vmscan.c revision e1dbeda60a7ea9e82a908d93c07308d104d50d79
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39
40#include <asm/tlbflush.h>
41#include <asm/div64.h>
42
43#include <linux/swapops.h>
44
45#include "internal.h"
46
47struct scan_control {
48	/* Incremented by the number of inactive pages that were scanned */
49	unsigned long nr_scanned;
50
51	/* This context's GFP mask */
52	gfp_t gfp_mask;
53
54	int may_writepage;
55
56	/* Can pages be swapped as part of reclaim? */
57	int may_swap;
58
59	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
60	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
61	 * In this context, it doesn't matter that we scan the
62	 * whole list at once. */
63	int swap_cluster_max;
64
65	int swappiness;
66
67	int all_unreclaimable;
68};
69
70/*
71 * The list of shrinker callbacks used by to apply pressure to
72 * ageable caches.
73 */
74struct shrinker {
75	shrinker_t		shrinker;
76	struct list_head	list;
77	int			seeks;	/* seeks to recreate an obj */
78	long			nr;	/* objs pending delete */
79};
80
81#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
82
83#ifdef ARCH_HAS_PREFETCH
84#define prefetch_prev_lru_page(_page, _base, _field)			\
85	do {								\
86		if ((_page)->lru.prev != _base) {			\
87			struct page *prev;				\
88									\
89			prev = lru_to_page(&(_page->lru));		\
90			prefetch(&prev->_field);			\
91		}							\
92	} while (0)
93#else
94#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
95#endif
96
97#ifdef ARCH_HAS_PREFETCHW
98#define prefetchw_prev_lru_page(_page, _base, _field)			\
99	do {								\
100		if ((_page)->lru.prev != _base) {			\
101			struct page *prev;				\
102									\
103			prev = lru_to_page(&(_page->lru));		\
104			prefetchw(&prev->_field);			\
105		}							\
106	} while (0)
107#else
108#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
109#endif
110
111/*
112 * From 0 .. 100.  Higher means more swappy.
113 */
114int vm_swappiness = 60;
115long vm_total_pages;	/* The total number of pages which the VM controls */
116
117static LIST_HEAD(shrinker_list);
118static DECLARE_RWSEM(shrinker_rwsem);
119
120/*
121 * Add a shrinker callback to be called from the vm
122 */
123struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
124{
125        struct shrinker *shrinker;
126
127        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
128        if (shrinker) {
129	        shrinker->shrinker = theshrinker;
130	        shrinker->seeks = seeks;
131	        shrinker->nr = 0;
132	        down_write(&shrinker_rwsem);
133	        list_add_tail(&shrinker->list, &shrinker_list);
134	        up_write(&shrinker_rwsem);
135	}
136	return shrinker;
137}
138EXPORT_SYMBOL(set_shrinker);
139
140/*
141 * Remove one
142 */
143void remove_shrinker(struct shrinker *shrinker)
144{
145	down_write(&shrinker_rwsem);
146	list_del(&shrinker->list);
147	up_write(&shrinker_rwsem);
148	kfree(shrinker);
149}
150EXPORT_SYMBOL(remove_shrinker);
151
152#define SHRINK_BATCH 128
153/*
154 * Call the shrink functions to age shrinkable caches
155 *
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object.  With this in mind we age equal
158 * percentages of the lru and ageable caches.  This should balance the seeks
159 * generated by these structures.
160 *
161 * If the vm encounted mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
163 *
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165 *
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt.  It is used for balancing
168 * slab reclaim versus page reclaim.
169 *
170 * Returns the number of slab objects which we shrunk.
171 */
172unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173			unsigned long lru_pages)
174{
175	struct shrinker *shrinker;
176	unsigned long ret = 0;
177
178	if (scanned == 0)
179		scanned = SWAP_CLUSTER_MAX;
180
181	if (!down_read_trylock(&shrinker_rwsem))
182		return 1;	/* Assume we'll be able to shrink next time */
183
184	list_for_each_entry(shrinker, &shrinker_list, list) {
185		unsigned long long delta;
186		unsigned long total_scan;
187		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
188
189		delta = (4 * scanned) / shrinker->seeks;
190		delta *= max_pass;
191		do_div(delta, lru_pages + 1);
192		shrinker->nr += delta;
193		if (shrinker->nr < 0) {
194			printk(KERN_ERR "%s: nr=%ld\n",
195					__FUNCTION__, shrinker->nr);
196			shrinker->nr = max_pass;
197		}
198
199		/*
200		 * Avoid risking looping forever due to too large nr value:
201		 * never try to free more than twice the estimate number of
202		 * freeable entries.
203		 */
204		if (shrinker->nr > max_pass * 2)
205			shrinker->nr = max_pass * 2;
206
207		total_scan = shrinker->nr;
208		shrinker->nr = 0;
209
210		while (total_scan >= SHRINK_BATCH) {
211			long this_scan = SHRINK_BATCH;
212			int shrink_ret;
213			int nr_before;
214
215			nr_before = (*shrinker->shrinker)(0, gfp_mask);
216			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
217			if (shrink_ret == -1)
218				break;
219			if (shrink_ret < nr_before)
220				ret += nr_before - shrink_ret;
221			count_vm_events(SLABS_SCANNED, this_scan);
222			total_scan -= this_scan;
223
224			cond_resched();
225		}
226
227		shrinker->nr += total_scan;
228	}
229	up_read(&shrinker_rwsem);
230	return ret;
231}
232
233/* Called without lock on whether page is mapped, so answer is unstable */
234static inline int page_mapping_inuse(struct page *page)
235{
236	struct address_space *mapping;
237
238	/* Page is in somebody's page tables. */
239	if (page_mapped(page))
240		return 1;
241
242	/* Be more reluctant to reclaim swapcache than pagecache */
243	if (PageSwapCache(page))
244		return 1;
245
246	mapping = page_mapping(page);
247	if (!mapping)
248		return 0;
249
250	/* File is mmap'd by somebody? */
251	return mapping_mapped(mapping);
252}
253
254static inline int is_page_cache_freeable(struct page *page)
255{
256	return page_count(page) - !!PagePrivate(page) == 2;
257}
258
259static int may_write_to_queue(struct backing_dev_info *bdi)
260{
261	if (current->flags & PF_SWAPWRITE)
262		return 1;
263	if (!bdi_write_congested(bdi))
264		return 1;
265	if (bdi == current->backing_dev_info)
266		return 1;
267	return 0;
268}
269
270/*
271 * We detected a synchronous write error writing a page out.  Probably
272 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
274 *
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up.  But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
278 *
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
281 */
282static void handle_write_error(struct address_space *mapping,
283				struct page *page, int error)
284{
285	lock_page(page);
286	if (page_mapping(page) == mapping) {
287		if (error == -ENOSPC)
288			set_bit(AS_ENOSPC, &mapping->flags);
289		else
290			set_bit(AS_EIO, &mapping->flags);
291	}
292	unlock_page(page);
293}
294
295/* possible outcome of pageout() */
296typedef enum {
297	/* failed to write page out, page is locked */
298	PAGE_KEEP,
299	/* move page to the active list, page is locked */
300	PAGE_ACTIVATE,
301	/* page has been sent to the disk successfully, page is unlocked */
302	PAGE_SUCCESS,
303	/* page is clean and locked */
304	PAGE_CLEAN,
305} pageout_t;
306
307/*
308 * pageout is called by shrink_page_list() for each dirty page.
