vmscan.c revision f272b7bc447553410dde691aa31fc531adf9c175
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
49#include "internal.h"
50
51struct scan_control {
52	/* Incremented by the number of inactive pages that were scanned */
53	unsigned long nr_scanned;
54
55	/* Number of pages freed so far during a call to shrink_zones() */
56	unsigned long nr_reclaimed;
57
58	/* This context's GFP mask */
59	gfp_t gfp_mask;
60
61	int may_writepage;
62
63	/* Can pages be swapped as part of reclaim? */
64	int may_swap;
65
66	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
67	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68	 * In this context, it doesn't matter that we scan the
69	 * whole list at once. */
70	int swap_cluster_max;
71
72	int swappiness;
73
74	int all_unreclaimable;
75
76	int order;
77
78	/* Which cgroup do we reclaim from */
79	struct mem_cgroup *mem_cgroup;
80
81	/* Pluggable isolate pages callback */
82	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83			unsigned long *scanned, int order, int mode,
84			struct zone *z, struct mem_cgroup *mem_cont,
85			int active, int file);
86};
87
88#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90#ifdef ARCH_HAS_PREFETCH
91#define prefetch_prev_lru_page(_page, _base, _field)			\
92	do {								\
93		if ((_page)->lru.prev != _base) {			\
94			struct page *prev;				\
95									\
96			prev = lru_to_page(&(_page->lru));		\
97			prefetch(&prev->_field);			\
98		}							\
99	} while (0)
100#else
101#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102#endif
103
104#ifdef ARCH_HAS_PREFETCHW
105#define prefetchw_prev_lru_page(_page, _base, _field)			\
106	do {								\
107		if ((_page)->lru.prev != _base) {			\
108			struct page *prev;				\
109									\
110			prev = lru_to_page(&(_page->lru));		\
111			prefetchw(&prev->_field);			\
112		}							\
113	} while (0)
114#else
115#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118/*
119 * From 0 .. 100.  Higher means more swappy.
120 */
121int vm_swappiness = 60;
122long vm_total_pages;	/* The total number of pages which the VM controls */
123
124static LIST_HEAD(shrinker_list);
125static DECLARE_RWSEM(shrinker_rwsem);
126
127#ifdef CONFIG_CGROUP_MEM_RES_CTLR
128#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
129#else
130#define scanning_global_lru(sc)	(1)
131#endif
132
133static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134						  struct scan_control *sc)
135{
136	if (!scanning_global_lru(sc))
137		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
138
139	return &zone->reclaim_stat;
140}
141
142static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
143				   enum lru_list lru)
144{
145	if (!scanning_global_lru(sc))
146		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
147
148	return zone_page_state(zone, NR_LRU_BASE + lru);
149}
150
151
152/*
153 * Add a shrinker callback to be called from the vm
154 */
155void register_shrinker(struct shrinker *shrinker)
156{
157	shrinker->nr = 0;
158	down_write(&shrinker_rwsem);
159	list_add_tail(&shrinker->list, &shrinker_list);
160	up_write(&shrinker_rwsem);
161}
162EXPORT_SYMBOL(register_shrinker);
163
164/*
165 * Remove one
166 */
167void unregister_shrinker(struct shrinker *shrinker)
168{
169	down_write(&shrinker_rwsem);
170	list_del(&shrinker->list);
171	up_write(&shrinker_rwsem);
172}
173EXPORT_SYMBOL(unregister_shrinker);
174
175#define SHRINK_BATCH 128
176/*
177 * Call the shrink functions to age shrinkable caches
178 *
179 * Here we assume it costs one seek to replace a lru page and that it also
180 * takes a seek to recreate a cache object.  With this in mind we age equal
181 * percentages of the lru and ageable caches.  This should balance the seeks
182 * generated by these structures.
183 *
184 * If the vm encountered mapped pages on the LRU it increase the pressure on
185 * slab to avoid swapping.
186 *
187 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
188 *
189 * `lru_pages' represents the number of on-LRU pages in all the zones which
190 * are eligible for the caller's allocation attempt.  It is used for balancing
191 * slab reclaim versus page reclaim.
192 *
193 * Returns the number of slab objects which we shrunk.
194 */
195unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
196			unsigned long lru_pages)
197{
198	struct shrinker *shrinker;
199	unsigned long ret = 0;
200
201	if (scanned == 0)
202		scanned = SWAP_CLUSTER_MAX;
203
204	if (!down_read_trylock(&shrinker_rwsem))
205		return 1;	/* Assume we'll be able to shrink next time */
206
207	list_for_each_entry(shrinker, &shrinker_list, list) {
208		unsigned long long delta;
209		unsigned long total_scan;
210		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
211
212		delta = (4 * scanned) / shrinker->seeks;
213		delta *= max_pass;
214		do_div(delta, lru_pages + 1);
215		shrinker->nr += delta;
216		if (shrinker->nr < 0) {
217			printk(KERN_ERR "%s: nr=%ld\n",
218					__func__, shrinker->nr);
219			shrinker->nr = max_pass;
220		}
221
222		/*
223		 * Avoid risking looping forever due to too large nr value:
224		 * never try to free more than twice the estimate number of
225		 * freeable entries.
226		 */
227		if (shrinker->nr > max_pass * 2)
228			shrinker->nr = max_pass * 2;
229
230		total_scan = shrinker->nr;
231		shrinker->nr = 0;
232
233		while (total_scan >= SHRINK_BATCH) {
234			long this_scan = SHRINK_BATCH;
235			int shrink_ret;
236			int nr_before;
237
238			nr_before = (*shrinker->shrink)(0, gfp_mask);
239			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
240			if (shrink_ret == -1)
241				break;
242			if (shrink_ret < nr_before)
243				ret += nr_before - shrink_ret;
244			count_vm_events(SLABS_SCANNED, this_scan);
245			total_scan -= this_scan;
246
247			cond_resched();
248		}
249
250		shrinker->nr += total_scan;
251	}
252	up_read(&shrinker_rwsem);
253	return ret;
254}
255
256/* Called without lock on whether page is mapped, so answer is unstable */
257static inline int page_mapping_inuse(struct page *page)
258{
259	struct address_space *mapping;
260
261	/* Page is in somebody's page tables. */
262	if (page_mapped(page))
263		return 1;
264
265	/* Be more reluctant to reclaim swapcache than pagecache */
266	if (PageSwapCache(page))
267		return 1;
268
269	mapping = page_mapping(page);
270	if (!mapping)
271		return 0;
272
273	/* File is mmap'd by somebody? */
274	return mapping_mapped(mapping);
275}
276
277static inline int is_page_cache_freeable(struct page *page)
278{
279	return page_count(page) - !!PagePrivate(page) == 2;
280}
281
282static int may_write_to_queue(struct backing_dev_info *bdi)
283{
284	if (current->flags & PF_SWAPWRITE)
285		return 1;
286	if (!bdi_write_congested(bdi))
287		return 1;
288	if (bdi == current->backing_dev_info)
289		return 1;
290	return 0;
291}
292
293/*
294 * We detected a synchronous write error writing a page out.  Probably
295 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
296 * fsync(), msync() or close().
297 *
298 * The tricky part is that after writepage we cannot touch the mapping: nothing
299 * prevents it from being freed up.  But we have a ref on the page and once
300 * that page is locked, the mapping is pinned.
301 *
302 * We're allowed to run sleeping lock_page() here because we know the caller has
303 * __GFP_FS.
304 */
305static void handle_write_error(struct address_space *mapping,
306				struct page *page, int error)
307{
308	lock_page(page);
309	if (page_mapping(page) == mapping)
310		mapping_set_error(mapping, error);
311	unlock_page(page);
312}
313
314/* Request for sync pageout. */
315enum pageout_io {
316	PAGEOUT_IO_ASYNC,
317	PAGEOUT_IO_SYNC,
318};
319
320/* possible outcome of pageout() */
321typedef enum {
322	/* failed to write page out, page is locked */
323	PAGE_KEEP,
324	/* move page to the active list, page is locked */
325	PAGE_ACTIVATE,
326	/* page has been sent to the disk successfully, page is unlocked */
327	PAGE_SUCCESS,
328	/* page is clean and locked */
329	PAGE_CLEAN,
330} pageout_t;
331
332/*
333 * pageout is called by shrink_page_list() for each dirty page.
334 * Calls ->writepage().
335 */
336static pageout_t pageout(struct page *page, struct address_space *mapping,
337						enum pageout_io sync_writeback)
338{
339	/*
340	 * If the page is dirty, only perform writeback if that write
341	 * will be non-blocking.  To prevent this allocation from being
342	 * stalled by pagecache activity.  But note that there may be
343	 * stalls if we need to run get_block().  We could test
344	 * PagePrivate for that.
345	 *
346	 * If this process is currently in generic_file_write() against
347	 * this page's queue, we can perform writeback even if that
348	 * will block.
349	 *
350	 * If the page is swapcache, write it back even if that would
351	 * block, for some throttling. This happens by accident, because
352	 * swap_backing_dev_info is bust: it doesn't reflect the
353	 * congestion state of the swapdevs.  Easy to fix, if needed.
354	 * See swapfile.c:page_queue_congested().
355	 */
356	if (!is_page_cache_freeable(page))
357		return PAGE_KEEP;
358	if (!mapping) {
359		/*
360		 * Some data journaling orphaned pages can have
361		 * page->mapping == NULL while being dirty with clean buffers.
362		 */
363		if (PagePrivate(page)) {
364			if (try_to_free_buffers(page)) {
365				ClearPageDirty(page);
366				printk("%s: orphaned page\n", __func__);
367				return PAGE_CLEAN;
368			}
369		}
370		return PAGE_KEEP;
371	}
372	if (mapping->a_ops->writepage == NULL)
373		return PAGE_ACTIVATE;
374	if (!may_write_to_queue(mapping->backing_dev_info))
375		return PAGE_KEEP;
376
377	if (clear_page_dirty_for_io(page)) {
378		int res;
379		struct writeback_control wbc = {
380			.sync_mode = WB_SYNC_NONE,
381			.nr_to_write = SWAP_CLUSTER_MAX,
382			.range_start = 0,
383			.range_end = LLONG_MAX,
384			.nonblocking = 1,
385			.for_reclaim = 1,
386		};
387
388		SetPageReclaim(page);
389		res = mapping->a_ops->writepage(page, &wbc);
390		if (res < 0)
391			handle_write_error(mapping, page, res);
392		if (res == AOP_WRITEPAGE_ACTIVATE) {
393			ClearPageReclaim(page);
394			return PAGE_ACTIVATE;
395		}
396
397		/*
398		 * Wait on writeback if requested to. This happens when
399		 * direct reclaiming a large contiguous area and the
400		 * first attempt to free a range of pages fails.
