vmscan.c revision e11da5b4fdf01d71d73c21cb92b00595b917d7fd
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51#define CREATE_TRACE_POINTS
52#include <trace/events/vmscan.h>
53
54struct scan_control {
55	/* Incremented by the number of inactive pages that were scanned */
56	unsigned long nr_scanned;
57
58	/* Number of pages freed so far during a call to shrink_zones() */
59	unsigned long nr_reclaimed;
60
61	/* How many pages shrink_list() should reclaim */
62	unsigned long nr_to_reclaim;
63
64	unsigned long hibernation_mode;
65
66	/* This context's GFP mask */
67	gfp_t gfp_mask;
68
69	int may_writepage;
70
71	/* Can mapped pages be reclaimed? */
72	int may_unmap;
73
74	/* Can pages be swapped as part of reclaim? */
75	int may_swap;
76
77	int swappiness;
78
79	int order;
80
81	/*
82	 * Intend to reclaim enough continuous memory rather than reclaim
83	 * enough amount of memory. i.e, mode for high order allocation.
84	 */
85	bool lumpy_reclaim_mode;
86
87	/* Which cgroup do we reclaim from */
88	struct mem_cgroup *mem_cgroup;
89
90	/*
91	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92	 * are scanned.
93	 */
94	nodemask_t	*nodemask;
95};
96
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field)			\
101	do {								\
102		if ((_page)->lru.prev != _base) {			\
103			struct page *prev;				\
104									\
105			prev = lru_to_page(&(_page->lru));		\
106			prefetch(&prev->_field);			\
107		}							\
108	} while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field)			\
115	do {								\
116		if ((_page)->lru.prev != _base) {			\
117			struct page *prev;				\
118									\
119			prev = lru_to_page(&(_page->lru));		\
120			prefetchw(&prev->_field);			\
121		}							\
122	} while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100.  Higher means more swappy.
129 */
130int vm_swappiness = 60;
131long vm_total_pages;	/* The total number of pages which the VM controls */
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138#else
139#define scanning_global_lru(sc)	(1)
140#endif
141
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143						  struct scan_control *sc)
144{
145	if (!scanning_global_lru(sc))
146		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148	return &zone->reclaim_stat;
149}
150
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152				struct scan_control *sc, enum lru_list lru)
153{
154	if (!scanning_global_lru(sc))
155		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157	return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
161/*
162 * Add a shrinker callback to be called from the vm
163 */
164void register_shrinker(struct shrinker *shrinker)
165{
166	shrinker->nr = 0;
167	down_write(&shrinker_rwsem);
168	list_add_tail(&shrinker->list, &shrinker_list);
169	up_write(&shrinker_rwsem);
170}
171EXPORT_SYMBOL(register_shrinker);
172
173/*
174 * Remove one
175 */
176void unregister_shrinker(struct shrinker *shrinker)
177{
178	down_write(&shrinker_rwsem);
179	list_del(&shrinker->list);
180	up_write(&shrinker_rwsem);
181}
182EXPORT_SYMBOL(unregister_shrinker);
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object.  With this in mind we age equal
190 * percentages of the lru and ageable caches.  This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt.  It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205			unsigned long lru_pages)
206{
207	struct shrinker *shrinker;
208	unsigned long ret = 0;
209
210	if (scanned == 0)
211		scanned = SWAP_CLUSTER_MAX;
212
213	if (!down_read_trylock(&shrinker_rwsem))
214		return 1;	/* Assume we'll be able to shrink next time */
215
216	list_for_each_entry(shrinker, &shrinker_list, list) {
217		unsigned long long delta;
218		unsigned long total_scan;
219		unsigned long max_pass;
220
221		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222		delta = (4 * scanned) / shrinker->seeks;
223		delta *= max_pass;
224		do_div(delta, lru_pages + 1);
225		shrinker->nr += delta;
226		if (shrinker->nr < 0) {
227			printk(KERN_ERR "shrink_slab: %pF negative objects to "
228			       "delete nr=%ld\n",
229			       shrinker->shrink, shrinker->nr);
230			shrinker->nr = max_pass;
231		}
232
233		/*
234		 * Avoid risking looping forever due to too large nr value:
235		 * never try to free more than twice the estimate number of
236		 * freeable entries.
237		 */
238		if (shrinker->nr > max_pass * 2)
239			shrinker->nr = max_pass * 2;
240
241		total_scan = shrinker->nr;
242		shrinker->nr = 0;
243
244		while (total_scan >= SHRINK_BATCH) {
245			long this_scan = SHRINK_BATCH;
246			int shrink_ret;
247			int nr_before;
248
249			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251								gfp_mask);
252			if (shrink_ret == -1)
253				break;
254			if (shrink_ret < nr_before)
255				ret += nr_before - shrink_ret;
256			count_vm_events(SLABS_SCANNED, this_scan);
257			total_scan -= this_scan;
258
259			cond_resched();
260		}
261
262		shrinker->nr += total_scan;
263	}
264	up_read(&shrinker_rwsem);
265	return ret;
266}
267
268static inline int is_page_cache_freeable(struct page *page)
269{
270	/*
271	 * A freeable page cache page is referenced only by the caller
272	 * that isolated the page, the page cache radix tree and
273	 * optional buffer heads at page->private.
274	 */
275	return page_count(page) - page_has_private(page) == 2;
276}
277
278static int may_write_to_queue(struct backing_dev_info *bdi)
279{
280	if (current->flags & PF_SWAPWRITE)
281		return 1;
282	if (!bdi_write_congested(bdi))
283		return 1;
284	if (bdi == current->backing_dev_info)
285		return 1;
286	return 0;
287}
288
289/*
290 * We detected a synchronous write error writing a page out.  Probably
291 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up.  But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301static void handle_write_error(struct address_space *mapping,
302				struct page *page, int error)
303{
304	lock_page_nosync(page);
305	if (page_mapping(page) == mapping)
306		mapping_set_error(mapping, error);
307	unlock_page(page);
308}
309
310/* Request for sync pageout. */
311enum pageout_io {
312	PAGEOUT_IO_ASYNC,
313	PAGEOUT_IO_SYNC,
314};
315
316/* possible outcome of pageout() */
317typedef enum {
318	/* failed to write page out, page is locked */
319	PAGE_KEEP,
320	/* move page to the active list, page is locked */
321	PAGE_ACTIVATE,
322	/* page has been sent to the disk successfully, page is unlocked */
323	PAGE_SUCCESS,
324	/* page is clean and locked */
325	PAGE_CLEAN,
326} pageout_t;
327
328/*
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
331 */
332static pageout_t pageout(struct page *page, struct address_space *mapping,
333						enum pageout_io sync_writeback)
334{
335	/*
336	 * If the page is dirty, only perform writeback if that write
337	 * will be non-blocking.  To prevent this allocation from being
338	 * stalled by pagecache activity.  But note that there may be
339	 * stalls if we need to run get_block().  We could test
340	 * PagePrivate for that.
341	 *
342	 * If this process is currently in __generic_file_aio_write() against
343	 * this page's queue, we can perform writeback even if that
344	 * will block.
345	 *
346	 * If the page is swapcache, write it back even if that would
347	 * block, for some throttling. This happens by accident, because
348	 * swap_backing_dev_info is bust: it doesn't reflect the
349	 * congestion state of the swapdevs.  Easy to fix, if needed.
350	 */
351	if (!is_page_cache_freeable(page))
352		return PAGE_KEEP;
353	if (!mapping) {
354		/*
355		 * Some data journaling orphaned pages can have
356		 * page->mapping == NULL while being dirty with clean buffers.
357		 */
358		if (page_has_private(page)) {
359			if (try_to_free_buffers(page)) {
360				ClearPageDirty(page);
361				printk("%s: orphaned page\n", __func__);
362				return PAGE_CLEAN;
363			}
364		}
365		return PAGE_KEEP;
366	}
367	if (mapping->a_ops->writepage == NULL)
368		return PAGE_ACTIVATE;
369	if (!may_write_to_queue(mapping->backing_dev_info))
370		return PAGE_KEEP;
371
372	if (clear_page_dirty_for_io(page)) {
373		int res;
374		struct writeback_control wbc = {
375			.sync_mode = WB_SYNC_NONE,
376			.nr_to_write = SWAP_CLUSTER_MAX,
377			.range_start = 0,
378			.range_end = LLONG_MAX,
379			.for_reclaim = 1,
380		};
381
382		SetPageReclaim(page);
383		res = mapping->a_ops->writepage(page, &wbc);
384		if (res < 0)
385			handle_write_error(mapping, page, res);
386		if (res == AOP_WRITEPAGE_ACTIVATE) {
387			ClearPageReclaim(page);
388			return PAGE_ACTIVATE;
389		}
390
391		/*
392		 * Wait on writeback if requested to. This happens when
393		 * direct reclaiming a large contiguous area and the
394		 * first attempt to free a range of pages fails.
395		 */
396		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
397			wait_on_page_writeback(page);
398
399		if (!PageWriteback(page)) {
400			/* synchronous write or broken a_ops? */
401			ClearPageReclaim(page);
402		}
403		trace_mm_vmscan_writepage(page,
404			trace_reclaim_flags(page, sync_writeback));
405		inc_zone_page_state(page, NR_VMSCAN_WRITE);
406		return PAGE_SUCCESS;
407	}
408
409	return PAGE_CLEAN;
410}
411
412/*
413 * Same as remove_mapping, but if the page is removed from the mapping, it
414 * gets returned with a refcount of 0.
415 */
416static int __remove_mapping(struct address_space *mapping, struct page *page)
417{
418	BUG_ON(!PageLocked(page));
419	BUG_ON(mapping != page_mapping(page));
420
421	spin_lock_irq(&mapping->tree_lock);
422	/*
423	 * The non racy check for a busy page.
424	 *
425	 * Must be careful with the order of the tests. When someone has
426	 * a ref to the page, it may be possible that they dirty it then
427	 * drop the reference. So if PageDirty is tested before page_count
428	 * here, then the following race may occur:
429	 *
430	 * get_user_pages(&page);
431	 * [user mapping goes away]
432	 * write_to(page);
433	 *				!PageDirty(page)    [good]
434	 * SetPageDirty(page);
435	 * put_page(page);
436	 *				!page_count(page)   [good, discard it]
437	 *
438	 * [oops, our write_to data is lost]
439	 *
440	 * Reversing the order of the tests ensures such a situation cannot
441	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
442	 * load is not satisfied before that of page->_count.
443	 *
444	 * Note that if SetPageDirty is always performed via set_page_dirty,
445	 * and thus under tree_lock, then this ordering is not required.
446	 */
447	if (!page_freeze_refs(page, 2))
448		goto cannot_free;
449	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
450	if (unlikely(PageDirty(page))) {
451		page_unfreeze_refs(page, 2);
452		goto cannot_free;
453	}
454
455	if (PageSwapCache(page)) {
456		swp_entry_t swap = { .val = page_private(page) };
457		__delete_from_swap_cache(page);
458		spin_unlock_irq(&mapping->tree_lock);
459		swapcache_free(swap, page);
460	} else {
461		__remove_from_page_cache(page);
462		spin_unlock_irq(&mapping->tree_lock);
463		mem_cgroup_uncharge_cache_page(page);
464	}
465
466	return 1;
467
468cannot_free:
469	spin_unlock_irq(&mapping->tree_lock);
470	return 0;
471}
472
473/*
474 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
475 * someone else has a ref on the page, abort and return 0.  If it was
476 * successfully detached, return 1.  Assumes the caller has a single ref on
477 * this page.