309 * Calls ->writepage().
310 */
311static pageout_t pageout(struct page *page, struct address_space *mapping)
312{
313	/*
314	 * If the page is dirty, only perform writeback if that write
315	 * will be non-blocking.  To prevent this allocation from being
316	 * stalled by pagecache activity.  But note that there may be
317	 * stalls if we need to run get_block().  We could test
318	 * PagePrivate for that.
319	 *
320	 * If this process is currently in generic_file_write() against
321	 * this page's queue, we can perform writeback even if that
322	 * will block.
323	 *
324	 * If the page is swapcache, write it back even if that would
325	 * block, for some throttling. This happens by accident, because
326	 * swap_backing_dev_info is bust: it doesn't reflect the
327	 * congestion state of the swapdevs.  Easy to fix, if needed.
328	 * See swapfile.c:page_queue_congested().
329	 */
330	if (!is_page_cache_freeable(page))
331		return PAGE_KEEP;
332	if (!mapping) {
333		/*
334		 * Some data journaling orphaned pages can have
335		 * page->mapping == NULL while being dirty with clean buffers.
336		 */
337		if (PagePrivate(page)) {
338			if (try_to_free_buffers(page)) {
339				ClearPageDirty(page);
340				printk("%s: orphaned page\n", __FUNCTION__);
341				return PAGE_CLEAN;
342			}
343		}
344		return PAGE_KEEP;
345	}
346	if (mapping->a_ops->writepage == NULL)
347		return PAGE_ACTIVATE;
348	if (!may_write_to_queue(mapping->backing_dev_info))
349		return PAGE_KEEP;
350
351	if (clear_page_dirty_for_io(page)) {
352		int res;
353		struct writeback_control wbc = {
354			.sync_mode = WB_SYNC_NONE,
355			.nr_to_write = SWAP_CLUSTER_MAX,
356			.range_start = 0,
357			.range_end = LLONG_MAX,
358			.nonblocking = 1,
359			.for_reclaim = 1,
360		};
361
362		SetPageReclaim(page);
363		res = mapping->a_ops->writepage(page, &wbc);
364		if (res < 0)
365			handle_write_error(mapping, page, res);
366		if (res == AOP_WRITEPAGE_ACTIVATE) {
367			ClearPageReclaim(page);
368			return PAGE_ACTIVATE;
369		}
370		if (!PageWriteback(page)) {
371			/* synchronous write or broken a_ops? */
372			ClearPageReclaim(page);
373		}
374		inc_zone_page_state(page, NR_VMSCAN_WRITE);
375		return PAGE_SUCCESS;
376	}
377
378	return PAGE_CLEAN;
379}
380
381/*
382 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
383 * someone else has a ref on the page, abort and return 0.  If it was
384 * successfully detached, return 1.  Assumes the caller has a single ref on
385 * this page.
386 */
387int remove_mapping(struct address_space *mapping, struct page *page)
388{
389	BUG_ON(!PageLocked(page));
390	BUG_ON(mapping != page_mapping(page));
391
392	write_lock_irq(&mapping->tree_lock);
393	/*
394	 * The non racy check for a busy page.
395	 *
396	 * Must be careful with the order of the tests. When someone has
397	 * a ref to the page, it may be possible that they dirty it then
398	 * drop the reference. So if PageDirty is tested before page_count
399	 * here, then the following race may occur:
400	 *
401	 * get_user_pages(&page);
402	 * [user mapping goes away]
403	 * write_to(page);
404	 *				!PageDirty(page)    [good]
405	 * SetPageDirty(page);
406	 * put_page(page);
407	 *				!page_count(page)   [good, discard it]
408	 *
409	 * [oops, our write_to data is lost]
410	 *
411	 * Reversing the order of the tests ensures such a situation cannot
412	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
413	 * load is not satisfied before that of page->_count.
414	 *
415	 * Note that if SetPageDirty is always performed via set_page_dirty,
416	 * and thus under tree_lock, then this ordering is not required.
417	 */
418	if (unlikely(page_count(page) != 2))
419		goto cannot_free;
420	smp_rmb();
421	if (unlikely(PageDirty(page)))
422		goto cannot_free;
423
424	if (PageSwapCache(page)) {
425		swp_entry_t swap = { .val = page_private(page) };
426		__delete_from_swap_cache(page);
427		write_unlock_irq(&mapping->tree_lock);
428		swap_free(swap);
429		__put_page(page);	/* The pagecache ref */
430		return 1;
431	}
432
433	__remove_from_page_cache(page);
434	write_unlock_irq(&mapping->tree_lock);
435	__put_page(page);
436	return 1;
437
438cannot_free:
439	write_unlock_irq(&mapping->tree_lock);
440	return 0;
441}
442
443/*
444 * shrink_page_list() returns the number of reclaimed pages
445 */
446static unsigned long shrink_page_list(struct list_head *page_list,
447					struct scan_control *sc)
448{
449	LIST_HEAD(ret_pages);
450	struct pagevec freed_pvec;
451	int pgactivate = 0;
452	unsigned long nr_reclaimed = 0;
453
454	cond_resched();
455
456	pagevec_init(&freed_pvec, 1);
457	while (!list_empty(page_list)) {
458		struct address_space *mapping;
459		struct page *page;
460		int may_enter_fs;
461		int referenced;
462
463		cond_resched();
464
465		page = lru_to_page(page_list);
466		list_del(&page->lru);
467
468		if (TestSetPageLocked(page))
469			goto keep;
470
471		VM_BUG_ON(PageActive(page));
472
473		sc->nr_scanned++;
474
475		if (!sc->may_swap && page_mapped(page))
476			goto keep_locked;
477
478		/* Double the slab pressure for mapped and swapcache pages */
479		if (page_mapped(page) || PageSwapCache(page))
480			sc->nr_scanned++;
481
482		if (PageWriteback(page))
483			goto keep_locked;
484
485		referenced = page_referenced(page, 1);
486		/* In active use or really unfreeable?  Activate it. */
487		if (referenced && page_mapping_inuse(page))
488			goto activate_locked;
489
490#ifdef CONFIG_SWAP
491		/*
492		 * Anonymous process memory has backing store?