401		 */
402		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
403			wait_on_page_writeback(page);
404
405		if (!PageWriteback(page)) {
406			/* synchronous write or broken a_ops? */
407			ClearPageReclaim(page);
408		}
409		inc_zone_page_state(page, NR_VMSCAN_WRITE);
410		return PAGE_SUCCESS;
411	}
412
413	return PAGE_CLEAN;
414}
415
416/*
417 * Same as remove_mapping, but if the page is removed from the mapping, it
418 * gets returned with a refcount of 0.
419 */
420static int __remove_mapping(struct address_space *mapping, struct page *page)
421{
422	BUG_ON(!PageLocked(page));
423	BUG_ON(mapping != page_mapping(page));
424
425	spin_lock_irq(&mapping->tree_lock);
426	/*
427	 * The non racy check for a busy page.
428	 *
429	 * Must be careful with the order of the tests. When someone has
430	 * a ref to the page, it may be possible that they dirty it then
431	 * drop the reference. So if PageDirty is tested before page_count
432	 * here, then the following race may occur:
433	 *
434	 * get_user_pages(&page);
435	 * [user mapping goes away]
436	 * write_to(page);
437	 *				!PageDirty(page)    [good]
438	 * SetPageDirty(page);
439	 * put_page(page);
440	 *				!page_count(page)   [good, discard it]
441	 *
442	 * [oops, our write_to data is lost]
443	 *
444	 * Reversing the order of the tests ensures such a situation cannot
445	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
446	 * load is not satisfied before that of page->_count.
447	 *
448	 * Note that if SetPageDirty is always performed via set_page_dirty,
449	 * and thus under tree_lock, then this ordering is not required.
450	 */
451	if (!page_freeze_refs(page, 2))
452		goto cannot_free;
453	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
454	if (unlikely(PageDirty(page))) {
455		page_unfreeze_refs(page, 2);
456		goto cannot_free;
457	}
458
459	if (PageSwapCache(page)) {
460		swp_entry_t swap = { .val = page_private(page) };
461		__delete_from_swap_cache(page);
462		spin_unlock_irq(&mapping->tree_lock);
463		swap_free(swap);
464	} else {
465		__remove_from_page_cache(page);
466		spin_unlock_irq(&mapping->tree_lock);
467	}
468
469	return 1;
470
471cannot_free:
472	spin_unlock_irq(&mapping->tree_lock);
473	return 0;
474}
475
476/*
477 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
478 * someone else has a ref on the page, abort and return 0.  If it was
479 * successfully detached, return 1.  Assumes the caller has a single ref on
480 * this page.
481 */
482int remove_mapping(struct address_space *mapping, struct page *page)
483{
484	if (__remove_mapping(mapping, page)) {
485		/*
486		 * Unfreezing the refcount with 1 rather than 2 effectively
487		 * drops the pagecache ref for us without requiring another
488		 * atomic operation.
489		 */
490		page_unfreeze_refs(page, 1);
491		return 1;
492	}
493	return 0;
494}
495
496/**
497 * putback_lru_page - put previously isolated page onto appropriate LRU list
498 * @page: page to be put back to appropriate lru list
499 *
500 * Add previously isolated @page to appropriate LRU list.
501 * Page may still be unevictable for other reasons.
502 *
503 * lru_lock must not be held, interrupts must be enabled.
504 */
505#ifdef CONFIG_UNEVICTABLE_LRU
506void putback_lru_page(struct page *page)
507{
508	int lru;
509	int active = !!TestClearPageActive(page);
510	int was_unevictable = PageUnevictable(page);
511
512	VM_BUG_ON(PageLRU(page));
513
514redo:
515	ClearPageUnevictable(page);
516
517	if (page_evictable(page, NULL)) {
518		/*
519		 * For evictable pages, we can use the cache.
520		 * In event of a race, worst case is we end up with an
521		 * unevictable page on [in]active list.
522		 * We know how to handle that.
523		 */
524		lru = active + page_is_file_cache(page);
525		lru_cache_add_lru(page, lru);
526	} else {
527		/*
528		 * Put unevictable pages directly on zone's unevictable
529		 * list.
530		 */
531		lru = LRU_UNEVICTABLE;
532		add_page_to_unevictable_list(page);
533	}
534
535	/*
536	 * page's status can change while we move it among lru. If an evictable
537	 * page is on unevictable list, it never be freed. To avoid that,
538	 * check after we added it to the list, again.
539	 */
540	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
541		if (!isolate_lru_page(page)) {
542			put_page(page);
543			goto redo;
544		}
545		/* This means someone else dropped this page from LRU
546		 * So, it will be freed or putback to LRU again. There is
547		 * nothing to do here.
548		 */
549	}
550
551	if (was_unevictable && lru != LRU_UNEVICTABLE)
552		count_vm_event(UNEVICTABLE_PGRESCUED);
553	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
554		count_vm_event(UNEVICTABLE_PGCULLED);
555
556	put_page(page);		/* drop ref from isolate */
557}
558
559#else /* CONFIG_UNEVICTABLE_LRU */
560
561void putback_lru_page(struct page *page)
562{
563	int lru;
564	VM_BUG_ON(PageLRU(page));
565
566	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
567	lru_cache_add_lru(page, lru);
568	put_page(page);
569}
570#endif /* CONFIG_UNEVICTABLE_LRU */
571
572
573/*
574 * shrink_page_list() returns the number of reclaimed pages
575 */
576static unsigned long shrink_page_list(struct list_head *page_list,
577					struct scan_control *sc,
578					enum pageout_io sync_writeback)
579{
580	LIST_HEAD(ret_pages);
581	struct pagevec freed_pvec;
582	int pgactivate = 0;
583	unsigned long nr_reclaimed = 0;
584
585	cond_resched();
586
587	pagevec_init(&freed_pvec, 1);
588	while (!list_empty(page_list)) {
589		struct address_space *mapping;
590		struct page *page;
591		int may_enter_fs;
592		int referenced;
593
594		cond_resched();
595
596		page = lru_to_page(page_list);
597		list_del(&page->lru);
598
599		if (!trylock_page(page))
600			goto keep;
601
602		VM_BUG_ON(PageActive(page));
603
604		sc->nr_scanned++;
605
606		if (unlikely(!page_evictable(page, NULL)))
607			goto cull_mlocked;
608
609		if (!sc->may_swap && page_mapped(page))
610			goto keep_locked;
611
612		/* Double the slab pressure for mapped and swapcache pages */
613		if (page_mapped(page) || PageSwapCache(page))
614			sc->nr_scanned++;
615
616		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
617			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
618
619		if (PageWriteback(page)) {
620			/*
621			 * Synchronous reclaim is performed in two passes,
622			 * first an asynchronous pass over the list to
623			 * start parallel writeback, and a second synchronous
624			 * pass to wait for the IO to complete.  Wait here
625			 * for any page for which writeback has already
626			 * started.
627			 */
628			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
629				wait_on_page_writeback(page);
630			else
631				goto keep_locked;
632		}
633
634		referenced = page_referenced(page, 1, sc->mem_cgroup);
635		/* In active use or really unfreeable?  Activate it. */
636		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
637					referenced && page_mapping_inuse(page))
638			goto activate_locked;
639
640		/*
641		 * Anonymous process memory has backing store?
642		 * Try to allocate it some swap space here.
643		 */
644		if (PageAnon(page) && !PageSwapCache(page)) {
645			if (!(sc->gfp_mask & __GFP_IO))
646				goto keep_locked;
647			if (!add_to_swap(page))
648				goto activate_locked;
649			may_enter_fs = 1;
650		}
651
652		mapping = page_mapping(page);
653
654		/*
655		 * The page is mapped into the page tables of one or more
656		 * processes. Try to unmap it here.
657		 */
658		if (page_mapped(page) && mapping) {
659			switch (try_to_unmap(page, 0)) {
660			case SWAP_FAIL:
661				goto activate_locked;
662			case SWAP_AGAIN:
663				goto keep_locked;
664			case SWAP_MLOCK:
665				goto cull_mlocked;
666			case SWAP_SUCCESS:
667				; /* try to free the page below */
668			}
669		}
670
671		if (PageDirty(page)) {
672			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
673				goto keep_locked;
674			if (!may_enter_fs)
675				goto keep_locked;
676			if (!sc->may_writepage)
677				goto keep_locked;
678
679			/* Page is dirty, try to write it out here */
680			switch (pageout(page, mapping, sync_writeback)) {
681			case PAGE_KEEP:
682				goto keep_locked;
683			case PAGE_ACTIVATE:
684				goto activate_locked;
685			case PAGE_SUCCESS:
686				if (PageWriteback(page) || PageDirty(page))
687					goto keep;
688				/*
689				 * A synchronous write - probably a ramdisk.  Go
690				 * ahead and try to reclaim the page.
691				 */
692				if (!trylock_page(page))
693					goto keep;
694				if (PageDirty(page) || PageWriteback(page))
695					goto keep_locked;
696				mapping = page_mapping(page);
697			case PAGE_CLEAN:
698				; /* try to free the page below */
699			}
700		}
701
702		/*
703		 * If the page has buffers, try to free the buffer mappings
704		 * associated with this page. If we succeed we try to free
705		 * the page as well.
706		 *
707		 * We do this even if the page is PageDirty().
708		 * try_to_release_page() does not perform I/O, but it is
709		 * possible for a page to have PageDirty set, but it is actually
710		 * clean (all its buffers are clean).  This happens if the
711		 * buffers were written out directly, with submit_bh(). ext3
712		 * will do this, as well as the blockdev mapping.
