
3354		 */
3355		SetPageUnevictable(page);
3356		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3357		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3358		if (page_evictable(page, NULL))
3359			goto retry;
3360	}
3361}
3362
3363/**
3364 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3365 * @mapping: struct address_space to scan for evictable pages
3366 *
3367 * Scan all pages in mapping.  Check unevictable pages for
3368 * evictability and move them to the appropriate zone lru list.
3369 */
3370void scan_mapping_unevictable_pages(struct address_space *mapping)
3371{
3372	pgoff_t next = 0;
3373	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3374			 PAGE_CACHE_SHIFT;
3375	struct zone *zone;
3376	struct pagevec pvec;
3377
3378	if (mapping->nrpages == 0)
3379		return;
3380
3381	pagevec_init(&pvec, 0);
3382	while (next < end &&
3383		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3384		int i;
3385		int pg_scanned = 0;
3386
3387		zone = NULL;
3388
3389		for (i = 0; i < pagevec_count(&pvec); i++) {
3390			struct page *page = pvec.pages[i];
3391			pgoff_t page_index = page->index;
3392			struct zone *pagezone = page_zone(page);
3393
3394			pg_scanned++;
3395			if (page_index > next)
3396				next = page_index;
3397			next++;
3398
3399			if (pagezone != zone) {
3400				if (zone)
3401					spin_unlock_irq(&zone->lru_lock);
3402				zone = pagezone;
3403				spin_lock_irq(&zone->lru_lock);
3404			}
3405
3406			if (PageLRU(page) && PageUnevictable(page))
3407				check_move_unevictable_page(page, zone);
3408		}
3409		if (zone)
3410			spin_unlock_irq(&zone->lru_lock);
3411		pagevec_release(&pvec);
3412
3413		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3414	}
3415
3416}
3417
3418/**
3419 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3420 * @zone - zone of which to scan the unevictable list
3421 *
3422 * Scan @zone's unevictable LRU lists to check for pages that have become
3423 * evictable.  Move those that have to @zone's inactive list where they
3424 * become candidates for reclaim, unless shrink_inactive_zone() decides
3425 * to reactivate them.  Pages that are still unevictable are rotated
3426 * back onto @zone's unevictable list.
3427 */
3428#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3429static void scan_zone_unevictable_pages(struct zone *zone)
3430{
3431	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3432	unsigned long scan;
3433	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3434
3435	while (nr_to_scan > 0) {
3436		unsigned long batch_size = min(nr_to_scan,
3437						SCAN_UNEVICTABLE_BATCH_SIZE);
3438
3439		spin_lock_irq(&zone->lru_lock);
3440		for (scan = 0;  scan < batch_size; scan++) {
3441			struct page *page = lru_to_page(l_unevictable);
3442
3443			if (!trylock_page(page))
3444				continue;
3445
3446			prefetchw_prev_lru_page(page, l_unevictable, flags);
3447
3448			if (likely(PageLRU(page) && PageUnevictable(page)))
3449				check_move_unevictable_page(page, zone);
3450
3451			unlock_page(page);
3452		}
3453		spin_unlock_irq(&zone->lru_lock);
3454
3455		nr_to_scan -= batch_size;
3456	}
3457}
3458
3459
3460/**
3461 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3462 *
3463 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3464 * pages that have become evictable.  Move those back to the zones'
3465 * inactive list where they become candidates for reclaim.
3466 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3467 * and we add swap to the system.  As such, it runs in the context of a task
3468 * that has possibly/probably made some previously unevictable pages
3469 * evictable.
3470 */
3471static void scan_all_zones_unevictable_pages(void)
3472{
3473	struct zone *zone;
3474
3475	for_each_zone(zone) {
3476		scan_zone_unevictable_pages(zone);
3477	}
3478}
3479
3480/*
3481 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3482 * all nodes' unevictable lists for evictable pages
3483 */
3484unsigned long scan_unevictable_pages;
3485
3486int scan_unevictable_handler(struct ctl_table *table, int write,
3487			   void __user *buffer,
3488			   size_t *length, loff_t *ppos)
3489{
3490	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3491
3492	if (write && *(unsigned long *)table->data)
3493		scan_all_zones_unevictable_pages();
3494
3495	scan_unevictable_pages = 0;
3496	return 0;
3497}
3498
3499#ifdef CONFIG_NUMA
3500/*
3501 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3502 * a specified node's per zone unevictable lists for evictable pages.
3503 */
3504
3505static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3506					  struct sysdev_attribute *attr,
3507					  char *buf)
3508{
3509	return sprintf(buf, "0\n");	/* always zero; should fit... */
3510}
3511
3512static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3513					   struct sysdev_attribute *attr,
3514					const char *buf, size_t count)
3515{
3516	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3517	struct zone *zone;
3518	unsigned long res;
3519	unsigned long req = strict_strtoul(buf, 10, &res);
3520
3521	if (!req)
3522		return 1;	/* zero is no-op */
3523
3524	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3525		if (!populated_zone(zone))
3526			continue;
3527		scan_zone_unevictable_pages(zone);
3528	}
3529	return 1;
3530}
3531
3532
3533static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3534			read_scan_unevictable_node,
3535			write_scan_unevictable_node);
3536
3537int scan_unevictable_register_node(struct node *node)
3538{
3539	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3540}
3541
3542void scan_unevictable_unregister_node(struct node *node)
3543{
3544	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3545}
3546#endif
3547