493		 * Try to allocate it some swap space here.
494		 */
495		if (PageAnon(page) && !PageSwapCache(page))
496			if (!add_to_swap(page, GFP_ATOMIC))
497				goto activate_locked;
498#endif /* CONFIG_SWAP */
499
500		mapping = page_mapping(page);
501		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
502			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
503
504		/*
505		 * The page is mapped into the page tables of one or more
506		 * processes. Try to unmap it here.
507		 */
508		if (page_mapped(page) && mapping) {
509			switch (try_to_unmap(page, 0)) {
510			case SWAP_FAIL:
511				goto activate_locked;
512			case SWAP_AGAIN:
513				goto keep_locked;
514			case SWAP_SUCCESS:
515				; /* try to free the page below */
516			}
517		}
518
519		if (PageDirty(page)) {
520			if (referenced)
521				goto keep_locked;
522			if (!may_enter_fs)
523				goto keep_locked;
524			if (!sc->may_writepage)
525				goto keep_locked;
526
527			/* Page is dirty, try to write it out here */
528			switch(pageout(page, mapping)) {
529			case PAGE_KEEP:
530				goto keep_locked;
531			case PAGE_ACTIVATE:
532				goto activate_locked;
533			case PAGE_SUCCESS:
534				if (PageWriteback(page) || PageDirty(page))
535					goto keep;
536				/*
537				 * A synchronous write - probably a ramdisk.  Go
538				 * ahead and try to reclaim the page.
539				 */
540				if (TestSetPageLocked(page))
541					goto keep;
542				if (PageDirty(page) || PageWriteback(page))
543					goto keep_locked;
544				mapping = page_mapping(page);
545			case PAGE_CLEAN:
546				; /* try to free the page below */
547			}
548		}
549
550		/*
551		 * If the page has buffers, try to free the buffer mappings
552		 * associated with this page. If we succeed we try to free
553		 * the page as well.
554		 *
555		 * We do this even if the page is PageDirty().
556		 * try_to_release_page() does not perform I/O, but it is
557		 * possible for a page to have PageDirty set, but it is actually
558		 * clean (all its buffers are clean).  This happens if the
559		 * buffers were written out directly, with submit_bh(). ext3
560		 * will do this, as well as the blockdev mapping.
561		 * try_to_release_page() will discover that cleanness and will
562		 * drop the buffers and mark the page clean - it can be freed.
563		 *
564		 * Rarely, pages can have buffers and no ->mapping.  These are
565		 * the pages which were not successfully invalidated in
566		 * truncate_complete_page().  We try to drop those buffers here
567		 * and if that worked, and the page is no longer mapped into
568		 * process address space (page_count == 1) it can be freed.
569		 * Otherwise, leave the page on the LRU so it is swappable.
570		 */
571		if (PagePrivate(page)) {
572			if (!try_to_release_page(page, sc->gfp_mask))
573				goto activate_locked;
574			if (!mapping && page_count(page) == 1)
575				goto free_it;
576		}
577
578		if (!mapping || !remove_mapping(mapping, page))
579			goto keep_locked;
580
581free_it:
582		unlock_page(page);
583		nr_reclaimed++;
584		if (!pagevec_add(&freed_pvec, page))
585			__pagevec_release_nonlru(&freed_pvec);
586		continue;
587
588activate_locked:
589		SetPageActive(page);
590		pgactivate++;
591keep_locked:
592		unlock_page(page);
593keep:
594		list_add(&page->lru, &ret_pages);
595		VM_BUG_ON(PageLRU(page));
596	}
597	list_splice(&ret_pages, page_list);
598	if (pagevec_count(&freed_pvec))
599		__pagevec_release_nonlru(&freed_pvec);
600	count_vm_events(PGACTIVATE, pgactivate);
601	return nr_reclaimed;
602}
603
604/*
605 * zone->lru_lock is heavily contended.  Some of the functions that
606 * shrink the lists perform better by taking out a batch of pages
607 * and working on them outside the LRU lock.
608 *
609 * For pagecache intensive workloads, this function is the hottest
610 * spot in the kernel (apart from copy_*_user functions).
611 *
612 * Appropriate locks must be held before calling this function.
613 *
614 * @nr_to_scan:	The number of pages to look through on the list.
615 * @src:	The LRU list to pull pages off.
616 * @dst:	The temp list to put pages on to.
617 * @scanned:	The number of pages that were scanned.
618 *
619 * returns how many pages were moved onto *@dst.
620 */
621static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
622		struct list_head *src, struct list_head *dst,
623		unsigned long *scanned)
624{
625	unsigned long nr_taken = 0;
626	struct page *page;
627	unsigned long scan;
628
629	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
630		struct list_head *target;
631		page = lru_to_page(src);
632		prefetchw_prev_lru_page(page, src, flags);
633
634		VM_BUG_ON(!PageLRU(page));
635
636		list_del(&page->lru);
637		target = src;
638		if (likely(get_page_unless_zero(page))) {
639			/*
640			 * Be careful not to clear PageLRU until after we're
641			 * sure the page is not being freed elsewhere -- the
642			 * page release code relies on it.
643			 */
644			ClearPageLRU(page);
645			target = dst;
646			nr_taken++;
647		} /* else it is being freed elsewhere */
648
649		list_add(&page->lru, target);
650	}
651
652	*scanned = scan;
653	return nr_taken;
654}
655
656/*
657 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
658 * of reclaimed pages
659 */
660static unsigned long shrink_inactive_list(unsigned long max_scan,
661				struct zone *zone, struct scan_control *sc)
662{
663	LIST_HEAD(page_list);
664	struct pagevec pvec;
665	unsigned long nr_scanned = 0;
666	unsigned long nr_reclaimed = 0;
667
668	pagevec_init(&pvec, 1);
669
670	lru_add_drain();
671	spin_lock_irq(&zone->lru_lock);
672	do {
673		struct page *page;
674		unsigned long nr_taken;
675		unsigned long nr_scan;
676		unsigned long nr_freed;
677
678		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
679					     &zone->inactive_list,
680					     &page_list, &nr_scan);
681		zone->nr_inactive -= nr_taken;
682		zone->pages_scanned += nr_scan;
683		spin_unlock_irq(&zone->lru_lock);
684
685		nr_scanned += nr_scan;
686		nr_freed = shrink_page_list(&page_list, sc);
687		nr_reclaimed += nr_freed;
688		local_irq_disable();
689		if (current_is_kswapd()) {
690			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
691			__count_vm_events(KSWAPD_STEAL, nr_freed);
692		} else
693			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
694		__count_vm_events(PGACTIVATE, nr_freed);
695
696		if (nr_taken == 0)
697			goto done;
698
699		spin_lock(&zone->lru_lock);
700		/*
701		 * Put back any unfreeable pages.