713		 * try_to_release_page() will discover that cleanness and will
714		 * drop the buffers and mark the page clean - it can be freed.
715		 *
716		 * Rarely, pages can have buffers and no ->mapping.  These are
717		 * the pages which were not successfully invalidated in
718		 * truncate_complete_page().  We try to drop those buffers here
719		 * and if that worked, and the page is no longer mapped into
720		 * process address space (page_count == 1) it can be freed.
721		 * Otherwise, leave the page on the LRU so it is swappable.
722		 */
723		if (PagePrivate(page)) {
724			if (!try_to_release_page(page, sc->gfp_mask))
725				goto activate_locked;
726			if (!mapping && page_count(page) == 1) {
727				unlock_page(page);
728				if (put_page_testzero(page))
729					goto free_it;
730				else {
731					/*
732					 * rare race with speculative reference.
733					 * the speculative reference will free
734					 * this page shortly, so we may
735					 * increment nr_reclaimed here (and
736					 * leave it off the LRU).
737					 */
738					nr_reclaimed++;
739					continue;
740				}
741			}
742		}
743
744		if (!mapping || !__remove_mapping(mapping, page))
745			goto keep_locked;
746
747		/*
748		 * At this point, we have no other references and there is
749		 * no way to pick any more up (removed from LRU, removed
750		 * from pagecache). Can use non-atomic bitops now (and
751		 * we obviously don't have to worry about waking up a process
752		 * waiting on the page lock, because there are no references.
753		 */
754		__clear_page_locked(page);
755free_it:
756		nr_reclaimed++;
757		if (!pagevec_add(&freed_pvec, page)) {
758			__pagevec_free(&freed_pvec);
759			pagevec_reinit(&freed_pvec);
760		}
761		continue;
762
763cull_mlocked:
764		if (PageSwapCache(page))
765			try_to_free_swap(page);
766		unlock_page(page);
767		putback_lru_page(page);
768		continue;
769
770activate_locked:
771		/* Not a candidate for swapping, so reclaim swap space. */
772		if (PageSwapCache(page) && vm_swap_full())
773			try_to_free_swap(page);
774		VM_BUG_ON(PageActive(page));
775		SetPageActive(page);
776		pgactivate++;
777keep_locked:
778		unlock_page(page);
779keep:
780		list_add(&page->lru, &ret_pages);
781		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
782	}
783	list_splice(&ret_pages, page_list);
784	if (pagevec_count(&freed_pvec))
785		__pagevec_free(&freed_pvec);
786	count_vm_events(PGACTIVATE, pgactivate);
787	return nr_reclaimed;
788}
789
790/* LRU Isolation modes. */
791#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
792#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
793#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
794
795/*
796 * Attempt to remove the specified page from its LRU.  Only take this page
797 * if it is of the appropriate PageActive status.  Pages which are being
798 * freed elsewhere are also ignored.
799 *
800 * page:	page to consider
801 * mode:	one of the LRU isolation modes defined above
802 *
803 * returns 0 on success, -ve errno on failure.
804 */
805int __isolate_lru_page(struct page *page, int mode, int file)
806{
807	int ret = -EINVAL;
808
809	/* Only take pages on the LRU. */
810	if (!PageLRU(page))
811		return ret;
812
813	/*
814	 * When checking the active state, we need to be sure we are
815	 * dealing with comparible boolean values.  Take the logical not
816	 * of each.
817	 */
818	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
819		return ret;
820
821	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
822		return ret;
823
824	/*
825	 * When this function is being called for lumpy reclaim, we
826	 * initially look into all LRU pages, active, inactive and
827	 * unevictable; only give shrink_page_list evictable pages.
828	 */
829	if (PageUnevictable(page))
830		return ret;
831
832	ret = -EBUSY;
833
834	if (likely(get_page_unless_zero(page))) {
835		/*
836		 * Be careful not to clear PageLRU until after we're
837		 * sure the page is not being freed elsewhere -- the
838		 * page release code relies on it.
839		 */
840		ClearPageLRU(page);
841		ret = 0;
842		mem_cgroup_del_lru(page);
843	}
844
845	return ret;
846}
847
848/*
849 * zone->lru_lock is heavily contended.  Some of the functions that
850 * shrink the lists perform better by taking out a batch of pages
851 * and working on them outside the LRU lock.
852 *
853 * For pagecache intensive workloads, this function is the hottest
854 * spot in the kernel (apart from copy_*_user functions).
855 *
856 * Appropriate locks must be held before calling this function.
857 *
858 * @nr_to_scan:	The number of pages to look through on the list.
859 * @src:	The LRU list to pull pages off.
860 * @dst:	The temp list to put pages on to.
861 * @scanned:	The number of pages that were scanned.
862 * @order:	The caller's attempted allocation order
863 * @mode:	One of the LRU isolation modes
864 * @file:	True [1] if isolating file [!anon] pages
865 *
866 * returns how many pages were moved onto *@dst.
867 */
868static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
869		struct list_head *src, struct list_head *dst,
870		unsigned long *scanned, int order, int mode, int file)
871{
872	unsigned long nr_taken = 0;
873	unsigned long scan;
874
875	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
876		struct page *page;
877		unsigned long pfn;
878		unsigned long end_pfn;
879		unsigned long page_pfn;
880		int zone_id;
881
882		page = lru_to_page(src);
883		prefetchw_prev_lru_page(page, src, flags);
884
885		VM_BUG_ON(!PageLRU(page));
886
887		switch (__isolate_lru_page(page, mode, file)) {
888		case 0:
889			list_move(&page->lru, dst);
890			nr_taken++;
891			break;
892
893		case -EBUSY:
894			/* else it is being freed elsewhere */
895			list_move(&page->lru, src);
896			continue;
897
898		default:
899			BUG();
900		}
901
902		if (!order)
903			continue;
904
905		/*
906		 * Attempt to take all pages in the order aligned region
907		 * surrounding the tag page.  Only take those pages of
908		 * the same active state as that tag page.  We may safely
909		 * round the target page pfn down to the requested order
910		 * as the mem_map is guarenteed valid out to MAX_ORDER,
911		 * where that page is in a different zone we will detect
912		 * it from its zone id and abort this block scan.
913		 */
914		zone_id = page_zone_id(page);
915		page_pfn = page_to_pfn(page);
916		pfn = page_pfn & ~((1 << order) - 1);
917		end_pfn = pfn + (1 << order);
918		for (; pfn < end_pfn; pfn++) {
919			struct page *cursor_page;
920
921			/* The target page is in the block, ignore it. */
922			if (unlikely(pfn == page_pfn))
923				continue;
924
925			/* Avoid holes within the zone. */
926			if (unlikely(!pfn_valid_within(pfn)))
927				break;
928
929			cursor_page = pfn_to_page(pfn);
930
931			/* Check that we have not crossed a zone boundary. */
932			if (unlikely(page_zone_id(cursor_page) != zone_id))
933				continue;
934			switch (__isolate_lru_page(cursor_page, mode, file)) {
935			case 0:
936				list_move(&cursor_page->lru, dst);
937				nr_taken++;
938				scan++;
939				break;
940
941			case -EBUSY:
942				/* else it is being freed elsewhere */
943				list_move(&cursor_page->lru, src);
944			default:
945				break;	/* ! on LRU or wrong list */
946			}
947		}
948	}
949
950	*scanned = scan;
951	return nr_taken;
952}
953
954static unsigned long isolate_pages_global(unsigned long nr,
955					struct list_head *dst,
956					unsigned long *scanned, int order,
957					int mode, struct zone *z,
958					struct mem_cgroup *mem_cont,
959					int active, int file)
960{
961	int lru = LRU_BASE;
962	if (active)
963		lru += LRU_ACTIVE;
964	if (file)
965		lru += LRU_FILE;
966	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
967								mode, !!file);
968}
969
970/*
971 * clear_active_flags() is a helper for shrink_active_list(), clearing
972 * any active bits from the pages in the list.
973 */
974static unsigned long clear_active_flags(struct list_head *page_list,
975					unsigned int *count)
976{
977	int nr_active = 0;
978	int lru;
979	struct page *page;
980
981	list_for_each_entry(page, page_list, lru) {
982		lru = page_is_file_cache(page);
983		if (PageActive(page)) {
984			lru += LRU_ACTIVE;
985			ClearPageActive(page);
986			nr_active++;
987		}
988		count[lru]++;
989	}
990
991	return nr_active;
992}
993
994/**
995 * isolate_lru_page - tries to isolate a page from its LRU list
996 * @page: page to isolate from its LRU list
997 *
998 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
999 * vmstat statistic corresponding to whatever LRU list the page was on.
1000 *
1001 * Returns 0 if the page was removed from an LRU list.
1002 * Returns -EBUSY if the page was not on an LRU list.
1003 *
1004 * The returned page will have PageLRU() cleared.  If it was found on
1005 * the active list, it will have PageActive set.  If it was found on
1006 * the unevictable list, it will have the PageUnevictable bit set. That flag
1007 * may need to be cleared by the caller before letting the page go.
1008 *
1009 * The vmstat statistic corresponding to the list on which the page was
1010 * found will be decremented.
1011 *
1012 * Restrictions:
1013 * (1) Must be called with an elevated refcount on the page. This is a
1014 *     fundamentnal difference from isolate_lru_pages (which is called
1015 *     without a stable reference).
1016 * (2) the lru_lock must not be held.
1017 * (3) interrupts must be enabled.
