vmscan.c revision fe4b1b244bdb96136855f2c694071cb09d140766
1/*
2 *  linux/mm/vmscan.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *
6 *  Swap reorganised 29.12.95, Stephen Tweedie.
7 *  kswapd added: 7.1.96  sct
8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 *  Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page(),
27					buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC:  Do not block
61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 *			page from the LRU and reclaim all pages within a
64 *			naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 *			order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76	/* Incremented by the number of inactive pages that were scanned */
77	unsigned long nr_scanned;
78
79	/* Number of pages freed so far during a call to shrink_zones() */
80	unsigned long nr_reclaimed;
81
82	/* How many pages shrink_list() should reclaim */
83	unsigned long nr_to_reclaim;
84
85	unsigned long hibernation_mode;
86
87	/* This context's GFP mask */
88	gfp_t gfp_mask;
89
90	int may_writepage;
91
92	/* Can mapped pages be reclaimed? */
93	int may_unmap;
94
95	/* Can pages be swapped as part of reclaim? */
96	int may_swap;
97
98	int order;
99
100	/*
101	 * Intend to reclaim enough continuous memory rather than reclaim
102	 * enough amount of memory. i.e, mode for high order allocation.
103	 */
104	reclaim_mode_t reclaim_mode;
105
106	/*
107	 * The memory cgroup that hit its limit and as a result is the
108	 * primary target of this reclaim invocation.
109	 */
110	struct mem_cgroup *target_mem_cgroup;
111
112	/*
113	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114	 * are scanned.
115	 */
116	nodemask_t	*nodemask;
117};
118
119struct mem_cgroup_zone {
120	struct mem_cgroup *mem_cgroup;
121	struct zone *zone;
122};
123
124#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126#ifdef ARCH_HAS_PREFETCH
127#define prefetch_prev_lru_page(_page, _base, _field)			\
128	do {								\
129		if ((_page)->lru.prev != _base) {			\
130			struct page *prev;				\
131									\
132			prev = lru_to_page(&(_page->lru));		\
133			prefetch(&prev->_field);			\
134		}							\
135	} while (0)
136#else
137#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138#endif
139
140#ifdef ARCH_HAS_PREFETCHW
141#define prefetchw_prev_lru_page(_page, _base, _field)			\
142	do {								\
143		if ((_page)->lru.prev != _base) {			\
144			struct page *prev;				\
145									\
146			prev = lru_to_page(&(_page->lru));		\
147			prefetchw(&prev->_field);			\
148		}							\
149	} while (0)
150#else
151#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152#endif
153
154/*
155 * From 0 .. 100.  Higher means more swappy.
156 */
157int vm_swappiness = 60;
158long vm_total_pages;	/* The total number of pages which the VM controls */
159
160static LIST_HEAD(shrinker_list);
161static DECLARE_RWSEM(shrinker_rwsem);
162
163#ifdef CONFIG_CGROUP_MEM_RES_CTLR
164static bool global_reclaim(struct scan_control *sc)
165{
166	return !sc->target_mem_cgroup;
167}
168
169static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170{
171	return !mz->mem_cgroup;
172}
173#else
174static bool global_reclaim(struct scan_control *sc)
175{
176	return true;
177}
178
179static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180{
181	return true;
182}
183#endif
184
185static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186{
187	if (!scanning_global_lru(mz))
188		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190	return &mz->zone->reclaim_stat;
191}
192
193static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194				       enum lru_list lru)
195{
196	if (!scanning_global_lru(mz))
197		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198						    zone_to_nid(mz->zone),
199						    zone_idx(mz->zone),
200						    BIT(lru));
201
202	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203}
204
205
206/*
207 * Add a shrinker callback to be called from the vm
208 */
209void register_shrinker(struct shrinker *shrinker)
210{
211	atomic_long_set(&shrinker->nr_in_batch, 0);
212	down_write(&shrinker_rwsem);
213	list_add_tail(&shrinker->list, &shrinker_list);
214	up_write(&shrinker_rwsem);
215}
216EXPORT_SYMBOL(register_shrinker);
217
218/*
219 * Remove one
220 */
221void unregister_shrinker(struct shrinker *shrinker)
222{
223	down_write(&shrinker_rwsem);
224	list_del(&shrinker->list);
225	up_write(&shrinker_rwsem);
226}
227EXPORT_SYMBOL(unregister_shrinker);
228
229static inline int do_shrinker_shrink(struct shrinker *shrinker,
230				     struct shrink_control *sc,
231				     unsigned long nr_to_scan)
232{
233	sc->nr_to_scan = nr_to_scan;
234	return (*shrinker->shrink)(shrinker, sc);
235}
236
237#define SHRINK_BATCH 128
238/*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object.  With this in mind we age equal
243 * percentages of the lru and ageable caches.  This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt.  It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257unsigned long shrink_slab(struct shrink_control *shrink,
258			  unsigned long nr_pages_scanned,
259			  unsigned long lru_pages)
260{
261	struct shrinker *shrinker;
262	unsigned long ret = 0;
263
264	if (nr_pages_scanned == 0)
265		nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267	if (!down_read_trylock(&shrinker_rwsem)) {
268		/* Assume we'll be able to shrink next time */
269		ret = 1;
270		goto out;
271	}
272
273	list_for_each_entry(shrinker, &shrinker_list, list) {
274		unsigned long long delta;
275		long total_scan;
276		long max_pass;
277		int shrink_ret = 0;
278		long nr;
279		long new_nr;
280		long batch_size = shrinker->batch ? shrinker->batch
281						  : SHRINK_BATCH;
282
283		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284		if (max_pass <= 0)
285			continue;
286
287		/*
288		 * copy the current shrinker scan count into a local variable
289		 * and zero it so that other concurrent shrinker invocations
290		 * don't also do this scanning work.
