vmscan.c revision f80c0673610e36ae29d63e3297175e22f70dde5f
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/* Which cgroup do we reclaim from */
107	struct mem_cgroup *mem_cgroup;
108
109	/*
110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111	 * are scanned.
112	 */
113	nodemask_t	*nodemask;
114};
115
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field)			\
120	do {								\
121		if ((_page)->lru.prev != _base) {			\
122			struct page *prev;				\
123									\
124			prev = lru_to_page(&(_page->lru));		\
125			prefetch(&prev->_field);			\
126		}							\
127	} while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field)			\
134	do {								\
135		if ((_page)->lru.prev != _base) {			\
136			struct page *prev;				\
137									\
138			prev = lru_to_page(&(_page->lru));		\
139			prefetchw(&prev->_field);			\
140		}							\
141	} while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100.  Higher means more swappy.
148 */
149int vm_swappiness = 60;
150long vm_total_pages;	/* The total number of pages which the VM controls */
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157#else
158#define scanning_global_lru(sc)	(1)
159#endif
160
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162						  struct scan_control *sc)
163{
164	if (!scanning_global_lru(sc))
165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167	return &zone->reclaim_stat;
168}
169
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171				struct scan_control *sc, enum lru_list lru)
172{
173	if (!scanning_global_lru(sc))
174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177	return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
181/*
182 * Add a shrinker callback to be called from the vm
183 */
184void register_shrinker(struct shrinker *shrinker)
185{
186	shrinker->nr = 0;
187	down_write(&shrinker_rwsem);
188	list_add_tail(&shrinker->list, &shrinker_list);
189	up_write(&shrinker_rwsem);
190}
191EXPORT_SYMBOL(register_shrinker);
192
193/*
194 * Remove one
195 */
196void unregister_shrinker(struct shrinker *shrinker)
197{
198	down_write(&shrinker_rwsem);
199	list_del(&shrinker->list);
200	up_write(&shrinker_rwsem);
201}
202EXPORT_SYMBOL(unregister_shrinker);
203
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205				     struct shrink_control *sc,
206				     unsigned long nr_to_scan)
207{
208	sc->nr_to_scan = nr_to_scan;
209	return (*shrinker->shrink)(shrinker, sc);
210}
211
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object.  With this in mind we age equal
218 * percentages of the lru and ageable caches.  This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt.  It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232unsigned long shrink_slab(struct shrink_control *shrink,
233			  unsigned long nr_pages_scanned,
234			  unsigned long lru_pages)
235{
236	struct shrinker *shrinker;
237	unsigned long ret = 0;
238
239	if (nr_pages_scanned == 0)
240		nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242	if (!down_read_trylock(&shrinker_rwsem)) {
243		/* Assume we'll be able to shrink next time */
244		ret = 1;
245		goto out;
246	}
247
248	list_for_each_entry(shrinker, &shrinker_list, list) {
249		unsigned long long delta;
250		unsigned long total_scan;
251		unsigned long max_pass;
252		int shrink_ret = 0;
253		long nr;
254		long new_nr;
255		long batch_size = shrinker->batch ? shrinker->batch
256						  : SHRINK_BATCH;
257
258		/*
259		 * copy the current shrinker scan count into a local variable
260		 * and zero it so that other concurrent shrinker invocations
261		 * don't also do this scanning work.
262		 */
263		do {
264			nr = shrinker->nr;
265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267		total_scan = nr;
268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
270		delta *= max_pass;
271		do_div(delta, lru_pages + 1);
272		total_scan += delta;
273		if (total_scan < 0) {
274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
275			       "delete nr=%ld\n",
276			       shrinker->shrink, total_scan);
277			total_scan = max_pass;
278		}
279
280		/*
281		 * We need to avoid excessive windup on filesystem shrinkers
282		 * due to large numbers of GFP_NOFS allocations causing the
283		 * shrinkers to return -1 all the time. This results in a large
284		 * nr being built up so when a shrink that can do some work
285		 * comes along it empties the entire cache due to nr >>>
286		 * max_pass.  This is bad for sustaining a working set in
287		 * memory.
288		 *
289		 * Hence only allow the shrinker to scan the entire cache when
290		 * a large delta change is calculated directly.
291		 */
292		if (delta < max_pass / 4)
293			total_scan = min(total_scan, max_pass / 2);
294
295		/*
296		 * Avoid risking looping forever due to too large nr value:
297		 * never try to free more than twice the estimate number of
298		 * freeable entries.
299		 */
300		if (total_scan > max_pass * 2)
301			total_scan = max_pass * 2;
302
303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
304					nr_pages_scanned, lru_pages,
305					max_pass, delta, total_scan);
306
307		while (total_scan >= batch_size) {
308			int nr_before;
309
310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
312							batch_size);
313			if (shrink_ret == -1)
314				break;
315			if (shrink_ret < nr_before)
316				ret += nr_before - shrink_ret;
317			count_vm_events(SLABS_SCANNED, batch_size);
318			total_scan -= batch_size;
319
320			cond_resched();
321		}
322
323		/*
324		 * move the unused scan count back into the shrinker in a
325		 * manner that handles concurrent updates. If we exhausted the
326		 * scan, there is no need to do an update.
327		 */
328		do {
329			nr = shrinker->nr;
330			new_nr = total_scan + nr;
331			if (total_scan <= 0)
332				break;
333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336	}
337	up_read(&shrinker_rwsem);
338out:
339	cond_resched();
340	return ret;
341}
342
343static void set_reclaim_mode(int priority, struct scan_control *sc,
344				   bool sync)
345{
346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348	/*
349	 * Initially assume we are entering either lumpy reclaim or
350	 * reclaim/compaction.Depending on the order, we will either set the
351	 * sync mode or just reclaim order-0 pages later.
352	 */
353	if (COMPACTION_BUILD)
354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355	else
356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358	/*
359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360	 * restricting when its set to either costly allocations or when
361	 * under memory pressure
362	 */
363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364		sc->reclaim_mode |= syncmode;
365	else if (sc->order && priority < DEF_PRIORITY - 2)
366		sc->reclaim_mode |= syncmode;
367	else
368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369}
370
371static void reset_reclaim_mode(struct scan_control *sc)
372{
373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374}
375
376static inline int is_page_cache_freeable(struct page *page)
377{
378	/*
379	 * A freeable page cache page is referenced only by the caller
380	 * that isolated the page, the page cache radix tree and
381	 * optional buffer heads at page->private.
382	 */
383	return page_count(page) - page_has_private(page) == 2;
384}
385
386static int may_write_to_queue(struct backing_dev_info *bdi,
387			      struct scan_control *sc)
388{
389	if (current->flags & PF_SWAPWRITE)
390		return 1;
391	if (!bdi_write_congested(bdi))
392		return 1;
393	if (bdi == current->backing_dev_info)
394		return 1;
395
396	/* lumpy reclaim for hugepage often need a lot of write */
397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398		return 1;
399	return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out.  Probably
404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up.  But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415				struct page *page, int error)
416{
417	lock_page(page);
418	if (page_mapping(page) == mapping)
419		mapping_set_error(mapping, error);
420	unlock_page(page);
421}
422
423/* possible outcome of pageout() */
424typedef enum {
425	/* failed to write page out, page is locked */
426	PAGE_KEEP,
427	/* move page to the active list, page is locked */
428	PAGE_ACTIVATE,
429	/* page has been sent to the disk successfully, page is unlocked */
430	PAGE_SUCCESS,
431	/* page is clean and locked */
432	PAGE_CLEAN,
433} pageout_t;
434
435/*
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
438 */
439static pageout_t pageout(struct page *page, struct address_space *mapping,
440			 struct scan_control *sc)
441{
442	/*
443	 * If the page is dirty, only perform writeback if that write
444	 * will be non-blocking.  To prevent this allocation from being
445	 * stalled by pagecache activity.  But note that there may be
446	 * stalls if we need to run get_block().  We could test
447	 * PagePrivate for that.
448	 *
449	 * If this process is currently in __generic_file_aio_write() against
450	 * this page's queue, we can perform writeback even if that
451	 * will block.
452	 *
453	 * If the page is swapcache, write it back even if that would
454	 * block, for some throttling. This happens by accident, because
455	 * swap_backing_dev_info is bust: it doesn't reflect the
456	 * congestion state of the swapdevs.  Easy to fix, if needed.
457	 */
458	if (!is_page_cache_freeable(page))
459		return PAGE_KEEP;
460	if (!mapping) {
461		/*
462		 * Some data journaling orphaned pages can have
463		 * page->mapping == NULL while being dirty with clean buffers.
464		 */
465		if (page_has_private(page)) {
466			if (try_to_free_buffers(page)) {
467				ClearPageDirty(page);
468				printk("%s: orphaned page\n", __func__);
469				return PAGE_CLEAN;
470			}
471		}
472		return PAGE_KEEP;
473	}
474	if (mapping->a_ops->writepage == NULL)
475		return PAGE_ACTIVATE;
476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
477		return PAGE_KEEP;
478
479	if (clear_page_dirty_for_io(page)) {
480		int res;
481		struct writeback_control wbc = {
482			.sync_mode = WB_SYNC_NONE,
483			.nr_to_write = SWAP_CLUSTER_MAX,
484			.range_start = 0,
485			.range_end = LLONG_MAX,
486			.for_reclaim = 1,
487		};
488
489		SetPageReclaim(page);
490		res = mapping->a_ops->writepage(page, &wbc);
491		if (res < 0)
492			handle_write_error(mapping, page, res);
493		if (res == AOP_WRITEPAGE_ACTIVATE) {
494			ClearPageReclaim(page);
495			return PAGE_ACTIVATE;
496		}
497
498		/*
499		 * Wait on writeback if requested to. This happens when
500		 * direct reclaiming a large contiguous area and the
501		 * first attempt to free a range of pages fails.
502		 */
503		if (PageWriteback(page) &&
504		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505			wait_on_page_writeback(page);
506
507		if (!PageWriteback(page)) {
508			/* synchronous write or broken a_ops? */
509			ClearPageReclaim(page);
510		}
511		trace_mm_vmscan_writepage(page,
512			trace_reclaim_flags(page, sc->reclaim_mode));
513		inc_zone_page_state(page, NR_VMSCAN_WRITE);
514		return PAGE_SUCCESS;
515	}
516
517	return PAGE_CLEAN;
518}
519
520/*
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
523 */
524static int __remove_mapping(struct address_space *mapping, struct page *page)
525{
526	BUG_ON(!PageLocked(page));
527	BUG_ON(mapping != page_mapping(page));
528
529	spin_lock_irq(&mapping->tree_lock);
530	/*
531	 * The non racy check for a busy page.
532	 *
533	 * Must be careful with the order of the tests. When someone has
534	 * a ref to the page, it may be possible that they dirty it then
535	 * drop the reference. So if PageDirty is tested before page_count
536	 * here, then the following race may occur:
537	 *
538	 * get_user_pages(&page);
539	 * [user mapping goes away]
540	 * write_to(page);
541	 *				!PageDirty(page)    [good]
542	 * SetPageDirty(page);
543	 * put_page(page);
544	 *				!page_count(page)   [good, discard it]
545	 *
546	 * [oops, our write_to data is lost]
547	 *
548	 * Reversing the order of the tests ensures such a situation cannot
549	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550	 * load is not satisfied before that of page->_count.
551	 *
552	 * Note that if SetPageDirty is always performed via set_page_dirty,
553	 * and thus under tree_lock, then this ordering is not required.
554	 */
555	if (!page_freeze_refs(page, 2))
556		goto cannot_free;
557	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558	if (unlikely(PageDirty(page))) {
559		page_unfreeze_refs(page, 2);
560		goto cannot_free;
561	}
562
563	if (PageSwapCache(page)) {
564		swp_entry_t swap = { .val = page_private(page) };
565		__delete_from_swap_cache(page);
566		spin_unlock_irq(&mapping->tree_lock);
567		swapcache_free(swap, page);
568	} else {
569		void (*freepage)(struct page *);
570
571		freepage = mapping->a_ops->freepage;
572
573		__delete_from_page_cache(page);
574		spin_unlock_irq(&mapping->tree_lock);
575		mem_cgroup_uncharge_cache_page(page);
576
577		if (freepage != NULL)
578			freepage(page);
579	}
580
581	return 1;
582
583cannot_free:
584	spin_unlock_irq(&mapping->tree_lock);
585	return 0;
586}
587
588/*
589 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590 * someone else has a ref on the page, abort and return 0.  If it was
591 * successfully detached, return 1.  Assumes the caller has a single ref on
592 * this page.
593 */
594int remove_mapping(struct address_space *mapping, struct page *page)
595{
596	if (__remove_mapping(mapping, page)) {
597		/*
598		 * Unfreezing the refcount with 1 rather than 2 effectively
599		 * drops the pagecache ref for us without requiring another
600		 * atomic operation.
