vmscan.c revision d6c438b6cd733834a3cec55af8577a8fc3548016
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
51#include "internal.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
56/*
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC:  Do not block
60 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 *			page from the LRU and reclaim all pages within a
63 *			naturally aligned range
64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65 *			order-0 pages and then compact the zone
66 */
67typedef unsigned __bitwise__ reclaim_mode_t;
68#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
69#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
70#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
71#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
72#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
73
74struct scan_control {
75	/* Incremented by the number of inactive pages that were scanned */
76	unsigned long nr_scanned;
77
78	/* Number of pages freed so far during a call to shrink_zones() */
79	unsigned long nr_reclaimed;
80
81	/* How many pages shrink_list() should reclaim */
82	unsigned long nr_to_reclaim;
83
84	unsigned long hibernation_mode;
85
86	/* This context's GFP mask */
87	gfp_t gfp_mask;
88
89	int may_writepage;
90
91	/* Can mapped pages be reclaimed? */
92	int may_unmap;
93
94	/* Can pages be swapped as part of reclaim? */
95	int may_swap;
96
97	int swappiness;
98
99	int order;
100
101	/*
102	 * Intend to reclaim enough continuous memory rather than reclaim
103	 * enough amount of memory. i.e, mode for high order allocation.
104	 */
105	reclaim_mode_t reclaim_mode;
106
107	/* Which cgroup do we reclaim from */
108	struct mem_cgroup *mem_cgroup;
109
110	/*
111	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112	 * are scanned.
113	 */
114	nodemask_t	*nodemask;
115};
116
117#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119#ifdef ARCH_HAS_PREFETCH
120#define prefetch_prev_lru_page(_page, _base, _field)			\
121	do {								\
122		if ((_page)->lru.prev != _base) {			\
123			struct page *prev;				\
124									\
125			prev = lru_to_page(&(_page->lru));		\
126			prefetch(&prev->_field);			\
127		}							\
128	} while (0)
129#else
130#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131#endif
132
133#ifdef ARCH_HAS_PREFETCHW
134#define prefetchw_prev_lru_page(_page, _base, _field)			\
135	do {								\
136		if ((_page)->lru.prev != _base) {			\
137			struct page *prev;				\
138									\
139			prev = lru_to_page(&(_page->lru));		\
140			prefetchw(&prev->_field);			\
141		}							\
142	} while (0)
143#else
144#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145#endif
146
147/*
148 * From 0 .. 100.  Higher means more swappy.
149 */
150int vm_swappiness = 60;
151long vm_total_pages;	/* The total number of pages which the VM controls */
152
153static LIST_HEAD(shrinker_list);
154static DECLARE_RWSEM(shrinker_rwsem);
155
156#ifdef CONFIG_CGROUP_MEM_RES_CTLR
157#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
158#else
159#define scanning_global_lru(sc)	(1)
160#endif
161
162static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163						  struct scan_control *sc)
164{
165	if (!scanning_global_lru(sc))
166		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168	return &zone->reclaim_stat;
169}
170
171static unsigned long zone_nr_lru_pages(struct zone *zone,
172				struct scan_control *sc, enum lru_list lru)
173{
174	if (!scanning_global_lru(sc))
175		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
176
177	return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
181/*
182 * Add a shrinker callback to be called from the vm
183 */
184void register_shrinker(struct shrinker *shrinker)
185{
186	shrinker->nr = 0;
187	down_write(&shrinker_rwsem);
188	list_add_tail(&shrinker->list, &shrinker_list);
189	up_write(&shrinker_rwsem);
190}
191EXPORT_SYMBOL(register_shrinker);
192
193/*
194 * Remove one
195 */
196void unregister_shrinker(struct shrinker *shrinker)
197{
198	down_write(&shrinker_rwsem);
199	list_del(&shrinker->list);
200	up_write(&shrinker_rwsem);
201}
202EXPORT_SYMBOL(unregister_shrinker);
203
204#define SHRINK_BATCH 128
205/*
206 * Call the shrink functions to age shrinkable caches
207 *
208 * Here we assume it costs one seek to replace a lru page and that it also
209 * takes a seek to recreate a cache object.  With this in mind we age equal
210 * percentages of the lru and ageable caches.  This should balance the seeks
211 * generated by these structures.
212 *
213 * If the vm encountered mapped pages on the LRU it increase the pressure on
214 * slab to avoid swapping.
215 *
216 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
217 *
218 * `lru_pages' represents the number of on-LRU pages in all the zones which
219 * are eligible for the caller's allocation attempt.  It is used for balancing
220 * slab reclaim versus page reclaim.
221 *
222 * Returns the number of slab objects which we shrunk.
223 */
224unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
225			unsigned long lru_pages)
226{
227	struct shrinker *shrinker;
228	unsigned long ret = 0;
229
230	if (scanned == 0)
231		scanned = SWAP_CLUSTER_MAX;
232
233	if (!down_read_trylock(&shrinker_rwsem))
234		return 1;	/* Assume we'll be able to shrink next time */
235
236	list_for_each_entry(shrinker, &shrinker_list, list) {
237		unsigned long long delta;
238		unsigned long total_scan;
239		unsigned long max_pass;
240
241		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
242		delta = (4 * scanned) / shrinker->seeks;
243		delta *= max_pass;
244		do_div(delta, lru_pages + 1);
245		shrinker->nr += delta;
246		if (shrinker->nr < 0) {
247			printk(KERN_ERR "shrink_slab: %pF negative objects to "
248			       "delete nr=%ld\n",
249			       shrinker->shrink, shrinker->nr);
250			shrinker->nr = max_pass;
251		}
252
253		/*
254		 * Avoid risking looping forever due to too large nr value:
255		 * never try to free more than twice the estimate number of
256		 * freeable entries.
257		 */
258		if (shrinker->nr > max_pass * 2)
259			shrinker->nr = max_pass * 2;
260
261		total_scan = shrinker->nr;
262		shrinker->nr = 0;
263
264		while (total_scan >= SHRINK_BATCH) {
265			long this_scan = SHRINK_BATCH;
266			int shrink_ret;
267			int nr_before;
268
269			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
270			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
271								gfp_mask);
272			if (shrink_ret == -1)
273				break;
274			if (shrink_ret < nr_before)
275				ret += nr_before - shrink_ret;
276			count_vm_events(SLABS_SCANNED, this_scan);
277			total_scan -= this_scan;
278
279			cond_resched();
280		}
281
282		shrinker->nr += total_scan;
283	}
284	up_read(&shrinker_rwsem);
285	return ret;
286}
287
288static void set_reclaim_mode(int priority, struct scan_control *sc,
289				   bool sync)
290{
291	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
292
293	/*
294	 * Initially assume we are entering either lumpy reclaim or
295	 * reclaim/compaction.Depending on the order, we will either set the
296	 * sync mode or just reclaim order-0 pages later.
297	 */
298	if (COMPACTION_BUILD)
299		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
300	else
301		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
302
303	/*
304	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
305	 * restricting when its set to either costly allocations or when
306	 * under memory pressure
307	 */
308	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
309		sc->reclaim_mode |= syncmode;
310	else if (sc->order && priority < DEF_PRIORITY - 2)
311		sc->reclaim_mode |= syncmode;
312	else
313		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
314}
315
316static void reset_reclaim_mode(struct scan_control *sc)
317{
318	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
319}
320
321static inline int is_page_cache_freeable(struct page *page)
322{
323	/*
324	 * A freeable page cache page is referenced only by the caller
325	 * that isolated the page, the page cache radix tree and
326	 * optional buffer heads at page->private.
327	 */
328	return page_count(page) - page_has_private(page) == 2;
329}
330
331static int may_write_to_queue(struct backing_dev_info *bdi,
332			      struct scan_control *sc)
333{
334	if (current->flags & PF_SWAPWRITE)
335		return 1;
336	if (!bdi_write_congested(bdi))
337		return 1;
338	if (bdi == current->backing_dev_info)
339		return 1;
340
341	/* lumpy reclaim for hugepage often need a lot of write */
342	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
343		return 1;
344	return 0;
345}
346
347/*
348 * We detected a synchronous write error writing a page out.  Probably
349 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
350 * fsync(), msync() or close().
351 *
352 * The tricky part is that after writepage we cannot touch the mapping: nothing
353 * prevents it from being freed up.  But we have a ref on the page and once
354 * that page is locked, the mapping is pinned.
355 *
356 * We're allowed to run sleeping lock_page() here because we know the caller has
357 * __GFP_FS.
358 */
359static void handle_write_error(struct address_space *mapping,
360				struct page *page, int error)
361{
362	lock_page(page);
363	if (page_mapping(page) == mapping)
364		mapping_set_error(mapping, error);
365	unlock_page(page);
366}
367
368/* possible outcome of pageout() */
369typedef enum {
370	/* failed to write page out, page is locked */
371	PAGE_KEEP,
372	/* move page to the active list, page is locked */
373	PAGE_ACTIVATE,
374	/* page has been sent to the disk successfully, page is unlocked */
375	PAGE_SUCCESS,
376	/* page is clean and locked */
377	PAGE_CLEAN,
378} pageout_t;
379
380/*
381 * pageout is called by shrink_page_list() for each dirty page.
382 * Calls ->writepage().
383 */
384static pageout_t pageout(struct page *page, struct address_space *mapping,
385			 struct scan_control *sc)
386{
387	/*
388	 * If the page is dirty, only perform writeback if that write
389	 * will be non-blocking.  To prevent this allocation from being
390	 * stalled by pagecache activity.  But note that there may be
391	 * stalls if we need to run get_block().  We could test
392	 * PagePrivate for that.
393	 *
394	 * If this process is currently in __generic_file_aio_write() against
395	 * this page's queue, we can perform writeback even if that
396	 * will block.
397	 *
398	 * If the page is swapcache, write it back even if that would
399	 * block, for some throttling. This happens by accident, because
400	 * swap_backing_dev_info is bust: it doesn't reflect the
401	 * congestion state of the swapdevs.  Easy to fix, if needed.
402	 */
403	if (!is_page_cache_freeable(page))
404		return PAGE_KEEP;
405	if (!mapping) {
406		/*
407		 * Some data journaling orphaned pages can have
408		 * page->mapping == NULL while being dirty with clean buffers.
409		 */
410		if (page_has_private(page)) {
411			if (try_to_free_buffers(page)) {
412				ClearPageDirty(page);
413				printk("%s: orphaned page\n", __func__);
414				return PAGE_CLEAN;
415			}
416		}
417		return PAGE_KEEP;
418	}
419	if (mapping->a_ops->writepage == NULL)
420		return PAGE_ACTIVATE;
421	if (!may_write_to_queue(mapping->backing_dev_info, sc))
422		return PAGE_KEEP;
423
424	if (clear_page_dirty_for_io(page)) {
425		int res;
426		struct writeback_control wbc = {
427			.sync_mode = WB_SYNC_NONE,
428			.nr_to_write = SWAP_CLUSTER_MAX,
429			.range_start = 0,
430			.range_end = LLONG_MAX,
431			.for_reclaim = 1,
432		};
433
434		SetPageReclaim(page);
435		res = mapping->a_ops->writepage(page, &wbc);
436		if (res < 0)
437			handle_write_error(mapping, page, res);
438		if (res == AOP_WRITEPAGE_ACTIVATE) {
439			ClearPageReclaim(page);
440			return PAGE_ACTIVATE;
441		}
442
443		/*
444		 * Wait on writeback if requested to. This happens when
445		 * direct reclaiming a large contiguous area and the
446		 * first attempt to free a range of pages fails.
447		 */
448		if (PageWriteback(page) &&
449		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
450			wait_on_page_writeback(page);
451
452		if (!PageWriteback(page)) {
453			/* synchronous write or broken a_ops? */
454			ClearPageReclaim(page);
455		}
456		trace_mm_vmscan_writepage(page,
457			trace_reclaim_flags(page, sc->reclaim_mode));
458		inc_zone_page_state(page, NR_VMSCAN_WRITE);
459		return PAGE_SUCCESS;
460	}
461
462	return PAGE_CLEAN;
463}
464
465/*
466 * Same as remove_mapping, but if the page is removed from the mapping, it
467 * gets returned with a refcount of 0.
468 */
469static int __remove_mapping(struct address_space *mapping, struct page *page)
470{
471	BUG_ON(!PageLocked(page));
472	BUG_ON(mapping != page_mapping(page));
473
474	spin_lock_irq(&mapping->tree_lock);
475	/*
476	 * The non racy check for a busy page.