478 */
479int remove_mapping(struct address_space *mapping, struct page *page)
480{
481	if (__remove_mapping(mapping, page)) {
482		/*
483		 * Unfreezing the refcount with 1 rather than 2 effectively
484		 * drops the pagecache ref for us without requiring another
485		 * atomic operation.
486		 */
487		page_unfreeze_refs(page, 1);
488		return 1;
489	}
490	return 0;
491}
492
493/**
494 * putback_lru_page - put previously isolated page onto appropriate LRU list
495 * @page: page to be put back to appropriate lru list
496 *
497 * Add previously isolated @page to appropriate LRU list.
498 * Page may still be unevictable for other reasons.
499 *
500 * lru_lock must not be held, interrupts must be enabled.
501 */
502void putback_lru_page(struct page *page)
503{
504	int lru;
505	int active = !!TestClearPageActive(page);
506	int was_unevictable = PageUnevictable(page);
507
508	VM_BUG_ON(PageLRU(page));
509
510redo:
511	ClearPageUnevictable(page);
512
513	if (page_evictable(page, NULL)) {
514		/*
515		 * For evictable pages, we can use the cache.
516		 * In event of a race, worst case is we end up with an
517		 * unevictable page on [in]active list.
518		 * We know how to handle that.
519		 */
520		lru = active + page_lru_base_type(page);
521		lru_cache_add_lru(page, lru);
522	} else {
523		/*
524		 * Put unevictable pages directly on zone's unevictable
525		 * list.
526		 */
527		lru = LRU_UNEVICTABLE;
528		add_page_to_unevictable_list(page);
529		/*
530		 * When racing with an mlock clearing (page is
531		 * unlocked), make sure that if the other thread does
532		 * not observe our setting of PG_lru and fails
533		 * isolation, we see PG_mlocked cleared below and move
534		 * the page back to the evictable list.
535		 *
536		 * The other side is TestClearPageMlocked().
537		 */
538		smp_mb();
539	}
540
541	/*
542	 * page's status can change while we move it among lru. If an evictable
543	 * page is on unevictable list, it never be freed. To avoid that,
544	 * check after we added it to the list, again.
545	 */
546	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
547		if (!isolate_lru_page(page)) {
548			put_page(page);
549			goto redo;
550		}
551		/* This means someone else dropped this page from LRU
552		 * So, it will be freed or putback to LRU again. There is
553		 * nothing to do here.
554		 */
555	}
556
557	if (was_unevictable && lru != LRU_UNEVICTABLE)
558		count_vm_event(UNEVICTABLE_PGRESCUED);
559	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
560		count_vm_event(UNEVICTABLE_PGCULLED);
561
562	put_page(page);		/* drop ref from isolate */
563}
564
565enum page_references {
566	PAGEREF_RECLAIM,
567	PAGEREF_RECLAIM_CLEAN,
568	PAGEREF_KEEP,
569	PAGEREF_ACTIVATE,
570};
571
572static enum page_references page_check_references(struct page *page,
573						  struct scan_control *sc)
574{
575	int referenced_ptes, referenced_page;
576	unsigned long vm_flags;
577
578	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
579	referenced_page = TestClearPageReferenced(page);
580
581	/* Lumpy reclaim - ignore references */
582	if (sc->lumpy_reclaim_mode)
583		return PAGEREF_RECLAIM;
584
585	/*
586	 * Mlock lost the isolation race with us.  Let try_to_unmap()
587	 * move the page to the unevictable list.
588	 */
589	if (vm_flags & VM_LOCKED)
590		return PAGEREF_RECLAIM;
591
592	if (referenced_ptes) {
593		if (PageAnon(page))
594			return PAGEREF_ACTIVATE;
595		/*
596		 * All mapped pages start out with page table
597		 * references from the instantiating fault, so we need
598		 * to look twice if a mapped file page is used more
599		 * than once.
600		 *
601		 * Mark it and spare it for another trip around the
602		 * inactive list.  Another page table reference will
603		 * lead to its activation.
604		 *
605		 * Note: the mark is set for activated pages as well
606		 * so that recently deactivated but used pages are
607		 * quickly recovered.
608		 */
609		SetPageReferenced(page);
610
611		if (referenced_page)
612			return PAGEREF_ACTIVATE;
613
614		return PAGEREF_KEEP;
615	}
616
617	/* Reclaim if clean, defer dirty pages to writeback */
618	if (referenced_page)
619		return PAGEREF_RECLAIM_CLEAN;
620
621	return PAGEREF_RECLAIM;
622}
623
624static noinline_for_stack void free_page_list(struct list_head *free_pages)
625{
626	struct pagevec freed_pvec;
627	struct page *page, *tmp;
628
629	pagevec_init(&freed_pvec, 1);
630
631	list_for_each_entry_safe(page, tmp, free_pages, lru) {
632		list_del(&page->lru);
633		if (!pagevec_add(&freed_pvec, page)) {
634			__pagevec_free(&freed_pvec);
635			pagevec_reinit(&freed_pvec);
636		}
637	}
638
639	pagevec_free(&freed_pvec);
640}
641
642/*
643 * shrink_page_list() returns the number of reclaimed pages
644 */
645static unsigned long shrink_page_list(struct list_head *page_list,
646					struct scan_control *sc,
647					enum pageout_io sync_writeback)
648{
649	LIST_HEAD(ret_pages);
650	LIST_HEAD(free_pages);
651	int pgactivate = 0;
652	unsigned long nr_reclaimed = 0;
653
654	cond_resched();
655
656	while (!list_empty(page_list)) {
657		enum page_references references;
658		struct address_space *mapping;
659		struct page *page;
660		int may_enter_fs;
661
662		cond_resched();
663
664		page = lru_to_page(page_list);
665		list_del(&page->lru);
666
667		if (!trylock_page(page))
668			goto keep;
669
670		VM_BUG_ON(PageActive(page));
671
672		sc->nr_scanned++;
673
674		if (unlikely(!page_evictable(page, NULL)))
675			goto cull_mlocked;
676
677		if (!sc->may_unmap && page_mapped(page))
678			goto keep_locked;
679
680		/* Double the slab pressure for mapped and swapcache pages */
681		if (page_mapped(page) || PageSwapCache(page))
682			sc->nr_scanned++;
683
684		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
685			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
686
687		if (PageWriteback(page)) {
688			/*
689			 * Synchronous reclaim is performed in two passes,
690			 * first an asynchronous pass over the list to
691			 * start parallel writeback, and a second synchronous
692			 * pass to wait for the IO to complete.  Wait here
693			 * for any page for which writeback has already
694			 * started.
695			 */
696			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
697				wait_on_page_writeback(page);
698			else
699				goto keep_locked;
700		}
701
702		references = page_check_references(page, sc);
703		switch (references) {
704		case PAGEREF_ACTIVATE:
705			goto activate_locked;
706		case PAGEREF_KEEP:
707			goto keep_locked;
708		case PAGEREF_RECLAIM:
709		case PAGEREF_RECLAIM_CLEAN:
710			; /* try to reclaim the page below */
711		}
712
713		/*
714		 * Anonymous process memory has backing store?
715		 * Try to allocate it some swap space here.
716		 */
717		if (PageAnon(page) && !PageSwapCache(page)) {
718			if (!(sc->gfp_mask & __GFP_IO))
719				goto keep_locked;
720			if (!add_to_swap(page))
721				goto activate_locked;
722			may_enter_fs = 1;
723		}
724
725		mapping = page_mapping(page);
726
727		/*
728		 * The page is mapped into the page tables of one or more
729		 * processes. Try to unmap it here.
730		 */
731		if (page_mapped(page) && mapping) {
732			switch (try_to_unmap(page, TTU_UNMAP)) {
733			case SWAP_FAIL:
734				goto activate_locked;
735			case SWAP_AGAIN:
736				goto keep_locked;
737			case SWAP_MLOCK:
738				goto cull_mlocked;
739			case SWAP_SUCCESS:
740				; /* try to free the page below */
741			}
742		}
743
744		if (PageDirty(page)) {
745			if (references == PAGEREF_RECLAIM_CLEAN)
746				goto keep_locked;
747			if (!may_enter_fs)
748				goto keep_locked;
749			if (!sc->may_writepage)
750				goto keep_locked;
751
752			/* Page is dirty, try to write it out here */
753			switch (pageout(page, mapping, sync_writeback)) {
754			case PAGE_KEEP:
755				goto keep_locked;
756			case PAGE_ACTIVATE:
757				goto activate_locked;
758			case PAGE_SUCCESS:
759				if (PageWriteback(page) || PageDirty(page))
760					goto keep;
761				/*
762				 * A synchronous write - probably a ramdisk.  Go
763				 * ahead and try to reclaim the page.
764				 */
765				if (!trylock_page(page))
766					goto keep;
767				if (PageDirty(page) || PageWriteback(page))
768					goto keep_locked;
769				mapping = page_mapping(page);
770			case PAGE_CLEAN:
771				; /* try to free the page below */
772			}
773		}
774
775		/*
776		 * If the page has buffers, try to free the buffer mappings
777		 * associated with this page. If we succeed we try to free
778		 * the page as well.
779		 *
780		 * We do this even if the page is PageDirty().
781		 * try_to_release_page() does not perform I/O, but it is
782		 * possible for a page to have PageDirty set, but it is actually
783		 * clean (all its buffers are clean).  This happens if the
784		 * buffers were written out directly, with submit_bh(). ext3
785		 * will do this, as well as the blockdev mapping.
786		 * try_to_release_page() will discover that cleanness and will
787		 * drop the buffers and mark the page clean - it can be freed.
788		 *
789		 * Rarely, pages can have buffers and no ->mapping.  These are
790		 * the pages which were not successfully invalidated in
791		 * truncate_complete_page().  We try to drop those buffers here
792		 * and if that worked, and the page is no longer mapped into
793		 * process address space (page_count == 1) it can be freed.
794		 * Otherwise, leave the page on the LRU so it is swappable.
795		 */
796		if (page_has_private(page)) {
797			if (!try_to_release_page(page, sc->gfp_mask))
798				goto activate_locked;
799			if (!mapping && page_count(page) == 1) {
800				unlock_page(page);
801				if (put_page_testzero(page))
802					goto free_it;
803				else {
804					/*
805					 * rare race with speculative reference.
806					 * the speculative reference will free
807					 * this page shortly, so we may
808					 * increment nr_reclaimed here (and
809					 * leave it off the LRU).
810					 */
811					nr_reclaimed++;
812					continue;
813				}
814			}
815		}
816
817		if (!mapping || !__remove_mapping(mapping, page))
818			goto keep_locked;
819
820		/*
821		 * At this point, we have no other references and there is
822		 * no way to pick any more up (removed from LRU, removed
823		 * from pagecache). Can use non-atomic bitops now (and
824		 * we obviously don't have to worry about waking up a process
825		 * waiting on the page lock, because there are no references.