601		 */
602		page_unfreeze_refs(page, 1);
603		return 1;
604	}
605	return 0;
606}
607
608/**
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
611 *
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
614 *
615 * lru_lock must not be held, interrupts must be enabled.
616 */
617void putback_lru_page(struct page *page)
618{
619	int lru;
620	int active = !!TestClearPageActive(page);
621	int was_unevictable = PageUnevictable(page);
622
623	VM_BUG_ON(PageLRU(page));
624
625redo:
626	ClearPageUnevictable(page);
627
628	if (page_evictable(page, NULL)) {
629		/*
630		 * For evictable pages, we can use the cache.
631		 * In event of a race, worst case is we end up with an
632		 * unevictable page on [in]active list.
633		 * We know how to handle that.
634		 */
635		lru = active + page_lru_base_type(page);
636		lru_cache_add_lru(page, lru);
637	} else {
638		/*
639		 * Put unevictable pages directly on zone's unevictable
640		 * list.
641		 */
642		lru = LRU_UNEVICTABLE;
643		add_page_to_unevictable_list(page);
644		/*
645		 * When racing with an mlock clearing (page is
646		 * unlocked), make sure that if the other thread does
647		 * not observe our setting of PG_lru and fails
648		 * isolation, we see PG_mlocked cleared below and move
649		 * the page back to the evictable list.
650		 *
651		 * The other side is TestClearPageMlocked().
652		 */
653		smp_mb();
654	}
655
656	/*
657	 * page's status can change while we move it among lru. If an evictable
658	 * page is on unevictable list, it never be freed. To avoid that,
659	 * check after we added it to the list, again.
660	 */
661	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662		if (!isolate_lru_page(page)) {
663			put_page(page);
664			goto redo;
665		}
666		/* This means someone else dropped this page from LRU
667		 * So, it will be freed or putback to LRU again. There is
668		 * nothing to do here.
669		 */
670	}
671
672	if (was_unevictable && lru != LRU_UNEVICTABLE)
673		count_vm_event(UNEVICTABLE_PGRESCUED);
674	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675		count_vm_event(UNEVICTABLE_PGCULLED);
676
677	put_page(page);		/* drop ref from isolate */
678}
679
680enum page_references {
681	PAGEREF_RECLAIM,
682	PAGEREF_RECLAIM_CLEAN,
683	PAGEREF_KEEP,
684	PAGEREF_ACTIVATE,
685};
686
687static enum page_references page_check_references(struct page *page,
688						  struct scan_control *sc)
689{
690	int referenced_ptes, referenced_page;
691	unsigned long vm_flags;
692
693	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694	referenced_page = TestClearPageReferenced(page);
695
696	/* Lumpy reclaim - ignore references */
697	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698		return PAGEREF_RECLAIM;
699
700	/*
701	 * Mlock lost the isolation race with us.  Let try_to_unmap()
702	 * move the page to the unevictable list.
703	 */
704	if (vm_flags & VM_LOCKED)
705		return PAGEREF_RECLAIM;
706
707	if (referenced_ptes) {
708		if (PageAnon(page))
709			return PAGEREF_ACTIVATE;
710		/*
711		 * All mapped pages start out with page table
712		 * references from the instantiating fault, so we need
713		 * to look twice if a mapped file page is used more
714		 * than once.
715		 *
716		 * Mark it and spare it for another trip around the
717		 * inactive list.  Another page table reference will
718		 * lead to its activation.
719		 *
720		 * Note: the mark is set for activated pages as well
721		 * so that recently deactivated but used pages are
722		 * quickly recovered.
723		 */
724		SetPageReferenced(page);
725
726		if (referenced_page)
727			return PAGEREF_ACTIVATE;
728
729		return PAGEREF_KEEP;
730	}
731
732	/* Reclaim if clean, defer dirty pages to writeback */
733	if (referenced_page && !PageSwapBacked(page))
734		return PAGEREF_RECLAIM_CLEAN;
735
736	return PAGEREF_RECLAIM;
737}
738
739static noinline_for_stack void free_page_list(struct list_head *free_pages)
740{
741	struct pagevec freed_pvec;
742	struct page *page, *tmp;
743
744	pagevec_init(&freed_pvec, 1);
745
746	list_for_each_entry_safe(page, tmp, free_pages, lru) {
747		list_del(&page->lru);
748		if (!pagevec_add(&freed_pvec, page)) {
749			__pagevec_free(&freed_pvec);
750			pagevec_reinit(&freed_pvec);
751		}
752	}
753
754	pagevec_free(&freed_pvec);
755}
756
757/*
758 * shrink_page_list() returns the number of reclaimed pages
759 */
760static unsigned long shrink_page_list(struct list_head *page_list,
761				      struct zone *zone,
762				      struct scan_control *sc)
763{
764	LIST_HEAD(ret_pages);
765	LIST_HEAD(free_pages);
766	int pgactivate = 0;
767	unsigned long nr_dirty = 0;
768	unsigned long nr_congested = 0;
769	unsigned long nr_reclaimed = 0;
770
771	cond_resched();
772
773	while (!list_empty(page_list)) {
774		enum page_references references;
775		struct address_space *mapping;
776		struct page *page;
777		int may_enter_fs;
778
779		cond_resched();
780
781		page = lru_to_page(page_list);
782		list_del(&page->lru);
783
784		if (!trylock_page(page))
785			goto keep;
786
787		VM_BUG_ON(PageActive(page));
788		VM_BUG_ON(page_zone(page) != zone);
789
790		sc->nr_scanned++;
791
792		if (unlikely(!page_evictable(page, NULL)))
793			goto cull_mlocked;
794
795		if (!sc->may_unmap && page_mapped(page))
796			goto keep_locked;
797
798		/* Double the slab pressure for mapped and swapcache pages */
799		if (page_mapped(page) || PageSwapCache(page))
800			sc->nr_scanned++;
801
802		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805		if (PageWriteback(page)) {
806			/*
807			 * Synchronous reclaim is performed in two passes,
808			 * first an asynchronous pass over the list to
809			 * start parallel writeback, and a second synchronous
810			 * pass to wait for the IO to complete.  Wait here
811			 * for any page for which writeback has already
812			 * started.
813			 */
814			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815			    may_enter_fs)
816				wait_on_page_writeback(page);
817			else {
818				unlock_page(page);
819				goto keep_lumpy;
820			}
821		}
822
823		references = page_check_references(page, sc);
824		switch (references) {
825		case PAGEREF_ACTIVATE:
826			goto activate_locked;
827		case PAGEREF_KEEP:
828			goto keep_locked;
829		case PAGEREF_RECLAIM:
830		case PAGEREF_RECLAIM_CLEAN:
831			; /* try to reclaim the page below */
832		}
833
834		/*
835		 * Anonymous process memory has backing store?
836		 * Try to allocate it some swap space here.
837		 */
838		if (PageAnon(page) && !PageSwapCache(page)) {
839			if (!(sc->gfp_mask & __GFP_IO))
840				goto keep_locked;
841			if (!add_to_swap(page))
842				goto activate_locked;
843			may_enter_fs = 1;
844		}
845
846		mapping = page_mapping(page);
847
848		/*
849		 * The page is mapped into the page tables of one or more
850		 * processes. Try to unmap it here.
851		 */
852		if (page_mapped(page) && mapping) {
853			switch (try_to_unmap(page, TTU_UNMAP)) {
854			case SWAP_FAIL:
855				goto activate_locked;
856			case SWAP_AGAIN:
857				goto keep_locked;
858			case SWAP_MLOCK:
859				goto cull_mlocked;
860			case SWAP_SUCCESS:
861				; /* try to free the page below */
862			}
863		}
864
865		if (PageDirty(page)) {
866			nr_dirty++;
867
868			if (references == PAGEREF_RECLAIM_CLEAN)
869				goto keep_locked;
870			if (!may_enter_fs)
871				goto keep_locked;
872			if (!sc->may_writepage)
873				goto keep_locked;
874
875			/* Page is dirty, try to write it out here */
876			switch (pageout(page, mapping, sc)) {
877			case PAGE_KEEP:
878				nr_congested++;
879				goto keep_locked;
880			case PAGE_ACTIVATE:
881				goto activate_locked;
882			case PAGE_SUCCESS:
883				if (PageWriteback(page))
884					goto keep_lumpy;
885				if (PageDirty(page))
886					goto keep;
887
888				/*
889				 * A synchronous write - probably a ramdisk.  Go
890				 * ahead and try to reclaim the page.
891				 */
892				if (!trylock_page(page))
893					goto keep;
894				if (PageDirty(page) || PageWriteback(page))
895					goto keep_locked;
896				mapping = page_mapping(page);
897			case PAGE_CLEAN:
898				; /* try to free the page below */
899			}
900		}
901
902		/*
903		 * If the page has buffers, try to free the buffer mappings
904		 * associated with this page. If we succeed we try to free
905		 * the page as well.
906		 *
907		 * We do this even if the page is PageDirty().
908		 * try_to_release_page() does not perform I/O, but it is
909		 * possible for a page to have PageDirty set, but it is actually
910		 * clean (all its buffers are clean).  This happens if the
911		 * buffers were written out directly, with submit_bh(). ext3
912		 * will do this, as well as the blockdev mapping.
913		 * try_to_release_page() will discover that cleanness and will
914		 * drop the buffers and mark the page clean - it can be freed.
915		 *
916		 * Rarely, pages can have buffers and no ->mapping.  These are
917		 * the pages which were not successfully invalidated in
918		 * truncate_complete_page().  We try to drop those buffers here
919		 * and if that worked, and the page is no longer mapped into
920		 * process address space (page_count == 1) it can be freed.
921		 * Otherwise, leave the page on the LRU so it is swappable.
922		 */
923		if (page_has_private(page)) {
924			if (!try_to_release_page(page, sc->gfp_mask))
925				goto activate_locked;
926			if (!mapping && page_count(page) == 1) {
927				unlock_page(page);
928				if (put_page_testzero(page))
929					goto free_it;
930				else {
931					/*
932					 * rare race with speculative reference.
933					 * the speculative reference will free
934					 * this page shortly, so we may
935					 * increment nr_reclaimed here (and
936					 * leave it off the LRU).
937					 */
938					nr_reclaimed++;
939					continue;
940				}
941			}
942		}
943
944		if (!mapping || !__remove_mapping(mapping, page))
945			goto keep_locked;
946
947		/*
948		 * At this point, we have no other references and there is
949		 * no way to pick any more up (removed from LRU, removed
950		 * from pagecache). Can use non-atomic bitops now (and
951		 * we obviously don't have to worry about waking up a process
952		 * waiting on the page lock, because there are no references.
953		 */
954		__clear_page_locked(page);
955free_it:
956		nr_reclaimed++;
957
958		/*
959		 * Is there need to periodically free_page_list? It would
960		 * appear not as the counts should be low
961		 */
962		list_add(&page->lru, &free_pages);
963		continue;
964
965cull_mlocked:
966		if (PageSwapCache(page))
967			try_to_free_swap(page);
968		unlock_page(page);
969		putback_lru_page(page);
970		reset_reclaim_mode(sc);
971		continue;
972
973activate_locked:
974		/* Not a candidate for swapping, so reclaim swap space. */
975		if (PageSwapCache(page) && vm_swap_full())
976			try_to_free_swap(page);
977		VM_BUG_ON(PageActive(page));
978		SetPageActive(page);
979		pgactivate++;
980keep_locked:
981		unlock_page(page);
982keep:
983		reset_reclaim_mode(sc);
984keep_lumpy:
985		list_add(&page->lru, &ret_pages);
986		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987	}
988
989	/*
990	 * Tag a zone as congested if all the dirty pages encountered were
991	 * backed by a congested BDI. In this case, reclaimers should just
992	 * back off and wait for congestion to clear because further reclaim
993	 * will encounter the same problem
994	 */
995	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996		zone_set_flag(zone, ZONE_CONGESTED);
997
998	free_page_list(&free_pages);
999
1000	list_splice(&ret_pages, page_list);
1001	count_vm_events(PGACTIVATE, pgactivate);
1002	return nr_reclaimed;
1003}
1004
1005/*
1006 * Attempt to remove the specified page from its LRU.  Only take this page
1007 * if it is of the appropriate PageActive status.  Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page:	page to consider
1011 * mode:	one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016{
1017	bool all_lru_mode;
1018	int ret = -EINVAL;
1019
1020	/* Only take pages on the LRU. */
1021	if (!PageLRU(page))
1022		return ret;
1023
1024	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027	/*
1028	 * When checking the active state, we need to be sure we are
1029	 * dealing with comparible boolean values.  Take the logical not
1030	 * of each.