477	 *
478	 * Must be careful with the order of the tests. When someone has
479	 * a ref to the page, it may be possible that they dirty it then
480	 * drop the reference. So if PageDirty is tested before page_count
481	 * here, then the following race may occur:
482	 *
483	 * get_user_pages(&page);
484	 * [user mapping goes away]
485	 * write_to(page);
486	 *				!PageDirty(page)    [good]
487	 * SetPageDirty(page);
488	 * put_page(page);
489	 *				!page_count(page)   [good, discard it]
490	 *
491	 * [oops, our write_to data is lost]
492	 *
493	 * Reversing the order of the tests ensures such a situation cannot
494	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
495	 * load is not satisfied before that of page->_count.
496	 *
497	 * Note that if SetPageDirty is always performed via set_page_dirty,
498	 * and thus under tree_lock, then this ordering is not required.
499	 */
500	if (!page_freeze_refs(page, 2))
501		goto cannot_free;
502	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
503	if (unlikely(PageDirty(page))) {
504		page_unfreeze_refs(page, 2);
505		goto cannot_free;
506	}
507
508	if (PageSwapCache(page)) {
509		swp_entry_t swap = { .val = page_private(page) };
510		__delete_from_swap_cache(page);
511		spin_unlock_irq(&mapping->tree_lock);
512		swapcache_free(swap, page);
513	} else {
514		void (*freepage)(struct page *);
515
516		freepage = mapping->a_ops->freepage;
517
518		__delete_from_page_cache(page);
519		spin_unlock_irq(&mapping->tree_lock);
520		mem_cgroup_uncharge_cache_page(page);
521
522		if (freepage != NULL)
523			freepage(page);
524	}
525
526	return 1;
527
528cannot_free:
529	spin_unlock_irq(&mapping->tree_lock);
530	return 0;
531}
532
533/*
534 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
535 * someone else has a ref on the page, abort and return 0.  If it was
536 * successfully detached, return 1.  Assumes the caller has a single ref on
537 * this page.
538 */
539int remove_mapping(struct address_space *mapping, struct page *page)
540{
541	if (__remove_mapping(mapping, page)) {
542		/*
543		 * Unfreezing the refcount with 1 rather than 2 effectively
544		 * drops the pagecache ref for us without requiring another
545		 * atomic operation.
546		 */
547		page_unfreeze_refs(page, 1);
548		return 1;
549	}
550	return 0;
551}
552
553/**
554 * putback_lru_page - put previously isolated page onto appropriate LRU list
555 * @page: page to be put back to appropriate lru list
556 *
557 * Add previously isolated @page to appropriate LRU list.
558 * Page may still be unevictable for other reasons.
559 *
560 * lru_lock must not be held, interrupts must be enabled.
561 */
562void putback_lru_page(struct page *page)
563{
564	int lru;
565	int active = !!TestClearPageActive(page);
566	int was_unevictable = PageUnevictable(page);
567
568	VM_BUG_ON(PageLRU(page));
569
570redo:
571	ClearPageUnevictable(page);
572
573	if (page_evictable(page, NULL)) {
574		/*
575		 * For evictable pages, we can use the cache.
576		 * In event of a race, worst case is we end up with an
577		 * unevictable page on [in]active list.
578		 * We know how to handle that.
579		 */
580		lru = active + page_lru_base_type(page);
581		lru_cache_add_lru(page, lru);
582	} else {
583		/*
584		 * Put unevictable pages directly on zone's unevictable
585		 * list.
586		 */
587		lru = LRU_UNEVICTABLE;
588		add_page_to_unevictable_list(page);
589		/*
590		 * When racing with an mlock clearing (page is
591		 * unlocked), make sure that if the other thread does
592		 * not observe our setting of PG_lru and fails
593		 * isolation, we see PG_mlocked cleared below and move
594		 * the page back to the evictable list.
595		 *
596		 * The other side is TestClearPageMlocked().
597		 */
598		smp_mb();
599	}
600
601	/*
602	 * page's status can change while we move it among lru. If an evictable
603	 * page is on unevictable list, it never be freed. To avoid that,
604	 * check after we added it to the list, again.
605	 */
606	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
607		if (!isolate_lru_page(page)) {
608			put_page(page);
609			goto redo;
610		}
611		/* This means someone else dropped this page from LRU
612		 * So, it will be freed or putback to LRU again. There is
613		 * nothing to do here.
614		 */
615	}
616
617	if (was_unevictable && lru != LRU_UNEVICTABLE)
618		count_vm_event(UNEVICTABLE_PGRESCUED);
619	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
620		count_vm_event(UNEVICTABLE_PGCULLED);
621
622	put_page(page);		/* drop ref from isolate */
623}
624
625enum page_references {
626	PAGEREF_RECLAIM,
627	PAGEREF_RECLAIM_CLEAN,
628	PAGEREF_KEEP,
629	PAGEREF_ACTIVATE,
630};
631
632static enum page_references page_check_references(struct page *page,
633						  struct scan_control *sc)
634{
635	int referenced_ptes, referenced_page;
636	unsigned long vm_flags;
637
638	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
639	referenced_page = TestClearPageReferenced(page);
640
641	/* Lumpy reclaim - ignore references */
642	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
643		return PAGEREF_RECLAIM;
644
645	/*
646	 * Mlock lost the isolation race with us.  Let try_to_unmap()
647	 * move the page to the unevictable list.
648	 */
649	if (vm_flags & VM_LOCKED)
650		return PAGEREF_RECLAIM;
651
652	if (referenced_ptes) {
653		if (PageAnon(page))
654			return PAGEREF_ACTIVATE;
655		/*
656		 * All mapped pages start out with page table
657		 * references from the instantiating fault, so we need
658		 * to look twice if a mapped file page is used more
659		 * than once.
660		 *
661		 * Mark it and spare it for another trip around the
662		 * inactive list.  Another page table reference will
663		 * lead to its activation.
664		 *
665		 * Note: the mark is set for activated pages as well
666		 * so that recently deactivated but used pages are
667		 * quickly recovered.
668		 */
669		SetPageReferenced(page);
670
671		if (referenced_page)
672			return PAGEREF_ACTIVATE;
673
674		return PAGEREF_KEEP;
675	}
676
677	/* Reclaim if clean, defer dirty pages to writeback */
678	if (referenced_page && !PageSwapBacked(page))
679		return PAGEREF_RECLAIM_CLEAN;
680
681	return PAGEREF_RECLAIM;
682}
683
684static noinline_for_stack void free_page_list(struct list_head *free_pages)
685{
686	struct pagevec freed_pvec;
687	struct page *page, *tmp;
688
689	pagevec_init(&freed_pvec, 1);
690
691	list_for_each_entry_safe(page, tmp, free_pages, lru) {
692		list_del(&page->lru);
693		if (!pagevec_add(&freed_pvec, page)) {
694			__pagevec_free(&freed_pvec);
695			pagevec_reinit(&freed_pvec);
696		}
697	}
698
699	pagevec_free(&freed_pvec);
700}
701
702/*
703 * shrink_page_list() returns the number of reclaimed pages
704 */
705static unsigned long shrink_page_list(struct list_head *page_list,
706				      struct zone *zone,
707				      struct scan_control *sc)
708{
709	LIST_HEAD(ret_pages);
710	LIST_HEAD(free_pages);
711	int pgactivate = 0;
712	unsigned long nr_dirty = 0;
713	unsigned long nr_congested = 0;
714	unsigned long nr_reclaimed = 0;
715
716	cond_resched();
717
718	while (!list_empty(page_list)) {
719		enum page_references references;
720		struct address_space *mapping;
721		struct page *page;
722		int may_enter_fs;
723
724		cond_resched();
725
726		page = lru_to_page(page_list);
727		list_del(&page->lru);
728
729		if (!trylock_page(page))
730			goto keep;
731
732		VM_BUG_ON(PageActive(page));
733		VM_BUG_ON(page_zone(page) != zone);
734
735		sc->nr_scanned++;
736
737		if (unlikely(!page_evictable(page, NULL)))
738			goto cull_mlocked;
739
740		if (!sc->may_unmap && page_mapped(page))
741			goto keep_locked;
742
743		/* Double the slab pressure for mapped and swapcache pages */
744		if (page_mapped(page) || PageSwapCache(page))
745			sc->nr_scanned++;
746
747		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
748			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
749
750		if (PageWriteback(page)) {
751			/*
752			 * Synchronous reclaim is performed in two passes,
753			 * first an asynchronous pass over the list to
754			 * start parallel writeback, and a second synchronous
755			 * pass to wait for the IO to complete.  Wait here
756			 * for any page for which writeback has already
757			 * started.
758			 */
759			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
760			    may_enter_fs)
761				wait_on_page_writeback(page);
762			else {
763				unlock_page(page);
764				goto keep_lumpy;
765			}
766		}
767
768		references = page_check_references(page, sc);
769		switch (references) {
770		case PAGEREF_ACTIVATE:
771			goto activate_locked;
772		case PAGEREF_KEEP:
773			goto keep_locked;
774		case PAGEREF_RECLAIM:
775		case PAGEREF_RECLAIM_CLEAN:
776			; /* try to reclaim the page below */
777		}
778
779		/*
780		 * Anonymous process memory has backing store?
781		 * Try to allocate it some swap space here.
782		 */
783		if (PageAnon(page) && !PageSwapCache(page)) {
784			if (!(sc->gfp_mask & __GFP_IO))
785				goto keep_locked;
786			if (!add_to_swap(page))
787				goto activate_locked;
788			may_enter_fs = 1;
789		}
790
791		mapping = page_mapping(page);
792
793		/*
794		 * The page is mapped into the page tables of one or more
795		 * processes. Try to unmap it here.
796		 */
797		if (page_mapped(page) && mapping) {
798			switch (try_to_unmap(page, TTU_UNMAP)) {
799			case SWAP_FAIL:
800				goto activate_locked;
801			case SWAP_AGAIN:
802				goto keep_locked;
803			case SWAP_MLOCK:
804				goto cull_mlocked;
805			case SWAP_SUCCESS:
806				; /* try to free the page below */
807			}
808		}
809
810		if (PageDirty(page)) {
811			nr_dirty++;
812
813			if (references == PAGEREF_RECLAIM_CLEAN)
814				goto keep_locked;
815			if (!may_enter_fs)
816				goto keep_locked;
817			if (!sc->may_writepage)
818				goto keep_locked;
819
820			/* Page is dirty, try to write it out here */
821			switch (pageout(page, mapping, sc)) {
822			case PAGE_KEEP:
823				nr_congested++;
824				goto keep_locked;
825			case PAGE_ACTIVATE:
826				goto activate_locked;
827			case PAGE_SUCCESS:
828				if (PageWriteback(page))
829					goto keep_lumpy;
830				if (PageDirty(page))
831					goto keep;
832
833				/*
834				 * A synchronous write - probably a ramdisk.  Go
835				 * ahead and try to reclaim the page.
836				 */
837				if (!trylock_page(page))
838					goto keep;
839				if (PageDirty(page) || PageWriteback(page))
840					goto keep_locked;
841				mapping = page_mapping(page);
842			case PAGE_CLEAN:
843				; /* try to free the page below */
844			}
845		}
846
847		/*
848		 * If the page has buffers, try to free the buffer mappings
849		 * associated with this page. If we succeed we try to free
850		 * the page as well.
851		 *
852		 * We do this even if the page is PageDirty().
853		 * try_to_release_page() does not perform I/O, but it is
854		 * possible for a page to have PageDirty set, but it is actually
855		 * clean (all its buffers are clean).  This happens if the
856		 * buffers were written out directly, with submit_bh(). ext3
857		 * will do this, as well as the blockdev mapping.
858		 * try_to_release_page() will discover that cleanness and will
859		 * drop the buffers and mark the page clean - it can be freed.
860		 *
861		 * Rarely, pages can have buffers and no ->mapping.  These are
862		 * the pages which were not successfully invalidated in
863		 * truncate_complete_page().  We try to drop those buffers here
864		 * and if that worked, and the page is no longer mapped into
865		 * process address space (page_count == 1) it can be freed.
866		 * Otherwise, leave the page on the LRU so it is swappable.
867		 */
868		if (page_has_private(page)) {
869			if (!try_to_release_page(page, sc->gfp_mask))
870				goto activate_locked;
871			if (!mapping && page_count(page) == 1) {
872				unlock_page(page);
873				if (put_page_testzero(page))
874					goto free_it;
875				else {
876					/*
877					 * rare race with speculative reference.