702		 */
703		while (!list_empty(&page_list)) {
704			page = lru_to_page(&page_list);
705			VM_BUG_ON(PageLRU(page));
706			SetPageLRU(page);
707			list_del(&page->lru);
708			if (PageActive(page))
709				add_page_to_active_list(zone, page);
710			else
711				add_page_to_inactive_list(zone, page);
712			if (!pagevec_add(&pvec, page)) {
713				spin_unlock_irq(&zone->lru_lock);
714				__pagevec_release(&pvec);
715				spin_lock_irq(&zone->lru_lock);
716			}
717		}
718  	} while (nr_scanned < max_scan);
719	spin_unlock(&zone->lru_lock);
720done:
721	local_irq_enable();
722	pagevec_release(&pvec);
723	return nr_reclaimed;
724}
725
726/*
727 * We are about to scan this zone at a certain priority level.  If that priority
728 * level is smaller (ie: more urgent) than the previous priority, then note
729 * that priority level within the zone.  This is done so that when the next
730 * process comes in to scan this zone, it will immediately start out at this
731 * priority level rather than having to build up its own scanning priority.
732 * Here, this priority affects only the reclaim-mapped threshold.
733 */
734static inline void note_zone_scanning_priority(struct zone *zone, int priority)
735{
736	if (priority < zone->prev_priority)
737		zone->prev_priority = priority;
738}
739
740static inline int zone_is_near_oom(struct zone *zone)
741{
742	return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3;
743}
744
745/*
746 * This moves pages from the active list to the inactive list.
747 *
748 * We move them the other way if the page is referenced by one or more
749 * processes, from rmap.
750 *
751 * If the pages are mostly unmapped, the processing is fast and it is
752 * appropriate to hold zone->lru_lock across the whole operation.  But if
753 * the pages are mapped, the processing is slow (page_referenced()) so we
754 * should drop zone->lru_lock around each page.  It's impossible to balance
755 * this, so instead we remove the pages from the LRU while processing them.
756 * It is safe to rely on PG_active against the non-LRU pages in here because
757 * nobody will play with that bit on a non-LRU page.
758 *
759 * The downside is that we have to touch page->_count against each page.
760 * But we had to alter page->flags anyway.
761 */
762static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
763				struct scan_control *sc, int priority)
764{
765	unsigned long pgmoved;
766	int pgdeactivate = 0;
767	unsigned long pgscanned;
768	LIST_HEAD(l_hold);	/* The pages which were snipped off */
769	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
770	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
771	struct page *page;
772	struct pagevec pvec;
773	int reclaim_mapped = 0;
774
775	if (sc->may_swap) {
776		long mapped_ratio;
777		long distress;
778		long swap_tendency;
779
780		if (zone_is_near_oom(zone))
781			goto force_reclaim_mapped;
782
783		/*
784		 * `distress' is a measure of how much trouble we're having
785		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
786		 */
787		distress = 100 >> min(zone->prev_priority, priority);
788
789		/*
790		 * The point of this algorithm is to decide when to start
791		 * reclaiming mapped memory instead of just pagecache.  Work out
792		 * how much memory
793		 * is mapped.
794		 */
795		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
796				global_page_state(NR_ANON_PAGES)) * 100) /
797					vm_total_pages;
798
799		/*
800		 * Now decide how much we really want to unmap some pages.  The
801		 * mapped ratio is downgraded - just because there's a lot of
802		 * mapped memory doesn't necessarily mean that page reclaim
803		 * isn't succeeding.
804		 *
805		 * The distress ratio is important - we don't want to start
806		 * going oom.
807		 *
808		 * A 100% value of vm_swappiness overrides this algorithm
809		 * altogether.
810		 */
811		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
812
813		/*
814		 * Now use this metric to decide whether to start moving mapped
815		 * memory onto the inactive list.
816		 */
817		if (swap_tendency >= 100)
818force_reclaim_mapped:
819			reclaim_mapped = 1;
820	}
821
822	lru_add_drain();
823	spin_lock_irq(&zone->lru_lock);
824	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
825				    &l_hold, &pgscanned);
826	zone->pages_scanned += pgscanned;
827	zone->nr_active -= pgmoved;
828	spin_unlock_irq(&zone->lru_lock);
829
830	while (!list_empty(&l_hold)) {
831		cond_resched();
832		page = lru_to_page(&l_hold);
833		list_del(&page->lru);
834		if (page_mapped(page)) {
835			if (!reclaim_mapped ||
836			    (total_swap_pages == 0 && PageAnon(page)) ||
837			    page_referenced(page, 0)) {
838				list_add(&page->lru, &l_active);
839				continue;
840			}
841		}
842		list_add(&page->lru, &l_inactive);
843	}
844
845	pagevec_init(&pvec, 1);
846	pgmoved = 0;
847	spin_lock_irq(&zone->lru_lock);
848	while (!list_empty(&l_inactive)) {
849		page = lru_to_page(&l_inactive);
850		prefetchw_prev_lru_page(page, &l_inactive, flags);
851		VM_BUG_ON(PageLRU(page));
852		SetPageLRU(page);
853		VM_BUG_ON(!PageActive(page));
854		ClearPageActive(page);
855
856		list_move(&page->lru, &zone->inactive_list);
857		pgmoved++;
858		if (!pagevec_add(&pvec, page)) {
859			zone->nr_inactive += pgmoved;
860			spin_unlock_irq(&zone->lru_lock);
861			pgdeactivate += pgmoved;
862			pgmoved = 0;
863			if (buffer_heads_over_limit)
864				pagevec_strip(&pvec);
865			__pagevec_release(&pvec);
866			spin_lock_irq(&zone->lru_lock);
867		}
868	}
869	zone->nr_inactive += pgmoved;
870	pgdeactivate += pgmoved;
871	if (buffer_heads_over_limit) {
872		spin_unlock_irq(&zone->lru_lock);
873		pagevec_strip(&pvec);
874		spin_lock_irq(&zone->lru_lock);
875	}
876
877	pgmoved = 0;
878	while (!list_empty(&l_active)) {
879		page = lru_to_page(&l_active);
880		prefetchw_prev_lru_page(page, &l_active, flags);
881		VM_BUG_ON(PageLRU(page));
882		SetPageLRU(page);
883		VM_BUG_ON(!PageActive(page));
884		list_move(&page->lru, &zone->active_list);
885		pgmoved++;
886		if (!pagevec_add(&pvec, page)) {
887			zone->nr_active += pgmoved;
888			pgmoved = 0;
889			spin_unlock_irq(&zone->lru_lock);
890			__pagevec_release(&pvec);
891			spin_lock_irq(&zone->lru_lock);
892		}
893	}
894	zone->nr_active += pgmoved;
895
896	__count_zone_vm_events(PGREFILL, zone, pgscanned);
897	__count_vm_events(PGDEACTIVATE, pgdeactivate);
898	spin_unlock_irq(&zone->lru_lock);
899
900	pagevec_release(&pvec);
901}
902
903/*
904 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
905 */
906static unsigned long shrink_zone(int priority, struct zone *zone,
907				struct scan_control *sc)
908{
909	unsigned long nr_active;
910	unsigned long nr_inactive;
911	unsigned long nr_to_scan;
912	unsigned long nr_reclaimed = 0;
913
914	atomic_inc(&zone->reclaim_in_progress);
915
916	/*
917	 * Add one to `nr_to_scan' just to make sure that the kernel will
918	 * slowly sift through the active list.