1018 */
1019int isolate_lru_page(struct page *page)
1020{
1021	int ret = -EBUSY;
1022
1023	if (PageLRU(page)) {
1024		struct zone *zone = page_zone(page);
1025
1026		spin_lock_irq(&zone->lru_lock);
1027		if (PageLRU(page) && get_page_unless_zero(page)) {
1028			int lru = page_lru(page);
1029			ret = 0;
1030			ClearPageLRU(page);
1031
1032			del_page_from_lru_list(zone, page, lru);
1033		}
1034		spin_unlock_irq(&zone->lru_lock);
1035	}
1036	return ret;
1037}
1038
1039/*
1040 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1041 * of reclaimed pages
1042 */
1043static unsigned long shrink_inactive_list(unsigned long max_scan,
1044			struct zone *zone, struct scan_control *sc,
1045			int priority, int file)
1046{
1047	LIST_HEAD(page_list);
1048	struct pagevec pvec;
1049	unsigned long nr_scanned = 0;
1050	unsigned long nr_reclaimed = 0;
1051	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1052
1053	pagevec_init(&pvec, 1);
1054
1055	lru_add_drain();
1056	spin_lock_irq(&zone->lru_lock);
1057	do {
1058		struct page *page;
1059		unsigned long nr_taken;
1060		unsigned long nr_scan;
1061		unsigned long nr_freed;
1062		unsigned long nr_active;
1063		unsigned int count[NR_LRU_LISTS] = { 0, };
1064		int mode = ISOLATE_INACTIVE;
1065
1066		/*
1067		 * If we need a large contiguous chunk of memory, or have
1068		 * trouble getting a small set of contiguous pages, we
1069		 * will reclaim both active and inactive pages.
1070		 *
1071		 * We use the same threshold as pageout congestion_wait below.
1072		 */
1073		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1074			mode = ISOLATE_BOTH;
1075		else if (sc->order && priority < DEF_PRIORITY - 2)
1076			mode = ISOLATE_BOTH;
1077
1078		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1079			     &page_list, &nr_scan, sc->order, mode,
1080				zone, sc->mem_cgroup, 0, file);
1081		nr_active = clear_active_flags(&page_list, count);
1082		__count_vm_events(PGDEACTIVATE, nr_active);
1083
1084		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1085						-count[LRU_ACTIVE_FILE]);
1086		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1087						-count[LRU_INACTIVE_FILE]);
1088		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1089						-count[LRU_ACTIVE_ANON]);
1090		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1091						-count[LRU_INACTIVE_ANON]);
1092
1093		if (scanning_global_lru(sc))
1094			zone->pages_scanned += nr_scan;
1095
1096		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1097		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1098		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1099		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1100
1101		spin_unlock_irq(&zone->lru_lock);
1102
1103		nr_scanned += nr_scan;
1104		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1105
1106		/*
1107		 * If we are direct reclaiming for contiguous pages and we do
1108		 * not reclaim everything in the list, try again and wait
1109		 * for IO to complete. This will stall high-order allocations
1110		 * but that should be acceptable to the caller
1111		 */
1112		if (nr_freed < nr_taken && !current_is_kswapd() &&
1113					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1114			congestion_wait(WRITE, HZ/10);
1115
1116			/*
1117			 * The attempt at page out may have made some
1118			 * of the pages active, mark them inactive again.
1119			 */
1120			nr_active = clear_active_flags(&page_list, count);
1121			count_vm_events(PGDEACTIVATE, nr_active);
1122
1123			nr_freed += shrink_page_list(&page_list, sc,
1124							PAGEOUT_IO_SYNC);
1125		}
1126
1127		nr_reclaimed += nr_freed;
1128		local_irq_disable();
1129		if (current_is_kswapd()) {
1130			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1131			__count_vm_events(KSWAPD_STEAL, nr_freed);
1132		} else if (scanning_global_lru(sc))
1133			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1134
1135		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1136
1137		if (nr_taken == 0)
1138			goto done;
1139
1140		spin_lock(&zone->lru_lock);
1141		/*
1142		 * Put back any unfreeable pages.
1143		 */
1144		while (!list_empty(&page_list)) {
1145			int lru;
1146			page = lru_to_page(&page_list);
1147			VM_BUG_ON(PageLRU(page));
1148			list_del(&page->lru);
1149			if (unlikely(!page_evictable(page, NULL))) {
1150				spin_unlock_irq(&zone->lru_lock);
1151				putback_lru_page(page);
1152				spin_lock_irq(&zone->lru_lock);
1153				continue;
1154			}
1155			SetPageLRU(page);
1156			lru = page_lru(page);
1157			add_page_to_lru_list(zone, page, lru);
1158			if (PageActive(page)) {
1159				int file = !!page_is_file_cache(page);
1160				reclaim_stat->recent_rotated[file]++;
1161			}
1162			if (!pagevec_add(&pvec, page)) {
1163				spin_unlock_irq(&zone->lru_lock);
1164				__pagevec_release(&pvec);
1165				spin_lock_irq(&zone->lru_lock);
1166			}
1167		}
1168  	} while (nr_scanned < max_scan);
1169	spin_unlock(&zone->lru_lock);
1170done:
1171	local_irq_enable();
1172	pagevec_release(&pvec);
1173	return nr_reclaimed;
1174}
1175
1176/*
1177 * We are about to scan this zone at a certain priority level.  If that priority
1178 * level is smaller (ie: more urgent) than the previous priority, then note
1179 * that priority level within the zone.  This is done so that when the next
1180 * process comes in to scan this zone, it will immediately start out at this
1181 * priority level rather than having to build up its own scanning priority.
1182 * Here, this priority affects only the reclaim-mapped threshold.
1183 */
1184static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1185{
1186	if (priority < zone->prev_priority)
1187		zone->prev_priority = priority;
1188}
1189
1190/*
1191 * This moves pages from the active list to the inactive list.
1192 *
1193 * We move them the other way if the page is referenced by one or more
1194 * processes, from rmap.
1195 *
1196 * If the pages are mostly unmapped, the processing is fast and it is
1197 * appropriate to hold zone->lru_lock across the whole operation.  But if
1198 * the pages are mapped, the processing is slow (page_referenced()) so we
1199 * should drop zone->lru_lock around each page.  It's impossible to balance
1200 * this, so instead we remove the pages from the LRU while processing them.
1201 * It is safe to rely on PG_active against the non-LRU pages in here because
1202 * nobody will play with that bit on a non-LRU page.
1203 *
1204 * The downside is that we have to touch page->_count against each page.
1205 * But we had to alter page->flags anyway.
1206 */
1207
1208
1209static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1210			struct scan_control *sc, int priority, int file)
1211{
1212	unsigned long pgmoved;
1213	int pgdeactivate = 0;
1214	unsigned long pgscanned;
1215	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1216	LIST_HEAD(l_inactive);
1217	struct page *page;
1218	struct pagevec pvec;
1219	enum lru_list lru;
1220	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1221
1222	lru_add_drain();
1223	spin_lock_irq(&zone->lru_lock);
1224	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1225					ISOLATE_ACTIVE, zone,
1226					sc->mem_cgroup, 1, file);
1227	/*
1228	 * zone->pages_scanned is used for detect zone's oom
1229	 * mem_cgroup remembers nr_scan by itself.
1230	 */
1231	if (scanning_global_lru(sc)) {
1232		zone->pages_scanned += pgscanned;
1233	}
1234	reclaim_stat->recent_scanned[!!file] += pgmoved;
1235
1236	if (file)
1237		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1238	else
1239		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1240	spin_unlock_irq(&zone->lru_lock);
1241
1242	pgmoved = 0;
1243	while (!list_empty(&l_hold)) {
1244		cond_resched();
1245		page = lru_to_page(&l_hold);
1246		list_del(&page->lru);
1247
1248		if (unlikely(!page_evictable(page, NULL))) {
1249			putback_lru_page(page);
1250			continue;
1251		}
1252
1253		/* page_referenced clears PageReferenced */
1254		if (page_mapping_inuse(page) &&
1255		    page_referenced(page, 0, sc->mem_cgroup))
1256			pgmoved++;
1257
1258		list_add(&page->lru, &l_inactive);
1259	}
1260
1261	/*
1262	 * Move the pages to the [file or anon] inactive list.
1263	 */
1264	pagevec_init(&pvec, 1);
1265	pgmoved = 0;
1266	lru = LRU_BASE + file * LRU_FILE;
1267
1268	spin_lock_irq(&zone->lru_lock);
1269	/*
1270	 * Count referenced pages from currently used mappings as
1271	 * rotated, even though they are moved to the inactive list.
1272	 * This helps balance scan pressure between file and anonymous
1273	 * pages in get_scan_ratio.
1274	 */
1275	reclaim_stat->recent_rotated[!!file] += pgmoved;
1276
1277	while (!list_empty(&l_inactive)) {
1278		page = lru_to_page(&l_inactive);
1279		prefetchw_prev_lru_page(page, &l_inactive, flags);
1280		VM_BUG_ON(PageLRU(page));
1281		SetPageLRU(page);
1282		VM_BUG_ON(!PageActive(page));
1283		ClearPageActive(page);
1284
1285		list_move(&page->lru, &zone->lru[lru].list);
1286		mem_cgroup_add_lru_list(page, lru);
1287		pgmoved++;
1288		if (!pagevec_add(&pvec, page)) {
1289			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1290			spin_unlock_irq(&zone->lru_lock);
1291			pgdeactivate += pgmoved;
1292			pgmoved = 0;
1293			if (buffer_heads_over_limit)
1294				pagevec_strip(&pvec);
1295			__pagevec_release(&pvec);
1296			spin_lock_irq(&zone->lru_lock);
1297		}
1298	}
1299	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1300	pgdeactivate += pgmoved;
1301	if (buffer_heads_over_limit) {
1302		spin_unlock_irq(&zone->lru_lock);
1303		pagevec_strip(&pvec);
1304		spin_lock_irq(&zone->lru_lock);
1305	}
1306	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1307	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1308	spin_unlock_irq(&zone->lru_lock);
1309	if (vm_swap_full())
1310		pagevec_swap_free(&pvec);
1311
1312	pagevec_release(&pvec);
1313}
1314
1315static int inactive_anon_is_low_global(struct zone *zone)
1316{
1317	unsigned long active, inactive;
1318
1319	active = zone_page_state(zone, NR_ACTIVE_ANON);
1320	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321
1322	if (inactive * zone->inactive_ratio < active)
1323		return 1;
1324
1325	return 0;
1326}
1327
1328/**
1329 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1330 * @zone: zone to check
1331 * @sc:   scan control of this context
1332 *
1333 * Returns true if the zone does not have enough inactive anon pages,
1334 * meaning some active anon pages need to be deactivated.