878					 * the speculative reference will free
879					 * this page shortly, so we may
880					 * increment nr_reclaimed here (and
881					 * leave it off the LRU).
882					 */
883					nr_reclaimed++;
884					continue;
885				}
886			}
887		}
888
889		if (!mapping || !__remove_mapping(mapping, page))
890			goto keep_locked;
891
892		/*
893		 * At this point, we have no other references and there is
894		 * no way to pick any more up (removed from LRU, removed
895		 * from pagecache). Can use non-atomic bitops now (and
896		 * we obviously don't have to worry about waking up a process
897		 * waiting on the page lock, because there are no references.
898		 */
899		__clear_page_locked(page);
900free_it:
901		nr_reclaimed++;
902
903		/*
904		 * Is there need to periodically free_page_list? It would
905		 * appear not as the counts should be low
906		 */
907		list_add(&page->lru, &free_pages);
908		continue;
909
910cull_mlocked:
911		if (PageSwapCache(page))
912			try_to_free_swap(page);
913		unlock_page(page);
914		putback_lru_page(page);
915		reset_reclaim_mode(sc);
916		continue;
917
918activate_locked:
919		/* Not a candidate for swapping, so reclaim swap space. */
920		if (PageSwapCache(page) && vm_swap_full())
921			try_to_free_swap(page);
922		VM_BUG_ON(PageActive(page));
923		SetPageActive(page);
924		pgactivate++;
925keep_locked:
926		unlock_page(page);
927keep:
928		reset_reclaim_mode(sc);
929keep_lumpy:
930		list_add(&page->lru, &ret_pages);
931		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
932	}
933
934	/*
935	 * Tag a zone as congested if all the dirty pages encountered were
936	 * backed by a congested BDI. In this case, reclaimers should just
937	 * back off and wait for congestion to clear because further reclaim
938	 * will encounter the same problem
939	 */
940	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
941		zone_set_flag(zone, ZONE_CONGESTED);
942
943	free_page_list(&free_pages);
944
945	list_splice(&ret_pages, page_list);
946	count_vm_events(PGACTIVATE, pgactivate);
947	return nr_reclaimed;
948}
949
950/*
951 * Attempt to remove the specified page from its LRU.  Only take this page
952 * if it is of the appropriate PageActive status.  Pages which are being
953 * freed elsewhere are also ignored.
954 *
955 * page:	page to consider
956 * mode:	one of the LRU isolation modes defined above
957 *
958 * returns 0 on success, -ve errno on failure.
959 */
960int __isolate_lru_page(struct page *page, int mode, int file)
961{
962	int ret = -EINVAL;
963
964	/* Only take pages on the LRU. */
965	if (!PageLRU(page))
966		return ret;
967
968	/*
969	 * When checking the active state, we need to be sure we are
970	 * dealing with comparible boolean values.  Take the logical not
971	 * of each.
972	 */
973	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
974		return ret;
975
976	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
977		return ret;
978
979	/*
980	 * When this function is being called for lumpy reclaim, we
981	 * initially look into all LRU pages, active, inactive and
982	 * unevictable; only give shrink_page_list evictable pages.
983	 */
984	if (PageUnevictable(page))
985		return ret;
986
987	ret = -EBUSY;
988
989	if (likely(get_page_unless_zero(page))) {
990		/*
991		 * Be careful not to clear PageLRU until after we're
992		 * sure the page is not being freed elsewhere -- the
993		 * page release code relies on it.
994		 */
995		ClearPageLRU(page);
996		ret = 0;
997	}
998
999	return ret;
1000}
1001
1002/*
1003 * zone->lru_lock is heavily contended.  Some of the functions that
1004 * shrink the lists perform better by taking out a batch of pages
1005 * and working on them outside the LRU lock.
1006 *
1007 * For pagecache intensive workloads, this function is the hottest
1008 * spot in the kernel (apart from copy_*_user functions).
1009 *
1010 * Appropriate locks must be held before calling this function.
1011 *
1012 * @nr_to_scan:	The number of pages to look through on the list.
1013 * @src:	The LRU list to pull pages off.
1014 * @dst:	The temp list to put pages on to.
1015 * @scanned:	The number of pages that were scanned.
1016 * @order:	The caller's attempted allocation order
1017 * @mode:	One of the LRU isolation modes
1018 * @file:	True [1] if isolating file [!anon] pages
1019 *
1020 * returns how many pages were moved onto *@dst.
1021 */
1022static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1023		struct list_head *src, struct list_head *dst,
1024		unsigned long *scanned, int order, int mode, int file)
1025{
1026	unsigned long nr_taken = 0;
1027	unsigned long nr_lumpy_taken = 0;
1028	unsigned long nr_lumpy_dirty = 0;
1029	unsigned long nr_lumpy_failed = 0;
1030	unsigned long scan;
1031
1032	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033		struct page *page;
1034		unsigned long pfn;
1035		unsigned long end_pfn;
1036		unsigned long page_pfn;
1037		int zone_id;
1038
1039		page = lru_to_page(src);
1040		prefetchw_prev_lru_page(page, src, flags);
1041
1042		VM_BUG_ON(!PageLRU(page));
1043
1044		switch (__isolate_lru_page(page, mode, file)) {
1045		case 0:
1046			list_move(&page->lru, dst);
1047			mem_cgroup_del_lru(page);
1048			nr_taken += hpage_nr_pages(page);
1049			break;
1050
1051		case -EBUSY:
1052			/* else it is being freed elsewhere */
1053			list_move(&page->lru, src);
1054			mem_cgroup_rotate_lru_list(page, page_lru(page));
1055			continue;
1056
1057		default:
1058			BUG();
1059		}
1060
1061		if (!order)
1062			continue;
1063
1064		/*
1065		 * Attempt to take all pages in the order aligned region
1066		 * surrounding the tag page.  Only take those pages of
1067		 * the same active state as that tag page.  We may safely
1068		 * round the target page pfn down to the requested order
1069		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1070		 * where that page is in a different zone we will detect
1071		 * it from its zone id and abort this block scan.
1072		 */
1073		zone_id = page_zone_id(page);
1074		page_pfn = page_to_pfn(page);
1075		pfn = page_pfn & ~((1 << order) - 1);
1076		end_pfn = pfn + (1 << order);
1077		for (; pfn < end_pfn; pfn++) {
1078			struct page *cursor_page;
1079
1080			/* The target page is in the block, ignore it. */
1081			if (unlikely(pfn == page_pfn))
1082				continue;
1083
1084			/* Avoid holes within the zone. */
1085			if (unlikely(!pfn_valid_within(pfn)))
1086				break;
1087
1088			cursor_page = pfn_to_page(pfn);
1089
1090			/* Check that we have not crossed a zone boundary. */
1091			if (unlikely(page_zone_id(cursor_page) != zone_id))
1092				break;
1093
1094			/*
1095			 * If we don't have enough swap space, reclaiming of
1096			 * anon page which don't already have a swap slot is
1097			 * pointless.
1098			 */
1099			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1100			    !PageSwapCache(cursor_page))
1101				break;
1102
1103			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1104				list_move(&cursor_page->lru, dst);
1105				mem_cgroup_del_lru(cursor_page);
1106				nr_taken += hpage_nr_pages(page);
1107				nr_lumpy_taken++;
1108				if (PageDirty(cursor_page))
1109					nr_lumpy_dirty++;
1110				scan++;
1111			} else {
1112				/* the page is freed already. */
1113				if (!page_count(cursor_page))
1114					continue;
1115				break;
1116			}
1117		}
1118
1119		/* If we break out of the loop above, lumpy reclaim failed */
1120		if (pfn < end_pfn)
1121			nr_lumpy_failed++;
1122	}
1123
1124	*scanned = scan;
1125
1126	trace_mm_vmscan_lru_isolate(order,
1127			nr_to_scan, scan,
1128			nr_taken,
1129			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1130			mode);
1131	return nr_taken;
1132}
1133
1134static unsigned long isolate_pages_global(unsigned long nr,
1135					struct list_head *dst,
1136					unsigned long *scanned, int order,
1137					int mode, struct zone *z,
1138					int active, int file)
1139{
1140	int lru = LRU_BASE;
1141	if (active)
1142		lru += LRU_ACTIVE;
1143	if (file)
1144		lru += LRU_FILE;
1145	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1146								mode, file);
1147}
1148
1149/*
1150 * clear_active_flags() is a helper for shrink_active_list(), clearing
1151 * any active bits from the pages in the list.
1152 */
1153static unsigned long clear_active_flags(struct list_head *page_list,
1154					unsigned int *count)
1155{
1156	int nr_active = 0;
1157	int lru;
1158	struct page *page;
1159
1160	list_for_each_entry(page, page_list, lru) {
1161		int numpages = hpage_nr_pages(page);
1162		lru = page_lru_base_type(page);
1163		if (PageActive(page)) {
1164			lru += LRU_ACTIVE;
1165			ClearPageActive(page);
1166			nr_active += numpages;
1167		}
1168		if (count)
1169			count[lru] += numpages;
1170	}
1171
1172	return nr_active;
1173}
1174
1175/**
1176 * isolate_lru_page - tries to isolate a page from its LRU list
1177 * @page: page to isolate from its LRU list
1178 *
1179 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1180 * vmstat statistic corresponding to whatever LRU list the page was on.
1181 *
1182 * Returns 0 if the page was removed from an LRU list.
1183 * Returns -EBUSY if the page was not on an LRU list.
1184 *
1185 * The returned page will have PageLRU() cleared.  If it was found on
1186 * the active list, it will have PageActive set.  If it was found on
1187 * the unevictable list, it will have the PageUnevictable bit set. That flag
1188 * may need to be cleared by the caller before letting the page go.
1189 *
1190 * The vmstat statistic corresponding to the list on which the page was
1191 * found will be decremented.
1192 *
1193 * Restrictions:
1194 * (1) Must be called with an elevated refcount on the page. This is a
1195 *     fundamentnal difference from isolate_lru_pages (which is called
1196 *     without a stable reference).
1197 * (2) the lru_lock must not be held.
1198 * (3) interrupts must be enabled.
1199 */
1200int isolate_lru_page(struct page *page)
1201{
1202	int ret = -EBUSY;
1203
1204	if (PageLRU(page)) {
1205		struct zone *zone = page_zone(page);
1206
1207		spin_lock_irq(&zone->lru_lock);
1208		if (PageLRU(page) && get_page_unless_zero(page)) {
1209			int lru = page_lru(page);
1210			ret = 0;
1211			ClearPageLRU(page);
1212
1213			del_page_from_lru_list(zone, page, lru);
1214		}
1215		spin_unlock_irq(&zone->lru_lock);
1216	}
1217	return ret;
1218}
1219
1220/*
1221 * Are there way too many processes in the direct reclaim path already?
1222 */
1223static int too_many_isolated(struct zone *zone, int file,
1224		struct scan_control *sc)
1225{
1226	unsigned long inactive, isolated;
1227
1228	if (current_is_kswapd())
1229		return 0;
1230
1231	if (!scanning_global_lru(sc))
1232		return 0;
1233
1234	if (file) {
1235		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1236		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1237	} else {
1238		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1239		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1240	}
1241
1242	return isolated > inactive;
1243}
1244
1245/*
1246 * TODO: Try merging with migrations version of putback_lru_pages
1247 */
1248static noinline_for_stack void
1249putback_lru_pages(struct zone *zone, struct scan_control *sc,
1250				unsigned long nr_anon, unsigned long nr_file,
1251				struct list_head *page_list)
1252{
1253	struct page *page;
1254	struct pagevec pvec;
1255	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1256
1257	pagevec_init(&pvec, 1);
1258
1259	/*
1260	 * Put back any unfreeable pages.