919	 */
920	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
921	nr_active = zone->nr_scan_active;
922	if (nr_active >= sc->swap_cluster_max)
923		zone->nr_scan_active = 0;
924	else
925		nr_active = 0;
926
927	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
928	nr_inactive = zone->nr_scan_inactive;
929	if (nr_inactive >= sc->swap_cluster_max)
930		zone->nr_scan_inactive = 0;
931	else
932		nr_inactive = 0;
933
934	while (nr_active || nr_inactive) {
935		if (nr_active) {
936			nr_to_scan = min(nr_active,
937					(unsigned long)sc->swap_cluster_max);
938			nr_active -= nr_to_scan;
939			shrink_active_list(nr_to_scan, zone, sc, priority);
940		}
941
942		if (nr_inactive) {
943			nr_to_scan = min(nr_inactive,
944					(unsigned long)sc->swap_cluster_max);
945			nr_inactive -= nr_to_scan;
946			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
947								sc);
948		}
949	}
950
951	throttle_vm_writeout();
952
953	atomic_dec(&zone->reclaim_in_progress);
954	return nr_reclaimed;
955}
956
957/*
958 * This is the direct reclaim path, for page-allocating processes.  We only
959 * try to reclaim pages from zones which will satisfy the caller's allocation
960 * request.
961 *
962 * We reclaim from a zone even if that zone is over pages_high.  Because:
963 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
964 *    allocation or
965 * b) The zones may be over pages_high but they must go *over* pages_high to
966 *    satisfy the `incremental min' zone defense algorithm.
967 *
968 * Returns the number of reclaimed pages.
969 *
970 * If a zone is deemed to be full of pinned pages then just give it a light
971 * scan then give up on it.
972 */
973static unsigned long shrink_zones(int priority, struct zone **zones,
974					struct scan_control *sc)
975{
976	unsigned long nr_reclaimed = 0;
977	int i;
978
979	sc->all_unreclaimable = 1;
980	for (i = 0; zones[i] != NULL; i++) {
981		struct zone *zone = zones[i];
982
983		if (!populated_zone(zone))
984			continue;
985
986		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
987			continue;
988
989		note_zone_scanning_priority(zone, priority);
990
991		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
992			continue;	/* Let kswapd poll it */
993
994		sc->all_unreclaimable = 0;
995
996		nr_reclaimed += shrink_zone(priority, zone, sc);
997	}
998	return nr_reclaimed;
999}
1000
1001/*
1002 * This is the main entry point to direct page reclaim.
1003 *
1004 * If a full scan of the inactive list fails to free enough memory then we
1005 * are "out of memory" and something needs to be killed.
1006 *
1007 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1008 * high - the zone may be full of dirty or under-writeback pages, which this
1009 * caller can't do much about.  We kick pdflush and take explicit naps in the
1010 * hope that some of these pages can be written.  But if the allocating task
1011 * holds filesystem locks which prevent writeout this might not work, and the
1012 * allocation attempt will fail.
1013 */
1014unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1015{
1016	int priority;
1017	int ret = 0;
1018	unsigned long total_scanned = 0;
1019	unsigned long nr_reclaimed = 0;
1020	struct reclaim_state *reclaim_state = current->reclaim_state;
1021	unsigned long lru_pages = 0;
1022	int i;
1023	struct scan_control sc = {
1024		.gfp_mask = gfp_mask,
1025		.may_writepage = !laptop_mode,
1026		.swap_cluster_max = SWAP_CLUSTER_MAX,
1027		.may_swap = 1,
1028		.swappiness = vm_swappiness,
1029	};
1030
1031	count_vm_event(ALLOCSTALL);
1032
1033	for (i = 0; zones[i] != NULL; i++) {
1034		struct zone *zone = zones[i];
1035
1036		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1037			continue;
1038
1039		lru_pages += zone->nr_active + zone->nr_inactive;
1040	}
1041
1042	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1043		sc.nr_scanned = 0;
1044		if (!priority)
1045			disable_swap_token();
1046		nr_reclaimed += shrink_zones(priority, zones, &sc);
1047		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1048		if (reclaim_state) {
1049			nr_reclaimed += reclaim_state->reclaimed_slab;
1050			reclaim_state->reclaimed_slab = 0;
1051		}
1052		total_scanned += sc.nr_scanned;
1053		if (nr_reclaimed >= sc.swap_cluster_max) {
1054			ret = 1;
1055			goto out;
1056		}
1057
1058		/*
1059		 * Try to write back as many pages as we just scanned.  This
1060		 * tends to cause slow streaming writers to write data to the
1061		 * disk smoothly, at the dirtying rate, which is nice.   But
1062		 * that's undesirable in laptop mode, where we *want* lumpy
1063		 * writeout.  So in laptop mode, write out the whole world.
1064		 */
1065		if (total_scanned > sc.swap_cluster_max +
1066					sc.swap_cluster_max / 2) {
1067			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1068			sc.may_writepage = 1;
1069		}
1070
1071		/* Take a nap, wait for some writeback to complete */
1072		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1073			congestion_wait(WRITE, HZ/10);
1074	}
1075	/* top priority shrink_caches still had more to do? don't OOM, then */
1076	if (!sc.all_unreclaimable)
1077		ret = 1;
1078out:
1079	/*
1080	 * Now that we've scanned all the zones at this priority level, note
1081	 * that level within the zone so that the next thread which performs
1082	 * scanning of this zone will immediately start out at this priority
1083	 * level.  This affects only the decision whether or not to bring
1084	 * mapped pages onto the inactive list.
1085	 */
1086	if (priority < 0)
1087		priority = 0;
1088	for (i = 0; zones[i] != 0; i++) {
1089		struct zone *zone = zones[i];
1090
1091		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1092			continue;
1093
1094		zone->prev_priority = priority;
1095	}
1096	return ret;
1097}
1098
1099/*
1100 * For kswapd, balance_pgdat() will work across all this node's zones until
1101 * they are all at pages_high.