1335 */
1336static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1337{
1338	int low;
1339
1340	if (scanning_global_lru(sc))
1341		low = inactive_anon_is_low_global(zone);
1342	else
1343		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1344	return low;
1345}
1346
1347static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1348	struct zone *zone, struct scan_control *sc, int priority)
1349{
1350	int file = is_file_lru(lru);
1351
1352	if (lru == LRU_ACTIVE_FILE) {
1353		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1354		return 0;
1355	}
1356
1357	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1358		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1359		return 0;
1360	}
1361	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1362}
1363
1364/*
1365 * Determine how aggressively the anon and file LRU lists should be
1366 * scanned.  The relative value of each set of LRU lists is determined
1367 * by looking at the fraction of the pages scanned we did rotate back
1368 * onto the active list instead of evict.
1369 *
1370 * percent[0] specifies how much pressure to put on ram/swap backed
1371 * memory, while percent[1] determines pressure on the file LRUs.
1372 */
1373static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1374					unsigned long *percent)
1375{
1376	unsigned long anon, file, free;
1377	unsigned long anon_prio, file_prio;
1378	unsigned long ap, fp;
1379	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1380
1381	/* If we have no swap space, do not bother scanning anon pages. */
1382	if (nr_swap_pages <= 0) {
1383		percent[0] = 0;
1384		percent[1] = 100;
1385		return;
1386	}
1387
1388	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1389		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1390	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1391		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1392
1393	if (scanning_global_lru(sc)) {
1394		free  = zone_page_state(zone, NR_FREE_PAGES);
1395		/* If we have very few page cache pages,
1396		   force-scan anon pages. */
1397		if (unlikely(file + free <= zone->pages_high)) {
1398			percent[0] = 100;
1399			percent[1] = 0;
1400			return;
1401		}
1402	}
1403
1404	/*
1405	 * OK, so we have swap space and a fair amount of page cache
1406	 * pages.  We use the recently rotated / recently scanned
1407	 * ratios to determine how valuable each cache is.
1408	 *
1409	 * Because workloads change over time (and to avoid overflow)
1410	 * we keep these statistics as a floating average, which ends
1411	 * up weighing recent references more than old ones.
1412	 *
1413	 * anon in [0], file in [1]
1414	 */
1415	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1416		spin_lock_irq(&zone->lru_lock);
1417		reclaim_stat->recent_scanned[0] /= 2;
1418		reclaim_stat->recent_rotated[0] /= 2;
1419		spin_unlock_irq(&zone->lru_lock);
1420	}
1421
1422	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1423		spin_lock_irq(&zone->lru_lock);
1424		reclaim_stat->recent_scanned[1] /= 2;
1425		reclaim_stat->recent_rotated[1] /= 2;
1426		spin_unlock_irq(&zone->lru_lock);
1427	}
1428
1429	/*
1430	 * With swappiness at 100, anonymous and file have the same priority.
1431	 * This scanning priority is essentially the inverse of IO cost.
1432	 */
1433	anon_prio = sc->swappiness;
1434	file_prio = 200 - sc->swappiness;
1435
1436	/*
1437	 * The amount of pressure on anon vs file pages is inversely
1438	 * proportional to the fraction of recently scanned pages on
1439	 * each list that were recently referenced and in active use.
1440	 */
1441	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1442	ap /= reclaim_stat->recent_rotated[0] + 1;
1443
1444	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1445	fp /= reclaim_stat->recent_rotated[1] + 1;
1446
1447	/* Normalize to percentages */
1448	percent[0] = 100 * ap / (ap + fp + 1);
1449	percent[1] = 100 - percent[0];
1450}
1451
1452
1453/*
1454 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1455 */
1456static void shrink_zone(int priority, struct zone *zone,
1457				struct scan_control *sc)
1458{
1459	unsigned long nr[NR_LRU_LISTS];
1460	unsigned long nr_to_scan;
1461	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1462	enum lru_list l;
1463	unsigned long nr_reclaimed = sc->nr_reclaimed;
1464	unsigned long swap_cluster_max = sc->swap_cluster_max;
1465
1466	get_scan_ratio(zone, sc, percent);
1467
1468	for_each_evictable_lru(l) {
1469		int file = is_file_lru(l);
1470		int scan;
1471
1472		scan = zone_nr_pages(zone, sc, l);
1473		if (priority) {
1474			scan >>= priority;
1475			scan = (scan * percent[file]) / 100;
1476		}
1477		if (scanning_global_lru(sc)) {
1478			zone->lru[l].nr_scan += scan;
1479			nr[l] = zone->lru[l].nr_scan;
1480			if (nr[l] >= swap_cluster_max)
1481				zone->lru[l].nr_scan = 0;
1482			else
1483				nr[l] = 0;
1484		} else
1485			nr[l] = scan;
1486	}
1487
1488	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1489					nr[LRU_INACTIVE_FILE]) {
1490		for_each_evictable_lru(l) {
1491			if (nr[l]) {
1492				nr_to_scan = min(nr[l], swap_cluster_max);
1493				nr[l] -= nr_to_scan;
1494
1495				nr_reclaimed += shrink_list(l, nr_to_scan,
1496							    zone, sc, priority);
1497			}
1498		}
1499		/*
1500		 * On large memory systems, scan >> priority can become
1501		 * really large. This is fine for the starting priority;
1502		 * we want to put equal scanning pressure on each zone.
1503		 * However, if the VM has a harder time of freeing pages,
1504		 * with multiple processes reclaiming pages, the total
1505		 * freeing target can get unreasonably large.
1506		 */
1507		if (nr_reclaimed > swap_cluster_max &&
1508			priority < DEF_PRIORITY && !current_is_kswapd())
1509			break;
1510	}
1511
1512	sc->nr_reclaimed = nr_reclaimed;
1513
1514	/*
1515	 * Even if we did not try to evict anon pages at all, we want to
1516	 * rebalance the anon lru active/inactive ratio.
1517	 */
1518	if (inactive_anon_is_low(zone, sc))
1519		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1520
1521	throttle_vm_writeout(sc->gfp_mask);
1522}
1523
1524/*
1525 * This is the direct reclaim path, for page-allocating processes.  We only
1526 * try to reclaim pages from zones which will satisfy the caller's allocation
1527 * request.
1528 *
1529 * We reclaim from a zone even if that zone is over pages_high.  Because:
1530 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1531 *    allocation or
1532 * b) The zones may be over pages_high but they must go *over* pages_high to
1533 *    satisfy the `incremental min' zone defense algorithm.
1534 *
1535 * If a zone is deemed to be full of pinned pages then just give it a light
1536 * scan then give up on it.
1537 */
1538static void shrink_zones(int priority, struct zonelist *zonelist,
1539					struct scan_control *sc)
1540{
1541	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1542	struct zoneref *z;
1543	struct zone *zone;
1544
1545	sc->all_unreclaimable = 1;
1546	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1547		if (!populated_zone(zone))
1548			continue;
1549		/*
1550		 * Take care memory controller reclaiming has small influence
1551		 * to global LRU.
1552		 */
1553		if (scanning_global_lru(sc)) {
1554			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1555				continue;
1556			note_zone_scanning_priority(zone, priority);
1557
1558			if (zone_is_all_unreclaimable(zone) &&
1559						priority != DEF_PRIORITY)
1560				continue;	/* Let kswapd poll it */
1561			sc->all_unreclaimable = 0;
1562		} else {
1563			/*
1564			 * Ignore cpuset limitation here. We just want to reduce
1565			 * # of used pages by us regardless of memory shortage.
1566			 */
1567			sc->all_unreclaimable = 0;
1568			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1569							priority);
1570		}
1571
1572		shrink_zone(priority, zone, sc);
1573	}
1574}
1575
1576/*
1577 * This is the main entry point to direct page reclaim.
1578 *
1579 * If a full scan of the inactive list fails to free enough memory then we
1580 * are "out of memory" and something needs to be killed.
1581 *
1582 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1583 * high - the zone may be full of dirty or under-writeback pages, which this
1584 * caller can't do much about.  We kick pdflush and take explicit naps in the
1585 * hope that some of these pages can be written.  But if the allocating task
1586 * holds filesystem locks which prevent writeout this might not work, and the
1587 * allocation attempt will fail.
1588 *
1589 * returns:	0, if no pages reclaimed
1590 * 		else, the number of pages reclaimed
1591 */
1592static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1593					struct scan_control *sc)
1594{
1595	int priority;
1596	unsigned long ret = 0;
1597	unsigned long total_scanned = 0;
1598	struct reclaim_state *reclaim_state = current->reclaim_state;
1599	unsigned long lru_pages = 0;
1600	struct zoneref *z;
1601	struct zone *zone;
1602	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1603
1604	delayacct_freepages_start();
1605
1606	if (scanning_global_lru(sc))
1607		count_vm_event(ALLOCSTALL);
1608	/*
1609	 * mem_cgroup will not do shrink_slab.
1610	 */
1611	if (scanning_global_lru(sc)) {
1612		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1613
1614			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1615				continue;
1616
1617			lru_pages += zone_lru_pages(zone);
1618		}
1619	}
1620
1621	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1622		sc->nr_scanned = 0;
1623		if (!priority)
1624			disable_swap_token();
1625		shrink_zones(priority, zonelist, sc);
1626		/*
1627		 * Don't shrink slabs when reclaiming memory from
1628		 * over limit cgroups
1629		 */
1630		if (scanning_global_lru(sc)) {
1631			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1632			if (reclaim_state) {
1633				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1634				reclaim_state->reclaimed_slab = 0;
1635			}
1636		}
1637		total_scanned += sc->nr_scanned;
1638		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1639			ret = sc->nr_reclaimed;
1640			goto out;
1641		}
1642
1643		/*
1644		 * Try to write back as many pages as we just scanned.  This
1645		 * tends to cause slow streaming writers to write data to the
1646		 * disk smoothly, at the dirtying rate, which is nice.   But
1647		 * that's undesirable in laptop mode, where we *want* lumpy
1648		 * writeout.  So in laptop mode, write out the whole world.