826		 */
827		__clear_page_locked(page);
828free_it:
829		nr_reclaimed++;
830
831		/*
832		 * Is there need to periodically free_page_list? It would
833		 * appear not as the counts should be low
834		 */
835		list_add(&page->lru, &free_pages);
836		continue;
837
838cull_mlocked:
839		if (PageSwapCache(page))
840			try_to_free_swap(page);
841		unlock_page(page);
842		putback_lru_page(page);
843		continue;
844
845activate_locked:
846		/* Not a candidate for swapping, so reclaim swap space. */
847		if (PageSwapCache(page) && vm_swap_full())
848			try_to_free_swap(page);
849		VM_BUG_ON(PageActive(page));
850		SetPageActive(page);
851		pgactivate++;
852keep_locked:
853		unlock_page(page);
854keep:
855		list_add(&page->lru, &ret_pages);
856		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
857	}
858
859	free_page_list(&free_pages);
860
861	list_splice(&ret_pages, page_list);
862	count_vm_events(PGACTIVATE, pgactivate);
863	return nr_reclaimed;
864}
865
866/*
867 * Attempt to remove the specified page from its LRU.  Only take this page
868 * if it is of the appropriate PageActive status.  Pages which are being
869 * freed elsewhere are also ignored.
870 *
871 * page:	page to consider
872 * mode:	one of the LRU isolation modes defined above
873 *
874 * returns 0 on success, -ve errno on failure.
875 */
876int __isolate_lru_page(struct page *page, int mode, int file)
877{
878	int ret = -EINVAL;
879
880	/* Only take pages on the LRU. */
881	if (!PageLRU(page))
882		return ret;
883
884	/*
885	 * When checking the active state, we need to be sure we are
886	 * dealing with comparible boolean values.  Take the logical not
887	 * of each.
888	 */
889	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
890		return ret;
891
892	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
893		return ret;
894
895	/*
896	 * When this function is being called for lumpy reclaim, we
897	 * initially look into all LRU pages, active, inactive and
898	 * unevictable; only give shrink_page_list evictable pages.
899	 */
900	if (PageUnevictable(page))
901		return ret;
902
903	ret = -EBUSY;
904
905	if (likely(get_page_unless_zero(page))) {
906		/*
907		 * Be careful not to clear PageLRU until after we're
908		 * sure the page is not being freed elsewhere -- the
909		 * page release code relies on it.
910		 */
911		ClearPageLRU(page);
912		ret = 0;
913	}
914
915	return ret;
916}
917
918/*
919 * zone->lru_lock is heavily contended.  Some of the functions that
920 * shrink the lists perform better by taking out a batch of pages
921 * and working on them outside the LRU lock.
922 *
923 * For pagecache intensive workloads, this function is the hottest
924 * spot in the kernel (apart from copy_*_user functions).
925 *
926 * Appropriate locks must be held before calling this function.
927 *
928 * @nr_to_scan:	The number of pages to look through on the list.
929 * @src:	The LRU list to pull pages off.
930 * @dst:	The temp list to put pages on to.
931 * @scanned:	The number of pages that were scanned.
932 * @order:	The caller's attempted allocation order
933 * @mode:	One of the LRU isolation modes
934 * @file:	True [1] if isolating file [!anon] pages
935 *
936 * returns how many pages were moved onto *@dst.
937 */
938static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
939		struct list_head *src, struct list_head *dst,
940		unsigned long *scanned, int order, int mode, int file)
941{
942	unsigned long nr_taken = 0;
943	unsigned long nr_lumpy_taken = 0;
944	unsigned long nr_lumpy_dirty = 0;
945	unsigned long nr_lumpy_failed = 0;
946	unsigned long scan;
947
948	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
949		struct page *page;
950		unsigned long pfn;
951		unsigned long end_pfn;
952		unsigned long page_pfn;
953		int zone_id;
954
955		page = lru_to_page(src);
956		prefetchw_prev_lru_page(page, src, flags);
957
958		VM_BUG_ON(!PageLRU(page));
959
960		switch (__isolate_lru_page(page, mode, file)) {
961		case 0:
962			list_move(&page->lru, dst);
963			mem_cgroup_del_lru(page);
964			nr_taken++;
965			break;
966
967		case -EBUSY:
968			/* else it is being freed elsewhere */
969			list_move(&page->lru, src);
970			mem_cgroup_rotate_lru_list(page, page_lru(page));
971			continue;
972
973		default:
974			BUG();
975		}
976
977		if (!order)
978			continue;
979
980		/*
981		 * Attempt to take all pages in the order aligned region
982		 * surrounding the tag page.  Only take those pages of
983		 * the same active state as that tag page.  We may safely
984		 * round the target page pfn down to the requested order
985		 * as the mem_map is guarenteed valid out to MAX_ORDER,
986		 * where that page is in a different zone we will detect
987		 * it from its zone id and abort this block scan.
988		 */
989		zone_id = page_zone_id(page);
990		page_pfn = page_to_pfn(page);
991		pfn = page_pfn & ~((1 << order) - 1);
992		end_pfn = pfn + (1 << order);
993		for (; pfn < end_pfn; pfn++) {
994			struct page *cursor_page;
995
996			/* The target page is in the block, ignore it. */
997			if (unlikely(pfn == page_pfn))
998				continue;
999
1000			/* Avoid holes within the zone. */
1001			if (unlikely(!pfn_valid_within(pfn)))
1002				break;
1003
1004			cursor_page = pfn_to_page(pfn);
1005
1006			/* Check that we have not crossed a zone boundary. */
1007			if (unlikely(page_zone_id(cursor_page) != zone_id))
1008				continue;
1009
1010			/*
1011			 * If we don't have enough swap space, reclaiming of
1012			 * anon page which don't already have a swap slot is
1013			 * pointless.
1014			 */
1015			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1016					!PageSwapCache(cursor_page))
1017				continue;
1018
1019			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1020				list_move(&cursor_page->lru, dst);
1021				mem_cgroup_del_lru(cursor_page);
1022				nr_taken++;
1023				nr_lumpy_taken++;
1024				if (PageDirty(cursor_page))
1025					nr_lumpy_dirty++;
1026				scan++;
1027			} else {
1028				if (mode == ISOLATE_BOTH &&
1029						page_count(cursor_page))
1030					nr_lumpy_failed++;
1031			}
1032		}
1033	}
1034
1035	*scanned = scan;
1036
1037	trace_mm_vmscan_lru_isolate(order,
1038			nr_to_scan, scan,
1039			nr_taken,
1040			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1041			mode);
1042	return nr_taken;
1043}
1044
1045static unsigned long isolate_pages_global(unsigned long nr,
1046					struct list_head *dst,
1047					unsigned long *scanned, int order,
1048					int mode, struct zone *z,
1049					int active, int file)
1050{
1051	int lru = LRU_BASE;
1052	if (active)
1053		lru += LRU_ACTIVE;
1054	if (file)
1055		lru += LRU_FILE;
1056	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1057								mode, file);
1058}
1059
1060/*
1061 * clear_active_flags() is a helper for shrink_active_list(), clearing
1062 * any active bits from the pages in the list.
1063 */
1064static unsigned long clear_active_flags(struct list_head *page_list,
1065					unsigned int *count)
1066{
1067	int nr_active = 0;
1068	int lru;
1069	struct page *page;
1070
1071	list_for_each_entry(page, page_list, lru) {
1072		lru = page_lru_base_type(page);
1073		if (PageActive(page)) {
1074			lru += LRU_ACTIVE;
1075			ClearPageActive(page);
1076			nr_active++;
1077		}
1078		if (count)
1079			count[lru]++;
1080	}
1081
1082	return nr_active;
1083}
1084
1085/**
1086 * isolate_lru_page - tries to isolate a page from its LRU list
1087 * @page: page to isolate from its LRU list
1088 *
1089 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1090 * vmstat statistic corresponding to whatever LRU list the page was on.
1091 *
1092 * Returns 0 if the page was removed from an LRU list.
1093 * Returns -EBUSY if the page was not on an LRU list.
1094 *
1095 * The returned page will have PageLRU() cleared.  If it was found on
1096 * the active list, it will have PageActive set.  If it was found on
1097 * the unevictable list, it will have the PageUnevictable bit set. That flag
1098 * may need to be cleared by the caller before letting the page go.
1099 *
1100 * The vmstat statistic corresponding to the list on which the page was
1101 * found will be decremented.
1102 *
1103 * Restrictions:
1104 * (1) Must be called with an elevated refcount on the page. This is a
1105 *     fundamentnal difference from isolate_lru_pages (which is called
1106 *     without a stable reference).
1107 * (2) the lru_lock must not be held.
1108 * (3) interrupts must be enabled.
1109 */
1110int isolate_lru_page(struct page *page)
1111{
1112	int ret = -EBUSY;
1113
1114	if (PageLRU(page)) {
1115		struct zone *zone = page_zone(page);
1116
1117		spin_lock_irq(&zone->lru_lock);
1118		if (PageLRU(page) && get_page_unless_zero(page)) {
1119			int lru = page_lru(page);
1120			ret = 0;
1121			ClearPageLRU(page);
1122
1123			del_page_from_lru_list(zone, page, lru);
1124		}
1125		spin_unlock_irq(&zone->lru_lock);
1126	}
1127	return ret;
1128}
1129
1130/*
1131 * Are there way too many processes in the direct reclaim path already?
1132 */
1133static int too_many_isolated(struct zone *zone, int file,
1134		struct scan_control *sc)
1135{
1136	unsigned long inactive, isolated;
1137
1138	if (current_is_kswapd())
1139		return 0;
1140
1141	if (!scanning_global_lru(sc))
1142		return 0;
1143
1144	if (file) {
1145		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1146		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1147	} else {
1148		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1149		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1150	}
1151
1152	return isolated > inactive;
1153}
1154
1155/*
1156 * TODO: Try merging with migrations version of putback_lru_pages
1157 */
1158static noinline_for_stack void
1159putback_lru_pages(struct zone *zone, struct scan_control *sc,
1160				unsigned long nr_anon, unsigned long nr_file,
1161				struct list_head *page_list)
1162{
1163	struct page *page;
1164	struct pagevec pvec;
1165	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1166
1167	pagevec_init(&pvec, 1);
1168
1169	/*
1170	 * Put back any unfreeable pages.