1031	 */
1032	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033		return ret;
1034
1035	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036		return ret;
1037
1038	/*
1039	 * When this function is being called for lumpy reclaim, we
1040	 * initially look into all LRU pages, active, inactive and
1041	 * unevictable; only give shrink_page_list evictable pages.
1042	 */
1043	if (PageUnevictable(page))
1044		return ret;
1045
1046	ret = -EBUSY;
1047
1048	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1049		return ret;
1050
1051	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1052		return ret;
1053
1054	if (likely(get_page_unless_zero(page))) {
1055		/*
1056		 * Be careful not to clear PageLRU until after we're
1057		 * sure the page is not being freed elsewhere -- the
1058		 * page release code relies on it.
1059		 */
1060		ClearPageLRU(page);
1061		ret = 0;
1062	}
1063
1064	return ret;
1065}
1066
1067/*
1068 * zone->lru_lock is heavily contended.  Some of the functions that
1069 * shrink the lists perform better by taking out a batch of pages
1070 * and working on them outside the LRU lock.
1071 *
1072 * For pagecache intensive workloads, this function is the hottest
1073 * spot in the kernel (apart from copy_*_user functions).
1074 *
1075 * Appropriate locks must be held before calling this function.
1076 *
1077 * @nr_to_scan:	The number of pages to look through on the list.
1078 * @src:	The LRU list to pull pages off.
1079 * @dst:	The temp list to put pages on to.
1080 * @scanned:	The number of pages that were scanned.
1081 * @order:	The caller's attempted allocation order
1082 * @mode:	One of the LRU isolation modes
1083 * @file:	True [1] if isolating file [!anon] pages
1084 *
1085 * returns how many pages were moved onto *@dst.
1086 */
1087static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1088		struct list_head *src, struct list_head *dst,
1089		unsigned long *scanned, int order, isolate_mode_t mode,
1090		int file)
1091{
1092	unsigned long nr_taken = 0;
1093	unsigned long nr_lumpy_taken = 0;
1094	unsigned long nr_lumpy_dirty = 0;
1095	unsigned long nr_lumpy_failed = 0;
1096	unsigned long scan;
1097
1098	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1099		struct page *page;
1100		unsigned long pfn;
1101		unsigned long end_pfn;
1102		unsigned long page_pfn;
1103		int zone_id;
1104
1105		page = lru_to_page(src);
1106		prefetchw_prev_lru_page(page, src, flags);
1107
1108		VM_BUG_ON(!PageLRU(page));
1109
1110		switch (__isolate_lru_page(page, mode, file)) {
1111		case 0:
1112			list_move(&page->lru, dst);
1113			mem_cgroup_del_lru(page);
1114			nr_taken += hpage_nr_pages(page);
1115			break;
1116
1117		case -EBUSY:
1118			/* else it is being freed elsewhere */
1119			list_move(&page->lru, src);
1120			mem_cgroup_rotate_lru_list(page, page_lru(page));
1121			continue;
1122
1123		default:
1124			BUG();
1125		}
1126
1127		if (!order)
1128			continue;
1129
1130		/*
1131		 * Attempt to take all pages in the order aligned region
1132		 * surrounding the tag page.  Only take those pages of
1133		 * the same active state as that tag page.  We may safely
1134		 * round the target page pfn down to the requested order
1135		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1136		 * where that page is in a different zone we will detect
1137		 * it from its zone id and abort this block scan.
1138		 */
1139		zone_id = page_zone_id(page);
1140		page_pfn = page_to_pfn(page);
1141		pfn = page_pfn & ~((1 << order) - 1);
1142		end_pfn = pfn + (1 << order);
1143		for (; pfn < end_pfn; pfn++) {
1144			struct page *cursor_page;
1145
1146			/* The target page is in the block, ignore it. */
1147			if (unlikely(pfn == page_pfn))
1148				continue;
1149
1150			/* Avoid holes within the zone. */
1151			if (unlikely(!pfn_valid_within(pfn)))
1152				break;
1153
1154			cursor_page = pfn_to_page(pfn);
1155
1156			/* Check that we have not crossed a zone boundary. */
1157			if (unlikely(page_zone_id(cursor_page) != zone_id))
1158				break;
1159
1160			/*
1161			 * If we don't have enough swap space, reclaiming of
1162			 * anon page which don't already have a swap slot is
1163			 * pointless.
1164			 */
1165			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1166			    !PageSwapCache(cursor_page))
1167				break;
1168
1169			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1170				list_move(&cursor_page->lru, dst);
1171				mem_cgroup_del_lru(cursor_page);
1172				nr_taken += hpage_nr_pages(page);
1173				nr_lumpy_taken++;
1174				if (PageDirty(cursor_page))
1175					nr_lumpy_dirty++;
1176				scan++;
1177			} else {
1178				/*
1179				 * Check if the page is freed already.
1180				 *
1181				 * We can't use page_count() as that
1182				 * requires compound_head and we don't
1183				 * have a pin on the page here. If a
1184				 * page is tail, we may or may not
1185				 * have isolated the head, so assume
1186				 * it's not free, it'd be tricky to
1187				 * track the head status without a
1188				 * page pin.
1189				 */
1190				if (!PageTail(cursor_page) &&
1191				    !atomic_read(&cursor_page->_count))
1192					continue;
1193				break;
1194			}
1195		}
1196
1197		/* If we break out of the loop above, lumpy reclaim failed */
1198		if (pfn < end_pfn)
1199			nr_lumpy_failed++;
1200	}
1201
1202	*scanned = scan;
1203
1204	trace_mm_vmscan_lru_isolate(order,
1205			nr_to_scan, scan,
1206			nr_taken,
1207			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1208			mode);
1209	return nr_taken;
1210}
1211
1212static unsigned long isolate_pages_global(unsigned long nr,
1213					struct list_head *dst,
1214					unsigned long *scanned, int order,
1215					isolate_mode_t mode,
1216					struct zone *z,	int active, int file)
1217{
1218	int lru = LRU_BASE;
1219	if (active)
1220		lru += LRU_ACTIVE;
1221	if (file)
1222		lru += LRU_FILE;
1223	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1224								mode, file);
1225}
1226
1227/*
1228 * clear_active_flags() is a helper for shrink_active_list(), clearing
1229 * any active bits from the pages in the list.
1230 */
1231static unsigned long clear_active_flags(struct list_head *page_list,
1232					unsigned int *count)
1233{
1234	int nr_active = 0;
1235	int lru;
1236	struct page *page;
1237
1238	list_for_each_entry(page, page_list, lru) {
1239		int numpages = hpage_nr_pages(page);
1240		lru = page_lru_base_type(page);
1241		if (PageActive(page)) {
1242			lru += LRU_ACTIVE;
1243			ClearPageActive(page);
1244			nr_active += numpages;
1245		}
1246		if (count)
1247			count[lru] += numpages;
1248	}
1249
1250	return nr_active;
1251}
1252
1253/**
1254 * isolate_lru_page - tries to isolate a page from its LRU list
1255 * @page: page to isolate from its LRU list
1256 *
1257 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1258 * vmstat statistic corresponding to whatever LRU list the page was on.
1259 *
1260 * Returns 0 if the page was removed from an LRU list.
1261 * Returns -EBUSY if the page was not on an LRU list.
1262 *
1263 * The returned page will have PageLRU() cleared.  If it was found on
1264 * the active list, it will have PageActive set.  If it was found on
1265 * the unevictable list, it will have the PageUnevictable bit set. That flag
1266 * may need to be cleared by the caller before letting the page go.
1267 *
1268 * The vmstat statistic corresponding to the list on which the page was
1269 * found will be decremented.
1270 *
1271 * Restrictions:
1272 * (1) Must be called with an elevated refcount on the page. This is a
1273 *     fundamentnal difference from isolate_lru_pages (which is called
1274 *     without a stable reference).
1275 * (2) the lru_lock must not be held.
1276 * (3) interrupts must be enabled.
1277 */
1278int isolate_lru_page(struct page *page)
1279{
1280	int ret = -EBUSY;
1281
1282	VM_BUG_ON(!page_count(page));
1283
1284	if (PageLRU(page)) {
1285		struct zone *zone = page_zone(page);
1286
1287		spin_lock_irq(&zone->lru_lock);
1288		if (PageLRU(page)) {
1289			int lru = page_lru(page);
1290			ret = 0;
1291			get_page(page);
1292			ClearPageLRU(page);
1293
1294			del_page_from_lru_list(zone, page, lru);
1295		}
1296		spin_unlock_irq(&zone->lru_lock);
1297	}
1298	return ret;
1299}
1300
1301/*
1302 * Are there way too many processes in the direct reclaim path already?
1303 */
1304static int too_many_isolated(struct zone *zone, int file,
1305		struct scan_control *sc)
1306{
1307	unsigned long inactive, isolated;
1308
1309	if (current_is_kswapd())
1310		return 0;
1311
1312	if (!scanning_global_lru(sc))
1313		return 0;
1314
1315	if (file) {
1316		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1317		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1318	} else {
1319		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1320		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1321	}
1322
1323	return isolated > inactive;
1324}
1325
1326/*
1327 * TODO: Try merging with migrations version of putback_lru_pages
1328 */
1329static noinline_for_stack void
1330putback_lru_pages(struct zone *zone, struct scan_control *sc,
1331				unsigned long nr_anon, unsigned long nr_file,
1332				struct list_head *page_list)
1333{
1334	struct page *page;
1335	struct pagevec pvec;
1336	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1337
1338	pagevec_init(&pvec, 1);
1339
1340	/*
1341	 * Put back any unfreeable pages.
1342	 */
1343	spin_lock(&zone->lru_lock);
1344	while (!list_empty(page_list)) {
1345		int lru;
1346		page = lru_to_page(page_list);
1347		VM_BUG_ON(PageLRU(page));
1348		list_del(&page->lru);
1349		if (unlikely(!page_evictable(page, NULL))) {
1350			spin_unlock_irq(&zone->lru_lock);
1351			putback_lru_page(page);
1352			spin_lock_irq(&zone->lru_lock);
1353			continue;
1354		}
1355		SetPageLRU(page);
1356		lru = page_lru(page);
1357		add_page_to_lru_list(zone, page, lru);
1358		if (is_active_lru(lru)) {
1359			int file = is_file_lru(lru);
1360			int numpages = hpage_nr_pages(page);
1361			reclaim_stat->recent_rotated[file] += numpages;
1362		}
1363		if (!pagevec_add(&pvec, page)) {
1364			spin_unlock_irq(&zone->lru_lock);
1365			__pagevec_release(&pvec);
1366			spin_lock_irq(&zone->lru_lock);
1367		}
1368	}
1369	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1370	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1371
1372	spin_unlock_irq(&zone->lru_lock);
1373	pagevec_release(&pvec);
1374}
1375
1376static noinline_for_stack void update_isolated_counts(struct zone *zone,
1377					struct scan_control *sc,
1378					unsigned long *nr_anon,
1379					unsigned long *nr_file,
1380					struct list_head *isolated_list)
1381{
1382	unsigned long nr_active;
1383	unsigned int count[NR_LRU_LISTS] = { 0, };
1384	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1385
1386	nr_active = clear_active_flags(isolated_list, count);
1387	__count_vm_events(PGDEACTIVATE, nr_active);
1388
1389	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1390			      -count[LRU_ACTIVE_FILE]);
1391	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1392			      -count[LRU_INACTIVE_FILE]);
1393	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1394			      -count[LRU_ACTIVE_ANON]);
1395	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1396			      -count[LRU_INACTIVE_ANON]);
1397
1398	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1399	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1400	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1401	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1402
1403	reclaim_stat->recent_scanned[0] += *nr_anon;
1404	reclaim_stat->recent_scanned[1] += *nr_file;
1405}
1406
1407/*
1408 * Returns true if the caller should wait to clean dirty/writeback pages.
1409 *
1410 * If we are direct reclaiming for contiguous pages and we do not reclaim
1411 * everything in the list, try again and wait for writeback IO to complete.
1412 * This will stall high-order allocations noticeably. Only do that when really
1413 * need to free the pages under high memory pressure.
1414 */
1415static inline bool should_reclaim_stall(unsigned long nr_taken,
1416					unsigned long nr_freed,
1417					int priority,
1418					struct scan_control *sc)
1419{
1420	int lumpy_stall_priority;
1421
1422	/* kswapd should not stall on sync IO */
1423	if (current_is_kswapd())
1424		return false;
1425
1426	/* Only stall on lumpy reclaim */
1427	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1428		return false;
1429
1430	/* If we have reclaimed everything on the isolated list, no stall */
1431	if (nr_freed == nr_taken)
1432		return false;
1433
1434	/*
1435	 * For high-order allocations, there are two stall thresholds.