1649		 */
1650		if (total_scanned > sc->swap_cluster_max +
1651					sc->swap_cluster_max / 2) {
1652			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1653			sc->may_writepage = 1;
1654		}
1655
1656		/* Take a nap, wait for some writeback to complete */
1657		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1658			congestion_wait(WRITE, HZ/10);
1659	}
1660	/* top priority shrink_zones still had more to do? don't OOM, then */
1661	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1662		ret = sc->nr_reclaimed;
1663out:
1664	/*
1665	 * Now that we've scanned all the zones at this priority level, note
1666	 * that level within the zone so that the next thread which performs
1667	 * scanning of this zone will immediately start out at this priority
1668	 * level.  This affects only the decision whether or not to bring
1669	 * mapped pages onto the inactive list.
1670	 */
1671	if (priority < 0)
1672		priority = 0;
1673
1674	if (scanning_global_lru(sc)) {
1675		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1676
1677			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1678				continue;
1679
1680			zone->prev_priority = priority;
1681		}
1682	} else
1683		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1684
1685	delayacct_freepages_end();
1686
1687	return ret;
1688}
1689
1690unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1691								gfp_t gfp_mask)
1692{
1693	struct scan_control sc = {
1694		.gfp_mask = gfp_mask,
1695		.may_writepage = !laptop_mode,
1696		.swap_cluster_max = SWAP_CLUSTER_MAX,
1697		.may_swap = 1,
1698		.swappiness = vm_swappiness,
1699		.order = order,
1700		.mem_cgroup = NULL,
1701		.isolate_pages = isolate_pages_global,
1702	};
1703
1704	return do_try_to_free_pages(zonelist, &sc);
1705}
1706
1707#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1708
1709unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1710					   gfp_t gfp_mask,
1711					   bool noswap,
1712					   unsigned int swappiness)
1713{
1714	struct scan_control sc = {
1715		.may_writepage = !laptop_mode,
1716		.may_swap = 1,
1717		.swap_cluster_max = SWAP_CLUSTER_MAX,
1718		.swappiness = swappiness,
1719		.order = 0,
1720		.mem_cgroup = mem_cont,
1721		.isolate_pages = mem_cgroup_isolate_pages,
1722	};
1723	struct zonelist *zonelist;
1724
1725	if (noswap)
1726		sc.may_swap = 0;
1727
1728	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1729			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1730	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1731	return do_try_to_free_pages(zonelist, &sc);
1732}
1733#endif
1734
1735/*
1736 * For kswapd, balance_pgdat() will work across all this node's zones until
1737 * they are all at pages_high.
1738 *
1739 * Returns the number of pages which were actually freed.
1740 *
1741 * There is special handling here for zones which are full of pinned pages.
1742 * This can happen if the pages are all mlocked, or if they are all used by
1743 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1744 * What we do is to detect the case where all pages in the zone have been
1745 * scanned twice and there has been zero successful reclaim.  Mark the zone as
1746 * dead and from now on, only perform a short scan.  Basically we're polling
1747 * the zone for when the problem goes away.
1748 *
1749 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1750 * zones which have free_pages > pages_high, but once a zone is found to have
1751 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1752 * of the number of free pages in the lower zones.  This interoperates with
1753 * the page allocator fallback scheme to ensure that aging of pages is balanced
1754 * across the zones.
1755 */
1756static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1757{
1758	int all_zones_ok;
1759	int priority;
1760	int i;
1761	unsigned long total_scanned;
1762	struct reclaim_state *reclaim_state = current->reclaim_state;
1763	struct scan_control sc = {
1764		.gfp_mask = GFP_KERNEL,
1765		.may_swap = 1,
1766		.swap_cluster_max = SWAP_CLUSTER_MAX,
1767		.swappiness = vm_swappiness,
1768		.order = order,
1769		.mem_cgroup = NULL,
1770		.isolate_pages = isolate_pages_global,
1771	};
1772	/*
1773	 * temp_priority is used to remember the scanning priority at which
1774	 * this zone was successfully refilled to free_pages == pages_high.
1775	 */
1776	int temp_priority[MAX_NR_ZONES];
1777
1778loop_again:
1779	total_scanned = 0;
1780	sc.nr_reclaimed = 0;
1781	sc.may_writepage = !laptop_mode;
1782	count_vm_event(PAGEOUTRUN);
1783
1784	for (i = 0; i < pgdat->nr_zones; i++)
1785		temp_priority[i] = DEF_PRIORITY;
1786
1787	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1788		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1789		unsigned long lru_pages = 0;
1790
1791		/* The swap token gets in the way of swapout... */
1792		if (!priority)
1793			disable_swap_token();
1794
1795		all_zones_ok = 1;
1796
1797		/*
1798		 * Scan in the highmem->dma direction for the highest
1799		 * zone which needs scanning
1800		 */
1801		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1802			struct zone *zone = pgdat->node_zones + i;
1803
1804			if (!populated_zone(zone))
1805				continue;
1806
1807			if (zone_is_all_unreclaimable(zone) &&
1808			    priority != DEF_PRIORITY)
1809				continue;
1810
1811			/*
1812			 * Do some background aging of the anon list, to give
1813			 * pages a chance to be referenced before reclaiming.
1814			 */
1815			if (inactive_anon_is_low(zone, &sc))
1816				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1817							&sc, priority, 0);
1818
1819			if (!zone_watermark_ok(zone, order, zone->pages_high,
1820					       0, 0)) {
1821				end_zone = i;
1822				break;
1823			}
1824		}
1825		if (i < 0)
1826			goto out;
1827
1828		for (i = 0; i <= end_zone; i++) {
1829			struct zone *zone = pgdat->node_zones + i;
1830
1831			lru_pages += zone_lru_pages(zone);
1832		}
1833
1834		/*
1835		 * Now scan the zone in the dma->highmem direction, stopping
1836		 * at the last zone which needs scanning.
1837		 *
1838		 * We do this because the page allocator works in the opposite
1839		 * direction.  This prevents the page allocator from allocating
1840		 * pages behind kswapd's direction of progress, which would
1841		 * cause too much scanning of the lower zones.
1842		 */
1843		for (i = 0; i <= end_zone; i++) {
1844			struct zone *zone = pgdat->node_zones + i;
1845			int nr_slab;
1846
1847			if (!populated_zone(zone))
1848				continue;
1849
1850			if (zone_is_all_unreclaimable(zone) &&
1851					priority != DEF_PRIORITY)
1852				continue;
1853
1854			if (!zone_watermark_ok(zone, order, zone->pages_high,
1855					       end_zone, 0))
1856				all_zones_ok = 0;
1857			temp_priority[i] = priority;
1858			sc.nr_scanned = 0;
1859			note_zone_scanning_priority(zone, priority);
1860			/*
1861			 * We put equal pressure on every zone, unless one
1862			 * zone has way too many pages free already.
1863			 */
1864			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1865						end_zone, 0))
1866				shrink_zone(priority, zone, &sc);
1867			reclaim_state->reclaimed_slab = 0;
1868			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1869						lru_pages);
1870			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1871			total_scanned += sc.nr_scanned;
1872			if (zone_is_all_unreclaimable(zone))
1873				continue;
1874			if (nr_slab == 0 && zone->pages_scanned >=
1875						(zone_lru_pages(zone) * 6))
1876					zone_set_flag(zone,
1877						      ZONE_ALL_UNRECLAIMABLE);
1878			/*
1879			 * If we've done a decent amount of scanning and
1880			 * the reclaim ratio is low, start doing writepage
1881			 * even in laptop mode
1882			 */
1883			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1884			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1885				sc.may_writepage = 1;
1886		}
1887		if (all_zones_ok)
1888			break;		/* kswapd: all done */
1889		/*
1890		 * OK, kswapd is getting into trouble.  Take a nap, then take
1891		 * another pass across the zones.
1892		 */
1893		if (total_scanned && priority < DEF_PRIORITY - 2)
1894			congestion_wait(WRITE, HZ/10);
1895
1896		/*
1897		 * We do this so kswapd doesn't build up large priorities for
1898		 * example when it is freeing in parallel with allocators. It
1899		 * matches the direct reclaim path behaviour in terms of impact
1900		 * on zone->*_priority.
1901		 */
1902		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1903			break;
1904	}
1905out:
1906	/*
1907	 * Note within each zone the priority level at which this zone was
1908	 * brought into a happy state.  So that the next thread which scans this
1909	 * zone will start out at that priority level.
1910	 */
1911	for (i = 0; i < pgdat->nr_zones; i++) {
1912		struct zone *zone = pgdat->node_zones + i;
1913
1914		zone->prev_priority = temp_priority[i];
1915	}
1916	if (!all_zones_ok) {
1917		cond_resched();
1918
1919		try_to_freeze();
1920
1921		/*
1922		 * Fragmentation may mean that the system cannot be
1923		 * rebalanced for high-order allocations in all zones.
1924		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1925		 * it means the zones have been fully scanned and are still
1926		 * not balanced. For high-order allocations, there is
1927		 * little point trying all over again as kswapd may
1928		 * infinite loop.
1929		 *
1930		 * Instead, recheck all watermarks at order-0 as they
1931		 * are the most important. If watermarks are ok, kswapd will go
1932		 * back to sleep. High-order users can still perform direct
1933		 * reclaim if they wish.
1934		 */
1935		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1936			order = sc.order = 0;
1937
1938		goto loop_again;
1939	}
1940
1941	return sc.nr_reclaimed;
1942}
1943
1944/*
1945 * The background pageout daemon, started as a kernel thread
1946 * from the init process.
1947 *
1948 * This basically trickles out pages so that we have _some_
1949 * free memory available even if there is no other activity
1950 * that frees anything up. This is needed for things like routing
1951 * etc, where we otherwise might have all activity going on in
1952 * asynchronous contexts that cannot page things out.
1953 *
1954 * If there are applications that are active memory-allocators
1955 * (most normal use), this basically shouldn't matter.