1261	 */
1262	spin_lock(&zone->lru_lock);
1263	while (!list_empty(page_list)) {
1264		int lru;
1265		page = lru_to_page(page_list);
1266		VM_BUG_ON(PageLRU(page));
1267		list_del(&page->lru);
1268		if (unlikely(!page_evictable(page, NULL))) {
1269			spin_unlock_irq(&zone->lru_lock);
1270			putback_lru_page(page);
1271			spin_lock_irq(&zone->lru_lock);
1272			continue;
1273		}
1274		SetPageLRU(page);
1275		lru = page_lru(page);
1276		add_page_to_lru_list(zone, page, lru);
1277		if (is_active_lru(lru)) {
1278			int file = is_file_lru(lru);
1279			int numpages = hpage_nr_pages(page);
1280			reclaim_stat->recent_rotated[file] += numpages;
1281		}
1282		if (!pagevec_add(&pvec, page)) {
1283			spin_unlock_irq(&zone->lru_lock);
1284			__pagevec_release(&pvec);
1285			spin_lock_irq(&zone->lru_lock);
1286		}
1287	}
1288	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1289	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1290
1291	spin_unlock_irq(&zone->lru_lock);
1292	pagevec_release(&pvec);
1293}
1294
1295static noinline_for_stack void update_isolated_counts(struct zone *zone,
1296					struct scan_control *sc,
1297					unsigned long *nr_anon,
1298					unsigned long *nr_file,
1299					struct list_head *isolated_list)
1300{
1301	unsigned long nr_active;
1302	unsigned int count[NR_LRU_LISTS] = { 0, };
1303	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1304
1305	nr_active = clear_active_flags(isolated_list, count);
1306	__count_vm_events(PGDEACTIVATE, nr_active);
1307
1308	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1309			      -count[LRU_ACTIVE_FILE]);
1310	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1311			      -count[LRU_INACTIVE_FILE]);
1312	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1313			      -count[LRU_ACTIVE_ANON]);
1314	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1315			      -count[LRU_INACTIVE_ANON]);
1316
1317	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1318	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1319	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1320	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1321
1322	reclaim_stat->recent_scanned[0] += *nr_anon;
1323	reclaim_stat->recent_scanned[1] += *nr_file;
1324}
1325
1326/*
1327 * Returns true if the caller should wait to clean dirty/writeback pages.
1328 *
1329 * If we are direct reclaiming for contiguous pages and we do not reclaim
1330 * everything in the list, try again and wait for writeback IO to complete.
1331 * This will stall high-order allocations noticeably. Only do that when really
1332 * need to free the pages under high memory pressure.
1333 */
1334static inline bool should_reclaim_stall(unsigned long nr_taken,
1335					unsigned long nr_freed,
1336					int priority,
1337					struct scan_control *sc)
1338{
1339	int lumpy_stall_priority;
1340
1341	/* kswapd should not stall on sync IO */
1342	if (current_is_kswapd())
1343		return false;
1344
1345	/* Only stall on lumpy reclaim */
1346	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1347		return false;
1348
1349	/* If we have relaimed everything on the isolated list, no stall */
1350	if (nr_freed == nr_taken)
1351		return false;
1352
1353	/*
1354	 * For high-order allocations, there are two stall thresholds.
1355	 * High-cost allocations stall immediately where as lower
1356	 * order allocations such as stacks require the scanning
1357	 * priority to be much higher before stalling.
1358	 */
1359	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1360		lumpy_stall_priority = DEF_PRIORITY;
1361	else
1362		lumpy_stall_priority = DEF_PRIORITY / 3;
1363
1364	return priority <= lumpy_stall_priority;
1365}
1366
1367/*
1368 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1369 * of reclaimed pages
1370 */
1371static noinline_for_stack unsigned long
1372shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1373			struct scan_control *sc, int priority, int file)
1374{
1375	LIST_HEAD(page_list);
1376	unsigned long nr_scanned;
1377	unsigned long nr_reclaimed = 0;
1378	unsigned long nr_taken;
1379	unsigned long nr_anon;
1380	unsigned long nr_file;
1381
1382	while (unlikely(too_many_isolated(zone, file, sc))) {
1383		congestion_wait(BLK_RW_ASYNC, HZ/10);
1384
1385		/* We are about to die and free our memory. Return now. */
1386		if (fatal_signal_pending(current))
1387			return SWAP_CLUSTER_MAX;
1388	}
1389
1390	set_reclaim_mode(priority, sc, false);
1391	lru_add_drain();
1392	spin_lock_irq(&zone->lru_lock);
1393
1394	if (scanning_global_lru(sc)) {
1395		nr_taken = isolate_pages_global(nr_to_scan,
1396			&page_list, &nr_scanned, sc->order,
1397			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1398					ISOLATE_BOTH : ISOLATE_INACTIVE,
1399			zone, 0, file);
1400		zone->pages_scanned += nr_scanned;
1401		if (current_is_kswapd())
1402			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1403					       nr_scanned);
1404		else
1405			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1406					       nr_scanned);
1407	} else {
1408		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1409			&page_list, &nr_scanned, sc->order,
1410			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1411					ISOLATE_BOTH : ISOLATE_INACTIVE,
1412			zone, sc->mem_cgroup,
1413			0, file);
1414		/*
1415		 * mem_cgroup_isolate_pages() keeps track of
1416		 * scanned pages on its own.
1417		 */
1418	}
1419
1420	if (nr_taken == 0) {
1421		spin_unlock_irq(&zone->lru_lock);
1422		return 0;
1423	}
1424
1425	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1426
1427	spin_unlock_irq(&zone->lru_lock);
1428
1429	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1430
1431	/* Check if we should syncronously wait for writeback */
1432	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1433		set_reclaim_mode(priority, sc, true);
1434		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1435	}
1436
1437	local_irq_disable();
1438	if (current_is_kswapd())
1439		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1440	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1441
1442	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1443
1444	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1445		zone_idx(zone),
1446		nr_scanned, nr_reclaimed,
1447		priority,
1448		trace_shrink_flags(file, sc->reclaim_mode));
1449	return nr_reclaimed;
1450}
1451
1452/*
1453 * This moves pages from the active list to the inactive list.
1454 *
1455 * We move them the other way if the page is referenced by one or more
1456 * processes, from rmap.
1457 *
1458 * If the pages are mostly unmapped, the processing is fast and it is
1459 * appropriate to hold zone->lru_lock across the whole operation.  But if
1460 * the pages are mapped, the processing is slow (page_referenced()) so we
1461 * should drop zone->lru_lock around each page.  It's impossible to balance
1462 * this, so instead we remove the pages from the LRU while processing them.
1463 * It is safe to rely on PG_active against the non-LRU pages in here because
1464 * nobody will play with that bit on a non-LRU page.
1465 *
1466 * The downside is that we have to touch page->_count against each page.
1467 * But we had to alter page->flags anyway.
1468 */
1469
1470static void move_active_pages_to_lru(struct zone *zone,
1471				     struct list_head *list,
1472				     enum lru_list lru)
1473{
1474	unsigned long pgmoved = 0;
1475	struct pagevec pvec;
1476	struct page *page;
1477
1478	pagevec_init(&pvec, 1);
1479
1480	while (!list_empty(list)) {
1481		page = lru_to_page(list);
1482
1483		VM_BUG_ON(PageLRU(page));
1484		SetPageLRU(page);
1485
1486		list_move(&page->lru, &zone->lru[lru].list);
1487		mem_cgroup_add_lru_list(page, lru);
1488		pgmoved += hpage_nr_pages(page);
1489
1490		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1491			spin_unlock_irq(&zone->lru_lock);
1492			if (buffer_heads_over_limit)
1493				pagevec_strip(&pvec);
1494			__pagevec_release(&pvec);
1495			spin_lock_irq(&zone->lru_lock);
1496		}
1497	}
1498	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1499	if (!is_active_lru(lru))
1500		__count_vm_events(PGDEACTIVATE, pgmoved);
1501}
1502
1503static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1504			struct scan_control *sc, int priority, int file)
1505{
1506	unsigned long nr_taken;
1507	unsigned long pgscanned;
1508	unsigned long vm_flags;
1509	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1510	LIST_HEAD(l_active);
1511	LIST_HEAD(l_inactive);
1512	struct page *page;
1513	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1514	unsigned long nr_rotated = 0;
1515
1516	lru_add_drain();
1517	spin_lock_irq(&zone->lru_lock);
1518	if (scanning_global_lru(sc)) {
1519		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1520						&pgscanned, sc->order,
1521						ISOLATE_ACTIVE, zone,
1522						1, file);
1523		zone->pages_scanned += pgscanned;
1524	} else {
1525		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1526						&pgscanned, sc->order,
1527						ISOLATE_ACTIVE, zone,
1528						sc->mem_cgroup, 1, file);
1529		/*
1530		 * mem_cgroup_isolate_pages() keeps track of
1531		 * scanned pages on its own.
1532		 */
1533	}
1534
1535	reclaim_stat->recent_scanned[file] += nr_taken;
1536
1537	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1538	if (file)
1539		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1540	else
1541		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1542	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1543	spin_unlock_irq(&zone->lru_lock);
1544
1545	while (!list_empty(&l_hold)) {
1546		cond_resched();
1547		page = lru_to_page(&l_hold);
1548		list_del(&page->lru);
1549
1550		if (unlikely(!page_evictable(page, NULL))) {
1551			putback_lru_page(page);
1552			continue;
1553		}
1554
1555		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1556			nr_rotated += hpage_nr_pages(page);
1557			/*
1558			 * Identify referenced, file-backed active pages and
1559			 * give them one more trip around the active list. So
1560			 * that executable code get better chances to stay in
1561			 * memory under moderate memory pressure.  Anon pages
1562			 * are not likely to be evicted by use-once streaming
1563			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1564			 * so we ignore them here.
1565			 */
1566			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1567				list_add(&page->lru, &l_active);
1568				continue;
1569			}
1570		}
1571
1572		ClearPageActive(page);	/* we are de-activating */
1573		list_add(&page->lru, &l_inactive);
1574	}
1575
1576	/*
1577	 * Move pages back to the lru list.
1578	 */
1579	spin_lock_irq(&zone->lru_lock);
1580	/*
1581	 * Count referenced pages from currently used mappings as rotated,
1582	 * even though only some of them are actually re-activated.  This
1583	 * helps balance scan pressure between file and anonymous pages in
1584	 * get_scan_ratio.
1585	 */
1586	reclaim_stat->recent_rotated[file] += nr_rotated;
1587
1588	move_active_pages_to_lru(zone, &l_active,
1589						LRU_ACTIVE + file * LRU_FILE);
1590	move_active_pages_to_lru(zone, &l_inactive,
1591						LRU_BASE   + file * LRU_FILE);
1592	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1593	spin_unlock_irq(&zone->lru_lock);
1594}
1595
1596#ifdef CONFIG_SWAP
1597static int inactive_anon_is_low_global(struct zone *zone)
1598{
1599	unsigned long active, inactive;
1600
1601	active = zone_page_state(zone, NR_ACTIVE_ANON);
1602	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1603
1604	if (inactive * zone->inactive_ratio < active)
1605		return 1;
1606
1607	return 0;
1608}
1609
1610/**
1611 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1612 * @zone: zone to check
1613 * @sc:   scan control of this context
1614 *
1615 * Returns true if the zone does not have enough inactive anon pages,
1616 * meaning some active anon pages need to be deactivated.
1617 */
1618static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1619{
1620	int low;
1621
1622	/*
1623	 * If we don't have swap space, anonymous page deactivation
1624	 * is pointless.
1625	 */
1626	if (!total_swap_pages)
1627		return 0;
1628
1629	if (scanning_global_lru(sc))
1630		low = inactive_anon_is_low_global(zone);
1631	else
1632		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1633	return low;
1634}
1635#else
1636static inline int inactive_anon_is_low(struct zone *zone,
1637					struct scan_control *sc)
1638{
1639	return 0;
1640}
1641#endif
1642
1643static int inactive_file_is_low_global(struct zone *zone)
1644{
1645	unsigned long active, inactive;
1646
1647	active = zone_page_state(zone, NR_ACTIVE_FILE);
1648	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1649
1650	return (active > inactive);
1651}
1652
1653/**
1654 * inactive_file_is_low - check if file pages need to be deactivated
1655 * @zone: zone to check
1656 * @sc:   scan control of this context
1657 *
1658 * When the system is doing streaming IO, memory pressure here
1659 * ensures that active file pages get deactivated, until more
1660 * than half of the file pages are on the inactive list.
1661 *
1662 * Once we get to that situation, protect the system's working
1663 * set from being evicted by disabling active file page aging.
1664 *
1665 * This uses a different ratio than the anonymous pages, because
1666 * the page cache uses a use-once replacement algorithm.
1667 */
1668static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1669{
1670	int low;
1671
1672	if (scanning_global_lru(sc))
1673		low = inactive_file_is_low_global(zone);
1674	else
1675		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1676	return low;
1677}
1678
1679static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1680				int file)
1681{
1682	if (file)
1683		return inactive_file_is_low(zone, sc);
1684	else
1685		return inactive_anon_is_low(zone, sc);
1686}
1687
1688static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1689	struct zone *zone, struct scan_control *sc, int priority)
1690{
1691	int file = is_file_lru(lru);
1692
1693	if (is_active_lru(lru)) {
1694		if (inactive_list_is_low(zone, sc, file))
1695		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1696		return 0;
1697	}
1698
1699	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1700}
1701
1702/*
1703 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1704 * until we collected @swap_cluster_max pages to scan.