1436	 * High-cost allocations stall immediately where as lower
1437	 * order allocations such as stacks require the scanning
1438	 * priority to be much higher before stalling.
1439	 */
1440	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1441		lumpy_stall_priority = DEF_PRIORITY;
1442	else
1443		lumpy_stall_priority = DEF_PRIORITY / 3;
1444
1445	return priority <= lumpy_stall_priority;
1446}
1447
1448/*
1449 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1450 * of reclaimed pages
1451 */
1452static noinline_for_stack unsigned long
1453shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1454			struct scan_control *sc, int priority, int file)
1455{
1456	LIST_HEAD(page_list);
1457	unsigned long nr_scanned;
1458	unsigned long nr_reclaimed = 0;
1459	unsigned long nr_taken;
1460	unsigned long nr_anon;
1461	unsigned long nr_file;
1462	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1463
1464	while (unlikely(too_many_isolated(zone, file, sc))) {
1465		congestion_wait(BLK_RW_ASYNC, HZ/10);
1466
1467		/* We are about to die and free our memory. Return now. */
1468		if (fatal_signal_pending(current))
1469			return SWAP_CLUSTER_MAX;
1470	}
1471
1472	set_reclaim_mode(priority, sc, false);
1473	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1474		reclaim_mode |= ISOLATE_ACTIVE;
1475
1476	lru_add_drain();
1477
1478	if (!sc->may_unmap)
1479		reclaim_mode |= ISOLATE_UNMAPPED;
1480	if (!sc->may_writepage)
1481		reclaim_mode |= ISOLATE_CLEAN;
1482
1483	spin_lock_irq(&zone->lru_lock);
1484
1485	if (scanning_global_lru(sc)) {
1486		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1487			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1488		zone->pages_scanned += nr_scanned;
1489		if (current_is_kswapd())
1490			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1491					       nr_scanned);
1492		else
1493			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1494					       nr_scanned);
1495	} else {
1496		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1497			&nr_scanned, sc->order, reclaim_mode, zone,
1498			sc->mem_cgroup, 0, file);
1499		/*
1500		 * mem_cgroup_isolate_pages() keeps track of
1501		 * scanned pages on its own.
1502		 */
1503	}
1504
1505	if (nr_taken == 0) {
1506		spin_unlock_irq(&zone->lru_lock);
1507		return 0;
1508	}
1509
1510	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1511
1512	spin_unlock_irq(&zone->lru_lock);
1513
1514	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1515
1516	/* Check if we should syncronously wait for writeback */
1517	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1518		set_reclaim_mode(priority, sc, true);
1519		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1520	}
1521
1522	local_irq_disable();
1523	if (current_is_kswapd())
1524		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1525	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1526
1527	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1528
1529	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1530		zone_idx(zone),
1531		nr_scanned, nr_reclaimed,
1532		priority,
1533		trace_shrink_flags(file, sc->reclaim_mode));
1534	return nr_reclaimed;
1535}
1536
1537/*
1538 * This moves pages from the active list to the inactive list.
1539 *
1540 * We move them the other way if the page is referenced by one or more
1541 * processes, from rmap.
1542 *
1543 * If the pages are mostly unmapped, the processing is fast and it is
1544 * appropriate to hold zone->lru_lock across the whole operation.  But if
1545 * the pages are mapped, the processing is slow (page_referenced()) so we
1546 * should drop zone->lru_lock around each page.  It's impossible to balance
1547 * this, so instead we remove the pages from the LRU while processing them.
1548 * It is safe to rely on PG_active against the non-LRU pages in here because
1549 * nobody will play with that bit on a non-LRU page.
1550 *
1551 * The downside is that we have to touch page->_count against each page.
1552 * But we had to alter page->flags anyway.
1553 */
1554
1555static void move_active_pages_to_lru(struct zone *zone,
1556				     struct list_head *list,
1557				     enum lru_list lru)
1558{
1559	unsigned long pgmoved = 0;
1560	struct pagevec pvec;
1561	struct page *page;
1562
1563	pagevec_init(&pvec, 1);
1564
1565	while (!list_empty(list)) {
1566		page = lru_to_page(list);
1567
1568		VM_BUG_ON(PageLRU(page));
1569		SetPageLRU(page);
1570
1571		list_move(&page->lru, &zone->lru[lru].list);
1572		mem_cgroup_add_lru_list(page, lru);
1573		pgmoved += hpage_nr_pages(page);
1574
1575		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1576			spin_unlock_irq(&zone->lru_lock);
1577			if (buffer_heads_over_limit)
1578				pagevec_strip(&pvec);
1579			__pagevec_release(&pvec);
1580			spin_lock_irq(&zone->lru_lock);
1581		}
1582	}
1583	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1584	if (!is_active_lru(lru))
1585		__count_vm_events(PGDEACTIVATE, pgmoved);
1586}
1587
1588static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1589			struct scan_control *sc, int priority, int file)
1590{
1591	unsigned long nr_taken;
1592	unsigned long pgscanned;
1593	unsigned long vm_flags;
1594	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1595	LIST_HEAD(l_active);
1596	LIST_HEAD(l_inactive);
1597	struct page *page;
1598	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1599	unsigned long nr_rotated = 0;
1600	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1601
1602	lru_add_drain();
1603
1604	if (!sc->may_unmap)
1605		reclaim_mode |= ISOLATE_UNMAPPED;
1606	if (!sc->may_writepage)
1607		reclaim_mode |= ISOLATE_CLEAN;
1608
1609	spin_lock_irq(&zone->lru_lock);
1610	if (scanning_global_lru(sc)) {
1611		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1612						&pgscanned, sc->order,
1613						reclaim_mode, zone,
1614						1, file);
1615		zone->pages_scanned += pgscanned;
1616	} else {
1617		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1618						&pgscanned, sc->order,
1619						reclaim_mode, zone,
1620						sc->mem_cgroup, 1, file);
1621		/*
1622		 * mem_cgroup_isolate_pages() keeps track of
1623		 * scanned pages on its own.
1624		 */
1625	}
1626
1627	reclaim_stat->recent_scanned[file] += nr_taken;
1628
1629	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1630	if (file)
1631		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1632	else
1633		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1634	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1635	spin_unlock_irq(&zone->lru_lock);
1636
1637	while (!list_empty(&l_hold)) {
1638		cond_resched();
1639		page = lru_to_page(&l_hold);
1640		list_del(&page->lru);
1641
1642		if (unlikely(!page_evictable(page, NULL))) {
1643			putback_lru_page(page);
1644			continue;
1645		}
1646
1647		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1648			nr_rotated += hpage_nr_pages(page);
1649			/*
1650			 * Identify referenced, file-backed active pages and
1651			 * give them one more trip around the active list. So
1652			 * that executable code get better chances to stay in
1653			 * memory under moderate memory pressure.  Anon pages
1654			 * are not likely to be evicted by use-once streaming
1655			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1656			 * so we ignore them here.
1657			 */
1658			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1659				list_add(&page->lru, &l_active);
1660				continue;
1661			}
1662		}
1663
1664		ClearPageActive(page);	/* we are de-activating */
1665		list_add(&page->lru, &l_inactive);
1666	}
1667
1668	/*
1669	 * Move pages back to the lru list.
1670	 */
1671	spin_lock_irq(&zone->lru_lock);
1672	/*
1673	 * Count referenced pages from currently used mappings as rotated,
1674	 * even though only some of them are actually re-activated.  This
1675	 * helps balance scan pressure between file and anonymous pages in
1676	 * get_scan_ratio.
1677	 */
1678	reclaim_stat->recent_rotated[file] += nr_rotated;
1679
1680	move_active_pages_to_lru(zone, &l_active,
1681						LRU_ACTIVE + file * LRU_FILE);
1682	move_active_pages_to_lru(zone, &l_inactive,
1683						LRU_BASE   + file * LRU_FILE);
1684	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1685	spin_unlock_irq(&zone->lru_lock);
1686}
1687
1688#ifdef CONFIG_SWAP
1689static int inactive_anon_is_low_global(struct zone *zone)
1690{
1691	unsigned long active, inactive;
1692
1693	active = zone_page_state(zone, NR_ACTIVE_ANON);
1694	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1695
1696	if (inactive * zone->inactive_ratio < active)
1697		return 1;
1698
1699	return 0;
1700}
1701
1702/**
1703 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1704 * @zone: zone to check
1705 * @sc:   scan control of this context
1706 *
1707 * Returns true if the zone does not have enough inactive anon pages,
1708 * meaning some active anon pages need to be deactivated.
1709 */
1710static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1711{
1712	int low;
1713
1714	/*
1715	 * If we don't have swap space, anonymous page deactivation
1716	 * is pointless.
1717	 */
1718	if (!total_swap_pages)
1719		return 0;
1720
1721	if (scanning_global_lru(sc))
1722		low = inactive_anon_is_low_global(zone);
1723	else
1724		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1725	return low;
1726}
1727#else
1728static inline int inactive_anon_is_low(struct zone *zone,
1729					struct scan_control *sc)
1730{
1731	return 0;
1732}
1733#endif
1734
1735static int inactive_file_is_low_global(struct zone *zone)
1736{
1737	unsigned long active, inactive;
1738
1739	active = zone_page_state(zone, NR_ACTIVE_FILE);
1740	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1741
1742	return (active > inactive);
1743}
1744
1745/**
1746 * inactive_file_is_low - check if file pages need to be deactivated
1747 * @zone: zone to check
1748 * @sc:   scan control of this context
1749 *
1750 * When the system is doing streaming IO, memory pressure here
1751 * ensures that active file pages get deactivated, until more
1752 * than half of the file pages are on the inactive list.
1753 *
1754 * Once we get to that situation, protect the system's working
1755 * set from being evicted by disabling active file page aging.
1756 *
1757 * This uses a different ratio than the anonymous pages, because
1758 * the page cache uses a use-once replacement algorithm.
1759 */
1760static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1761{
1762	int low;
1763
1764	if (scanning_global_lru(sc))
1765		low = inactive_file_is_low_global(zone);
1766	else
1767		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1768	return low;
1769}
1770
1771static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1772				int file)
1773{
1774	if (file)
1775		return inactive_file_is_low(zone, sc);
1776	else
1777		return inactive_anon_is_low(zone, sc);
1778}
1779
1780static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1781	struct zone *zone, struct scan_control *sc, int priority)
1782{
1783	int file = is_file_lru(lru);
1784
1785	if (is_active_lru(lru)) {
1786		if (inactive_list_is_low(zone, sc, file))
1787		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1788		return 0;
1789	}
1790
1791	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1792}
1793
1794static int vmscan_swappiness(struct scan_control *sc)
1795{
1796	if (scanning_global_lru(sc))
1797		return vm_swappiness;
1798	return mem_cgroup_swappiness(sc->mem_cgroup);
1799}
1800
1801/*
1802 * Determine how aggressively the anon and file LRU lists should be
1803 * scanned.  The relative value of each set of LRU lists is determined
1804 * by looking at the fraction of the pages scanned we did rotate back
1805 * onto the active list instead of evict.
1806 *
1807 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1808 */
1809static void get_scan_count(struct zone *zone, struct scan_control *sc,
1810					unsigned long *nr, int priority)
1811{
1812	unsigned long anon, file, free;
1813	unsigned long anon_prio, file_prio;
1814	unsigned long ap, fp;
1815	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1816	u64 fraction[2], denominator;
1817	enum lru_list l;
1818	int noswap = 0;
1819	bool force_scan = false;
1820	unsigned long nr_force_scan[2];
1821
1822	/* kswapd does zone balancing and needs to scan this zone */
1823	if (scanning_global_lru(sc) && current_is_kswapd())
1824		force_scan = true;
1825	/* memcg may have small limit and need to avoid priority drop */
1826	if (!scanning_global_lru(sc))
1827		force_scan = true;
1828
1829	/* If we have no swap space, do not bother scanning anon pages. */
1830	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1831		noswap = 1;
1832		fraction[0] = 0;
1833		fraction[1] = 1;
1834		denominator = 1;
1835		nr_force_scan[0] = 0;
1836		nr_force_scan[1] = SWAP_CLUSTER_MAX;
1837		goto out;
1838	}
1839
1840	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1841		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1842	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1843		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1844
1845	if (scanning_global_lru(sc)) {
1846		free  = zone_page_state(zone, NR_FREE_PAGES);
1847		/* If we have very few page cache pages,
1848		   force-scan anon pages. */
1849		if (unlikely(file + free <= high_wmark_pages(zone))) {
1850			fraction[0] = 1;
1851			fraction[1] = 0;
1852			denominator = 1;
1853			nr_force_scan[0] = SWAP_CLUSTER_MAX;
1854			nr_force_scan[1] = 0;
1855			goto out;
1856		}
1857	}
1858
1859	/*
1860	 * With swappiness at 100, anonymous and file have the same priority.