1956 */
1957static int kswapd(void *p)
1958{
1959	unsigned long order;
1960	pg_data_t *pgdat = (pg_data_t*)p;
1961	struct task_struct *tsk = current;
1962	DEFINE_WAIT(wait);
1963	struct reclaim_state reclaim_state = {
1964		.reclaimed_slab = 0,
1965	};
1966	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1967
1968	if (!cpumask_empty(cpumask))
1969		set_cpus_allowed_ptr(tsk, cpumask);
1970	current->reclaim_state = &reclaim_state;
1971
1972	/*
1973	 * Tell the memory management that we're a "memory allocator",
1974	 * and that if we need more memory we should get access to it
1975	 * regardless (see "__alloc_pages()"). "kswapd" should
1976	 * never get caught in the normal page freeing logic.
1977	 *
1978	 * (Kswapd normally doesn't need memory anyway, but sometimes
1979	 * you need a small amount of memory in order to be able to
1980	 * page out something else, and this flag essentially protects
1981	 * us from recursively trying to free more memory as we're
1982	 * trying to free the first piece of memory in the first place).
1983	 */
1984	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1985	set_freezable();
1986
1987	order = 0;
1988	for ( ; ; ) {
1989		unsigned long new_order;
1990
1991		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1992		new_order = pgdat->kswapd_max_order;
1993		pgdat->kswapd_max_order = 0;
1994		if (order < new_order) {
1995			/*
1996			 * Don't sleep if someone wants a larger 'order'
1997			 * allocation
1998			 */
1999			order = new_order;
2000		} else {
2001			if (!freezing(current))
2002				schedule();
2003
2004			order = pgdat->kswapd_max_order;
2005		}
2006		finish_wait(&pgdat->kswapd_wait, &wait);
2007
2008		if (!try_to_freeze()) {
2009			/* We can speed up thawing tasks if we don't call
2010			 * balance_pgdat after returning from the refrigerator
2011			 */
2012			balance_pgdat(pgdat, order);
2013		}
2014	}
2015	return 0;
2016}
2017
2018/*
2019 * A zone is low on free memory, so wake its kswapd task to service it.
2020 */
2021void wakeup_kswapd(struct zone *zone, int order)
2022{
2023	pg_data_t *pgdat;
2024
2025	if (!populated_zone(zone))
2026		return;
2027
2028	pgdat = zone->zone_pgdat;
2029	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2030		return;
2031	if (pgdat->kswapd_max_order < order)
2032		pgdat->kswapd_max_order = order;
2033	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2034		return;
2035	if (!waitqueue_active(&pgdat->kswapd_wait))
2036		return;
2037	wake_up_interruptible(&pgdat->kswapd_wait);
2038}
2039
2040unsigned long global_lru_pages(void)
2041{
2042	return global_page_state(NR_ACTIVE_ANON)
2043		+ global_page_state(NR_ACTIVE_FILE)
2044		+ global_page_state(NR_INACTIVE_ANON)
2045		+ global_page_state(NR_INACTIVE_FILE);
2046}
2047
2048#ifdef CONFIG_PM
2049/*
2050 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2051 * from LRU lists system-wide, for given pass and priority, and returns the
2052 * number of reclaimed pages
2053 *
2054 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2055 */
2056static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2057				      int pass, struct scan_control *sc)
2058{
2059	struct zone *zone;
2060	unsigned long ret = 0;
2061
2062	for_each_zone(zone) {
2063		enum lru_list l;
2064
2065		if (!populated_zone(zone))
2066			continue;
2067		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2068			continue;
2069
2070		for_each_evictable_lru(l) {
2071			enum zone_stat_item ls = NR_LRU_BASE + l;
2072			unsigned long lru_pages = zone_page_state(zone, ls);
2073
2074			/* For pass = 0, we don't shrink the active list */
2075			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2076						l == LRU_ACTIVE_FILE))
2077				continue;
2078
2079			zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2080			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2081				unsigned long nr_to_scan;
2082
2083				zone->lru[l].nr_scan = 0;
2084				nr_to_scan = min(nr_pages, lru_pages);
2085				ret += shrink_list(l, nr_to_scan, zone,
2086								sc, prio);
2087				if (ret >= nr_pages)
2088					return ret;
2089			}
2090		}
2091	}
2092	return ret;
2093}
2094
2095/*
2096 * Try to free `nr_pages' of memory, system-wide, and return the number of
2097 * freed pages.
2098 *
2099 * Rather than trying to age LRUs the aim is to preserve the overall
2100 * LRU order by reclaiming preferentially
2101 * inactive > active > active referenced > active mapped
2102 */
2103unsigned long shrink_all_memory(unsigned long nr_pages)
2104{
2105	unsigned long lru_pages, nr_slab;
2106	unsigned long ret = 0;
2107	int pass;
2108	struct reclaim_state reclaim_state;
2109	struct scan_control sc = {
2110		.gfp_mask = GFP_KERNEL,
2111		.may_swap = 0,
2112		.swap_cluster_max = nr_pages,
2113		.may_writepage = 1,
2114		.isolate_pages = isolate_pages_global,
2115	};
2116
2117	current->reclaim_state = &reclaim_state;
2118
2119	lru_pages = global_lru_pages();
2120	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2121	/* If slab caches are huge, it's better to hit them first */
2122	while (nr_slab >= lru_pages) {
2123		reclaim_state.reclaimed_slab = 0;
2124		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2125		if (!reclaim_state.reclaimed_slab)
2126			break;
2127
2128		ret += reclaim_state.reclaimed_slab;
2129		if (ret >= nr_pages)
2130			goto out;
2131
2132		nr_slab -= reclaim_state.reclaimed_slab;
2133	}
2134
2135	/*
2136	 * We try to shrink LRUs in 5 passes:
2137	 * 0 = Reclaim from inactive_list only
2138	 * 1 = Reclaim from active list but don't reclaim mapped
2139	 * 2 = 2nd pass of type 1
2140	 * 3 = Reclaim mapped (normal reclaim)
2141	 * 4 = 2nd pass of type 3
2142	 */
2143	for (pass = 0; pass < 5; pass++) {
2144		int prio;
2145
2146		/* Force reclaiming mapped pages in the passes #3 and #4 */
2147		if (pass > 2)
2148			sc.may_swap = 1;
2149
2150		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2151			unsigned long nr_to_scan = nr_pages - ret;
2152
2153			sc.nr_scanned = 0;
2154			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2155			if (ret >= nr_pages)
2156				goto out;
2157
2158			reclaim_state.reclaimed_slab = 0;
2159			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2160					global_lru_pages());
2161			ret += reclaim_state.reclaimed_slab;
2162			if (ret >= nr_pages)
2163				goto out;
2164
2165			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2166				congestion_wait(WRITE, HZ / 10);
2167		}
2168	}
2169
2170	/*
2171	 * If ret = 0, we could not shrink LRUs, but there may be something
2172	 * in slab caches
2173	 */
2174	if (!ret) {
2175		do {
2176			reclaim_state.reclaimed_slab = 0;
2177			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2178			ret += reclaim_state.reclaimed_slab;
2179		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2180	}
2181
2182out:
2183	current->reclaim_state = NULL;
2184
2185	return ret;
2186}
2187#endif
2188
2189/* It's optimal to keep kswapds on the same CPUs as their memory, but
2190   not required for correctness.  So if the last cpu in a node goes
2191   away, we get changed to run anywhere: as the first one comes back,
2192   restore their cpu bindings. */
2193static int __devinit cpu_callback(struct notifier_block *nfb,
2194				  unsigned long action, void *hcpu)
2195{
2196	int nid;
2197
2198	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2199		for_each_node_state(nid, N_HIGH_MEMORY) {
2200			pg_data_t *pgdat = NODE_DATA(nid);
2201			node_to_cpumask_ptr(mask, pgdat->node_id);
2202
2203			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2204				/* One of our CPUs online: restore mask */
2205				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2206		}
2207	}
2208	return NOTIFY_OK;
2209}
2210
2211/*
2212 * This kswapd start function will be called by init and node-hot-add.
2213 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2214 */
2215int kswapd_run(int nid)
2216{
2217	pg_data_t *pgdat = NODE_DATA(nid);
2218	int ret = 0;
2219
2220	if (pgdat->kswapd)
2221		return 0;
2222
2223	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2224	if (IS_ERR(pgdat->kswapd)) {
2225		/* failure at boot is fatal */
2226		BUG_ON(system_state == SYSTEM_BOOTING);
2227		printk("Failed to start kswapd on node %d\n",nid);
2228		ret = -1;
2229	}
2230	return ret;
2231}
2232
2233static int __init kswapd_init(void)
2234{
2235	int nid;
2236
2237	swap_setup();
2238	for_each_node_state(nid, N_HIGH_MEMORY)
2239 		kswapd_run(nid);
2240	hotcpu_notifier(cpu_callback, 0);
2241	return 0;
2242}
2243
2244module_init(kswapd_init)
2245
2246#ifdef CONFIG_NUMA
2247/*
2248 * Zone reclaim mode
2249 *
2250 * If non-zero call zone_reclaim when the number of free pages falls below
2251 * the watermarks.
2252 */
2253int zone_reclaim_mode __read_mostly;
2254
2255#define RECLAIM_OFF 0
2256#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2257#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2258#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2259
2260/*
2261 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2262 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2263 * a zone.
2264 */
2265#define ZONE_RECLAIM_PRIORITY 4
2266
2267/*
2268 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2269 * occur.
2270 */
2271int sysctl_min_unmapped_ratio = 1;
2272
2273/*
2274 * If the number of slab pages in a zone grows beyond this percentage then
2275 * slab reclaim needs to occur.
2276 */
2277int sysctl_min_slab_ratio = 5;
2278
2279/*
2280 * Try to free up some pages from this zone through reclaim.
2281 */
2282static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2283{
2284	/* Minimum pages needed in order to stay on node */
2285	const unsigned long nr_pages = 1 << order;
2286	struct task_struct *p = current;
2287	struct reclaim_state reclaim_state;
2288	int priority;
2289	struct scan_control sc = {
2290		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2291		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2292		.swap_cluster_max = max_t(unsigned long, nr_pages,
2293					SWAP_CLUSTER_MAX),
2294		.gfp_mask = gfp_mask,
2295		.swappiness = vm_swappiness,
2296		.isolate_pages = isolate_pages_global,
2297	};
2298	unsigned long slab_reclaimable;
2299
2300	disable_swap_token();
2301	cond_resched();
2302	/*
2303	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2304	 * and we also need to be able to write out pages for RECLAIM_WRITE
2305	 * and RECLAIM_SWAP.