1102 *
1103 * Returns the number of pages which were actually freed.
1104 *
1105 * There is special handling here for zones which are full of pinned pages.
1106 * This can happen if the pages are all mlocked, or if they are all used by
1107 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1108 * What we do is to detect the case where all pages in the zone have been
1109 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1110 * dead and from now on, only perform a short scan.  Basically we're polling
1111 * the zone for when the problem goes away.
1112 *
1113 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1114 * zones which have free_pages > pages_high, but once a zone is found to have
1115 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1116 * of the number of free pages in the lower zones.  This interoperates with
1117 * the page allocator fallback scheme to ensure that aging of pages is balanced
1118 * across the zones.
1119 */
1120static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1121{
1122	int all_zones_ok;
1123	int priority;
1124	int i;
1125	unsigned long total_scanned;
1126	unsigned long nr_reclaimed;
1127	struct reclaim_state *reclaim_state = current->reclaim_state;
1128	struct scan_control sc = {
1129		.gfp_mask = GFP_KERNEL,
1130		.may_swap = 1,
1131		.swap_cluster_max = SWAP_CLUSTER_MAX,
1132		.swappiness = vm_swappiness,
1133	};
1134	/*
1135	 * temp_priority is used to remember the scanning priority at which
1136	 * this zone was successfully refilled to free_pages == pages_high.
1137	 */
1138	int temp_priority[MAX_NR_ZONES];
1139
1140loop_again:
1141	total_scanned = 0;
1142	nr_reclaimed = 0;
1143	sc.may_writepage = !laptop_mode;
1144	count_vm_event(PAGEOUTRUN);
1145
1146	for (i = 0; i < pgdat->nr_zones; i++)
1147		temp_priority[i] = DEF_PRIORITY;
1148
1149	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1150		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1151		unsigned long lru_pages = 0;
1152
1153		/* The swap token gets in the way of swapout... */
1154		if (!priority)
1155			disable_swap_token();
1156
1157		all_zones_ok = 1;
1158
1159		/*
1160		 * Scan in the highmem->dma direction for the highest
1161		 * zone which needs scanning
1162		 */
1163		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1164			struct zone *zone = pgdat->node_zones + i;
1165
1166			if (!populated_zone(zone))
1167				continue;
1168
1169			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1170				continue;
1171
1172			if (!zone_watermark_ok(zone, order, zone->pages_high,
1173					       0, 0)) {
1174				end_zone = i;
1175				break;
1176			}
1177		}
1178		if (i < 0)
1179			goto out;
1180
1181		for (i = 0; i <= end_zone; i++) {
1182			struct zone *zone = pgdat->node_zones + i;
1183
1184			lru_pages += zone->nr_active + zone->nr_inactive;
1185		}
1186
1187		/*
1188		 * Now scan the zone in the dma->highmem direction, stopping
1189		 * at the last zone which needs scanning.
1190		 *
1191		 * We do this because the page allocator works in the opposite
1192		 * direction.  This prevents the page allocator from allocating
1193		 * pages behind kswapd's direction of progress, which would
1194		 * cause too much scanning of the lower zones.
1195		 */
1196		for (i = 0; i <= end_zone; i++) {
1197			struct zone *zone = pgdat->node_zones + i;
1198			int nr_slab;
1199
1200			if (!populated_zone(zone))
1201				continue;
1202
1203			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1204				continue;
1205
1206			if (!zone_watermark_ok(zone, order, zone->pages_high,
1207					       end_zone, 0))
1208				all_zones_ok = 0;
1209			temp_priority[i] = priority;
1210			sc.nr_scanned = 0;
1211			note_zone_scanning_priority(zone, priority);
1212			nr_reclaimed += shrink_zone(priority, zone, &sc);
1213			reclaim_state->reclaimed_slab = 0;
1214			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1215						lru_pages);
1216			nr_reclaimed += reclaim_state->reclaimed_slab;
1217			total_scanned += sc.nr_scanned;
1218			if (zone->all_unreclaimable)
1219				continue;
1220			if (nr_slab == 0 && zone->pages_scanned >=
1221				    (zone->nr_active + zone->nr_inactive) * 6)
1222				zone->all_unreclaimable = 1;
1223			/*
1224			 * If we've done a decent amount of scanning and
1225			 * the reclaim ratio is low, start doing writepage
1226			 * even in laptop mode
1227			 */
1228			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1229			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1230				sc.may_writepage = 1;
1231		}
1232		if (all_zones_ok)
1233			break;		/* kswapd: all done */
1234		/*
1235		 * OK, kswapd is getting into trouble.  Take a nap, then take
1236		 * another pass across the zones.
1237		 */
1238		if (total_scanned && priority < DEF_PRIORITY - 2)
1239			congestion_wait(WRITE, HZ/10);
1240
1241		/*
1242		 * We do this so kswapd doesn't build up large priorities for
1243		 * example when it is freeing in parallel with allocators. It
1244		 * matches the direct reclaim path behaviour in terms of impact
1245		 * on zone->*_priority.
1246		 */
1247		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1248			break;
1249	}
1250out:
1251	/*
1252	 * Note within each zone the priority level at which this zone was
1253	 * brought into a happy state.  So that the next thread which scans this
1254	 * zone will start out at that priority level.
1255	 */
1256	for (i = 0; i < pgdat->nr_zones; i++) {
1257		struct zone *zone = pgdat->node_zones + i;
1258
1259		zone->prev_priority = temp_priority[i];
1260	}
1261	if (!all_zones_ok) {
1262		cond_resched();
1263		goto loop_again;
1264	}
1265
1266	return nr_reclaimed;
1267}
1268
1269/*
1270 * The background pageout daemon, started as a kernel thread
1271 * from the init process.
1272 *
1273 * This basically trickles out pages so that we have _some_
1274 * free memory available even if there is no other activity
1275 * that frees anything up. This is needed for things like routing
1276 * etc, where we otherwise might have all activity going on in
1277 * asynchronous contexts that cannot page things out.
1278 *
1279 * If there are applications that are active memory-allocators
1280 * (most normal use), this basically shouldn't matter.
1281 */
1282static int kswapd(void *p)
1283{
1284	unsigned long order;
1285	pg_data_t *pgdat = (pg_data_t*)p;
1286	struct task_struct *tsk = current;
1287	DEFINE_WAIT(wait);
1288	struct reclaim_state reclaim_state = {
1289		.reclaimed_slab = 0,
1290	};
1291	cpumask_t cpumask;
1292
1293	cpumask = node_to_cpumask(pgdat->node_id);
1294	if (!cpus_empty(cpumask))
1295		set_cpus_allowed(tsk, cpumask);
1296	current->reclaim_state = &reclaim_state;
1297
1298	/*
1299	 * Tell the memory management that we're a "memory allocator",
1300	 * and that if we need more memory we should get access to it
1301	 * regardless (see "__alloc_pages()"). "kswapd" should
1302	 * never get caught in the normal page freeing logic.