1861	 * This scanning priority is essentially the inverse of IO cost.
1862	 */
1863	anon_prio = vmscan_swappiness(sc);
1864	file_prio = 200 - vmscan_swappiness(sc);
1865
1866	/*
1867	 * OK, so we have swap space and a fair amount of page cache
1868	 * pages.  We use the recently rotated / recently scanned
1869	 * ratios to determine how valuable each cache is.
1870	 *
1871	 * Because workloads change over time (and to avoid overflow)
1872	 * we keep these statistics as a floating average, which ends
1873	 * up weighing recent references more than old ones.
1874	 *
1875	 * anon in [0], file in [1]
1876	 */
1877	spin_lock_irq(&zone->lru_lock);
1878	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1879		reclaim_stat->recent_scanned[0] /= 2;
1880		reclaim_stat->recent_rotated[0] /= 2;
1881	}
1882
1883	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1884		reclaim_stat->recent_scanned[1] /= 2;
1885		reclaim_stat->recent_rotated[1] /= 2;
1886	}
1887
1888	/*
1889	 * The amount of pressure on anon vs file pages is inversely
1890	 * proportional to the fraction of recently scanned pages on
1891	 * each list that were recently referenced and in active use.
1892	 */
1893	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1894	ap /= reclaim_stat->recent_rotated[0] + 1;
1895
1896	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1897	fp /= reclaim_stat->recent_rotated[1] + 1;
1898	spin_unlock_irq(&zone->lru_lock);
1899
1900	fraction[0] = ap;
1901	fraction[1] = fp;
1902	denominator = ap + fp + 1;
1903	if (force_scan) {
1904		unsigned long scan = SWAP_CLUSTER_MAX;
1905		nr_force_scan[0] = div64_u64(scan * ap, denominator);
1906		nr_force_scan[1] = div64_u64(scan * fp, denominator);
1907	}
1908out:
1909	for_each_evictable_lru(l) {
1910		int file = is_file_lru(l);
1911		unsigned long scan;
1912
1913		scan = zone_nr_lru_pages(zone, sc, l);
1914		if (priority || noswap) {
1915			scan >>= priority;
1916			scan = div64_u64(scan * fraction[file], denominator);
1917		}
1918
1919		/*
1920		 * If zone is small or memcg is small, nr[l] can be 0.
1921		 * This results no-scan on this priority and priority drop down.
1922		 * For global direct reclaim, it can visit next zone and tend
1923		 * not to have problems. For global kswapd, it's for zone
1924		 * balancing and it need to scan a small amounts. When using
1925		 * memcg, priority drop can cause big latency. So, it's better
1926		 * to scan small amount. See may_noscan above.
1927		 */
1928		if (!scan && force_scan)
1929			scan = nr_force_scan[file];
1930		nr[l] = scan;
1931	}
1932}
1933
1934/*
1935 * Reclaim/compaction depends on a number of pages being freed. To avoid
1936 * disruption to the system, a small number of order-0 pages continue to be
1937 * rotated and reclaimed in the normal fashion. However, by the time we get
1938 * back to the allocator and call try_to_compact_zone(), we ensure that
1939 * there are enough free pages for it to be likely successful
1940 */
1941static inline bool should_continue_reclaim(struct zone *zone,
1942					unsigned long nr_reclaimed,
1943					unsigned long nr_scanned,
1944					struct scan_control *sc)
1945{
1946	unsigned long pages_for_compaction;
1947	unsigned long inactive_lru_pages;
1948
1949	/* If not in reclaim/compaction mode, stop */
1950	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1951		return false;
1952
1953	/* Consider stopping depending on scan and reclaim activity */
1954	if (sc->gfp_mask & __GFP_REPEAT) {
1955		/*
1956		 * For __GFP_REPEAT allocations, stop reclaiming if the
1957		 * full LRU list has been scanned and we are still failing
1958		 * to reclaim pages. This full LRU scan is potentially
1959		 * expensive but a __GFP_REPEAT caller really wants to succeed
1960		 */
1961		if (!nr_reclaimed && !nr_scanned)
1962			return false;
1963	} else {
1964		/*
1965		 * For non-__GFP_REPEAT allocations which can presumably
1966		 * fail without consequence, stop if we failed to reclaim
1967		 * any pages from the last SWAP_CLUSTER_MAX number of
1968		 * pages that were scanned. This will return to the
1969		 * caller faster at the risk reclaim/compaction and
1970		 * the resulting allocation attempt fails
1971		 */
1972		if (!nr_reclaimed)
1973			return false;
1974	}
1975
1976	/*
1977	 * If we have not reclaimed enough pages for compaction and the
1978	 * inactive lists are large enough, continue reclaiming
1979	 */
1980	pages_for_compaction = (2UL << sc->order);
1981	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1982				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1983	if (sc->nr_reclaimed < pages_for_compaction &&
1984			inactive_lru_pages > pages_for_compaction)
1985		return true;
1986
1987	/* If compaction would go ahead or the allocation would succeed, stop */
1988	switch (compaction_suitable(zone, sc->order)) {
1989	case COMPACT_PARTIAL:
1990	case COMPACT_CONTINUE:
1991		return false;
1992	default:
1993		return true;
1994	}
1995}
1996
1997/*
1998 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1999 */
2000static void shrink_zone(int priority, struct zone *zone,
2001				struct scan_control *sc)
2002{
2003	unsigned long nr[NR_LRU_LISTS];
2004	unsigned long nr_to_scan;
2005	enum lru_list l;
2006	unsigned long nr_reclaimed, nr_scanned;
2007	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2008
2009restart:
2010	nr_reclaimed = 0;
2011	nr_scanned = sc->nr_scanned;
2012	get_scan_count(zone, sc, nr, priority);
2013
2014	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2015					nr[LRU_INACTIVE_FILE]) {
2016		for_each_evictable_lru(l) {
2017			if (nr[l]) {
2018				nr_to_scan = min_t(unsigned long,
2019						   nr[l], SWAP_CLUSTER_MAX);
2020				nr[l] -= nr_to_scan;
2021
2022				nr_reclaimed += shrink_list(l, nr_to_scan,
2023							    zone, sc, priority);
2024			}
2025		}
2026		/*
2027		 * On large memory systems, scan >> priority can become
2028		 * really large. This is fine for the starting priority;
2029		 * we want to put equal scanning pressure on each zone.
2030		 * However, if the VM has a harder time of freeing pages,
2031		 * with multiple processes reclaiming pages, the total
2032		 * freeing target can get unreasonably large.
2033		 */
2034		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2035			break;
2036	}
2037	sc->nr_reclaimed += nr_reclaimed;
2038
2039	/*
2040	 * Even if we did not try to evict anon pages at all, we want to
2041	 * rebalance the anon lru active/inactive ratio.
2042	 */
2043	if (inactive_anon_is_low(zone, sc))
2044		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2045
2046	/* reclaim/compaction might need reclaim to continue */
2047	if (should_continue_reclaim(zone, nr_reclaimed,
2048					sc->nr_scanned - nr_scanned, sc))
2049		goto restart;
2050
2051	throttle_vm_writeout(sc->gfp_mask);
2052}
2053
2054/*
2055 * This is the direct reclaim path, for page-allocating processes.  We only
2056 * try to reclaim pages from zones which will satisfy the caller's allocation
2057 * request.
2058 *
2059 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2060 * Because:
2061 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2062 *    allocation or
2063 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2064 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2065 *    zone defense algorithm.
2066 *
2067 * If a zone is deemed to be full of pinned pages then just give it a light
2068 * scan then give up on it.
2069 */
2070static void shrink_zones(int priority, struct zonelist *zonelist,
2071					struct scan_control *sc)
2072{
2073	struct zoneref *z;
2074	struct zone *zone;
2075	unsigned long nr_soft_reclaimed;
2076	unsigned long nr_soft_scanned;
2077
2078	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2079					gfp_zone(sc->gfp_mask), sc->nodemask) {
2080		if (!populated_zone(zone))
2081			continue;
2082		/*
2083		 * Take care memory controller reclaiming has small influence
2084		 * to global LRU.
2085		 */
2086		if (scanning_global_lru(sc)) {
2087			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2088				continue;
2089			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2090				continue;	/* Let kswapd poll it */
2091			/*
2092			 * This steals pages from memory cgroups over softlimit
2093			 * and returns the number of reclaimed pages and
2094			 * scanned pages. This works for global memory pressure
2095			 * and balancing, not for a memcg's limit.
2096			 */
2097			nr_soft_scanned = 0;
2098			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2099						sc->order, sc->gfp_mask,
2100						&nr_soft_scanned);
2101			sc->nr_reclaimed += nr_soft_reclaimed;
2102			sc->nr_scanned += nr_soft_scanned;
2103			/* need some check for avoid more shrink_zone() */
2104		}
2105
2106		shrink_zone(priority, zone, sc);
2107	}
2108}
2109
2110static bool zone_reclaimable(struct zone *zone)
2111{
2112	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2113}
2114
2115/* All zones in zonelist are unreclaimable? */
2116static bool all_unreclaimable(struct zonelist *zonelist,
2117		struct scan_control *sc)
2118{
2119	struct zoneref *z;
2120	struct zone *zone;
2121
2122	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2123			gfp_zone(sc->gfp_mask), sc->nodemask) {
2124		if (!populated_zone(zone))
2125			continue;
2126		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2127			continue;
2128		if (!zone->all_unreclaimable)
2129			return false;
2130	}
2131
2132	return true;
2133}
2134
2135/*
2136 * This is the main entry point to direct page reclaim.
2137 *
2138 * If a full scan of the inactive list fails to free enough memory then we
2139 * are "out of memory" and something needs to be killed.
2140 *
2141 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2142 * high - the zone may be full of dirty or under-writeback pages, which this
2143 * caller can't do much about.  We kick the writeback threads and take explicit
2144 * naps in the hope that some of these pages can be written.  But if the
2145 * allocating task holds filesystem locks which prevent writeout this might not
2146 * work, and the allocation attempt will fail.
2147 *
2148 * returns:	0, if no pages reclaimed
2149 * 		else, the number of pages reclaimed
2150 */
2151static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2152					struct scan_control *sc,
2153					struct shrink_control *shrink)
2154{
2155	int priority;
2156	unsigned long total_scanned = 0;
2157	struct reclaim_state *reclaim_state = current->reclaim_state;
2158	struct zoneref *z;
2159	struct zone *zone;
2160	unsigned long writeback_threshold;
2161
2162	get_mems_allowed();
2163	delayacct_freepages_start();
2164
2165	if (scanning_global_lru(sc))
2166		count_vm_event(ALLOCSTALL);
2167
2168	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2169		sc->nr_scanned = 0;
2170		if (!priority)
2171			disable_swap_token(sc->mem_cgroup);
2172		shrink_zones(priority, zonelist, sc);
2173		/*
2174		 * Don't shrink slabs when reclaiming memory from
2175		 * over limit cgroups
2176		 */
2177		if (scanning_global_lru(sc)) {
2178			unsigned long lru_pages = 0;
2179			for_each_zone_zonelist(zone, z, zonelist,
2180					gfp_zone(sc->gfp_mask)) {
2181				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2182					continue;
2183
2184				lru_pages += zone_reclaimable_pages(zone);
2185			}
2186
2187			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2188			if (reclaim_state) {
2189				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2190				reclaim_state->reclaimed_slab = 0;
2191			}
2192		}
2193		total_scanned += sc->nr_scanned;
2194		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2195			goto out;
2196
2197		/*
2198		 * Try to write back as many pages as we just scanned.  This
2199		 * tends to cause slow streaming writers to write data to the
2200		 * disk smoothly, at the dirtying rate, which is nice.   But
2201		 * that's undesirable in laptop mode, where we *want* lumpy
2202		 * writeout.  So in laptop mode, write out the whole world.
2203		 */
2204		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2205		if (total_scanned > writeback_threshold) {
2206			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2207			sc->may_writepage = 1;
2208		}
2209
2210		/* Take a nap, wait for some writeback to complete */
2211		if (!sc->hibernation_mode && sc->nr_scanned &&
2212		    priority < DEF_PRIORITY - 2) {
2213			struct zone *preferred_zone;
2214
2215			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2216						&cpuset_current_mems_allowed,
2217						&preferred_zone);
2218			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2219		}
2220	}
2221
2222out:
2223	delayacct_freepages_end();
2224	put_mems_allowed();
2225
2226	if (sc->nr_reclaimed)
2227		return sc->nr_reclaimed;
2228
2229	/*
2230	 * As hibernation is going on, kswapd is freezed so that it can't mark
2231	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2232	 * check.