1171	 */
1172	spin_lock(&zone->lru_lock);
1173	while (!list_empty(page_list)) {
1174		int lru;
1175		page = lru_to_page(page_list);
1176		VM_BUG_ON(PageLRU(page));
1177		list_del(&page->lru);
1178		if (unlikely(!page_evictable(page, NULL))) {
1179			spin_unlock_irq(&zone->lru_lock);
1180			putback_lru_page(page);
1181			spin_lock_irq(&zone->lru_lock);
1182			continue;
1183		}
1184		SetPageLRU(page);
1185		lru = page_lru(page);
1186		add_page_to_lru_list(zone, page, lru);
1187		if (is_active_lru(lru)) {
1188			int file = is_file_lru(lru);
1189			reclaim_stat->recent_rotated[file]++;
1190		}
1191		if (!pagevec_add(&pvec, page)) {
1192			spin_unlock_irq(&zone->lru_lock);
1193			__pagevec_release(&pvec);
1194			spin_lock_irq(&zone->lru_lock);
1195		}
1196	}
1197	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1198	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1199
1200	spin_unlock_irq(&zone->lru_lock);
1201	pagevec_release(&pvec);
1202}
1203
1204static noinline_for_stack void update_isolated_counts(struct zone *zone,
1205					struct scan_control *sc,
1206					unsigned long *nr_anon,
1207					unsigned long *nr_file,
1208					struct list_head *isolated_list)
1209{
1210	unsigned long nr_active;
1211	unsigned int count[NR_LRU_LISTS] = { 0, };
1212	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1213
1214	nr_active = clear_active_flags(isolated_list, count);
1215	__count_vm_events(PGDEACTIVATE, nr_active);
1216
1217	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1218			      -count[LRU_ACTIVE_FILE]);
1219	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1220			      -count[LRU_INACTIVE_FILE]);
1221	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1222			      -count[LRU_ACTIVE_ANON]);
1223	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1224			      -count[LRU_INACTIVE_ANON]);
1225
1226	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1227	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1228	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1229	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1230
1231	reclaim_stat->recent_scanned[0] += *nr_anon;
1232	reclaim_stat->recent_scanned[1] += *nr_file;
1233}
1234
1235/*
1236 * Returns true if the caller should wait to clean dirty/writeback pages.
1237 *
1238 * If we are direct reclaiming for contiguous pages and we do not reclaim
1239 * everything in the list, try again and wait for writeback IO to complete.
1240 * This will stall high-order allocations noticeably. Only do that when really
1241 * need to free the pages under high memory pressure.
1242 */
1243static inline bool should_reclaim_stall(unsigned long nr_taken,
1244					unsigned long nr_freed,
1245					int priority,
1246					struct scan_control *sc)
1247{
1248	int lumpy_stall_priority;
1249
1250	/* kswapd should not stall on sync IO */
1251	if (current_is_kswapd())
1252		return false;
1253
1254	/* Only stall on lumpy reclaim */
1255	if (!sc->lumpy_reclaim_mode)
1256		return false;
1257
1258	/* If we have relaimed everything on the isolated list, no stall */
1259	if (nr_freed == nr_taken)
1260		return false;
1261
1262	/*
1263	 * For high-order allocations, there are two stall thresholds.
1264	 * High-cost allocations stall immediately where as lower
1265	 * order allocations such as stacks require the scanning
1266	 * priority to be much higher before stalling.
1267	 */
1268	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1269		lumpy_stall_priority = DEF_PRIORITY;
1270	else
1271		lumpy_stall_priority = DEF_PRIORITY / 3;
1272
1273	return priority <= lumpy_stall_priority;
1274}
1275
1276/*
1277 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1278 * of reclaimed pages
1279 */
1280static noinline_for_stack unsigned long
1281shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1282			struct scan_control *sc, int priority, int file)
1283{
1284	LIST_HEAD(page_list);
1285	unsigned long nr_scanned;
1286	unsigned long nr_reclaimed = 0;
1287	unsigned long nr_taken;
1288	unsigned long nr_active;
1289	unsigned long nr_anon;
1290	unsigned long nr_file;
1291
1292	while (unlikely(too_many_isolated(zone, file, sc))) {
1293		congestion_wait(BLK_RW_ASYNC, HZ/10);
1294
1295		/* We are about to die and free our memory. Return now. */
1296		if (fatal_signal_pending(current))
1297			return SWAP_CLUSTER_MAX;
1298	}
1299
1300
1301	lru_add_drain();
1302	spin_lock_irq(&zone->lru_lock);
1303
1304	if (scanning_global_lru(sc)) {
1305		nr_taken = isolate_pages_global(nr_to_scan,
1306			&page_list, &nr_scanned, sc->order,
1307			sc->lumpy_reclaim_mode ?
1308				ISOLATE_BOTH : ISOLATE_INACTIVE,
1309			zone, 0, file);
1310		zone->pages_scanned += nr_scanned;
1311		if (current_is_kswapd())
1312			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1313					       nr_scanned);
1314		else
1315			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1316					       nr_scanned);
1317	} else {
1318		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1319			&page_list, &nr_scanned, sc->order,
1320			sc->lumpy_reclaim_mode ?
1321				ISOLATE_BOTH : ISOLATE_INACTIVE,
1322			zone, sc->mem_cgroup,
1323			0, file);
1324		/*
1325		 * mem_cgroup_isolate_pages() keeps track of
1326		 * scanned pages on its own.
1327		 */
1328	}
1329
1330	if (nr_taken == 0) {
1331		spin_unlock_irq(&zone->lru_lock);
1332		return 0;
1333	}
1334
1335	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1336
1337	spin_unlock_irq(&zone->lru_lock);
1338
1339	nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1340
1341	/* Check if we should syncronously wait for writeback */
1342	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1343		congestion_wait(BLK_RW_ASYNC, HZ/10);
1344
1345		/*
1346		 * The attempt at page out may have made some
1347		 * of the pages active, mark them inactive again.
1348		 */
1349		nr_active = clear_active_flags(&page_list, NULL);
1350		count_vm_events(PGDEACTIVATE, nr_active);
1351
1352		nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1353	}
1354
1355	local_irq_disable();
1356	if (current_is_kswapd())
1357		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1358	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1359
1360	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1361
1362	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1363		zone_idx(zone),
1364		nr_scanned, nr_reclaimed,
1365		priority,
1366		trace_shrink_flags(file, sc->lumpy_reclaim_mode));
1367	return nr_reclaimed;
1368}
1369
1370/*
1371 * This moves pages from the active list to the inactive list.
1372 *
1373 * We move them the other way if the page is referenced by one or more
1374 * processes, from rmap.
1375 *
1376 * If the pages are mostly unmapped, the processing is fast and it is
1377 * appropriate to hold zone->lru_lock across the whole operation.  But if
1378 * the pages are mapped, the processing is slow (page_referenced()) so we
1379 * should drop zone->lru_lock around each page.  It's impossible to balance
1380 * this, so instead we remove the pages from the LRU while processing them.
1381 * It is safe to rely on PG_active against the non-LRU pages in here because
1382 * nobody will play with that bit on a non-LRU page.
1383 *
1384 * The downside is that we have to touch page->_count against each page.
1385 * But we had to alter page->flags anyway.
1386 */
1387
1388static void move_active_pages_to_lru(struct zone *zone,
1389				     struct list_head *list,
1390				     enum lru_list lru)
1391{
1392	unsigned long pgmoved = 0;
1393	struct pagevec pvec;
1394	struct page *page;
1395
1396	pagevec_init(&pvec, 1);
1397
1398	while (!list_empty(list)) {
1399		page = lru_to_page(list);
1400
1401		VM_BUG_ON(PageLRU(page));
1402		SetPageLRU(page);
1403
1404		list_move(&page->lru, &zone->lru[lru].list);
1405		mem_cgroup_add_lru_list(page, lru);
1406		pgmoved++;
1407
1408		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1409			spin_unlock_irq(&zone->lru_lock);
1410			if (buffer_heads_over_limit)
1411				pagevec_strip(&pvec);
1412			__pagevec_release(&pvec);
1413			spin_lock_irq(&zone->lru_lock);
1414		}
1415	}
1416	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1417	if (!is_active_lru(lru))
1418		__count_vm_events(PGDEACTIVATE, pgmoved);
1419}
1420
1421static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1422			struct scan_control *sc, int priority, int file)
1423{
1424	unsigned long nr_taken;
1425	unsigned long pgscanned;
1426	unsigned long vm_flags;
1427	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1428	LIST_HEAD(l_active);
1429	LIST_HEAD(l_inactive);
1430	struct page *page;
1431	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1432	unsigned long nr_rotated = 0;
1433
1434	lru_add_drain();
1435	spin_lock_irq(&zone->lru_lock);
1436	if (scanning_global_lru(sc)) {
1437		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1438						&pgscanned, sc->order,
1439						ISOLATE_ACTIVE, zone,
1440						1, file);
1441		zone->pages_scanned += pgscanned;
1442	} else {
1443		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1444						&pgscanned, sc->order,
1445						ISOLATE_ACTIVE, zone,
1446						sc->mem_cgroup, 1, file);
1447		/*
1448		 * mem_cgroup_isolate_pages() keeps track of
1449		 * scanned pages on its own.
1450		 */
1451	}
1452
1453	reclaim_stat->recent_scanned[file] += nr_taken;
1454
1455	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1456	if (file)
1457		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1458	else
1459		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1460	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1461	spin_unlock_irq(&zone->lru_lock);
1462
1463	while (!list_empty(&l_hold)) {
1464		cond_resched();
1465		page = lru_to_page(&l_hold);
1466		list_del(&page->lru);
1467
1468		if (unlikely(!page_evictable(page, NULL))) {
1469			putback_lru_page(page);
1470			continue;
1471		}
1472
1473		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1474			nr_rotated++;
1475			/*
1476			 * Identify referenced, file-backed active pages and
1477			 * give them one more trip around the active list. So
1478			 * that executable code get better chances to stay in
1479			 * memory under moderate memory pressure.  Anon pages
1480			 * are not likely to be evicted by use-once streaming
1481			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1482			 * so we ignore them here.
1483			 */
1484			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1485				list_add(&page->lru, &l_active);
1486				continue;
1487			}
1488		}
1489
1490		ClearPageActive(page);	/* we are de-activating */
1491		list_add(&page->lru, &l_inactive);
1492	}
1493
1494	/*
1495	 * Move pages back to the lru list.
1496	 */
1497	spin_lock_irq(&zone->lru_lock);
1498	/*
1499	 * Count referenced pages from currently used mappings as rotated,
1500	 * even though only some of them are actually re-activated.  This
1501	 * helps balance scan pressure between file and anonymous pages in
1502	 * get_scan_ratio.
1503	 */
1504	reclaim_stat->recent_rotated[file] += nr_rotated;
1505
1506	move_active_pages_to_lru(zone, &l_active,
1507						LRU_ACTIVE + file * LRU_FILE);
1508	move_active_pages_to_lru(zone, &l_inactive,
1509						LRU_BASE   + file * LRU_FILE);
1510	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1511	spin_unlock_irq(&zone->lru_lock);
1512}
1513
1514#ifdef CONFIG_SWAP
1515static int inactive_anon_is_low_global(struct zone *zone)
1516{
1517	unsigned long active, inactive;
1518
1519	active = zone_page_state(zone, NR_ACTIVE_ANON);
1520	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1521
1522	if (inactive * zone->inactive_ratio < active)
1523		return 1;
1524
1525	return 0;
1526}
1527
1528/**
1529 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1530 * @zone: zone to check
1531 * @sc:   scan control of this context
1532 *
1533 * Returns true if the zone does not have enough inactive anon pages,
1534 * meaning some active anon pages need to be deactivated.