1303	 *
1304	 * (Kswapd normally doesn't need memory anyway, but sometimes
1305	 * you need a small amount of memory in order to be able to
1306	 * page out something else, and this flag essentially protects
1307	 * us from recursively trying to free more memory as we're
1308	 * trying to free the first piece of memory in the first place).
1309	 */
1310	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1311
1312	order = 0;
1313	for ( ; ; ) {
1314		unsigned long new_order;
1315
1316		try_to_freeze();
1317
1318		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1319		new_order = pgdat->kswapd_max_order;
1320		pgdat->kswapd_max_order = 0;
1321		if (order < new_order) {
1322			/*
1323			 * Don't sleep if someone wants a larger 'order'
1324			 * allocation
1325			 */
1326			order = new_order;
1327		} else {
1328			schedule();
1329			order = pgdat->kswapd_max_order;
1330		}
1331		finish_wait(&pgdat->kswapd_wait, &wait);
1332
1333		balance_pgdat(pgdat, order);
1334	}
1335	return 0;
1336}
1337
1338/*
1339 * A zone is low on free memory, so wake its kswapd task to service it.
1340 */
1341void wakeup_kswapd(struct zone *zone, int order)
1342{
1343	pg_data_t *pgdat;
1344
1345	if (!populated_zone(zone))
1346		return;
1347
1348	pgdat = zone->zone_pgdat;
1349	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1350		return;
1351	if (pgdat->kswapd_max_order < order)
1352		pgdat->kswapd_max_order = order;
1353	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1354		return;
1355	if (!waitqueue_active(&pgdat->kswapd_wait))
1356		return;
1357	wake_up_interruptible(&pgdat->kswapd_wait);
1358}
1359
1360#ifdef CONFIG_PM
1361/*
1362 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1363 * from LRU lists system-wide, for given pass and priority, and returns the
1364 * number of reclaimed pages
1365 *
1366 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1367 */
1368static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1369				      int prio, struct scan_control *sc)
1370{
1371	struct zone *zone;
1372	unsigned long nr_to_scan, ret = 0;
1373
1374	for_each_zone(zone) {
1375
1376		if (!populated_zone(zone))
1377			continue;
1378
1379		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1380			continue;
1381
1382		/* For pass = 0 we don't shrink the active list */
1383		if (pass > 0) {
1384			zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1385			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1386				zone->nr_scan_active = 0;
1387				nr_to_scan = min(nr_pages, zone->nr_active);
1388				shrink_active_list(nr_to_scan, zone, sc, prio);
1389			}
1390		}
1391
1392		zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1393		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1394			zone->nr_scan_inactive = 0;
1395			nr_to_scan = min(nr_pages, zone->nr_inactive);
1396			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1397			if (ret >= nr_pages)
1398				return ret;
1399		}
1400	}
1401
1402	return ret;
1403}
1404
1405/*
1406 * Try to free `nr_pages' of memory, system-wide, and return the number of
1407 * freed pages.
1408 *
1409 * Rather than trying to age LRUs the aim is to preserve the overall
1410 * LRU order by reclaiming preferentially
1411 * inactive > active > active referenced > active mapped
1412 */
1413unsigned long shrink_all_memory(unsigned long nr_pages)
1414{
1415	unsigned long lru_pages, nr_slab;
1416	unsigned long ret = 0;
1417	int pass;
1418	struct reclaim_state reclaim_state;
1419	struct zone *zone;
1420	struct scan_control sc = {
1421		.gfp_mask = GFP_KERNEL,
1422		.may_swap = 0,
1423		.swap_cluster_max = nr_pages,
1424		.may_writepage = 1,
1425		.swappiness = vm_swappiness,
1426	};
1427
1428	current->reclaim_state = &reclaim_state;
1429
1430	lru_pages = 0;
1431	for_each_zone(zone)
1432		lru_pages += zone->nr_active + zone->nr_inactive;
1433
1434	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1435	/* If slab caches are huge, it's better to hit them first */
1436	while (nr_slab >= lru_pages) {
1437		reclaim_state.reclaimed_slab = 0;
1438		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1439		if (!reclaim_state.reclaimed_slab)
1440			break;
1441
1442		ret += reclaim_state.reclaimed_slab;
1443		if (ret >= nr_pages)
1444			goto out;
1445
1446		nr_slab -= reclaim_state.reclaimed_slab;
1447	}
1448
1449	/*
1450	 * We try to shrink LRUs in 5 passes:
1451	 * 0 = Reclaim from inactive_list only
1452	 * 1 = Reclaim from active list but don't reclaim mapped
1453	 * 2 = 2nd pass of type 1
1454	 * 3 = Reclaim mapped (normal reclaim)
1455	 * 4 = 2nd pass of type 3
1456	 */
1457	for (pass = 0; pass < 5; pass++) {
1458		int prio;
1459
1460		/* Needed for shrinking slab caches later on */
1461		if (!lru_pages)
1462			for_each_zone(zone) {
1463				lru_pages += zone->nr_active;
1464				lru_pages += zone->nr_inactive;
1465			}
1466
1467		/* Force reclaiming mapped pages in the passes #3 and #4 */
1468		if (pass > 2) {
1469			sc.may_swap = 1;
1470			sc.swappiness = 100;
1471		}
1472
1473		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1474			unsigned long nr_to_scan = nr_pages - ret;
1475
1476			sc.nr_scanned = 0;
1477			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1478			if (ret >= nr_pages)
1479				goto out;
1480
1481			reclaim_state.reclaimed_slab = 0;
1482			shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1483			ret += reclaim_state.reclaimed_slab;
1484			if (ret >= nr_pages)
1485				goto out;
1486
1487			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1488				congestion_wait(WRITE, HZ / 10);
1489		}
1490
1491		lru_pages = 0;
1492	}
1493
1494	/*
1495	 * If ret = 0, we could not shrink LRUs, but there may be something
1496	 * in slab caches
1497	 */
1498	if (!ret)
1499		do {
1500			reclaim_state.reclaimed_slab = 0;
1501			shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1502			ret += reclaim_state.reclaimed_slab;
1503		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1504
1505out:
1506	current->reclaim_state = NULL;
1507
1508	return ret;
1509}
1510#endif
1511
1512#ifdef CONFIG_HOTPLUG_CPU
1513/* It's optimal to keep kswapds on the same CPUs as their memory, but
1514   not required for correctness.  So if the last cpu in a node goes
1515   away, we get changed to run anywhere: as the first one comes back,
1516   restore their cpu bindings. */
1517static int __devinit cpu_callback(struct notifier_block *nfb,
1518				  unsigned long action, void *hcpu)
1519{
1520	pg_data_t *pgdat;
1521	cpumask_t mask;
1522
1523	if (action == CPU_ONLINE) {
1524		for_each_online_pgdat(pgdat) {
1525			mask = node_to_cpumask(pgdat->node_id);
1526			if (any_online_cpu(mask) != NR_CPUS)
1527				/* One of our CPUs online: restore mask */
1528				set_cpus_allowed(pgdat->kswapd, mask);
1529		}
1530	}
1531	return NOTIFY_OK;
1532}
1533#endif /* CONFIG_HOTPLUG_CPU */
1534
1535/*
1536 * This kswapd start function will be called by init and node-hot-add.