1705 */
1706static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1707				       unsigned long *nr_saved_scan)
1708{
1709	unsigned long nr;
1710
1711	*nr_saved_scan += nr_to_scan;
1712	nr = *nr_saved_scan;
1713
1714	if (nr >= SWAP_CLUSTER_MAX)
1715		*nr_saved_scan = 0;
1716	else
1717		nr = 0;
1718
1719	return nr;
1720}
1721
1722/*
1723 * Determine how aggressively the anon and file LRU lists should be
1724 * scanned.  The relative value of each set of LRU lists is determined
1725 * by looking at the fraction of the pages scanned we did rotate back
1726 * onto the active list instead of evict.
1727 *
1728 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1729 */
1730static void get_scan_count(struct zone *zone, struct scan_control *sc,
1731					unsigned long *nr, int priority)
1732{
1733	unsigned long anon, file, free;
1734	unsigned long anon_prio, file_prio;
1735	unsigned long ap, fp;
1736	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1737	u64 fraction[2], denominator;
1738	enum lru_list l;
1739	int noswap = 0;
1740
1741	/* If we have no swap space, do not bother scanning anon pages. */
1742	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1743		noswap = 1;
1744		fraction[0] = 0;
1745		fraction[1] = 1;
1746		denominator = 1;
1747		goto out;
1748	}
1749
1750	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1751		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1752	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1753		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1754
1755	if (scanning_global_lru(sc)) {
1756		free  = zone_page_state(zone, NR_FREE_PAGES);
1757		/* If we have very few page cache pages,
1758		   force-scan anon pages. */
1759		if (unlikely(file + free <= high_wmark_pages(zone))) {
1760			fraction[0] = 1;
1761			fraction[1] = 0;
1762			denominator = 1;
1763			goto out;
1764		}
1765	}
1766
1767	/*
1768	 * With swappiness at 100, anonymous and file have the same priority.
1769	 * This scanning priority is essentially the inverse of IO cost.
1770	 */
1771	anon_prio = sc->swappiness;
1772	file_prio = 200 - sc->swappiness;
1773
1774	/*
1775	 * OK, so we have swap space and a fair amount of page cache
1776	 * pages.  We use the recently rotated / recently scanned
1777	 * ratios to determine how valuable each cache is.
1778	 *
1779	 * Because workloads change over time (and to avoid overflow)
1780	 * we keep these statistics as a floating average, which ends
1781	 * up weighing recent references more than old ones.
1782	 *
1783	 * anon in [0], file in [1]
1784	 */
1785	spin_lock_irq(&zone->lru_lock);
1786	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1787		reclaim_stat->recent_scanned[0] /= 2;
1788		reclaim_stat->recent_rotated[0] /= 2;
1789	}
1790
1791	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1792		reclaim_stat->recent_scanned[1] /= 2;
1793		reclaim_stat->recent_rotated[1] /= 2;
1794	}
1795
1796	/*
1797	 * The amount of pressure on anon vs file pages is inversely
1798	 * proportional to the fraction of recently scanned pages on
1799	 * each list that were recently referenced and in active use.
1800	 */
1801	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1802	ap /= reclaim_stat->recent_rotated[0] + 1;
1803
1804	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1805	fp /= reclaim_stat->recent_rotated[1] + 1;
1806	spin_unlock_irq(&zone->lru_lock);
1807
1808	fraction[0] = ap;
1809	fraction[1] = fp;
1810	denominator = ap + fp + 1;
1811out:
1812	for_each_evictable_lru(l) {
1813		int file = is_file_lru(l);
1814		unsigned long scan;
1815
1816		scan = zone_nr_lru_pages(zone, sc, l);
1817		if (priority || noswap) {
1818			scan >>= priority;
1819			scan = div64_u64(scan * fraction[file], denominator);
1820		}
1821		nr[l] = nr_scan_try_batch(scan,
1822					  &reclaim_stat->nr_saved_scan[l]);
1823	}
1824}
1825
1826/*
1827 * Reclaim/compaction depends on a number of pages being freed. To avoid
1828 * disruption to the system, a small number of order-0 pages continue to be
1829 * rotated and reclaimed in the normal fashion. However, by the time we get
1830 * back to the allocator and call try_to_compact_zone(), we ensure that
1831 * there are enough free pages for it to be likely successful
1832 */
1833static inline bool should_continue_reclaim(struct zone *zone,
1834					unsigned long nr_reclaimed,
1835					unsigned long nr_scanned,
1836					struct scan_control *sc)
1837{
1838	unsigned long pages_for_compaction;
1839	unsigned long inactive_lru_pages;
1840
1841	/* If not in reclaim/compaction mode, stop */
1842	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1843		return false;
1844
1845	/* Consider stopping depending on scan and reclaim activity */
1846	if (sc->gfp_mask & __GFP_REPEAT) {
1847		/*
1848		 * For __GFP_REPEAT allocations, stop reclaiming if the
1849		 * full LRU list has been scanned and we are still failing
1850		 * to reclaim pages. This full LRU scan is potentially
1851		 * expensive but a __GFP_REPEAT caller really wants to succeed
1852		 */
1853		if (!nr_reclaimed && !nr_scanned)
1854			return false;
1855	} else {
1856		/*
1857		 * For non-__GFP_REPEAT allocations which can presumably
1858		 * fail without consequence, stop if we failed to reclaim
1859		 * any pages from the last SWAP_CLUSTER_MAX number of
1860		 * pages that were scanned. This will return to the
1861		 * caller faster at the risk reclaim/compaction and
1862		 * the resulting allocation attempt fails
1863		 */
1864		if (!nr_reclaimed)
1865			return false;
1866	}
1867
1868	/*
1869	 * If we have not reclaimed enough pages for compaction and the
1870	 * inactive lists are large enough, continue reclaiming
1871	 */
1872	pages_for_compaction = (2UL << sc->order);
1873	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1874				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1875	if (sc->nr_reclaimed < pages_for_compaction &&
1876			inactive_lru_pages > pages_for_compaction)
1877		return true;
1878
1879	/* If compaction would go ahead or the allocation would succeed, stop */
1880	switch (compaction_suitable(zone, sc->order)) {
1881	case COMPACT_PARTIAL:
1882	case COMPACT_CONTINUE:
1883		return false;
1884	default:
1885		return true;
1886	}
1887}
1888
1889/*
1890 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1891 */
1892static void shrink_zone(int priority, struct zone *zone,
1893				struct scan_control *sc)
1894{
1895	unsigned long nr[NR_LRU_LISTS];
1896	unsigned long nr_to_scan;
1897	enum lru_list l;
1898	unsigned long nr_reclaimed, nr_scanned;
1899	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1900
1901restart:
1902	nr_reclaimed = 0;
1903	nr_scanned = sc->nr_scanned;
1904	get_scan_count(zone, sc, nr, priority);
1905
1906	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1907					nr[LRU_INACTIVE_FILE]) {
1908		for_each_evictable_lru(l) {
1909			if (nr[l]) {
1910				nr_to_scan = min_t(unsigned long,
1911						   nr[l], SWAP_CLUSTER_MAX);
1912				nr[l] -= nr_to_scan;
1913
1914				nr_reclaimed += shrink_list(l, nr_to_scan,
1915							    zone, sc, priority);
1916			}
1917		}
1918		/*
1919		 * On large memory systems, scan >> priority can become
1920		 * really large. This is fine for the starting priority;
1921		 * we want to put equal scanning pressure on each zone.
1922		 * However, if the VM has a harder time of freeing pages,
1923		 * with multiple processes reclaiming pages, the total
1924		 * freeing target can get unreasonably large.
1925		 */
1926		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1927			break;
1928	}
1929	sc->nr_reclaimed += nr_reclaimed;
1930
1931	/*
1932	 * Even if we did not try to evict anon pages at all, we want to
1933	 * rebalance the anon lru active/inactive ratio.
1934	 */
1935	if (inactive_anon_is_low(zone, sc))
1936		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1937
1938	/* reclaim/compaction might need reclaim to continue */
1939	if (should_continue_reclaim(zone, nr_reclaimed,
1940					sc->nr_scanned - nr_scanned, sc))
1941		goto restart;
1942
1943	throttle_vm_writeout(sc->gfp_mask);
1944}
1945
1946/*
1947 * This is the direct reclaim path, for page-allocating processes.  We only
1948 * try to reclaim pages from zones which will satisfy the caller's allocation
1949 * request.
1950 *
1951 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1952 * Because:
1953 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1954 *    allocation or
1955 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1956 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1957 *    zone defense algorithm.
1958 *
1959 * If a zone is deemed to be full of pinned pages then just give it a light
1960 * scan then give up on it.
1961 */
1962static void shrink_zones(int priority, struct zonelist *zonelist,
1963					struct scan_control *sc)
1964{
1965	struct zoneref *z;
1966	struct zone *zone;
1967
1968	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1969					gfp_zone(sc->gfp_mask), sc->nodemask) {
1970		if (!populated_zone(zone))
1971			continue;
1972		/*
1973		 * Take care memory controller reclaiming has small influence
1974		 * to global LRU.
1975		 */
1976		if (scanning_global_lru(sc)) {
1977			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1978				continue;
1979			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1980				continue;	/* Let kswapd poll it */
1981		}
1982
1983		shrink_zone(priority, zone, sc);
1984	}
1985}
1986
1987static bool zone_reclaimable(struct zone *zone)
1988{
1989	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1990}
1991
1992/* All zones in zonelist are unreclaimable? */
1993static bool all_unreclaimable(struct zonelist *zonelist,
1994		struct scan_control *sc)
1995{
1996	struct zoneref *z;
1997	struct zone *zone;
1998
1999	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2000			gfp_zone(sc->gfp_mask), sc->nodemask) {
2001		if (!populated_zone(zone))
2002			continue;
2003		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2004			continue;
2005		if (!zone->all_unreclaimable)
2006			return false;
2007	}
2008
2009	return true;
2010}
2011
2012/*
2013 * This is the main entry point to direct page reclaim.
2014 *
2015 * If a full scan of the inactive list fails to free enough memory then we
2016 * are "out of memory" and something needs to be killed.
2017 *
2018 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2019 * high - the zone may be full of dirty or under-writeback pages, which this
2020 * caller can't do much about.  We kick the writeback threads and take explicit
2021 * naps in the hope that some of these pages can be written.  But if the
2022 * allocating task holds filesystem locks which prevent writeout this might not
2023 * work, and the allocation attempt will fail.
2024 *
2025 * returns:	0, if no pages reclaimed
2026 * 		else, the number of pages reclaimed
2027 */
2028static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2029					struct scan_control *sc)
2030{
2031	int priority;
2032	unsigned long total_scanned = 0;
2033	struct reclaim_state *reclaim_state = current->reclaim_state;
2034	struct zoneref *z;
2035	struct zone *zone;
2036	unsigned long writeback_threshold;
2037
2038	get_mems_allowed();
2039	delayacct_freepages_start();
2040
2041	if (scanning_global_lru(sc))
2042		count_vm_event(ALLOCSTALL);
2043
2044	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2045		sc->nr_scanned = 0;
2046		if (!priority)
2047			disable_swap_token();
2048		shrink_zones(priority, zonelist, sc);
2049		/*
2050		 * Don't shrink slabs when reclaiming memory from
2051		 * over limit cgroups
2052		 */
2053		if (scanning_global_lru(sc)) {
2054			unsigned long lru_pages = 0;
2055			for_each_zone_zonelist(zone, z, zonelist,
2056					gfp_zone(sc->gfp_mask)) {
2057				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2058					continue;
2059
2060				lru_pages += zone_reclaimable_pages(zone);
2061			}
2062
2063			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2064			if (reclaim_state) {
2065				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2066				reclaim_state->reclaimed_slab = 0;
2067			}
2068		}
2069		total_scanned += sc->nr_scanned;
2070		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2071			goto out;
2072
2073		/*
2074		 * Try to write back as many pages as we just scanned.  This
2075		 * tends to cause slow streaming writers to write data to the
2076		 * disk smoothly, at the dirtying rate, which is nice.   But
2077		 * that's undesirable in laptop mode, where we *want* lumpy
2078		 * writeout.  So in laptop mode, write out the whole world.