1535 */
1536static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1537{
1538	int low;
1539
1540	/*
1541	 * If we don't have swap space, anonymous page deactivation
1542	 * is pointless.
1543	 */
1544	if (!total_swap_pages)
1545		return 0;
1546
1547	if (scanning_global_lru(sc))
1548		low = inactive_anon_is_low_global(zone);
1549	else
1550		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1551	return low;
1552}
1553#else
1554static inline int inactive_anon_is_low(struct zone *zone,
1555					struct scan_control *sc)
1556{
1557	return 0;
1558}
1559#endif
1560
1561static int inactive_file_is_low_global(struct zone *zone)
1562{
1563	unsigned long active, inactive;
1564
1565	active = zone_page_state(zone, NR_ACTIVE_FILE);
1566	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1567
1568	return (active > inactive);
1569}
1570
1571/**
1572 * inactive_file_is_low - check if file pages need to be deactivated
1573 * @zone: zone to check
1574 * @sc:   scan control of this context
1575 *
1576 * When the system is doing streaming IO, memory pressure here
1577 * ensures that active file pages get deactivated, until more
1578 * than half of the file pages are on the inactive list.
1579 *
1580 * Once we get to that situation, protect the system's working
1581 * set from being evicted by disabling active file page aging.
1582 *
1583 * This uses a different ratio than the anonymous pages, because
1584 * the page cache uses a use-once replacement algorithm.
1585 */
1586static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1587{
1588	int low;
1589
1590	if (scanning_global_lru(sc))
1591		low = inactive_file_is_low_global(zone);
1592	else
1593		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1594	return low;
1595}
1596
1597static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1598				int file)
1599{
1600	if (file)
1601		return inactive_file_is_low(zone, sc);
1602	else
1603		return inactive_anon_is_low(zone, sc);
1604}
1605
1606static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1607	struct zone *zone, struct scan_control *sc, int priority)
1608{
1609	int file = is_file_lru(lru);
1610
1611	if (is_active_lru(lru)) {
1612		if (inactive_list_is_low(zone, sc, file))
1613		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1614		return 0;
1615	}
1616
1617	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1618}
1619
1620/*
1621 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1622 * until we collected @swap_cluster_max pages to scan.
1623 */
1624static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1625				       unsigned long *nr_saved_scan)
1626{
1627	unsigned long nr;
1628
1629	*nr_saved_scan += nr_to_scan;
1630	nr = *nr_saved_scan;
1631
1632	if (nr >= SWAP_CLUSTER_MAX)
1633		*nr_saved_scan = 0;
1634	else
1635		nr = 0;
1636
1637	return nr;
1638}
1639
1640/*
1641 * Determine how aggressively the anon and file LRU lists should be
1642 * scanned.  The relative value of each set of LRU lists is determined
1643 * by looking at the fraction of the pages scanned we did rotate back
1644 * onto the active list instead of evict.
1645 *
1646 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1647 */
1648static void get_scan_count(struct zone *zone, struct scan_control *sc,
1649					unsigned long *nr, int priority)
1650{
1651	unsigned long anon, file, free;
1652	unsigned long anon_prio, file_prio;
1653	unsigned long ap, fp;
1654	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1655	u64 fraction[2], denominator;
1656	enum lru_list l;
1657	int noswap = 0;
1658
1659	/* If we have no swap space, do not bother scanning anon pages. */
1660	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1661		noswap = 1;
1662		fraction[0] = 0;
1663		fraction[1] = 1;
1664		denominator = 1;
1665		goto out;
1666	}
1667
1668	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1669		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1670	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1671		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1672
1673	if (scanning_global_lru(sc)) {
1674		free  = zone_page_state(zone, NR_FREE_PAGES);
1675		/* If we have very few page cache pages,
1676		   force-scan anon pages. */
1677		if (unlikely(file + free <= high_wmark_pages(zone))) {
1678			fraction[0] = 1;
1679			fraction[1] = 0;
1680			denominator = 1;
1681			goto out;
1682		}
1683	}
1684
1685	/*
1686	 * With swappiness at 100, anonymous and file have the same priority.
1687	 * This scanning priority is essentially the inverse of IO cost.
1688	 */
1689	anon_prio = sc->swappiness;
1690	file_prio = 200 - sc->swappiness;
1691
1692	/*
1693	 * OK, so we have swap space and a fair amount of page cache
1694	 * pages.  We use the recently rotated / recently scanned
1695	 * ratios to determine how valuable each cache is.
1696	 *
1697	 * Because workloads change over time (and to avoid overflow)
1698	 * we keep these statistics as a floating average, which ends
1699	 * up weighing recent references more than old ones.
1700	 *
1701	 * anon in [0], file in [1]
1702	 */
1703	spin_lock_irq(&zone->lru_lock);
1704	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1705		reclaim_stat->recent_scanned[0] /= 2;
1706		reclaim_stat->recent_rotated[0] /= 2;
1707	}
1708
1709	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1710		reclaim_stat->recent_scanned[1] /= 2;
1711		reclaim_stat->recent_rotated[1] /= 2;
1712	}
1713
1714	/*
1715	 * The amount of pressure on anon vs file pages is inversely
1716	 * proportional to the fraction of recently scanned pages on
1717	 * each list that were recently referenced and in active use.
1718	 */
1719	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1720	ap /= reclaim_stat->recent_rotated[0] + 1;
1721
1722	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1723	fp /= reclaim_stat->recent_rotated[1] + 1;
1724	spin_unlock_irq(&zone->lru_lock);
1725
1726	fraction[0] = ap;
1727	fraction[1] = fp;
1728	denominator = ap + fp + 1;
1729out:
1730	for_each_evictable_lru(l) {
1731		int file = is_file_lru(l);
1732		unsigned long scan;
1733
1734		scan = zone_nr_lru_pages(zone, sc, l);
1735		if (priority || noswap) {
1736			scan >>= priority;
1737			scan = div64_u64(scan * fraction[file], denominator);
1738		}
1739		nr[l] = nr_scan_try_batch(scan,
1740					  &reclaim_stat->nr_saved_scan[l]);
1741	}
1742}
1743
1744static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1745{
1746	/*
1747	 * If we need a large contiguous chunk of memory, or have
1748	 * trouble getting a small set of contiguous pages, we
1749	 * will reclaim both active and inactive pages.
1750	 */
1751	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1752		sc->lumpy_reclaim_mode = 1;
1753	else if (sc->order && priority < DEF_PRIORITY - 2)
1754		sc->lumpy_reclaim_mode = 1;
1755	else
1756		sc->lumpy_reclaim_mode = 0;
1757}
1758
1759/*
1760 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1761 */
1762static void shrink_zone(int priority, struct zone *zone,
1763				struct scan_control *sc)
1764{
1765	unsigned long nr[NR_LRU_LISTS];
1766	unsigned long nr_to_scan;
1767	enum lru_list l;
1768	unsigned long nr_reclaimed = sc->nr_reclaimed;
1769	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1770
1771	get_scan_count(zone, sc, nr, priority);
1772
1773	set_lumpy_reclaim_mode(priority, sc);
1774
1775	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1776					nr[LRU_INACTIVE_FILE]) {
1777		for_each_evictable_lru(l) {
1778			if (nr[l]) {
1779				nr_to_scan = min_t(unsigned long,
1780						   nr[l], SWAP_CLUSTER_MAX);
1781				nr[l] -= nr_to_scan;
1782
1783				nr_reclaimed += shrink_list(l, nr_to_scan,
1784							    zone, sc, priority);
1785			}
1786		}
1787		/*
1788		 * On large memory systems, scan >> priority can become
1789		 * really large. This is fine for the starting priority;
1790		 * we want to put equal scanning pressure on each zone.
1791		 * However, if the VM has a harder time of freeing pages,
1792		 * with multiple processes reclaiming pages, the total
1793		 * freeing target can get unreasonably large.
1794		 */
1795		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1796			break;
1797	}
1798
1799	sc->nr_reclaimed = nr_reclaimed;
1800
1801	/*
1802	 * Even if we did not try to evict anon pages at all, we want to
1803	 * rebalance the anon lru active/inactive ratio.
1804	 */
1805	if (inactive_anon_is_low(zone, sc))
1806		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1807
1808	throttle_vm_writeout(sc->gfp_mask);
1809}
1810
1811/*
1812 * This is the direct reclaim path, for page-allocating processes.  We only
1813 * try to reclaim pages from zones which will satisfy the caller's allocation
1814 * request.
1815 *
1816 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1817 * Because:
1818 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1819 *    allocation or
1820 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1821 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1822 *    zone defense algorithm.
1823 *
1824 * If a zone is deemed to be full of pinned pages then just give it a light
1825 * scan then give up on it.
1826 */
1827static void shrink_zones(int priority, struct zonelist *zonelist,
1828					struct scan_control *sc)
1829{
1830	struct zoneref *z;
1831	struct zone *zone;
1832
1833	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1834					gfp_zone(sc->gfp_mask), sc->nodemask) {
1835		if (!populated_zone(zone))
1836			continue;
1837		/*
1838		 * Take care memory controller reclaiming has small influence
1839		 * to global LRU.
1840		 */
1841		if (scanning_global_lru(sc)) {
1842			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1843				continue;
1844			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1845				continue;	/* Let kswapd poll it */
1846		}
1847
1848		shrink_zone(priority, zone, sc);
1849	}
1850}
1851
1852static bool zone_reclaimable(struct zone *zone)
1853{
1854	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1855}
1856
1857/*
1858 * As hibernation is going on, kswapd is freezed so that it can't mark
1859 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1860 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1861 */
1862static bool all_unreclaimable(struct zonelist *zonelist,
1863		struct scan_control *sc)
1864{
1865	struct zoneref *z;
1866	struct zone *zone;
1867	bool all_unreclaimable = true;
1868
1869	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1870			gfp_zone(sc->gfp_mask), sc->nodemask) {
1871		if (!populated_zone(zone))
1872			continue;
1873		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1874			continue;
1875		if (zone_reclaimable(zone)) {
1876			all_unreclaimable = false;
1877			break;
1878		}
1879	}
1880
1881	return all_unreclaimable;
1882}
1883
1884/*
1885 * This is the main entry point to direct page reclaim.
1886 *
1887 * If a full scan of the inactive list fails to free enough memory then we
1888 * are "out of memory" and something needs to be killed.
1889 *
1890 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1891 * high - the zone may be full of dirty or under-writeback pages, which this
1892 * caller can't do much about.  We kick the writeback threads and take explicit
1893 * naps in the hope that some of these pages can be written.  But if the
1894 * allocating task holds filesystem locks which prevent writeout this might not
1895 * work, and the allocation attempt will fail.