2233	 */
2234	if (oom_killer_disabled)
2235		return 0;
2236
2237	/* top priority shrink_zones still had more to do? don't OOM, then */
2238	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2239		return 1;
2240
2241	return 0;
2242}
2243
2244unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2245				gfp_t gfp_mask, nodemask_t *nodemask)
2246{
2247	unsigned long nr_reclaimed;
2248	struct scan_control sc = {
2249		.gfp_mask = gfp_mask,
2250		.may_writepage = !laptop_mode,
2251		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2252		.may_unmap = 1,
2253		.may_swap = 1,
2254		.order = order,
2255		.mem_cgroup = NULL,
2256		.nodemask = nodemask,
2257	};
2258	struct shrink_control shrink = {
2259		.gfp_mask = sc.gfp_mask,
2260	};
2261
2262	trace_mm_vmscan_direct_reclaim_begin(order,
2263				sc.may_writepage,
2264				gfp_mask);
2265
2266	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2267
2268	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2269
2270	return nr_reclaimed;
2271}
2272
2273#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2274
2275unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2276						gfp_t gfp_mask, bool noswap,
2277						struct zone *zone,
2278						unsigned long *nr_scanned)
2279{
2280	struct scan_control sc = {
2281		.nr_scanned = 0,
2282		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2283		.may_writepage = !laptop_mode,
2284		.may_unmap = 1,
2285		.may_swap = !noswap,
2286		.order = 0,
2287		.mem_cgroup = mem,
2288	};
2289
2290	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2291			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2292
2293	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2294						      sc.may_writepage,
2295						      sc.gfp_mask);
2296
2297	/*
2298	 * NOTE: Although we can get the priority field, using it
2299	 * here is not a good idea, since it limits the pages we can scan.
2300	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2301	 * will pick up pages from other mem cgroup's as well. We hack
2302	 * the priority and make it zero.
2303	 */
2304	shrink_zone(0, zone, &sc);
2305
2306	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2307
2308	*nr_scanned = sc.nr_scanned;
2309	return sc.nr_reclaimed;
2310}
2311
2312unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2313					   gfp_t gfp_mask,
2314					   bool noswap)
2315{
2316	struct zonelist *zonelist;
2317	unsigned long nr_reclaimed;
2318	int nid;
2319	struct scan_control sc = {
2320		.may_writepage = !laptop_mode,
2321		.may_unmap = 1,
2322		.may_swap = !noswap,
2323		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2324		.order = 0,
2325		.mem_cgroup = mem_cont,
2326		.nodemask = NULL, /* we don't care the placement */
2327		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2328				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2329	};
2330	struct shrink_control shrink = {
2331		.gfp_mask = sc.gfp_mask,
2332	};
2333
2334	/*
2335	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2336	 * take care of from where we get pages. So the node where we start the
2337	 * scan does not need to be the current node.
2338	 */
2339	nid = mem_cgroup_select_victim_node(mem_cont);
2340
2341	zonelist = NODE_DATA(nid)->node_zonelists;
2342
2343	trace_mm_vmscan_memcg_reclaim_begin(0,
2344					    sc.may_writepage,
2345					    sc.gfp_mask);
2346
2347	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2348
2349	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2350
2351	return nr_reclaimed;
2352}
2353#endif
2354
2355/*
2356 * pgdat_balanced is used when checking if a node is balanced for high-order
2357 * allocations. Only zones that meet watermarks and are in a zone allowed
2358 * by the callers classzone_idx are added to balanced_pages. The total of
2359 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2360 * for the node to be considered balanced. Forcing all zones to be balanced
2361 * for high orders can cause excessive reclaim when there are imbalanced zones.
2362 * The choice of 25% is due to
2363 *   o a 16M DMA zone that is balanced will not balance a zone on any
2364 *     reasonable sized machine
2365 *   o On all other machines, the top zone must be at least a reasonable
2366 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2367 *     would need to be at least 256M for it to be balance a whole node.
2368 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2369 *     to balance a node on its own. These seemed like reasonable ratios.
2370 */
2371static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2372						int classzone_idx)
2373{
2374	unsigned long present_pages = 0;
2375	int i;
2376
2377	for (i = 0; i <= classzone_idx; i++)
2378		present_pages += pgdat->node_zones[i].present_pages;
2379
2380	/* A special case here: if zone has no page, we think it's balanced */
2381	return balanced_pages >= (present_pages >> 2);
2382}
2383
2384/* is kswapd sleeping prematurely? */
2385static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2386					int classzone_idx)
2387{
2388	int i;
2389	unsigned long balanced = 0;
2390	bool all_zones_ok = true;
2391
2392	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2393	if (remaining)
2394		return true;
2395
2396	/* Check the watermark levels */
2397	for (i = 0; i <= classzone_idx; i++) {
2398		struct zone *zone = pgdat->node_zones + i;
2399
2400		if (!populated_zone(zone))
2401			continue;
2402
2403		/*
2404		 * balance_pgdat() skips over all_unreclaimable after
2405		 * DEF_PRIORITY. Effectively, it considers them balanced so
2406		 * they must be considered balanced here as well if kswapd
2407		 * is to sleep
2408		 */
2409		if (zone->all_unreclaimable) {
2410			balanced += zone->present_pages;
2411			continue;
2412		}
2413
2414		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2415							i, 0))
2416			all_zones_ok = false;
2417		else
2418			balanced += zone->present_pages;
2419	}
2420
2421	/*
2422	 * For high-order requests, the balanced zones must contain at least
2423	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2424	 * must be balanced
2425	 */
2426	if (order)
2427		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2428	else
2429		return !all_zones_ok;
2430}
2431
2432/*
2433 * For kswapd, balance_pgdat() will work across all this node's zones until
2434 * they are all at high_wmark_pages(zone).
2435 *
2436 * Returns the final order kswapd was reclaiming at
2437 *
2438 * There is special handling here for zones which are full of pinned pages.
2439 * This can happen if the pages are all mlocked, or if they are all used by
2440 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2441 * What we do is to detect the case where all pages in the zone have been
2442 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2443 * dead and from now on, only perform a short scan.  Basically we're polling
2444 * the zone for when the problem goes away.
2445 *
2446 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2447 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2448 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2449 * lower zones regardless of the number of free pages in the lower zones. This
2450 * interoperates with the page allocator fallback scheme to ensure that aging
2451 * of pages is balanced across the zones.
2452 */
2453static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2454							int *classzone_idx)
2455{
2456	int all_zones_ok;
2457	unsigned long balanced;
2458	int priority;
2459	int i;
2460	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2461	unsigned long total_scanned;
2462	struct reclaim_state *reclaim_state = current->reclaim_state;
2463	unsigned long nr_soft_reclaimed;
2464	unsigned long nr_soft_scanned;
2465	struct scan_control sc = {
2466		.gfp_mask = GFP_KERNEL,
2467		.may_unmap = 1,
2468		.may_swap = 1,
2469		/*
2470		 * kswapd doesn't want to be bailed out while reclaim. because
2471		 * we want to put equal scanning pressure on each zone.
2472		 */
2473		.nr_to_reclaim = ULONG_MAX,
2474		.order = order,
2475		.mem_cgroup = NULL,
2476	};
2477	struct shrink_control shrink = {
2478		.gfp_mask = sc.gfp_mask,
2479	};
2480loop_again:
2481	total_scanned = 0;
2482	sc.nr_reclaimed = 0;
2483	sc.may_writepage = !laptop_mode;
2484	count_vm_event(PAGEOUTRUN);
2485
2486	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2487		unsigned long lru_pages = 0;
2488		int has_under_min_watermark_zone = 0;
2489
2490		/* The swap token gets in the way of swapout... */
2491		if (!priority)
2492			disable_swap_token(NULL);
2493
2494		all_zones_ok = 1;
2495		balanced = 0;
2496
2497		/*
2498		 * Scan in the highmem->dma direction for the highest
2499		 * zone which needs scanning
2500		 */
2501		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2502			struct zone *zone = pgdat->node_zones + i;
2503
2504			if (!populated_zone(zone))
2505				continue;
2506
2507			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2508				continue;
2509
2510			/*
2511			 * Do some background aging of the anon list, to give
2512			 * pages a chance to be referenced before reclaiming.
2513			 */
2514			if (inactive_anon_is_low(zone, &sc))
2515				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2516							&sc, priority, 0);
2517
2518			if (!zone_watermark_ok_safe(zone, order,
2519					high_wmark_pages(zone), 0, 0)) {
2520				end_zone = i;
2521				break;
2522			} else {
2523				/* If balanced, clear the congested flag */
2524				zone_clear_flag(zone, ZONE_CONGESTED);
2525			}
2526		}
2527		if (i < 0)
2528			goto out;
2529
2530		for (i = 0; i <= end_zone; i++) {
2531			struct zone *zone = pgdat->node_zones + i;
2532
2533			lru_pages += zone_reclaimable_pages(zone);
2534		}
2535
2536		/*
2537		 * Now scan the zone in the dma->highmem direction, stopping
2538		 * at the last zone which needs scanning.
2539		 *
2540		 * We do this because the page allocator works in the opposite
2541		 * direction.  This prevents the page allocator from allocating
2542		 * pages behind kswapd's direction of progress, which would
2543		 * cause too much scanning of the lower zones.
2544		 */
2545		for (i = 0; i <= end_zone; i++) {
2546			struct zone *zone = pgdat->node_zones + i;
2547			int nr_slab;
2548			unsigned long balance_gap;
2549
2550			if (!populated_zone(zone))
2551				continue;
2552
2553			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2554				continue;
2555
2556			sc.nr_scanned = 0;
2557
2558			nr_soft_scanned = 0;
2559			/*
2560			 * Call soft limit reclaim before calling shrink_zone.
2561			 */
2562			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2563							order, sc.gfp_mask,
2564							&nr_soft_scanned);
2565			sc.nr_reclaimed += nr_soft_reclaimed;
2566			total_scanned += nr_soft_scanned;
2567
2568			/*
2569			 * We put equal pressure on every zone, unless
2570			 * one zone has way too many pages free
2571			 * already. The "too many pages" is defined
2572			 * as the high wmark plus a "gap" where the
2573			 * gap is either the low watermark or 1%
2574			 * of the zone, whichever is smaller.
2575			 */
2576			balance_gap = min(low_wmark_pages(zone),
2577				(zone->present_pages +
2578					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2579				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2580			if (!zone_watermark_ok_safe(zone, order,
2581					high_wmark_pages(zone) + balance_gap,
2582					end_zone, 0)) {
2583				shrink_zone(priority, zone, &sc);
2584
2585				reclaim_state->reclaimed_slab = 0;
2586				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2587				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2588				total_scanned += sc.nr_scanned;
2589
2590				if (nr_slab == 0 && !zone_reclaimable(zone))
2591					zone->all_unreclaimable = 1;
2592			}
2593
2594			/*
2595			 * If we've done a decent amount of scanning and
2596			 * the reclaim ratio is low, start doing writepage
2597			 * even in laptop mode
2598			 */
2599			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2600			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2601				sc.may_writepage = 1;
2602
2603			if (zone->all_unreclaimable) {
2604				if (end_zone && end_zone == i)
2605					end_zone--;
2606				continue;
2607			}
2608
2609			if (!zone_watermark_ok_safe(zone, order,
2610					high_wmark_pages(zone), end_zone, 0)) {
2611				all_zones_ok = 0;
2612				/*
2613				 * We are still under min water mark.  This
2614				 * means that we have a GFP_ATOMIC allocation
2615				 * failure risk. Hurry up!
2616				 */
2617				if (!zone_watermark_ok_safe(zone, order,
2618					    min_wmark_pages(zone), end_zone, 0))
2619					has_under_min_watermark_zone = 1;
2620			} else {
2621				/*
2622				 * If a zone reaches its high watermark,
2623				 * consider it to be no longer congested. It's
2624				 * possible there are dirty pages backed by
2625				 * congested BDIs but as pressure is relieved,
2626				 * spectulatively avoid congestion waits
2627				 */
2628				zone_clear_flag(zone, ZONE_CONGESTED);
2629				if (i <= *classzone_idx)
2630					balanced += zone->present_pages;
2631			}
2632
2633		}
2634		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2635			break;		/* kswapd: all done */
2636		/*
2637		 * OK, kswapd is getting into trouble.  Take a nap, then take
2638		 * another pass across the zones.
2639		 */
2640		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2641			if (has_under_min_watermark_zone)
2642				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2643			else
2644				congestion_wait(BLK_RW_ASYNC, HZ/10);
2645		}
2646
2647		/*
2648		 * We do this so kswapd doesn't build up large priorities for
2649		 * example when it is freeing in parallel with allocators. It
2650		 * matches the direct reclaim path behaviour in terms of impact
2651		 * on zone->*_priority.