2079		 */
2080		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2081		if (total_scanned > writeback_threshold) {
2082			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2083			sc->may_writepage = 1;
2084		}
2085
2086		/* Take a nap, wait for some writeback to complete */
2087		if (!sc->hibernation_mode && sc->nr_scanned &&
2088		    priority < DEF_PRIORITY - 2) {
2089			struct zone *preferred_zone;
2090
2091			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2092						&cpuset_current_mems_allowed,
2093						&preferred_zone);
2094			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2095		}
2096	}
2097
2098out:
2099	delayacct_freepages_end();
2100	put_mems_allowed();
2101
2102	if (sc->nr_reclaimed)
2103		return sc->nr_reclaimed;
2104
2105	/*
2106	 * As hibernation is going on, kswapd is freezed so that it can't mark
2107	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2108	 * check.
2109	 */
2110	if (oom_killer_disabled)
2111		return 0;
2112
2113	/* top priority shrink_zones still had more to do? don't OOM, then */
2114	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2115		return 1;
2116
2117	return 0;
2118}
2119
2120unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2121				gfp_t gfp_mask, nodemask_t *nodemask)
2122{
2123	unsigned long nr_reclaimed;
2124	struct scan_control sc = {
2125		.gfp_mask = gfp_mask,
2126		.may_writepage = !laptop_mode,
2127		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2128		.may_unmap = 1,
2129		.may_swap = 1,
2130		.swappiness = vm_swappiness,
2131		.order = order,
2132		.mem_cgroup = NULL,
2133		.nodemask = nodemask,
2134	};
2135
2136	trace_mm_vmscan_direct_reclaim_begin(order,
2137				sc.may_writepage,
2138				gfp_mask);
2139
2140	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2141
2142	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2143
2144	return nr_reclaimed;
2145}
2146
2147#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2148
2149unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2150						gfp_t gfp_mask, bool noswap,
2151						unsigned int swappiness,
2152						struct zone *zone)
2153{
2154	struct scan_control sc = {
2155		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2156		.may_writepage = !laptop_mode,
2157		.may_unmap = 1,
2158		.may_swap = !noswap,
2159		.swappiness = swappiness,
2160		.order = 0,
2161		.mem_cgroup = mem,
2162	};
2163	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2164			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2165
2166	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2167						      sc.may_writepage,
2168						      sc.gfp_mask);
2169
2170	/*
2171	 * NOTE: Although we can get the priority field, using it
2172	 * here is not a good idea, since it limits the pages we can scan.
2173	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2174	 * will pick up pages from other mem cgroup's as well. We hack
2175	 * the priority and make it zero.
2176	 */
2177	shrink_zone(0, zone, &sc);
2178
2179	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2180
2181	return sc.nr_reclaimed;
2182}
2183
2184unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2185					   gfp_t gfp_mask,
2186					   bool noswap,
2187					   unsigned int swappiness)
2188{
2189	struct zonelist *zonelist;
2190	unsigned long nr_reclaimed;
2191	struct scan_control sc = {
2192		.may_writepage = !laptop_mode,
2193		.may_unmap = 1,
2194		.may_swap = !noswap,
2195		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2196		.swappiness = swappiness,
2197		.order = 0,
2198		.mem_cgroup = mem_cont,
2199		.nodemask = NULL, /* we don't care the placement */
2200	};
2201
2202	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2203			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2204	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2205
2206	trace_mm_vmscan_memcg_reclaim_begin(0,
2207					    sc.may_writepage,
2208					    sc.gfp_mask);
2209
2210	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2211
2212	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2213
2214	return nr_reclaimed;
2215}
2216#endif
2217
2218/*
2219 * pgdat_balanced is used when checking if a node is balanced for high-order
2220 * allocations. Only zones that meet watermarks and are in a zone allowed
2221 * by the callers classzone_idx are added to balanced_pages. The total of
2222 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2223 * for the node to be considered balanced. Forcing all zones to be balanced
2224 * for high orders can cause excessive reclaim when there are imbalanced zones.
2225 * The choice of 25% is due to
2226 *   o a 16M DMA zone that is balanced will not balance a zone on any
2227 *     reasonable sized machine
2228 *   o On all other machines, the top zone must be at least a reasonable
2229 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2230 *     would need to be at least 256M for it to be balance a whole node.
2231 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2232 *     to balance a node on its own. These seemed like reasonable ratios.
2233 */
2234static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2235						int classzone_idx)
2236{
2237	unsigned long present_pages = 0;
2238	int i;
2239
2240	for (i = 0; i <= classzone_idx; i++)
2241		present_pages += pgdat->node_zones[i].present_pages;
2242
2243	return balanced_pages > (present_pages >> 2);
2244}
2245
2246/* is kswapd sleeping prematurely? */
2247static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2248					int classzone_idx)
2249{
2250	int i;
2251	unsigned long balanced = 0;
2252	bool all_zones_ok = true;
2253
2254	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2255	if (remaining)
2256		return true;
2257
2258	/* Check the watermark levels */
2259	for (i = 0; i < pgdat->nr_zones; i++) {
2260		struct zone *zone = pgdat->node_zones + i;
2261
2262		if (!populated_zone(zone))
2263			continue;
2264
2265		/*
2266		 * balance_pgdat() skips over all_unreclaimable after
2267		 * DEF_PRIORITY. Effectively, it considers them balanced so
2268		 * they must be considered balanced here as well if kswapd
2269		 * is to sleep
2270		 */
2271		if (zone->all_unreclaimable) {
2272			balanced += zone->present_pages;
2273			continue;
2274		}
2275
2276		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2277							classzone_idx, 0))
2278			all_zones_ok = false;
2279		else
2280			balanced += zone->present_pages;
2281	}
2282
2283	/*
2284	 * For high-order requests, the balanced zones must contain at least
2285	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2286	 * must be balanced
2287	 */
2288	if (order)
2289		return pgdat_balanced(pgdat, balanced, classzone_idx);
2290	else
2291		return !all_zones_ok;
2292}
2293
2294/*
2295 * For kswapd, balance_pgdat() will work across all this node's zones until
2296 * they are all at high_wmark_pages(zone).
2297 *
2298 * Returns the final order kswapd was reclaiming at
2299 *
2300 * There is special handling here for zones which are full of pinned pages.
2301 * This can happen if the pages are all mlocked, or if they are all used by
2302 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2303 * What we do is to detect the case where all pages in the zone have been
2304 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2305 * dead and from now on, only perform a short scan.  Basically we're polling
2306 * the zone for when the problem goes away.
2307 *
2308 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2309 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2310 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2311 * lower zones regardless of the number of free pages in the lower zones. This
2312 * interoperates with the page allocator fallback scheme to ensure that aging
2313 * of pages is balanced across the zones.
2314 */
2315static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2316							int *classzone_idx)
2317{
2318	int all_zones_ok;
2319	unsigned long balanced;
2320	int priority;
2321	int i;
2322	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2323	unsigned long total_scanned;
2324	struct reclaim_state *reclaim_state = current->reclaim_state;
2325	struct scan_control sc = {
2326		.gfp_mask = GFP_KERNEL,
2327		.may_unmap = 1,
2328		.may_swap = 1,
2329		/*
2330		 * kswapd doesn't want to be bailed out while reclaim. because
2331		 * we want to put equal scanning pressure on each zone.
2332		 */
2333		.nr_to_reclaim = ULONG_MAX,
2334		.swappiness = vm_swappiness,
2335		.order = order,
2336		.mem_cgroup = NULL,
2337	};
2338loop_again:
2339	total_scanned = 0;
2340	sc.nr_reclaimed = 0;
2341	sc.may_writepage = !laptop_mode;
2342	count_vm_event(PAGEOUTRUN);
2343
2344	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2345		unsigned long lru_pages = 0;
2346		int has_under_min_watermark_zone = 0;
2347
2348		/* The swap token gets in the way of swapout... */
2349		if (!priority)
2350			disable_swap_token();
2351
2352		all_zones_ok = 1;
2353		balanced = 0;
2354
2355		/*
2356		 * Scan in the highmem->dma direction for the highest
2357		 * zone which needs scanning
2358		 */
2359		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2360			struct zone *zone = pgdat->node_zones + i;
2361
2362			if (!populated_zone(zone))
2363				continue;
2364
2365			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2366				continue;
2367
2368			/*
2369			 * Do some background aging of the anon list, to give
2370			 * pages a chance to be referenced before reclaiming.
2371			 */
2372			if (inactive_anon_is_low(zone, &sc))
2373				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2374							&sc, priority, 0);
2375
2376			if (!zone_watermark_ok_safe(zone, order,
2377					high_wmark_pages(zone), 0, 0)) {
2378				end_zone = i;
2379				*classzone_idx = i;
2380				break;
2381			}
2382		}
2383		if (i < 0)
2384			goto out;
2385
2386		for (i = 0; i <= end_zone; i++) {
2387			struct zone *zone = pgdat->node_zones + i;
2388
2389			lru_pages += zone_reclaimable_pages(zone);
2390		}
2391
2392		/*
2393		 * Now scan the zone in the dma->highmem direction, stopping
2394		 * at the last zone which needs scanning.
2395		 *
2396		 * We do this because the page allocator works in the opposite
2397		 * direction.  This prevents the page allocator from allocating
2398		 * pages behind kswapd's direction of progress, which would
2399		 * cause too much scanning of the lower zones.
2400		 */
2401		for (i = 0; i <= end_zone; i++) {
2402			struct zone *zone = pgdat->node_zones + i;
2403			int nr_slab;
2404			unsigned long balance_gap;
2405
2406			if (!populated_zone(zone))
2407				continue;
2408
2409			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2410				continue;
2411
2412			sc.nr_scanned = 0;
2413
2414			/*
2415			 * Call soft limit reclaim before calling shrink_zone.
2416			 * For now we ignore the return value
2417			 */
2418			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2419
2420			/*
2421			 * We put equal pressure on every zone, unless
2422			 * one zone has way too many pages free
2423			 * already. The "too many pages" is defined
2424			 * as the high wmark plus a "gap" where the
2425			 * gap is either the low watermark or 1%
2426			 * of the zone, whichever is smaller.
2427			 */
2428			balance_gap = min(low_wmark_pages(zone),
2429				(zone->present_pages +
2430					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2431				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2432			if (!zone_watermark_ok_safe(zone, order,
2433					high_wmark_pages(zone) + balance_gap,
2434					end_zone, 0))
2435				shrink_zone(priority, zone, &sc);
2436			reclaim_state->reclaimed_slab = 0;
2437			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2438						lru_pages);
2439			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2440			total_scanned += sc.nr_scanned;
2441
2442			if (zone->all_unreclaimable)
2443				continue;
2444			if (nr_slab == 0 &&
2445			    !zone_reclaimable(zone))
2446				zone->all_unreclaimable = 1;
2447			/*
2448			 * If we've done a decent amount of scanning and
2449			 * the reclaim ratio is low, start doing writepage
2450			 * even in laptop mode
2451			 */
2452			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2453			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2454				sc.may_writepage = 1;
2455
2456			if (!zone_watermark_ok_safe(zone, order,
2457					high_wmark_pages(zone), end_zone, 0)) {
2458				all_zones_ok = 0;
2459				/*
2460				 * We are still under min water mark.  This
2461				 * means that we have a GFP_ATOMIC allocation
2462				 * failure risk. Hurry up!
2463				 */
2464				if (!zone_watermark_ok_safe(zone, order,
2465					    min_wmark_pages(zone), end_zone, 0))
2466					has_under_min_watermark_zone = 1;
2467			} else {
2468				/*
2469				 * If a zone reaches its high watermark,
2470				 * consider it to be no longer congested. It's
2471				 * possible there are dirty pages backed by
2472				 * congested BDIs but as pressure is relieved,
2473				 * spectulatively avoid congestion waits
2474				 */
2475				zone_clear_flag(zone, ZONE_CONGESTED);
2476				if (i <= *classzone_idx)
2477					balanced += zone->present_pages;
2478			}
2479
2480		}
2481		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2482			break;		/* kswapd: all done */
2483		/*
2484		 * OK, kswapd is getting into trouble.  Take a nap, then take
2485		 * another pass across the zones.
2486		 */
2487		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2488			if (has_under_min_watermark_zone)
2489				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2490			else
2491				congestion_wait(BLK_RW_ASYNC, HZ/10);
2492		}
2493
2494		/*
2495		 * We do this so kswapd doesn't build up large priorities for
2496		 * example when it is freeing in parallel with allocators. It
2497		 * matches the direct reclaim path behaviour in terms of impact
2498		 * on zone->*_priority.