1896 *
1897 * returns:	0, if no pages reclaimed
1898 * 		else, the number of pages reclaimed
1899 */
1900static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1901					struct scan_control *sc)
1902{
1903	int priority;
1904	unsigned long total_scanned = 0;
1905	struct reclaim_state *reclaim_state = current->reclaim_state;
1906	struct zoneref *z;
1907	struct zone *zone;
1908	unsigned long writeback_threshold;
1909
1910	get_mems_allowed();
1911	delayacct_freepages_start();
1912
1913	if (scanning_global_lru(sc))
1914		count_vm_event(ALLOCSTALL);
1915
1916	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1917		sc->nr_scanned = 0;
1918		if (!priority)
1919			disable_swap_token();
1920		shrink_zones(priority, zonelist, sc);
1921		/*
1922		 * Don't shrink slabs when reclaiming memory from
1923		 * over limit cgroups
1924		 */
1925		if (scanning_global_lru(sc)) {
1926			unsigned long lru_pages = 0;
1927			for_each_zone_zonelist(zone, z, zonelist,
1928					gfp_zone(sc->gfp_mask)) {
1929				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1930					continue;
1931
1932				lru_pages += zone_reclaimable_pages(zone);
1933			}
1934
1935			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1936			if (reclaim_state) {
1937				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1938				reclaim_state->reclaimed_slab = 0;
1939			}
1940		}
1941		total_scanned += sc->nr_scanned;
1942		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1943			goto out;
1944
1945		/*
1946		 * Try to write back as many pages as we just scanned.  This
1947		 * tends to cause slow streaming writers to write data to the
1948		 * disk smoothly, at the dirtying rate, which is nice.   But
1949		 * that's undesirable in laptop mode, where we *want* lumpy
1950		 * writeout.  So in laptop mode, write out the whole world.
1951		 */
1952		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1953		if (total_scanned > writeback_threshold) {
1954			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1955			sc->may_writepage = 1;
1956		}
1957
1958		/* Take a nap, wait for some writeback to complete */
1959		if (!sc->hibernation_mode && sc->nr_scanned &&
1960		    priority < DEF_PRIORITY - 2)
1961			congestion_wait(BLK_RW_ASYNC, HZ/10);
1962	}
1963
1964out:
1965	delayacct_freepages_end();
1966	put_mems_allowed();
1967
1968	if (sc->nr_reclaimed)
1969		return sc->nr_reclaimed;
1970
1971	/* top priority shrink_zones still had more to do? don't OOM, then */
1972	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
1973		return 1;
1974
1975	return 0;
1976}
1977
1978unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1979				gfp_t gfp_mask, nodemask_t *nodemask)
1980{
1981	unsigned long nr_reclaimed;
1982	struct scan_control sc = {
1983		.gfp_mask = gfp_mask,
1984		.may_writepage = !laptop_mode,
1985		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1986		.may_unmap = 1,
1987		.may_swap = 1,
1988		.swappiness = vm_swappiness,
1989		.order = order,
1990		.mem_cgroup = NULL,
1991		.nodemask = nodemask,
1992	};
1993
1994	trace_mm_vmscan_direct_reclaim_begin(order,
1995				sc.may_writepage,
1996				gfp_mask);
1997
1998	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1999
2000	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2001
2002	return nr_reclaimed;
2003}
2004
2005#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2006
2007unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2008						gfp_t gfp_mask, bool noswap,
2009						unsigned int swappiness,
2010						struct zone *zone)
2011{
2012	struct scan_control sc = {
2013		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2014		.may_writepage = !laptop_mode,
2015		.may_unmap = 1,
2016		.may_swap = !noswap,
2017		.swappiness = swappiness,
2018		.order = 0,
2019		.mem_cgroup = mem,
2020	};
2021	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2022			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2023
2024	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2025						      sc.may_writepage,
2026						      sc.gfp_mask);
2027
2028	/*
2029	 * NOTE: Although we can get the priority field, using it
2030	 * here is not a good idea, since it limits the pages we can scan.
2031	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2032	 * will pick up pages from other mem cgroup's as well. We hack
2033	 * the priority and make it zero.
2034	 */
2035	shrink_zone(0, zone, &sc);
2036
2037	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2038
2039	return sc.nr_reclaimed;
2040}
2041
2042unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2043					   gfp_t gfp_mask,
2044					   bool noswap,
2045					   unsigned int swappiness)
2046{
2047	struct zonelist *zonelist;
2048	unsigned long nr_reclaimed;
2049	struct scan_control sc = {
2050		.may_writepage = !laptop_mode,
2051		.may_unmap = 1,
2052		.may_swap = !noswap,
2053		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2054		.swappiness = swappiness,
2055		.order = 0,
2056		.mem_cgroup = mem_cont,
2057		.nodemask = NULL, /* we don't care the placement */
2058	};
2059
2060	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2061			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2062	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2063
2064	trace_mm_vmscan_memcg_reclaim_begin(0,
2065					    sc.may_writepage,
2066					    sc.gfp_mask);
2067
2068	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2069
2070	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2071
2072	return nr_reclaimed;
2073}
2074#endif
2075
2076/* is kswapd sleeping prematurely? */
2077static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2078{
2079	int i;
2080
2081	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2082	if (remaining)
2083		return 1;
2084
2085	/* If after HZ/10, a zone is below the high mark, it's premature */
2086	for (i = 0; i < pgdat->nr_zones; i++) {
2087		struct zone *zone = pgdat->node_zones + i;
2088
2089		if (!populated_zone(zone))
2090			continue;
2091
2092		if (zone->all_unreclaimable)
2093			continue;
2094
2095		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2096								0, 0))
2097			return 1;
2098	}
2099
2100	return 0;
2101}
2102
2103/*
2104 * For kswapd, balance_pgdat() will work across all this node's zones until
2105 * they are all at high_wmark_pages(zone).
2106 *
2107 * Returns the number of pages which were actually freed.
2108 *
2109 * There is special handling here for zones which are full of pinned pages.
2110 * This can happen if the pages are all mlocked, or if they are all used by
2111 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2112 * What we do is to detect the case where all pages in the zone have been
2113 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2114 * dead and from now on, only perform a short scan.  Basically we're polling
2115 * the zone for when the problem goes away.
2116 *
2117 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2118 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2119 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2120 * lower zones regardless of the number of free pages in the lower zones. This
2121 * interoperates with the page allocator fallback scheme to ensure that aging
2122 * of pages is balanced across the zones.
2123 */
2124static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2125{
2126	int all_zones_ok;
2127	int priority;
2128	int i;
2129	unsigned long total_scanned;
2130	struct reclaim_state *reclaim_state = current->reclaim_state;
2131	struct scan_control sc = {
2132		.gfp_mask = GFP_KERNEL,
2133		.may_unmap = 1,
2134		.may_swap = 1,
2135		/*
2136		 * kswapd doesn't want to be bailed out while reclaim. because
2137		 * we want to put equal scanning pressure on each zone.
2138		 */
2139		.nr_to_reclaim = ULONG_MAX,
2140		.swappiness = vm_swappiness,
2141		.order = order,
2142		.mem_cgroup = NULL,
2143	};
2144loop_again:
2145	total_scanned = 0;
2146	sc.nr_reclaimed = 0;
2147	sc.may_writepage = !laptop_mode;
2148	count_vm_event(PAGEOUTRUN);
2149
2150	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2151		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2152		unsigned long lru_pages = 0;
2153		int has_under_min_watermark_zone = 0;
2154
2155		/* The swap token gets in the way of swapout... */
2156		if (!priority)
2157			disable_swap_token();
2158
2159		all_zones_ok = 1;
2160
2161		/*
2162		 * Scan in the highmem->dma direction for the highest
2163		 * zone which needs scanning
2164		 */
2165		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2166			struct zone *zone = pgdat->node_zones + i;
2167
2168			if (!populated_zone(zone))
2169				continue;
2170
2171			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2172				continue;
2173
2174			/*
2175			 * Do some background aging of the anon list, to give
2176			 * pages a chance to be referenced before reclaiming.
2177			 */
2178			if (inactive_anon_is_low(zone, &sc))
2179				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2180							&sc, priority, 0);
2181
2182			if (!zone_watermark_ok(zone, order,
2183					high_wmark_pages(zone), 0, 0)) {
2184				end_zone = i;
2185				break;
2186			}
2187		}
2188		if (i < 0)
2189			goto out;
2190
2191		for (i = 0; i <= end_zone; i++) {
2192			struct zone *zone = pgdat->node_zones + i;
2193
2194			lru_pages += zone_reclaimable_pages(zone);
2195		}
2196
2197		/*
2198		 * Now scan the zone in the dma->highmem direction, stopping
2199		 * at the last zone which needs scanning.
2200		 *
2201		 * We do this because the page allocator works in the opposite
2202		 * direction.  This prevents the page allocator from allocating
2203		 * pages behind kswapd's direction of progress, which would
2204		 * cause too much scanning of the lower zones.
2205		 */
2206		for (i = 0; i <= end_zone; i++) {
2207			struct zone *zone = pgdat->node_zones + i;
2208			int nr_slab;
2209
2210			if (!populated_zone(zone))
2211				continue;
2212
2213			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2214				continue;
2215
2216			sc.nr_scanned = 0;
2217
2218			/*
2219			 * Call soft limit reclaim before calling shrink_zone.
2220			 * For now we ignore the return value
2221			 */
2222			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2223
2224			/*
2225			 * We put equal pressure on every zone, unless one
2226			 * zone has way too many pages free already.
2227			 */
2228			if (!zone_watermark_ok(zone, order,
2229					8*high_wmark_pages(zone), end_zone, 0))
2230				shrink_zone(priority, zone, &sc);
2231			reclaim_state->reclaimed_slab = 0;
2232			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2233						lru_pages);
2234			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2235			total_scanned += sc.nr_scanned;
2236			if (zone->all_unreclaimable)
2237				continue;
2238			if (nr_slab == 0 && !zone_reclaimable(zone))
2239				zone->all_unreclaimable = 1;
2240			/*
2241			 * If we've done a decent amount of scanning and
2242			 * the reclaim ratio is low, start doing writepage
2243			 * even in laptop mode
2244			 */
2245			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2246			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2247				sc.may_writepage = 1;
2248
2249			if (!zone_watermark_ok(zone, order,
2250					high_wmark_pages(zone), end_zone, 0)) {
2251				all_zones_ok = 0;
2252				/*
2253				 * We are still under min water mark.  This
2254				 * means that we have a GFP_ATOMIC allocation
2255				 * failure risk. Hurry up!
2256				 */
2257				if (!zone_watermark_ok(zone, order,
2258					    min_wmark_pages(zone), end_zone, 0))
2259					has_under_min_watermark_zone = 1;
2260			}
2261
2262		}
2263		if (all_zones_ok)
2264			break;		/* kswapd: all done */
2265		/*
2266		 * OK, kswapd is getting into trouble.  Take a nap, then take
2267		 * another pass across the zones.
2268		 */
2269		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2270			if (has_under_min_watermark_zone)
2271				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2272			else
2273				congestion_wait(BLK_RW_ASYNC, HZ/10);
2274		}
2275
2276		/*
2277		 * We do this so kswapd doesn't build up large priorities for
2278		 * example when it is freeing in parallel with allocators. It
2279		 * matches the direct reclaim path behaviour in terms of impact
2280		 * on zone->*_priority.
2281		 */
2282		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2283			break;
2284	}
2285out:
2286	if (!all_zones_ok) {
2287		cond_resched();
2288
2289		try_to_freeze();
2290
2291		/*
2292		 * Fragmentation may mean that the system cannot be
2293		 * rebalanced for high-order allocations in all zones.