2652		 */
2653		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2654			break;
2655	}
2656out:
2657
2658	/*
2659	 * order-0: All zones must meet high watermark for a balanced node
2660	 * high-order: Balanced zones must make up at least 25% of the node
2661	 *             for the node to be balanced
2662	 */
2663	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2664		cond_resched();
2665
2666		try_to_freeze();
2667
2668		/*
2669		 * Fragmentation may mean that the system cannot be
2670		 * rebalanced for high-order allocations in all zones.
2671		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2672		 * it means the zones have been fully scanned and are still
2673		 * not balanced. For high-order allocations, there is
2674		 * little point trying all over again as kswapd may
2675		 * infinite loop.
2676		 *
2677		 * Instead, recheck all watermarks at order-0 as they
2678		 * are the most important. If watermarks are ok, kswapd will go
2679		 * back to sleep. High-order users can still perform direct
2680		 * reclaim if they wish.
2681		 */
2682		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2683			order = sc.order = 0;
2684
2685		goto loop_again;
2686	}
2687
2688	/*
2689	 * If kswapd was reclaiming at a higher order, it has the option of
2690	 * sleeping without all zones being balanced. Before it does, it must
2691	 * ensure that the watermarks for order-0 on *all* zones are met and
2692	 * that the congestion flags are cleared. The congestion flag must
2693	 * be cleared as kswapd is the only mechanism that clears the flag
2694	 * and it is potentially going to sleep here.
2695	 */
2696	if (order) {
2697		for (i = 0; i <= end_zone; i++) {
2698			struct zone *zone = pgdat->node_zones + i;
2699
2700			if (!populated_zone(zone))
2701				continue;
2702
2703			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2704				continue;
2705
2706			/* Confirm the zone is balanced for order-0 */
2707			if (!zone_watermark_ok(zone, 0,
2708					high_wmark_pages(zone), 0, 0)) {
2709				order = sc.order = 0;
2710				goto loop_again;
2711			}
2712
2713			/* If balanced, clear the congested flag */
2714			zone_clear_flag(zone, ZONE_CONGESTED);
2715		}
2716	}
2717
2718	/*
2719	 * Return the order we were reclaiming at so sleeping_prematurely()
2720	 * makes a decision on the order we were last reclaiming at. However,
2721	 * if another caller entered the allocator slow path while kswapd
2722	 * was awake, order will remain at the higher level
2723	 */
2724	*classzone_idx = end_zone;
2725	return order;
2726}
2727
2728static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2729{
2730	long remaining = 0;
2731	DEFINE_WAIT(wait);
2732
2733	if (freezing(current) || kthread_should_stop())
2734		return;
2735
2736	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2737
2738	/* Try to sleep for a short interval */
2739	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2740		remaining = schedule_timeout(HZ/10);
2741		finish_wait(&pgdat->kswapd_wait, &wait);
2742		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2743	}
2744
2745	/*
2746	 * After a short sleep, check if it was a premature sleep. If not, then
2747	 * go fully to sleep until explicitly woken up.
2748	 */
2749	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2750		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2751
2752		/*
2753		 * vmstat counters are not perfectly accurate and the estimated
2754		 * value for counters such as NR_FREE_PAGES can deviate from the
2755		 * true value by nr_online_cpus * threshold. To avoid the zone
2756		 * watermarks being breached while under pressure, we reduce the
2757		 * per-cpu vmstat threshold while kswapd is awake and restore
2758		 * them before going back to sleep.
2759		 */
2760		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2761		schedule();
2762		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2763	} else {
2764		if (remaining)
2765			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2766		else
2767			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2768	}
2769	finish_wait(&pgdat->kswapd_wait, &wait);
2770}
2771
2772/*
2773 * The background pageout daemon, started as a kernel thread
2774 * from the init process.
2775 *
2776 * This basically trickles out pages so that we have _some_
2777 * free memory available even if there is no other activity
2778 * that frees anything up. This is needed for things like routing
2779 * etc, where we otherwise might have all activity going on in
2780 * asynchronous contexts that cannot page things out.
2781 *
2782 * If there are applications that are active memory-allocators
2783 * (most normal use), this basically shouldn't matter.
2784 */
2785static int kswapd(void *p)
2786{
2787	unsigned long order, new_order;
2788	int classzone_idx, new_classzone_idx;
2789	pg_data_t *pgdat = (pg_data_t*)p;
2790	struct task_struct *tsk = current;
2791
2792	struct reclaim_state reclaim_state = {
2793		.reclaimed_slab = 0,
2794	};
2795	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2796
2797	lockdep_set_current_reclaim_state(GFP_KERNEL);
2798
2799	if (!cpumask_empty(cpumask))
2800		set_cpus_allowed_ptr(tsk, cpumask);
2801	current->reclaim_state = &reclaim_state;
2802
2803	/*
2804	 * Tell the memory management that we're a "memory allocator",
2805	 * and that if we need more memory we should get access to it
2806	 * regardless (see "__alloc_pages()"). "kswapd" should
2807	 * never get caught in the normal page freeing logic.
2808	 *
2809	 * (Kswapd normally doesn't need memory anyway, but sometimes
2810	 * you need a small amount of memory in order to be able to
2811	 * page out something else, and this flag essentially protects
2812	 * us from recursively trying to free more memory as we're
2813	 * trying to free the first piece of memory in the first place).
2814	 */
2815	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2816	set_freezable();
2817
2818	order = new_order = 0;
2819	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2820	for ( ; ; ) {
2821		int ret;
2822
2823		/*
2824		 * If the last balance_pgdat was unsuccessful it's unlikely a
2825		 * new request of a similar or harder type will succeed soon
2826		 * so consider going to sleep on the basis we reclaimed at
2827		 */
2828		if (classzone_idx >= new_classzone_idx && order == new_order) {
2829			new_order = pgdat->kswapd_max_order;
2830			new_classzone_idx = pgdat->classzone_idx;
2831			pgdat->kswapd_max_order =  0;
2832			pgdat->classzone_idx = pgdat->nr_zones - 1;
2833		}
2834
2835		if (order < new_order || classzone_idx > new_classzone_idx) {
2836			/*
2837			 * Don't sleep if someone wants a larger 'order'
2838			 * allocation or has tigher zone constraints
2839			 */
2840			order = new_order;
2841			classzone_idx = new_classzone_idx;
2842		} else {
2843			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2844			order = pgdat->kswapd_max_order;
2845			classzone_idx = pgdat->classzone_idx;
2846			pgdat->kswapd_max_order = 0;
2847			pgdat->classzone_idx = pgdat->nr_zones - 1;
2848		}
2849
2850		ret = try_to_freeze();
2851		if (kthread_should_stop())
2852			break;
2853
2854		/*
2855		 * We can speed up thawing tasks if we don't call balance_pgdat
2856		 * after returning from the refrigerator
2857		 */
2858		if (!ret) {
2859			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2860			order = balance_pgdat(pgdat, order, &classzone_idx);
2861		}
2862	}
2863	return 0;
2864}
2865
2866/*
2867 * A zone is low on free memory, so wake its kswapd task to service it.
2868 */
2869void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2870{
2871	pg_data_t *pgdat;
2872
2873	if (!populated_zone(zone))
2874		return;
2875
2876	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2877		return;
2878	pgdat = zone->zone_pgdat;
2879	if (pgdat->kswapd_max_order < order) {
2880		pgdat->kswapd_max_order = order;
2881		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2882	}
2883	if (!waitqueue_active(&pgdat->kswapd_wait))
2884		return;
2885	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2886		return;
2887
2888	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2889	wake_up_interruptible(&pgdat->kswapd_wait);
2890}
2891
2892/*
2893 * The reclaimable count would be mostly accurate.
2894 * The less reclaimable pages may be
2895 * - mlocked pages, which will be moved to unevictable list when encountered
2896 * - mapped pages, which may require several travels to be reclaimed
2897 * - dirty pages, which is not "instantly" reclaimable
2898 */
2899unsigned long global_reclaimable_pages(void)
2900{
2901	int nr;
2902
2903	nr = global_page_state(NR_ACTIVE_FILE) +
2904	     global_page_state(NR_INACTIVE_FILE);
2905
2906	if (nr_swap_pages > 0)
2907		nr += global_page_state(NR_ACTIVE_ANON) +
2908		      global_page_state(NR_INACTIVE_ANON);
2909
2910	return nr;
2911}
2912
2913unsigned long zone_reclaimable_pages(struct zone *zone)
2914{
2915	int nr;
2916
2917	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2918	     zone_page_state(zone, NR_INACTIVE_FILE);
2919
2920	if (nr_swap_pages > 0)
2921		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2922		      zone_page_state(zone, NR_INACTIVE_ANON);
2923
2924	return nr;
2925}
2926
2927#ifdef CONFIG_HIBERNATION
2928/*
2929 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2930 * freed pages.
2931 *
2932 * Rather than trying to age LRUs the aim is to preserve the overall
2933 * LRU order by reclaiming preferentially
2934 * inactive > active > active referenced > active mapped
2935 */
2936unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2937{
2938	struct reclaim_state reclaim_state;
2939	struct scan_control sc = {
2940		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2941		.may_swap = 1,
2942		.may_unmap = 1,
2943		.may_writepage = 1,
2944		.nr_to_reclaim = nr_to_reclaim,
2945		.hibernation_mode = 1,
2946		.order = 0,
2947	};
2948	struct shrink_control shrink = {
2949		.gfp_mask = sc.gfp_mask,
2950	};
2951	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2952	struct task_struct *p = current;
2953	unsigned long nr_reclaimed;
2954
2955	p->flags |= PF_MEMALLOC;
2956	lockdep_set_current_reclaim_state(sc.gfp_mask);
2957	reclaim_state.reclaimed_slab = 0;
2958	p->reclaim_state = &reclaim_state;
2959
2960	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2961
2962	p->reclaim_state = NULL;
2963	lockdep_clear_current_reclaim_state();
2964	p->flags &= ~PF_MEMALLOC;
2965
2966	return nr_reclaimed;
2967}
2968#endif /* CONFIG_HIBERNATION */
2969
2970/* It's optimal to keep kswapds on the same CPUs as their memory, but
2971   not required for correctness.  So if the last cpu in a node goes
2972   away, we get changed to run anywhere: as the first one comes back,
2973   restore their cpu bindings. */
2974static int __devinit cpu_callback(struct notifier_block *nfb,
2975				  unsigned long action, void *hcpu)
2976{
2977	int nid;
2978
2979	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2980		for_each_node_state(nid, N_HIGH_MEMORY) {
2981			pg_data_t *pgdat = NODE_DATA(nid);
2982			const struct cpumask *mask;
2983
2984			mask = cpumask_of_node(pgdat->node_id);
2985
2986			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2987				/* One of our CPUs online: restore mask */
2988				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2989		}
2990	}
2991	return NOTIFY_OK;
2992}
2993
2994/*
2995 * This kswapd start function will be called by init and node-hot-add.
2996 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2997 */
2998int kswapd_run(int nid)
2999{
3000	pg_data_t *pgdat = NODE_DATA(nid);
3001	int ret = 0;
3002
3003	if (pgdat->kswapd)
3004		return 0;
3005
3006	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3007	if (IS_ERR(pgdat->kswapd)) {
3008		/* failure at boot is fatal */
3009		BUG_ON(system_state == SYSTEM_BOOTING);
3010		printk("Failed to start kswapd on node %d\n",nid);
3011		ret = -1;
3012	}
3013	return ret;
3014}
3015
3016/*
3017 * Called by memory hotplug when all memory in a node is offlined.
3018 */
3019void kswapd_stop(int nid)
3020{
3021	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3022
3023	if (kswapd)
3024		kthread_stop(kswapd);
3025}
3026
3027static int __init kswapd_init(void)
3028{
3029	int nid;
3030
3031	swap_setup();
3032	for_each_node_state(nid, N_HIGH_MEMORY)
3033 		kswapd_run(nid);
3034	hotcpu_notifier(cpu_callback, 0);
3035	return 0;
3036}
3037
3038module_init(kswapd_init)
3039
3040#ifdef CONFIG_NUMA
3041/*
3042 * Zone reclaim mode
3043 *
3044 * If non-zero call zone_reclaim when the number of free pages falls below
3045 * the watermarks.
3046 */
3047int zone_reclaim_mode __read_mostly;
3048
3049#define RECLAIM_OFF 0
3050#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3051#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3052#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3053
3054/*
3055 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3056 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3057 * a zone.
3058 */
3059#define ZONE_RECLAIM_PRIORITY 4
3060
3061/*
3062 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3063 * occur.