2499		 */
2500		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2501			break;
2502	}
2503out:
2504
2505	/*
2506	 * order-0: All zones must meet high watermark for a balanced node
2507	 * high-order: Balanced zones must make up at least 25% of the node
2508	 *             for the node to be balanced
2509	 */
2510	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2511		cond_resched();
2512
2513		try_to_freeze();
2514
2515		/*
2516		 * Fragmentation may mean that the system cannot be
2517		 * rebalanced for high-order allocations in all zones.
2518		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2519		 * it means the zones have been fully scanned and are still
2520		 * not balanced. For high-order allocations, there is
2521		 * little point trying all over again as kswapd may
2522		 * infinite loop.
2523		 *
2524		 * Instead, recheck all watermarks at order-0 as they
2525		 * are the most important. If watermarks are ok, kswapd will go
2526		 * back to sleep. High-order users can still perform direct
2527		 * reclaim if they wish.
2528		 */
2529		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2530			order = sc.order = 0;
2531
2532		goto loop_again;
2533	}
2534
2535	/*
2536	 * If kswapd was reclaiming at a higher order, it has the option of
2537	 * sleeping without all zones being balanced. Before it does, it must
2538	 * ensure that the watermarks for order-0 on *all* zones are met and
2539	 * that the congestion flags are cleared. The congestion flag must
2540	 * be cleared as kswapd is the only mechanism that clears the flag
2541	 * and it is potentially going to sleep here.
2542	 */
2543	if (order) {
2544		for (i = 0; i <= end_zone; i++) {
2545			struct zone *zone = pgdat->node_zones + i;
2546
2547			if (!populated_zone(zone))
2548				continue;
2549
2550			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2551				continue;
2552
2553			/* Confirm the zone is balanced for order-0 */
2554			if (!zone_watermark_ok(zone, 0,
2555					high_wmark_pages(zone), 0, 0)) {
2556				order = sc.order = 0;
2557				goto loop_again;
2558			}
2559
2560			/* If balanced, clear the congested flag */
2561			zone_clear_flag(zone, ZONE_CONGESTED);
2562		}
2563	}
2564
2565	/*
2566	 * Return the order we were reclaiming at so sleeping_prematurely()
2567	 * makes a decision on the order we were last reclaiming at. However,
2568	 * if another caller entered the allocator slow path while kswapd
2569	 * was awake, order will remain at the higher level
2570	 */
2571	*classzone_idx = end_zone;
2572	return order;
2573}
2574
2575static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2576{
2577	long remaining = 0;
2578	DEFINE_WAIT(wait);
2579
2580	if (freezing(current) || kthread_should_stop())
2581		return;
2582
2583	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2584
2585	/* Try to sleep for a short interval */
2586	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2587		remaining = schedule_timeout(HZ/10);
2588		finish_wait(&pgdat->kswapd_wait, &wait);
2589		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2590	}
2591
2592	/*
2593	 * After a short sleep, check if it was a premature sleep. If not, then
2594	 * go fully to sleep until explicitly woken up.
2595	 */
2596	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2597		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2598
2599		/*
2600		 * vmstat counters are not perfectly accurate and the estimated
2601		 * value for counters such as NR_FREE_PAGES can deviate from the
2602		 * true value by nr_online_cpus * threshold. To avoid the zone
2603		 * watermarks being breached while under pressure, we reduce the
2604		 * per-cpu vmstat threshold while kswapd is awake and restore
2605		 * them before going back to sleep.
2606		 */
2607		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2608		schedule();
2609		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2610	} else {
2611		if (remaining)
2612			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2613		else
2614			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2615	}
2616	finish_wait(&pgdat->kswapd_wait, &wait);
2617}
2618
2619/*
2620 * The background pageout daemon, started as a kernel thread
2621 * from the init process.
2622 *
2623 * This basically trickles out pages so that we have _some_
2624 * free memory available even if there is no other activity
2625 * that frees anything up. This is needed for things like routing
2626 * etc, where we otherwise might have all activity going on in
2627 * asynchronous contexts that cannot page things out.
2628 *
2629 * If there are applications that are active memory-allocators
2630 * (most normal use), this basically shouldn't matter.
2631 */
2632static int kswapd(void *p)
2633{
2634	unsigned long order;
2635	int classzone_idx;
2636	pg_data_t *pgdat = (pg_data_t*)p;
2637	struct task_struct *tsk = current;
2638
2639	struct reclaim_state reclaim_state = {
2640		.reclaimed_slab = 0,
2641	};
2642	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2643
2644	lockdep_set_current_reclaim_state(GFP_KERNEL);
2645
2646	if (!cpumask_empty(cpumask))
2647		set_cpus_allowed_ptr(tsk, cpumask);
2648	current->reclaim_state = &reclaim_state;
2649
2650	/*
2651	 * Tell the memory management that we're a "memory allocator",
2652	 * and that if we need more memory we should get access to it
2653	 * regardless (see "__alloc_pages()"). "kswapd" should
2654	 * never get caught in the normal page freeing logic.
2655	 *
2656	 * (Kswapd normally doesn't need memory anyway, but sometimes
2657	 * you need a small amount of memory in order to be able to
2658	 * page out something else, and this flag essentially protects
2659	 * us from recursively trying to free more memory as we're
2660	 * trying to free the first piece of memory in the first place).
2661	 */
2662	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2663	set_freezable();
2664
2665	order = 0;
2666	classzone_idx = MAX_NR_ZONES - 1;
2667	for ( ; ; ) {
2668		unsigned long new_order;
2669		int new_classzone_idx;
2670		int ret;
2671
2672		new_order = pgdat->kswapd_max_order;
2673		new_classzone_idx = pgdat->classzone_idx;
2674		pgdat->kswapd_max_order = 0;
2675		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2676		if (order < new_order || classzone_idx > new_classzone_idx) {
2677			/*
2678			 * Don't sleep if someone wants a larger 'order'
2679			 * allocation or has tigher zone constraints
2680			 */
2681			order = new_order;
2682			classzone_idx = new_classzone_idx;
2683		} else {
2684			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2685			order = pgdat->kswapd_max_order;
2686			classzone_idx = pgdat->classzone_idx;
2687			pgdat->kswapd_max_order = 0;
2688			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2689		}
2690
2691		ret = try_to_freeze();
2692		if (kthread_should_stop())
2693			break;
2694
2695		/*
2696		 * We can speed up thawing tasks if we don't call balance_pgdat
2697		 * after returning from the refrigerator
2698		 */
2699		if (!ret) {
2700			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2701			order = balance_pgdat(pgdat, order, &classzone_idx);
2702		}
2703	}
2704	return 0;
2705}
2706
2707/*
2708 * A zone is low on free memory, so wake its kswapd task to service it.
2709 */
2710void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2711{
2712	pg_data_t *pgdat;
2713
2714	if (!populated_zone(zone))
2715		return;
2716
2717	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2718		return;
2719	pgdat = zone->zone_pgdat;
2720	if (pgdat->kswapd_max_order < order) {
2721		pgdat->kswapd_max_order = order;
2722		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2723	}
2724	if (!waitqueue_active(&pgdat->kswapd_wait))
2725		return;
2726	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2727		return;
2728
2729	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2730	wake_up_interruptible(&pgdat->kswapd_wait);
2731}
2732
2733/*
2734 * The reclaimable count would be mostly accurate.
2735 * The less reclaimable pages may be
2736 * - mlocked pages, which will be moved to unevictable list when encountered
2737 * - mapped pages, which may require several travels to be reclaimed
2738 * - dirty pages, which is not "instantly" reclaimable
2739 */
2740unsigned long global_reclaimable_pages(void)
2741{
2742	int nr;
2743
2744	nr = global_page_state(NR_ACTIVE_FILE) +
2745	     global_page_state(NR_INACTIVE_FILE);
2746
2747	if (nr_swap_pages > 0)
2748		nr += global_page_state(NR_ACTIVE_ANON) +
2749		      global_page_state(NR_INACTIVE_ANON);
2750
2751	return nr;
2752}
2753
2754unsigned long zone_reclaimable_pages(struct zone *zone)
2755{
2756	int nr;
2757
2758	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2759	     zone_page_state(zone, NR_INACTIVE_FILE);
2760
2761	if (nr_swap_pages > 0)
2762		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2763		      zone_page_state(zone, NR_INACTIVE_ANON);
2764
2765	return nr;
2766}
2767
2768#ifdef CONFIG_HIBERNATION
2769/*
2770 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2771 * freed pages.
2772 *
2773 * Rather than trying to age LRUs the aim is to preserve the overall
2774 * LRU order by reclaiming preferentially
2775 * inactive > active > active referenced > active mapped
2776 */
2777unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2778{
2779	struct reclaim_state reclaim_state;
2780	struct scan_control sc = {
2781		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2782		.may_swap = 1,
2783		.may_unmap = 1,
2784		.may_writepage = 1,
2785		.nr_to_reclaim = nr_to_reclaim,
2786		.hibernation_mode = 1,
2787		.swappiness = vm_swappiness,
2788		.order = 0,
2789	};
2790	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2791	struct task_struct *p = current;
2792	unsigned long nr_reclaimed;
2793
2794	p->flags |= PF_MEMALLOC;
2795	lockdep_set_current_reclaim_state(sc.gfp_mask);
2796	reclaim_state.reclaimed_slab = 0;
2797	p->reclaim_state = &reclaim_state;
2798
2799	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2800
2801	p->reclaim_state = NULL;
2802	lockdep_clear_current_reclaim_state();
2803	p->flags &= ~PF_MEMALLOC;
2804
2805	return nr_reclaimed;
2806}
2807#endif /* CONFIG_HIBERNATION */
2808
2809/* It's optimal to keep kswapds on the same CPUs as their memory, but
2810   not required for correctness.  So if the last cpu in a node goes
2811   away, we get changed to run anywhere: as the first one comes back,
2812   restore their cpu bindings. */
2813static int __devinit cpu_callback(struct notifier_block *nfb,
2814				  unsigned long action, void *hcpu)
2815{
2816	int nid;
2817
2818	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2819		for_each_node_state(nid, N_HIGH_MEMORY) {
2820			pg_data_t *pgdat = NODE_DATA(nid);
2821			const struct cpumask *mask;
2822
2823			mask = cpumask_of_node(pgdat->node_id);
2824
2825			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2826				/* One of our CPUs online: restore mask */
2827				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2828		}
2829	}
2830	return NOTIFY_OK;
2831}
2832
2833/*
2834 * This kswapd start function will be called by init and node-hot-add.
2835 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2836 */
2837int kswapd_run(int nid)
2838{
2839	pg_data_t *pgdat = NODE_DATA(nid);
2840	int ret = 0;
2841
2842	if (pgdat->kswapd)
2843		return 0;
2844
2845	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2846	if (IS_ERR(pgdat->kswapd)) {
2847		/* failure at boot is fatal */
2848		BUG_ON(system_state == SYSTEM_BOOTING);
2849		printk("Failed to start kswapd on node %d\n",nid);
2850		ret = -1;
2851	}
2852	return ret;
2853}
2854
2855/*
2856 * Called by memory hotplug when all memory in a node is offlined.
2857 */
2858void kswapd_stop(int nid)
2859{
2860	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2861
2862	if (kswapd)
2863		kthread_stop(kswapd);
2864}
2865
2866static int __init kswapd_init(void)
2867{
2868	int nid;
2869
2870	swap_setup();
2871	for_each_node_state(nid, N_HIGH_MEMORY)
2872 		kswapd_run(nid);
2873	hotcpu_notifier(cpu_callback, 0);
2874	return 0;
2875}
2876
2877module_init(kswapd_init)
2878
2879#ifdef CONFIG_NUMA
2880/*
2881 * Zone reclaim mode
2882 *
2883 * If non-zero call zone_reclaim when the number of free pages falls below
2884 * the watermarks.
2885 */
2886int zone_reclaim_mode __read_mostly;
2887
2888#define RECLAIM_OFF 0
2889#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2890#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2891#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2892
2893/*
2894 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2895 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2896 * a zone.
2897 */
2898#define ZONE_RECLAIM_PRIORITY 4
2899
2900/*
2901 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2902 * occur.
2903 */
2904int sysctl_min_unmapped_ratio = 1;
2905
2906/*
2907 * If the number of slab pages in a zone grows beyond this percentage then
2908 * slab reclaim needs to occur.