2294		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2295		 * it means the zones have been fully scanned and are still
2296		 * not balanced. For high-order allocations, there is
2297		 * little point trying all over again as kswapd may
2298		 * infinite loop.
2299		 *
2300		 * Instead, recheck all watermarks at order-0 as they
2301		 * are the most important. If watermarks are ok, kswapd will go
2302		 * back to sleep. High-order users can still perform direct
2303		 * reclaim if they wish.
2304		 */
2305		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2306			order = sc.order = 0;
2307
2308		goto loop_again;
2309	}
2310
2311	return sc.nr_reclaimed;
2312}
2313
2314/*
2315 * The background pageout daemon, started as a kernel thread
2316 * from the init process.
2317 *
2318 * This basically trickles out pages so that we have _some_
2319 * free memory available even if there is no other activity
2320 * that frees anything up. This is needed for things like routing
2321 * etc, where we otherwise might have all activity going on in
2322 * asynchronous contexts that cannot page things out.
2323 *
2324 * If there are applications that are active memory-allocators
2325 * (most normal use), this basically shouldn't matter.
2326 */
2327static int kswapd(void *p)
2328{
2329	unsigned long order;
2330	pg_data_t *pgdat = (pg_data_t*)p;
2331	struct task_struct *tsk = current;
2332	DEFINE_WAIT(wait);
2333	struct reclaim_state reclaim_state = {
2334		.reclaimed_slab = 0,
2335	};
2336	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2337
2338	lockdep_set_current_reclaim_state(GFP_KERNEL);
2339
2340	if (!cpumask_empty(cpumask))
2341		set_cpus_allowed_ptr(tsk, cpumask);
2342	current->reclaim_state = &reclaim_state;
2343
2344	/*
2345	 * Tell the memory management that we're a "memory allocator",
2346	 * and that if we need more memory we should get access to it
2347	 * regardless (see "__alloc_pages()"). "kswapd" should
2348	 * never get caught in the normal page freeing logic.
2349	 *
2350	 * (Kswapd normally doesn't need memory anyway, but sometimes
2351	 * you need a small amount of memory in order to be able to
2352	 * page out something else, and this flag essentially protects
2353	 * us from recursively trying to free more memory as we're
2354	 * trying to free the first piece of memory in the first place).
2355	 */
2356	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2357	set_freezable();
2358
2359	order = 0;
2360	for ( ; ; ) {
2361		unsigned long new_order;
2362		int ret;
2363
2364		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2365		new_order = pgdat->kswapd_max_order;
2366		pgdat->kswapd_max_order = 0;
2367		if (order < new_order) {
2368			/*
2369			 * Don't sleep if someone wants a larger 'order'
2370			 * allocation
2371			 */
2372			order = new_order;
2373		} else {
2374			if (!freezing(current) && !kthread_should_stop()) {
2375				long remaining = 0;
2376
2377				/* Try to sleep for a short interval */
2378				if (!sleeping_prematurely(pgdat, order, remaining)) {
2379					remaining = schedule_timeout(HZ/10);
2380					finish_wait(&pgdat->kswapd_wait, &wait);
2381					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2382				}
2383
2384				/*
2385				 * After a short sleep, check if it was a
2386				 * premature sleep. If not, then go fully
2387				 * to sleep until explicitly woken up
2388				 */
2389				if (!sleeping_prematurely(pgdat, order, remaining)) {
2390					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2391					schedule();
2392				} else {
2393					if (remaining)
2394						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2395					else
2396						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2397				}
2398			}
2399
2400			order = pgdat->kswapd_max_order;
2401		}
2402		finish_wait(&pgdat->kswapd_wait, &wait);
2403
2404		ret = try_to_freeze();
2405		if (kthread_should_stop())
2406			break;
2407
2408		/*
2409		 * We can speed up thawing tasks if we don't call balance_pgdat
2410		 * after returning from the refrigerator
2411		 */
2412		if (!ret) {
2413			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2414			balance_pgdat(pgdat, order);
2415		}
2416	}
2417	return 0;
2418}
2419
2420/*
2421 * A zone is low on free memory, so wake its kswapd task to service it.
2422 */
2423void wakeup_kswapd(struct zone *zone, int order)
2424{
2425	pg_data_t *pgdat;
2426
2427	if (!populated_zone(zone))
2428		return;
2429
2430	pgdat = zone->zone_pgdat;
2431	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2432		return;
2433	if (pgdat->kswapd_max_order < order)
2434		pgdat->kswapd_max_order = order;
2435	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2436	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2437		return;
2438	if (!waitqueue_active(&pgdat->kswapd_wait))
2439		return;
2440	wake_up_interruptible(&pgdat->kswapd_wait);
2441}
2442
2443/*
2444 * The reclaimable count would be mostly accurate.
2445 * The less reclaimable pages may be
2446 * - mlocked pages, which will be moved to unevictable list when encountered
2447 * - mapped pages, which may require several travels to be reclaimed
2448 * - dirty pages, which is not "instantly" reclaimable
2449 */
2450unsigned long global_reclaimable_pages(void)
2451{
2452	int nr;
2453
2454	nr = global_page_state(NR_ACTIVE_FILE) +
2455	     global_page_state(NR_INACTIVE_FILE);
2456
2457	if (nr_swap_pages > 0)
2458		nr += global_page_state(NR_ACTIVE_ANON) +
2459		      global_page_state(NR_INACTIVE_ANON);
2460
2461	return nr;
2462}
2463
2464unsigned long zone_reclaimable_pages(struct zone *zone)
2465{
2466	int nr;
2467
2468	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2469	     zone_page_state(zone, NR_INACTIVE_FILE);
2470
2471	if (nr_swap_pages > 0)
2472		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2473		      zone_page_state(zone, NR_INACTIVE_ANON);
2474
2475	return nr;
2476}
2477
2478#ifdef CONFIG_HIBERNATION
2479/*
2480 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2481 * freed pages.
2482 *
2483 * Rather than trying to age LRUs the aim is to preserve the overall
2484 * LRU order by reclaiming preferentially
2485 * inactive > active > active referenced > active mapped
2486 */
2487unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2488{
2489	struct reclaim_state reclaim_state;
2490	struct scan_control sc = {
2491		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2492		.may_swap = 1,
2493		.may_unmap = 1,
2494		.may_writepage = 1,
2495		.nr_to_reclaim = nr_to_reclaim,
2496		.hibernation_mode = 1,
2497		.swappiness = vm_swappiness,
2498		.order = 0,
2499	};
2500	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2501	struct task_struct *p = current;
2502	unsigned long nr_reclaimed;
2503
2504	p->flags |= PF_MEMALLOC;
2505	lockdep_set_current_reclaim_state(sc.gfp_mask);
2506	reclaim_state.reclaimed_slab = 0;
2507	p->reclaim_state = &reclaim_state;
2508
2509	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2510
2511	p->reclaim_state = NULL;
2512	lockdep_clear_current_reclaim_state();
2513	p->flags &= ~PF_MEMALLOC;
2514
2515	return nr_reclaimed;
2516}
2517#endif /* CONFIG_HIBERNATION */
2518
2519/* It's optimal to keep kswapds on the same CPUs as their memory, but
2520   not required for correctness.  So if the last cpu in a node goes
2521   away, we get changed to run anywhere: as the first one comes back,
2522   restore their cpu bindings. */
2523static int __devinit cpu_callback(struct notifier_block *nfb,
2524				  unsigned long action, void *hcpu)
2525{
2526	int nid;
2527
2528	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2529		for_each_node_state(nid, N_HIGH_MEMORY) {
2530			pg_data_t *pgdat = NODE_DATA(nid);
2531			const struct cpumask *mask;
2532
2533			mask = cpumask_of_node(pgdat->node_id);
2534
2535			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2536				/* One of our CPUs online: restore mask */
2537				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2538		}
2539	}
2540	return NOTIFY_OK;
2541}
2542
2543/*
2544 * This kswapd start function will be called by init and node-hot-add.
2545 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2546 */
2547int kswapd_run(int nid)
2548{
2549	pg_data_t *pgdat = NODE_DATA(nid);
2550	int ret = 0;
2551
2552	if (pgdat->kswapd)
2553		return 0;
2554
2555	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2556	if (IS_ERR(pgdat->kswapd)) {
2557		/* failure at boot is fatal */
2558		BUG_ON(system_state == SYSTEM_BOOTING);
2559		printk("Failed to start kswapd on node %d\n",nid);
2560		ret = -1;
2561	}
2562	return ret;
2563}
2564
2565/*
2566 * Called by memory hotplug when all memory in a node is offlined.
2567 */
2568void kswapd_stop(int nid)
2569{
2570	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2571
2572	if (kswapd)
2573		kthread_stop(kswapd);
2574}
2575
2576static int __init kswapd_init(void)
2577{
2578	int nid;
2579
2580	swap_setup();
2581	for_each_node_state(nid, N_HIGH_MEMORY)
2582 		kswapd_run(nid);
2583	hotcpu_notifier(cpu_callback, 0);
2584	return 0;
2585}
2586
2587module_init(kswapd_init)
2588
2589#ifdef CONFIG_NUMA
2590/*
2591 * Zone reclaim mode
2592 *
2593 * If non-zero call zone_reclaim when the number of free pages falls below
2594 * the watermarks.
2595 */
2596int zone_reclaim_mode __read_mostly;
2597
2598#define RECLAIM_OFF 0
2599#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2600#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2601#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2602
2603/*
2604 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2605 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2606 * a zone.
2607 */
2608#define ZONE_RECLAIM_PRIORITY 4
2609
2610/*
2611 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2612 * occur.
2613 */
2614int sysctl_min_unmapped_ratio = 1;
2615
2616/*
2617 * If the number of slab pages in a zone grows beyond this percentage then
2618 * slab reclaim needs to occur.
2619 */
2620int sysctl_min_slab_ratio = 5;
2621
2622static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2623{
2624	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2625	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2626		zone_page_state(zone, NR_ACTIVE_FILE);
2627
2628	/*
2629	 * It's possible for there to be more file mapped pages than
2630	 * accounted for by the pages on the file LRU lists because
2631	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2632	 */
2633	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2634}
2635
2636/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2637static long zone_pagecache_reclaimable(struct zone *zone)
2638{
2639	long nr_pagecache_reclaimable;
2640	long delta = 0;
2641
2642	/*
2643	 * If RECLAIM_SWAP is set, then all file pages are considered
2644	 * potentially reclaimable. Otherwise, we have to worry about
2645	 * pages like swapcache and zone_unmapped_file_pages() provides
2646	 * a better estimate
2647	 */
2648	if (zone_reclaim_mode & RECLAIM_SWAP)
2649		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2650	else
2651		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2652
2653	/* If we can't clean pages, remove dirty pages from consideration */
2654	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2655		delta += zone_page_state(zone, NR_FILE_DIRTY);
2656
2657	/* Watch for any possible underflows due to delta */
2658	if (unlikely(delta > nr_pagecache_reclaimable))
2659		delta = nr_pagecache_reclaimable;
2660
2661	return nr_pagecache_reclaimable - delta;
2662}
2663
2664/*
2665 * Try to free up some pages from this zone through reclaim.