1537 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1538 */
1539int kswapd_run(int nid)
1540{
1541	pg_data_t *pgdat = NODE_DATA(nid);
1542	int ret = 0;
1543
1544	if (pgdat->kswapd)
1545		return 0;
1546
1547	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1548	if (IS_ERR(pgdat->kswapd)) {
1549		/* failure at boot is fatal */
1550		BUG_ON(system_state == SYSTEM_BOOTING);
1551		printk("Failed to start kswapd on node %d\n",nid);
1552		ret = -1;
1553	}
1554	return ret;
1555}
1556
1557static int __init kswapd_init(void)
1558{
1559	int nid;
1560
1561	swap_setup();
1562	for_each_online_node(nid)
1563 		kswapd_run(nid);
1564	hotcpu_notifier(cpu_callback, 0);
1565	return 0;
1566}
1567
1568module_init(kswapd_init)
1569
1570#ifdef CONFIG_NUMA
1571/*
1572 * Zone reclaim mode
1573 *
1574 * If non-zero call zone_reclaim when the number of free pages falls below
1575 * the watermarks.
1576 */
1577int zone_reclaim_mode __read_mostly;
1578
1579#define RECLAIM_OFF 0
1580#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1581#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1582#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1583
1584/*
1585 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1586 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1587 * a zone.
1588 */
1589#define ZONE_RECLAIM_PRIORITY 4
1590
1591/*
1592 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1593 * occur.
1594 */
1595int sysctl_min_unmapped_ratio = 1;
1596
1597/*
1598 * If the number of slab pages in a zone grows beyond this percentage then
1599 * slab reclaim needs to occur.
1600 */
1601int sysctl_min_slab_ratio = 5;
1602
1603/*
1604 * Try to free up some pages from this zone through reclaim.
1605 */
1606static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1607{
1608	/* Minimum pages needed in order to stay on node */
1609	const unsigned long nr_pages = 1 << order;
1610	struct task_struct *p = current;
1611	struct reclaim_state reclaim_state;
1612	int priority;
1613	unsigned long nr_reclaimed = 0;
1614	struct scan_control sc = {
1615		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1616		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1617		.swap_cluster_max = max_t(unsigned long, nr_pages,
1618					SWAP_CLUSTER_MAX),
1619		.gfp_mask = gfp_mask,
1620		.swappiness = vm_swappiness,
1621	};
1622	unsigned long slab_reclaimable;
1623
1624	disable_swap_token();
1625	cond_resched();
1626	/*
1627	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1628	 * and we also need to be able to write out pages for RECLAIM_WRITE
1629	 * and RECLAIM_SWAP.
1630	 */
1631	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1632	reclaim_state.reclaimed_slab = 0;
1633	p->reclaim_state = &reclaim_state;
1634
1635	if (zone_page_state(zone, NR_FILE_PAGES) -
1636		zone_page_state(zone, NR_FILE_MAPPED) >
1637		zone->min_unmapped_pages) {
1638		/*
1639		 * Free memory by calling shrink zone with increasing
1640		 * priorities until we have enough memory freed.
1641		 */
1642		priority = ZONE_RECLAIM_PRIORITY;
1643		do {
1644			note_zone_scanning_priority(zone, priority);
1645			nr_reclaimed += shrink_zone(priority, zone, &sc);
1646			priority--;
1647		} while (priority >= 0 && nr_reclaimed < nr_pages);
1648	}
1649
1650	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1651	if (slab_reclaimable > zone->min_slab_pages) {
1652		/*
1653		 * shrink_slab() does not currently allow us to determine how
1654		 * many pages were freed in this zone. So we take the current
1655		 * number of slab pages and shake the slab until it is reduced
1656		 * by the same nr_pages that we used for reclaiming unmapped
1657		 * pages.
1658		 *
1659		 * Note that shrink_slab will free memory on all zones and may
1660		 * take a long time.
1661		 */
1662		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1663			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1664				slab_reclaimable - nr_pages)
1665			;
1666
1667		/*
1668		 * Update nr_reclaimed by the number of slab pages we
1669		 * reclaimed from this zone.
1670		 */
1671		nr_reclaimed += slab_reclaimable -
1672			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1673	}
1674
1675	p->reclaim_state = NULL;
1676	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1677	return nr_reclaimed >= nr_pages;
1678}
1679
1680int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1681{
1682	cpumask_t mask;
1683	int node_id;
1684
1685	/*
1686	 * Zone reclaim reclaims unmapped file backed pages and
1687	 * slab pages if we are over the defined limits.
1688	 *
1689	 * A small portion of unmapped file backed pages is needed for
1690	 * file I/O otherwise pages read by file I/O will be immediately
1691	 * thrown out if the zone is overallocated. So we do not reclaim
1692	 * if less than a specified percentage of the zone is used by
1693	 * unmapped file backed pages.
1694	 */
1695	if (zone_page_state(zone, NR_FILE_PAGES) -
1696	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1697	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1698			<= zone->min_slab_pages)
1699		return 0;
1700
1701	/*
1702	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1703	 * not have reclaimable pages and if we should not delay the allocation
1704	 * then do not scan.
1705	 */
1706	if (!(gfp_mask & __GFP_WAIT) ||
1707		zone->all_unreclaimable ||
1708		atomic_read(&zone->reclaim_in_progress) > 0 ||
1709		(current->flags & PF_MEMALLOC))
1710			return 0;
1711
1712	/*
1713	 * Only run zone reclaim on the local zone or on zones that do not
1714	 * have associated processors. This will favor the local processor
1715	 * over remote processors and spread off node memory allocations
1716	 * as wide as possible.
1717	 */
1718	node_id = zone_to_nid(zone);
1719	mask = node_to_cpumask(node_id);
1720	if (!cpus_empty(mask) && node_id != numa_node_id())
1721		return 0;
1722	return __zone_reclaim(zone, gfp_mask, order);
1723}
1724#endif
1725