2909 */
2910int sysctl_min_slab_ratio = 5;
2911
2912static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2913{
2914	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2915	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2916		zone_page_state(zone, NR_ACTIVE_FILE);
2917
2918	/*
2919	 * It's possible for there to be more file mapped pages than
2920	 * accounted for by the pages on the file LRU lists because
2921	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2922	 */
2923	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2924}
2925
2926/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2927static long zone_pagecache_reclaimable(struct zone *zone)
2928{
2929	long nr_pagecache_reclaimable;
2930	long delta = 0;
2931
2932	/*
2933	 * If RECLAIM_SWAP is set, then all file pages are considered
2934	 * potentially reclaimable. Otherwise, we have to worry about
2935	 * pages like swapcache and zone_unmapped_file_pages() provides
2936	 * a better estimate
2937	 */
2938	if (zone_reclaim_mode & RECLAIM_SWAP)
2939		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2940	else
2941		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2942
2943	/* If we can't clean pages, remove dirty pages from consideration */
2944	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2945		delta += zone_page_state(zone, NR_FILE_DIRTY);
2946
2947	/* Watch for any possible underflows due to delta */
2948	if (unlikely(delta > nr_pagecache_reclaimable))
2949		delta = nr_pagecache_reclaimable;
2950
2951	return nr_pagecache_reclaimable - delta;
2952}
2953
2954/*
2955 * Try to free up some pages from this zone through reclaim.
2956 */
2957static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2958{
2959	/* Minimum pages needed in order to stay on node */
2960	const unsigned long nr_pages = 1 << order;
2961	struct task_struct *p = current;
2962	struct reclaim_state reclaim_state;
2963	int priority;
2964	struct scan_control sc = {
2965		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2966		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2967		.may_swap = 1,
2968		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2969				       SWAP_CLUSTER_MAX),
2970		.gfp_mask = gfp_mask,
2971		.swappiness = vm_swappiness,
2972		.order = order,
2973	};
2974	unsigned long nr_slab_pages0, nr_slab_pages1;
2975
2976	cond_resched();
2977	/*
2978	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2979	 * and we also need to be able to write out pages for RECLAIM_WRITE
2980	 * and RECLAIM_SWAP.
2981	 */
2982	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2983	lockdep_set_current_reclaim_state(gfp_mask);
2984	reclaim_state.reclaimed_slab = 0;
2985	p->reclaim_state = &reclaim_state;
2986
2987	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2988		/*
2989		 * Free memory by calling shrink zone with increasing
2990		 * priorities until we have enough memory freed.
2991		 */
2992		priority = ZONE_RECLAIM_PRIORITY;
2993		do {
2994			shrink_zone(priority, zone, &sc);
2995			priority--;
2996		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2997	}
2998
2999	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3000	if (nr_slab_pages0 > zone->min_slab_pages) {
3001		/*
3002		 * shrink_slab() does not currently allow us to determine how
3003		 * many pages were freed in this zone. So we take the current
3004		 * number of slab pages and shake the slab until it is reduced
3005		 * by the same nr_pages that we used for reclaiming unmapped
3006		 * pages.
3007		 *
3008		 * Note that shrink_slab will free memory on all zones and may
3009		 * take a long time.
3010		 */
3011		for (;;) {
3012			unsigned long lru_pages = zone_reclaimable_pages(zone);
3013
3014			/* No reclaimable slab or very low memory pressure */
3015			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3016				break;
3017
3018			/* Freed enough memory */
3019			nr_slab_pages1 = zone_page_state(zone,
3020							NR_SLAB_RECLAIMABLE);
3021			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3022				break;
3023		}
3024
3025		/*
3026		 * Update nr_reclaimed by the number of slab pages we
3027		 * reclaimed from this zone.
3028		 */
3029		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3030		if (nr_slab_pages1 < nr_slab_pages0)
3031			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3032	}
3033
3034	p->reclaim_state = NULL;
3035	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3036	lockdep_clear_current_reclaim_state();
3037	return sc.nr_reclaimed >= nr_pages;
3038}
3039
3040int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3041{
3042	int node_id;
3043	int ret;
3044
3045	/*
3046	 * Zone reclaim reclaims unmapped file backed pages and
3047	 * slab pages if we are over the defined limits.
3048	 *
3049	 * A small portion of unmapped file backed pages is needed for
3050	 * file I/O otherwise pages read by file I/O will be immediately
3051	 * thrown out if the zone is overallocated. So we do not reclaim
3052	 * if less than a specified percentage of the zone is used by
3053	 * unmapped file backed pages.
3054	 */
3055	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3056	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3057		return ZONE_RECLAIM_FULL;
3058
3059	if (zone->all_unreclaimable)
3060		return ZONE_RECLAIM_FULL;
3061
3062	/*
3063	 * Do not scan if the allocation should not be delayed.
3064	 */
3065	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3066		return ZONE_RECLAIM_NOSCAN;
3067
3068	/*
3069	 * Only run zone reclaim on the local zone or on zones that do not
3070	 * have associated processors. This will favor the local processor
3071	 * over remote processors and spread off node memory allocations
3072	 * as wide as possible.
3073	 */
3074	node_id = zone_to_nid(zone);
3075	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3076		return ZONE_RECLAIM_NOSCAN;
3077
3078	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3079		return ZONE_RECLAIM_NOSCAN;
3080
3081	ret = __zone_reclaim(zone, gfp_mask, order);
3082	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3083
3084	if (!ret)
3085		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3086
3087	return ret;
3088}
3089#endif
3090
3091/*
3092 * page_evictable - test whether a page is evictable
3093 * @page: the page to test
3094 * @vma: the VMA in which the page is or will be mapped, may be NULL
3095 *
3096 * Test whether page is evictable--i.e., should be placed on active/inactive
3097 * lists vs unevictable list.  The vma argument is !NULL when called from the
3098 * fault path to determine how to instantate a new page.
3099 *
3100 * Reasons page might not be evictable:
3101 * (1) page's mapping marked unevictable
3102 * (2) page is part of an mlocked VMA
3103 *
3104 */
3105int page_evictable(struct page *page, struct vm_area_struct *vma)
3106{
3107
3108	if (mapping_unevictable(page_mapping(page)))
3109		return 0;
3110
3111	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3112		return 0;
3113
3114	return 1;
3115}
3116
3117/**
3118 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3119 * @page: page to check evictability and move to appropriate lru list
3120 * @zone: zone page is in
3121 *
3122 * Checks a page for evictability and moves the page to the appropriate
3123 * zone lru list.
3124 *
3125 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3126 * have PageUnevictable set.
3127 */
3128static void check_move_unevictable_page(struct page *page, struct zone *zone)
3129{
3130	VM_BUG_ON(PageActive(page));
3131
3132retry:
3133	ClearPageUnevictable(page);
3134	if (page_evictable(page, NULL)) {
3135		enum lru_list l = page_lru_base_type(page);
3136
3137		__dec_zone_state(zone, NR_UNEVICTABLE);
3138		list_move(&page->lru, &zone->lru[l].list);
3139		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3140		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3141		__count_vm_event(UNEVICTABLE_PGRESCUED);
3142	} else {
3143		/*
3144		 * rotate unevictable list
3145		 */
3146		SetPageUnevictable(page);
3147		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3148		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3149		if (page_evictable(page, NULL))
3150			goto retry;
3151	}
3152}
3153
3154/**
3155 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3156 * @mapping: struct address_space to scan for evictable pages
3157 *
3158 * Scan all pages in mapping.  Check unevictable pages for
3159 * evictability and move them to the appropriate zone lru list.
3160 */
3161void scan_mapping_unevictable_pages(struct address_space *mapping)
3162{
3163	pgoff_t next = 0;
3164	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3165			 PAGE_CACHE_SHIFT;
3166	struct zone *zone;
3167	struct pagevec pvec;
3168
3169	if (mapping->nrpages == 0)
3170		return;
3171
3172	pagevec_init(&pvec, 0);
3173	while (next < end &&
3174		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3175		int i;
3176		int pg_scanned = 0;
3177
3178		zone = NULL;
3179
3180		for (i = 0; i < pagevec_count(&pvec); i++) {
3181			struct page *page = pvec.pages[i];
3182			pgoff_t page_index = page->index;
3183			struct zone *pagezone = page_zone(page);
3184
3185			pg_scanned++;
3186			if (page_index > next)
3187				next = page_index;
3188			next++;
3189
3190			if (pagezone != zone) {
3191				if (zone)
3192					spin_unlock_irq(&zone->lru_lock);
3193				zone = pagezone;
3194				spin_lock_irq(&zone->lru_lock);
3195			}
3196
3197			if (PageLRU(page) && PageUnevictable(page))
3198				check_move_unevictable_page(page, zone);
3199		}
3200		if (zone)
3201			spin_unlock_irq(&zone->lru_lock);
3202		pagevec_release(&pvec);
3203
3204		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3205	}
3206
3207}
3208
3209/**
3210 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3211 * @zone - zone of which to scan the unevictable list
3212 *
3213 * Scan @zone's unevictable LRU lists to check for pages that have become
3214 * evictable.  Move those that have to @zone's inactive list where they
3215 * become candidates for reclaim, unless shrink_inactive_zone() decides
3216 * to reactivate them.  Pages that are still unevictable are rotated
3217 * back onto @zone's unevictable list.
3218 */
3219#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3220static void scan_zone_unevictable_pages(struct zone *zone)
3221{
3222	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3223	unsigned long scan;
3224	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3225
3226	while (nr_to_scan > 0) {
3227		unsigned long batch_size = min(nr_to_scan,
3228						SCAN_UNEVICTABLE_BATCH_SIZE);
3229
3230		spin_lock_irq(&zone->lru_lock);
3231		for (scan = 0;  scan < batch_size; scan++) {
3232			struct page *page = lru_to_page(l_unevictable);
3233
3234			if (!trylock_page(page))
3235				continue;
3236
3237			prefetchw_prev_lru_page(page, l_unevictable, flags);
3238
3239			if (likely(PageLRU(page) && PageUnevictable(page)))
3240				check_move_unevictable_page(page, zone);
3241
3242			unlock_page(page);
3243		}
3244		spin_unlock_irq(&zone->lru_lock);
3245
3246		nr_to_scan -= batch_size;
3247	}
3248}
3249
3250
3251/**
3252 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3253 *
3254 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3255 * pages that have become evictable.  Move those back to the zones'
3256 * inactive list where they become candidates for reclaim.
3257 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3258 * and we add swap to the system.  As such, it runs in the context of a task
3259 * that has possibly/probably made some previously unevictable pages
3260 * evictable.
3261 */
3262static void scan_all_zones_unevictable_pages(void)
3263{
3264	struct zone *zone;
3265
3266	for_each_zone(zone) {
3267		scan_zone_unevictable_pages(zone);
3268	}
3269}
3270
3271/*
3272 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3273 * all nodes' unevictable lists for evictable pages
3274 */
3275unsigned long scan_unevictable_pages;
3276
3277int scan_unevictable_handler(struct ctl_table *table, int write,
3278			   void __user *buffer,
3279			   size_t *length, loff_t *ppos)
3280{
3281	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3282
3283	if (write && *(unsigned long *)table->data)
3284		scan_all_zones_unevictable_pages();
3285
3286	scan_unevictable_pages = 0;
3287	return 0;
3288}
3289
3290#ifdef CONFIG_NUMA
3291/*
3292 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3293 * a specified node's per zone unevictable lists for evictable pages.
3294 */
3295
3296static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3297					  struct sysdev_attribute *attr,
3298					  char *buf)
3299{
3300	return sprintf(buf, "0\n");	/* always zero; should fit... */
3301}
3302
3303static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3304					   struct sysdev_attribute *attr,
3305					const char *buf, size_t count)
3306{
3307	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3308	struct zone *zone;
3309	unsigned long res;
3310	unsigned long req = strict_strtoul(buf, 10, &res);
3311
3312	if (!req)
3313		return 1;	/* zero is no-op */
3314
3315	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3316		if (!populated_zone(zone))
3317			continue;
3318		scan_zone_unevictable_pages(zone);
3319	}
3320	return 1;
3321}
3322
3323
3324static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3325			read_scan_unevictable_node,
3326			write_scan_unevictable_node);
3327
3328int scan_unevictable_register_node(struct node *node)
3329{
3330	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3331}
3332
3333void scan_unevictable_unregister_node(struct node *node)
3334{
3335	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3336}
3337#endif
3338