2666 */
2667static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2668{
2669	/* Minimum pages needed in order to stay on node */
2670	const unsigned long nr_pages = 1 << order;
2671	struct task_struct *p = current;
2672	struct reclaim_state reclaim_state;
2673	int priority;
2674	struct scan_control sc = {
2675		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2676		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2677		.may_swap = 1,
2678		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2679				       SWAP_CLUSTER_MAX),
2680		.gfp_mask = gfp_mask,
2681		.swappiness = vm_swappiness,
2682		.order = order,
2683	};
2684	unsigned long nr_slab_pages0, nr_slab_pages1;
2685
2686	cond_resched();
2687	/*
2688	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2689	 * and we also need to be able to write out pages for RECLAIM_WRITE
2690	 * and RECLAIM_SWAP.
2691	 */
2692	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2693	lockdep_set_current_reclaim_state(gfp_mask);
2694	reclaim_state.reclaimed_slab = 0;
2695	p->reclaim_state = &reclaim_state;
2696
2697	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2698		/*
2699		 * Free memory by calling shrink zone with increasing
2700		 * priorities until we have enough memory freed.
2701		 */
2702		priority = ZONE_RECLAIM_PRIORITY;
2703		do {
2704			shrink_zone(priority, zone, &sc);
2705			priority--;
2706		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2707	}
2708
2709	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2710	if (nr_slab_pages0 > zone->min_slab_pages) {
2711		/*
2712		 * shrink_slab() does not currently allow us to determine how
2713		 * many pages were freed in this zone. So we take the current
2714		 * number of slab pages and shake the slab until it is reduced
2715		 * by the same nr_pages that we used for reclaiming unmapped
2716		 * pages.
2717		 *
2718		 * Note that shrink_slab will free memory on all zones and may
2719		 * take a long time.
2720		 */
2721		for (;;) {
2722			unsigned long lru_pages = zone_reclaimable_pages(zone);
2723
2724			/* No reclaimable slab or very low memory pressure */
2725			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2726				break;
2727
2728			/* Freed enough memory */
2729			nr_slab_pages1 = zone_page_state(zone,
2730							NR_SLAB_RECLAIMABLE);
2731			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2732				break;
2733		}
2734
2735		/*
2736		 * Update nr_reclaimed by the number of slab pages we
2737		 * reclaimed from this zone.
2738		 */
2739		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2740		if (nr_slab_pages1 < nr_slab_pages0)
2741			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2742	}
2743
2744	p->reclaim_state = NULL;
2745	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2746	lockdep_clear_current_reclaim_state();
2747	return sc.nr_reclaimed >= nr_pages;
2748}
2749
2750int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2751{
2752	int node_id;
2753	int ret;
2754
2755	/*
2756	 * Zone reclaim reclaims unmapped file backed pages and
2757	 * slab pages if we are over the defined limits.
2758	 *
2759	 * A small portion of unmapped file backed pages is needed for
2760	 * file I/O otherwise pages read by file I/O will be immediately
2761	 * thrown out if the zone is overallocated. So we do not reclaim
2762	 * if less than a specified percentage of the zone is used by
2763	 * unmapped file backed pages.
2764	 */
2765	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2766	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2767		return ZONE_RECLAIM_FULL;
2768
2769	if (zone->all_unreclaimable)
2770		return ZONE_RECLAIM_FULL;
2771
2772	/*
2773	 * Do not scan if the allocation should not be delayed.
2774	 */
2775	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2776		return ZONE_RECLAIM_NOSCAN;
2777
2778	/*
2779	 * Only run zone reclaim on the local zone or on zones that do not
2780	 * have associated processors. This will favor the local processor
2781	 * over remote processors and spread off node memory allocations
2782	 * as wide as possible.
2783	 */
2784	node_id = zone_to_nid(zone);
2785	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2786		return ZONE_RECLAIM_NOSCAN;
2787
2788	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2789		return ZONE_RECLAIM_NOSCAN;
2790
2791	ret = __zone_reclaim(zone, gfp_mask, order);
2792	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2793
2794	if (!ret)
2795		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2796
2797	return ret;
2798}
2799#endif
2800
2801/*
2802 * page_evictable - test whether a page is evictable
2803 * @page: the page to test
2804 * @vma: the VMA in which the page is or will be mapped, may be NULL
2805 *
2806 * Test whether page is evictable--i.e., should be placed on active/inactive
2807 * lists vs unevictable list.  The vma argument is !NULL when called from the
2808 * fault path to determine how to instantate a new page.
2809 *
2810 * Reasons page might not be evictable:
2811 * (1) page's mapping marked unevictable
2812 * (2) page is part of an mlocked VMA
2813 *
2814 */
2815int page_evictable(struct page *page, struct vm_area_struct *vma)
2816{
2817
2818	if (mapping_unevictable(page_mapping(page)))
2819		return 0;
2820
2821	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2822		return 0;
2823
2824	return 1;
2825}
2826
2827/**
2828 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2829 * @page: page to check evictability and move to appropriate lru list
2830 * @zone: zone page is in
2831 *
2832 * Checks a page for evictability and moves the page to the appropriate
2833 * zone lru list.
2834 *
2835 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2836 * have PageUnevictable set.
2837 */
2838static void check_move_unevictable_page(struct page *page, struct zone *zone)
2839{
2840	VM_BUG_ON(PageActive(page));
2841
2842retry:
2843	ClearPageUnevictable(page);
2844	if (page_evictable(page, NULL)) {
2845		enum lru_list l = page_lru_base_type(page);
2846
2847		__dec_zone_state(zone, NR_UNEVICTABLE);
2848		list_move(&page->lru, &zone->lru[l].list);
2849		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2850		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2851		__count_vm_event(UNEVICTABLE_PGRESCUED);
2852	} else {
2853		/*
2854		 * rotate unevictable list
2855		 */
2856		SetPageUnevictable(page);
2857		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2858		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2859		if (page_evictable(page, NULL))
2860			goto retry;
2861	}
2862}
2863
2864/**
2865 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2866 * @mapping: struct address_space to scan for evictable pages
2867 *
2868 * Scan all pages in mapping.  Check unevictable pages for
2869 * evictability and move them to the appropriate zone lru list.
2870 */
2871void scan_mapping_unevictable_pages(struct address_space *mapping)
2872{
2873	pgoff_t next = 0;
2874	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2875			 PAGE_CACHE_SHIFT;
2876	struct zone *zone;
2877	struct pagevec pvec;
2878
2879	if (mapping->nrpages == 0)
2880		return;
2881
2882	pagevec_init(&pvec, 0);
2883	while (next < end &&
2884		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2885		int i;
2886		int pg_scanned = 0;
2887
2888		zone = NULL;
2889
2890		for (i = 0; i < pagevec_count(&pvec); i++) {
2891			struct page *page = pvec.pages[i];
2892			pgoff_t page_index = page->index;
2893			struct zone *pagezone = page_zone(page);
2894
2895			pg_scanned++;
2896			if (page_index > next)
2897				next = page_index;
2898			next++;
2899
2900			if (pagezone != zone) {
2901				if (zone)
2902					spin_unlock_irq(&zone->lru_lock);
2903				zone = pagezone;
2904				spin_lock_irq(&zone->lru_lock);
2905			}
2906
2907			if (PageLRU(page) && PageUnevictable(page))
2908				check_move_unevictable_page(page, zone);
2909		}
2910		if (zone)
2911			spin_unlock_irq(&zone->lru_lock);
2912		pagevec_release(&pvec);
2913
2914		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2915	}
2916
2917}
2918
2919/**
2920 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2921 * @zone - zone of which to scan the unevictable list
2922 *
2923 * Scan @zone's unevictable LRU lists to check for pages that have become
2924 * evictable.  Move those that have to @zone's inactive list where they
2925 * become candidates for reclaim, unless shrink_inactive_zone() decides
2926 * to reactivate them.  Pages that are still unevictable are rotated
2927 * back onto @zone's unevictable list.
2928 */
2929#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2930static void scan_zone_unevictable_pages(struct zone *zone)
2931{
2932	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2933	unsigned long scan;
2934	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2935
2936	while (nr_to_scan > 0) {
2937		unsigned long batch_size = min(nr_to_scan,
2938						SCAN_UNEVICTABLE_BATCH_SIZE);
2939
2940		spin_lock_irq(&zone->lru_lock);
2941		for (scan = 0;  scan < batch_size; scan++) {
2942			struct page *page = lru_to_page(l_unevictable);
2943
2944			if (!trylock_page(page))
2945				continue;
2946
2947			prefetchw_prev_lru_page(page, l_unevictable, flags);
2948
2949			if (likely(PageLRU(page) && PageUnevictable(page)))
2950				check_move_unevictable_page(page, zone);
2951
2952			unlock_page(page);
2953		}
2954		spin_unlock_irq(&zone->lru_lock);
2955
2956		nr_to_scan -= batch_size;
2957	}
2958}
2959
2960
2961/**
2962 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2963 *
2964 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2965 * pages that have become evictable.  Move those back to the zones'
2966 * inactive list where they become candidates for reclaim.
2967 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2968 * and we add swap to the system.  As such, it runs in the context of a task
2969 * that has possibly/probably made some previously unevictable pages
2970 * evictable.
2971 */
2972static void scan_all_zones_unevictable_pages(void)
2973{
2974	struct zone *zone;
2975
2976	for_each_zone(zone) {
2977		scan_zone_unevictable_pages(zone);
2978	}
2979}
2980
2981/*
2982 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2983 * all nodes' unevictable lists for evictable pages
2984 */
2985unsigned long scan_unevictable_pages;
2986
2987int scan_unevictable_handler(struct ctl_table *table, int write,
2988			   void __user *buffer,
2989			   size_t *length, loff_t *ppos)
2990{
2991	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2992
2993	if (write && *(unsigned long *)table->data)
2994		scan_all_zones_unevictable_pages();
2995
2996	scan_unevictable_pages = 0;
2997	return 0;
2998}
2999
3000#ifdef CONFIG_NUMA
3001/*
3002 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3003 * a specified node's per zone unevictable lists for evictable pages.
3004 */
3005
3006static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3007					  struct sysdev_attribute *attr,
3008					  char *buf)
3009{
3010	return sprintf(buf, "0\n");	/* always zero; should fit... */
3011}
3012
3013static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3014					   struct sysdev_attribute *attr,
3015					const char *buf, size_t count)
3016{
3017	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3018	struct zone *zone;
3019	unsigned long res;
3020	unsigned long req = strict_strtoul(buf, 10, &res);
3021
3022	if (!req)
3023		return 1;	/* zero is no-op */
3024
3025	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3026		if (!populated_zone(zone))
3027			continue;
3028		scan_zone_unevictable_pages(zone);
3029	}
3030	return 1;
3031}
3032
3033
3034static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3035			read_scan_unevictable_node,
3036			write_scan_unevictable_node);
3037
3038int scan_unevictable_register_node(struct node *node)
3039{
3040	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3041}
3042
3043void scan_unevictable_unregister_node(struct node *node)
3044{
3045	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3046}
3047#endif
3048