3064 */
3065int sysctl_min_unmapped_ratio = 1;
3066
3067/*
3068 * If the number of slab pages in a zone grows beyond this percentage then
3069 * slab reclaim needs to occur.
3070 */
3071int sysctl_min_slab_ratio = 5;
3072
3073static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3074{
3075	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3076	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3077		zone_page_state(zone, NR_ACTIVE_FILE);
3078
3079	/*
3080	 * It's possible for there to be more file mapped pages than
3081	 * accounted for by the pages on the file LRU lists because
3082	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3083	 */
3084	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3085}
3086
3087/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3088static long zone_pagecache_reclaimable(struct zone *zone)
3089{
3090	long nr_pagecache_reclaimable;
3091	long delta = 0;
3092
3093	/*
3094	 * If RECLAIM_SWAP is set, then all file pages are considered
3095	 * potentially reclaimable. Otherwise, we have to worry about
3096	 * pages like swapcache and zone_unmapped_file_pages() provides
3097	 * a better estimate
3098	 */
3099	if (zone_reclaim_mode & RECLAIM_SWAP)
3100		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3101	else
3102		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3103
3104	/* If we can't clean pages, remove dirty pages from consideration */
3105	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3106		delta += zone_page_state(zone, NR_FILE_DIRTY);
3107
3108	/* Watch for any possible underflows due to delta */
3109	if (unlikely(delta > nr_pagecache_reclaimable))
3110		delta = nr_pagecache_reclaimable;
3111
3112	return nr_pagecache_reclaimable - delta;
3113}
3114
3115/*
3116 * Try to free up some pages from this zone through reclaim.
3117 */
3118static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3119{
3120	/* Minimum pages needed in order to stay on node */
3121	const unsigned long nr_pages = 1 << order;
3122	struct task_struct *p = current;
3123	struct reclaim_state reclaim_state;
3124	int priority;
3125	struct scan_control sc = {
3126		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3127		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3128		.may_swap = 1,
3129		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3130				       SWAP_CLUSTER_MAX),
3131		.gfp_mask = gfp_mask,
3132		.order = order,
3133	};
3134	struct shrink_control shrink = {
3135		.gfp_mask = sc.gfp_mask,
3136	};
3137	unsigned long nr_slab_pages0, nr_slab_pages1;
3138
3139	cond_resched();
3140	/*
3141	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3142	 * and we also need to be able to write out pages for RECLAIM_WRITE
3143	 * and RECLAIM_SWAP.
3144	 */
3145	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3146	lockdep_set_current_reclaim_state(gfp_mask);
3147	reclaim_state.reclaimed_slab = 0;
3148	p->reclaim_state = &reclaim_state;
3149
3150	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3151		/*
3152		 * Free memory by calling shrink zone with increasing
3153		 * priorities until we have enough memory freed.
3154		 */
3155		priority = ZONE_RECLAIM_PRIORITY;
3156		do {
3157			shrink_zone(priority, zone, &sc);
3158			priority--;
3159		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3160	}
3161
3162	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3163	if (nr_slab_pages0 > zone->min_slab_pages) {
3164		/*
3165		 * shrink_slab() does not currently allow us to determine how
3166		 * many pages were freed in this zone. So we take the current
3167		 * number of slab pages and shake the slab until it is reduced
3168		 * by the same nr_pages that we used for reclaiming unmapped
3169		 * pages.
3170		 *
3171		 * Note that shrink_slab will free memory on all zones and may
3172		 * take a long time.
3173		 */
3174		for (;;) {
3175			unsigned long lru_pages = zone_reclaimable_pages(zone);
3176
3177			/* No reclaimable slab or very low memory pressure */
3178			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3179				break;
3180
3181			/* Freed enough memory */
3182			nr_slab_pages1 = zone_page_state(zone,
3183							NR_SLAB_RECLAIMABLE);
3184			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3185				break;
3186		}
3187
3188		/*
3189		 * Update nr_reclaimed by the number of slab pages we
3190		 * reclaimed from this zone.
3191		 */
3192		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3193		if (nr_slab_pages1 < nr_slab_pages0)
3194			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3195	}
3196
3197	p->reclaim_state = NULL;
3198	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3199	lockdep_clear_current_reclaim_state();
3200	return sc.nr_reclaimed >= nr_pages;
3201}
3202
3203int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3204{
3205	int node_id;
3206	int ret;
3207
3208	/*
3209	 * Zone reclaim reclaims unmapped file backed pages and
3210	 * slab pages if we are over the defined limits.
3211	 *
3212	 * A small portion of unmapped file backed pages is needed for
3213	 * file I/O otherwise pages read by file I/O will be immediately
3214	 * thrown out if the zone is overallocated. So we do not reclaim
3215	 * if less than a specified percentage of the zone is used by
3216	 * unmapped file backed pages.
3217	 */
3218	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3219	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3220		return ZONE_RECLAIM_FULL;
3221
3222	if (zone->all_unreclaimable)
3223		return ZONE_RECLAIM_FULL;
3224
3225	/*
3226	 * Do not scan if the allocation should not be delayed.
3227	 */
3228	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3229		return ZONE_RECLAIM_NOSCAN;
3230
3231	/*
3232	 * Only run zone reclaim on the local zone or on zones that do not
3233	 * have associated processors. This will favor the local processor
3234	 * over remote processors and spread off node memory allocations
3235	 * as wide as possible.
3236	 */
3237	node_id = zone_to_nid(zone);
3238	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3239		return ZONE_RECLAIM_NOSCAN;
3240
3241	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3242		return ZONE_RECLAIM_NOSCAN;
3243
3244	ret = __zone_reclaim(zone, gfp_mask, order);
3245	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3246
3247	if (!ret)
3248		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3249
3250	return ret;
3251}
3252#endif
3253
3254/*
3255 * page_evictable - test whether a page is evictable
3256 * @page: the page to test
3257 * @vma: the VMA in which the page is or will be mapped, may be NULL
3258 *
3259 * Test whether page is evictable--i.e., should be placed on active/inactive
3260 * lists vs unevictable list.  The vma argument is !NULL when called from the
3261 * fault path to determine how to instantate a new page.
3262 *
3263 * Reasons page might not be evictable:
3264 * (1) page's mapping marked unevictable
3265 * (2) page is part of an mlocked VMA
3266 *
3267 */
3268int page_evictable(struct page *page, struct vm_area_struct *vma)
3269{
3270
3271	if (mapping_unevictable(page_mapping(page)))
3272		return 0;
3273
3274	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3275		return 0;
3276
3277	return 1;
3278}
3279
3280/**
3281 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3282 * @page: page to check evictability and move to appropriate lru list
3283 * @zone: zone page is in
3284 *
3285 * Checks a page for evictability and moves the page to the appropriate
3286 * zone lru list.
3287 *
3288 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3289 * have PageUnevictable set.
3290 */
3291static void check_move_unevictable_page(struct page *page, struct zone *zone)
3292{
3293	VM_BUG_ON(PageActive(page));
3294
3295retry:
3296	ClearPageUnevictable(page);
3297	if (page_evictable(page, NULL)) {
3298		enum lru_list l = page_lru_base_type(page);
3299
3300		__dec_zone_state(zone, NR_UNEVICTABLE);
3301		list_move(&page->lru, &zone->lru[l].list);
3302		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3303		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3304		__count_vm_event(UNEVICTABLE_PGRESCUED);
3305	} else {
3306		/*
3307		 * rotate unevictable list
3308		 */
3309		SetPageUnevictable(page);
3310		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3311		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3312		if (page_evictable(page, NULL))
3313			goto retry;
3314	}
3315}
3316
3317/**
3318 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3319 * @mapping: struct address_space to scan for evictable pages
3320 *
3321 * Scan all pages in mapping.  Check unevictable pages for
3322 * evictability and move them to the appropriate zone lru list.
3323 */
3324void scan_mapping_unevictable_pages(struct address_space *mapping)
3325{
3326	pgoff_t next = 0;
3327	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3328			 PAGE_CACHE_SHIFT;
3329	struct zone *zone;
3330	struct pagevec pvec;
3331
3332	if (mapping->nrpages == 0)
3333		return;
3334
3335	pagevec_init(&pvec, 0);
3336	while (next < end &&
3337		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3338		int i;
3339		int pg_scanned = 0;
3340
3341		zone = NULL;
3342
3343		for (i = 0; i < pagevec_count(&pvec); i++) {
3344			struct page *page = pvec.pages[i];
3345			pgoff_t page_index = page->index;
3346			struct zone *pagezone = page_zone(page);
3347
3348			pg_scanned++;
3349			if (page_index > next)
3350				next = page_index;
3351			next++;
3352
3353			if (pagezone != zone) {
3354				if (zone)
3355					spin_unlock_irq(&zone->lru_lock);
3356				zone = pagezone;
3357				spin_lock_irq(&zone->lru_lock);
3358			}
3359
3360			if (PageLRU(page) && PageUnevictable(page))
3361				check_move_unevictable_page(page, zone);
3362		}
3363		if (zone)
3364			spin_unlock_irq(&zone->lru_lock);
3365		pagevec_release(&pvec);
3366
3367		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3368	}
3369
3370}
3371
3372/**
3373 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3374 * @zone - zone of which to scan the unevictable list
3375 *
3376 * Scan @zone's unevictable LRU lists to check for pages that have become
3377 * evictable.  Move those that have to @zone's inactive list where they
3378 * become candidates for reclaim, unless shrink_inactive_zone() decides
3379 * to reactivate them.  Pages that are still unevictable are rotated
3380 * back onto @zone's unevictable list.
3381 */
3382#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3383static void scan_zone_unevictable_pages(struct zone *zone)
3384{
3385	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3386	unsigned long scan;
3387	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3388
3389	while (nr_to_scan > 0) {
3390		unsigned long batch_size = min(nr_to_scan,
3391						SCAN_UNEVICTABLE_BATCH_SIZE);
3392
3393		spin_lock_irq(&zone->lru_lock);
3394		for (scan = 0;  scan < batch_size; scan++) {
3395			struct page *page = lru_to_page(l_unevictable);
3396
3397			if (!trylock_page(page))
3398				continue;
3399
3400			prefetchw_prev_lru_page(page, l_unevictable, flags);
3401
3402			if (likely(PageLRU(page) && PageUnevictable(page)))
3403				check_move_unevictable_page(page, zone);
3404
3405			unlock_page(page);
3406		}
3407		spin_unlock_irq(&zone->lru_lock);
3408
3409		nr_to_scan -= batch_size;
3410	}
3411}
3412
3413
3414/**
3415 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3416 *
3417 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3418 * pages that have become evictable.  Move those back to the zones'
3419 * inactive list where they become candidates for reclaim.
3420 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3421 * and we add swap to the system.  As such, it runs in the context of a task
3422 * that has possibly/probably made some previously unevictable pages
3423 * evictable.
3424 */
3425static void scan_all_zones_unevictable_pages(void)
3426{
3427	struct zone *zone;
3428
3429	for_each_zone(zone) {
3430		scan_zone_unevictable_pages(zone);
3431	}
3432}
3433
3434/*
3435 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3436 * all nodes' unevictable lists for evictable pages
3437 */
3438unsigned long scan_unevictable_pages;
3439
3440int scan_unevictable_handler(struct ctl_table *table, int write,
3441			   void __user *buffer,
3442			   size_t *length, loff_t *ppos)
3443{
3444	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3445
3446	if (write && *(unsigned long *)table->data)
3447		scan_all_zones_unevictable_pages();
3448
3449	scan_unevictable_pages = 0;
3450	return 0;
3451}
3452
3453#ifdef CONFIG_NUMA
3454/*
3455 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3456 * a specified node's per zone unevictable lists for evictable pages.
3457 */
3458
3459static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3460					  struct sysdev_attribute *attr,
3461					  char *buf)
3462{
3463	return sprintf(buf, "0\n");	/* always zero; should fit... */
3464}
3465
3466static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3467					   struct sysdev_attribute *attr,
3468					const char *buf, size_t count)
3469{
3470	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3471	struct zone *zone;
3472	unsigned long res;
3473	unsigned long req = strict_strtoul(buf, 10, &res);
3474
3475	if (!req)
3476		return 1;	/* zero is no-op */
3477
3478	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3479		if (!populated_zone(zone))
3480			continue;
3481		scan_zone_unevictable_pages(zone);
3482	}
3483	return 1;
3484}
3485
3486
3487static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3488			read_scan_unevictable_node,
3489			write_scan_unevictable_node);
3490
3491int scan_unevictable_register_node(struct node *node)
3492{
3493	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3494}
3495
3496void scan_unevictable_unregister_node(struct node *node)
3497{
3498	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3499}
3500#endif
3501