2306	 */
2307	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2308	reclaim_state.reclaimed_slab = 0;
2309	p->reclaim_state = &reclaim_state;
2310
2311	if (zone_page_state(zone, NR_FILE_PAGES) -
2312		zone_page_state(zone, NR_FILE_MAPPED) >
2313		zone->min_unmapped_pages) {
2314		/*
2315		 * Free memory by calling shrink zone with increasing
2316		 * priorities until we have enough memory freed.
2317		 */
2318		priority = ZONE_RECLAIM_PRIORITY;
2319		do {
2320			note_zone_scanning_priority(zone, priority);
2321			shrink_zone(priority, zone, &sc);
2322			priority--;
2323		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2324	}
2325
2326	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2327	if (slab_reclaimable > zone->min_slab_pages) {
2328		/*
2329		 * shrink_slab() does not currently allow us to determine how
2330		 * many pages were freed in this zone. So we take the current
2331		 * number of slab pages and shake the slab until it is reduced
2332		 * by the same nr_pages that we used for reclaiming unmapped
2333		 * pages.
2334		 *
2335		 * Note that shrink_slab will free memory on all zones and may
2336		 * take a long time.
2337		 */
2338		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2339			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2340				slab_reclaimable - nr_pages)
2341			;
2342
2343		/*
2344		 * Update nr_reclaimed by the number of slab pages we
2345		 * reclaimed from this zone.
2346		 */
2347		sc.nr_reclaimed += slab_reclaimable -
2348			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2349	}
2350
2351	p->reclaim_state = NULL;
2352	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2353	return sc.nr_reclaimed >= nr_pages;
2354}
2355
2356int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2357{
2358	int node_id;
2359	int ret;
2360
2361	/*
2362	 * Zone reclaim reclaims unmapped file backed pages and
2363	 * slab pages if we are over the defined limits.
2364	 *
2365	 * A small portion of unmapped file backed pages is needed for
2366	 * file I/O otherwise pages read by file I/O will be immediately
2367	 * thrown out if the zone is overallocated. So we do not reclaim
2368	 * if less than a specified percentage of the zone is used by
2369	 * unmapped file backed pages.
2370	 */
2371	if (zone_page_state(zone, NR_FILE_PAGES) -
2372	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2373	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2374			<= zone->min_slab_pages)
2375		return 0;
2376
2377	if (zone_is_all_unreclaimable(zone))
2378		return 0;
2379
2380	/*
2381	 * Do not scan if the allocation should not be delayed.
2382	 */
2383	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2384			return 0;
2385
2386	/*
2387	 * Only run zone reclaim on the local zone or on zones that do not
2388	 * have associated processors. This will favor the local processor
2389	 * over remote processors and spread off node memory allocations
2390	 * as wide as possible.
2391	 */
2392	node_id = zone_to_nid(zone);
2393	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2394		return 0;
2395
2396	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2397		return 0;
2398	ret = __zone_reclaim(zone, gfp_mask, order);
2399	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2400
2401	return ret;
2402}
2403#endif
2404
2405#ifdef CONFIG_UNEVICTABLE_LRU
2406/*
2407 * page_evictable - test whether a page is evictable
2408 * @page: the page to test
2409 * @vma: the VMA in which the page is or will be mapped, may be NULL
2410 *
2411 * Test whether page is evictable--i.e., should be placed on active/inactive
2412 * lists vs unevictable list.  The vma argument is !NULL when called from the
2413 * fault path to determine how to instantate a new page.
2414 *
2415 * Reasons page might not be evictable:
2416 * (1) page's mapping marked unevictable
2417 * (2) page is part of an mlocked VMA
2418 *
2419 */
2420int page_evictable(struct page *page, struct vm_area_struct *vma)
2421{
2422
2423	if (mapping_unevictable(page_mapping(page)))
2424		return 0;
2425
2426	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2427		return 0;
2428
2429	return 1;
2430}
2431
2432/**
2433 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2434 * @page: page to check evictability and move to appropriate lru list
2435 * @zone: zone page is in
2436 *
2437 * Checks a page for evictability and moves the page to the appropriate
2438 * zone lru list.
2439 *
2440 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2441 * have PageUnevictable set.
2442 */
2443static void check_move_unevictable_page(struct page *page, struct zone *zone)
2444{
2445	VM_BUG_ON(PageActive(page));
2446
2447retry:
2448	ClearPageUnevictable(page);
2449	if (page_evictable(page, NULL)) {
2450		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2451
2452		__dec_zone_state(zone, NR_UNEVICTABLE);
2453		list_move(&page->lru, &zone->lru[l].list);
2454		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2455		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2456		__count_vm_event(UNEVICTABLE_PGRESCUED);
2457	} else {
2458		/*
2459		 * rotate unevictable list
2460		 */
2461		SetPageUnevictable(page);
2462		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2463		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2464		if (page_evictable(page, NULL))
2465			goto retry;
2466	}
2467}
2468
2469/**
2470 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2471 * @mapping: struct address_space to scan for evictable pages
2472 *
2473 * Scan all pages in mapping.  Check unevictable pages for
2474 * evictability and move them to the appropriate zone lru list.
2475 */
2476void scan_mapping_unevictable_pages(struct address_space *mapping)
2477{
2478	pgoff_t next = 0;
2479	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2480			 PAGE_CACHE_SHIFT;
2481	struct zone *zone;
2482	struct pagevec pvec;
2483
2484	if (mapping->nrpages == 0)
2485		return;
2486
2487	pagevec_init(&pvec, 0);
2488	while (next < end &&
2489		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2490		int i;
2491		int pg_scanned = 0;
2492
2493		zone = NULL;
2494
2495		for (i = 0; i < pagevec_count(&pvec); i++) {
2496			struct page *page = pvec.pages[i];
2497			pgoff_t page_index = page->index;
2498			struct zone *pagezone = page_zone(page);
2499
2500			pg_scanned++;
2501			if (page_index > next)
2502				next = page_index;
2503			next++;
2504
2505			if (pagezone != zone) {
2506				if (zone)
2507					spin_unlock_irq(&zone->lru_lock);
2508				zone = pagezone;
2509				spin_lock_irq(&zone->lru_lock);
2510			}
2511
2512			if (PageLRU(page) && PageUnevictable(page))
2513				check_move_unevictable_page(page, zone);
2514		}
2515		if (zone)
2516			spin_unlock_irq(&zone->lru_lock);
2517		pagevec_release(&pvec);
2518
2519		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2520	}
2521
2522}
2523
2524/**
2525 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2526 * @zone - zone of which to scan the unevictable list
2527 *
2528 * Scan @zone's unevictable LRU lists to check for pages that have become
2529 * evictable.  Move those that have to @zone's inactive list where they
2530 * become candidates for reclaim, unless shrink_inactive_zone() decides
2531 * to reactivate them.  Pages that are still unevictable are rotated
2532 * back onto @zone's unevictable list.
2533 */
2534#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2535static void scan_zone_unevictable_pages(struct zone *zone)
2536{
2537	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2538	unsigned long scan;
2539	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2540
2541	while (nr_to_scan > 0) {
2542		unsigned long batch_size = min(nr_to_scan,
2543						SCAN_UNEVICTABLE_BATCH_SIZE);
2544
2545		spin_lock_irq(&zone->lru_lock);
2546		for (scan = 0;  scan < batch_size; scan++) {
2547			struct page *page = lru_to_page(l_unevictable);
2548
2549			if (!trylock_page(page))
2550				continue;
2551
2552			prefetchw_prev_lru_page(page, l_unevictable, flags);
2553
2554			if (likely(PageLRU(page) && PageUnevictable(page)))
2555				check_move_unevictable_page(page, zone);
2556
2557			unlock_page(page);
2558		}
2559		spin_unlock_irq(&zone->lru_lock);
2560
2561		nr_to_scan -= batch_size;
2562	}
2563}
2564
2565
2566/**
2567 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2568 *
2569 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2570 * pages that have become evictable.  Move those back to the zones'
2571 * inactive list where they become candidates for reclaim.
2572 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2573 * and we add swap to the system.  As such, it runs in the context of a task
2574 * that has possibly/probably made some previously unevictable pages
2575 * evictable.
2576 */
2577static void scan_all_zones_unevictable_pages(void)
2578{
2579	struct zone *zone;
2580
2581	for_each_zone(zone) {
2582		scan_zone_unevictable_pages(zone);
2583	}
2584}
2585
2586/*
2587 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2588 * all nodes' unevictable lists for evictable pages
2589 */
2590unsigned long scan_unevictable_pages;
2591
2592int scan_unevictable_handler(struct ctl_table *table, int write,
2593			   struct file *file, void __user *buffer,
2594			   size_t *length, loff_t *ppos)
2595{
2596	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2597
2598	if (write && *(unsigned long *)table->data)
2599		scan_all_zones_unevictable_pages();
2600
2601	scan_unevictable_pages = 0;
2602	return 0;
2603}
2604
2605/*
2606 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2607 * a specified node's per zone unevictable lists for evictable pages.
2608 */
2609
2610static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2611					  struct sysdev_attribute *attr,
2612					  char *buf)
2613{
2614	return sprintf(buf, "0\n");	/* always zero; should fit... */
2615}
2616
2617static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2618					   struct sysdev_attribute *attr,
2619					const char *buf, size_t count)
2620{
2621	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2622	struct zone *zone;
2623	unsigned long res;
2624	unsigned long req = strict_strtoul(buf, 10, &res);
2625
2626	if (!req)
2627		return 1;	/* zero is no-op */
2628
2629	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2630		if (!populated_zone(zone))
2631			continue;
2632		scan_zone_unevictable_pages(zone);
2633	}
2634	return 1;
2635}
2636
2637
2638static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2639			read_scan_unevictable_node,
2640			write_scan_unevictable_node);
2641
2642int scan_unevictable_register_node(struct node *node)
2643{
2644	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2645}
2646
2647void scan_unevictable_unregister_node(struct node *node)
2648{
2649	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2650}
2651
2652#endif
2653