291		 */
292		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294		total_scan = nr;
295		delta = (4 * nr_pages_scanned) / shrinker->seeks;
296		delta *= max_pass;
297		do_div(delta, lru_pages + 1);
298		total_scan += delta;
299		if (total_scan < 0) {
300			printk(KERN_ERR "shrink_slab: %pF negative objects to "
301			       "delete nr=%ld\n",
302			       shrinker->shrink, total_scan);
303			total_scan = max_pass;
304		}
305
306		/*
307		 * We need to avoid excessive windup on filesystem shrinkers
308		 * due to large numbers of GFP_NOFS allocations causing the
309		 * shrinkers to return -1 all the time. This results in a large
310		 * nr being built up so when a shrink that can do some work
311		 * comes along it empties the entire cache due to nr >>>
312		 * max_pass.  This is bad for sustaining a working set in
313		 * memory.
314		 *
315		 * Hence only allow the shrinker to scan the entire cache when
316		 * a large delta change is calculated directly.
317		 */
318		if (delta < max_pass / 4)
319			total_scan = min(total_scan, max_pass / 2);
320
321		/*
322		 * Avoid risking looping forever due to too large nr value:
323		 * never try to free more than twice the estimate number of
324		 * freeable entries.
325		 */
326		if (total_scan > max_pass * 2)
327			total_scan = max_pass * 2;
328
329		trace_mm_shrink_slab_start(shrinker, shrink, nr,
330					nr_pages_scanned, lru_pages,
331					max_pass, delta, total_scan);
332
333		while (total_scan >= batch_size) {
334			int nr_before;
335
336			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337			shrink_ret = do_shrinker_shrink(shrinker, shrink,
338							batch_size);
339			if (shrink_ret == -1)
340				break;
341			if (shrink_ret < nr_before)
342				ret += nr_before - shrink_ret;
343			count_vm_events(SLABS_SCANNED, batch_size);
344			total_scan -= batch_size;
345
346			cond_resched();
347		}
348
349		/*
350		 * move the unused scan count back into the shrinker in a
351		 * manner that handles concurrent updates. If we exhausted the
352		 * scan, there is no need to do an update.
353		 */
354		if (total_scan > 0)
355			new_nr = atomic_long_add_return(total_scan,
356					&shrinker->nr_in_batch);
357		else
358			new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361	}
362	up_read(&shrinker_rwsem);
363out:
364	cond_resched();
365	return ret;
366}
367
368static void set_reclaim_mode(int priority, struct scan_control *sc,
369				   bool sync)
370{
371	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373	/*
374	 * Initially assume we are entering either lumpy reclaim or
375	 * reclaim/compaction.Depending on the order, we will either set the
376	 * sync mode or just reclaim order-0 pages later.
377	 */
378	if (COMPACTION_BUILD)
379		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380	else
381		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383	/*
384	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385	 * restricting when its set to either costly allocations or when
386	 * under memory pressure
387	 */
388	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389		sc->reclaim_mode |= syncmode;
390	else if (sc->order && priority < DEF_PRIORITY - 2)
391		sc->reclaim_mode |= syncmode;
392	else
393		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394}
395
396static void reset_reclaim_mode(struct scan_control *sc)
397{
398	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399}
400
401static inline int is_page_cache_freeable(struct page *page)
402{
403	/*
404	 * A freeable page cache page is referenced only by the caller
405	 * that isolated the page, the page cache radix tree and
406	 * optional buffer heads at page->private.
407	 */
408	return page_count(page) - page_has_private(page) == 2;
409}
410
411static int may_write_to_queue(struct backing_dev_info *bdi,
412			      struct scan_control *sc)
413{
414	if (current->flags & PF_SWAPWRITE)
415		return 1;
416	if (!bdi_write_congested(bdi))
417		return 1;
418	if (bdi == current->backing_dev_info)
419		return 1;
420
421	/* lumpy reclaim for hugepage often need a lot of write */
422	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423		return 1;
424	return 0;
425}
426
427/*
428 * We detected a synchronous write error writing a page out.  Probably
429 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up.  But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439static void handle_write_error(struct address_space *mapping,
440				struct page *page, int error)
441{
442	lock_page(page);
443	if (page_mapping(page) == mapping)
444		mapping_set_error(mapping, error);
445	unlock_page(page);
446}
447
448/* possible outcome of pageout() */
449typedef enum {
450	/* failed to write page out, page is locked */
451	PAGE_KEEP,
452	/* move page to the active list, page is locked */
453	PAGE_ACTIVATE,
454	/* page has been sent to the disk successfully, page is unlocked */
455	PAGE_SUCCESS,
456	/* page is clean and locked */
457	PAGE_CLEAN,
458} pageout_t;
459
460/*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464static pageout_t pageout(struct page *page, struct address_space *mapping,
465			 struct scan_control *sc)
466{
467	/*
468	 * If the page is dirty, only perform writeback if that write
469	 * will be non-blocking.  To prevent this allocation from being
470	 * stalled by pagecache activity.  But note that there may be
471	 * stalls if we need to run get_block().  We could test
472	 * PagePrivate for that.
473	 *
474	 * If this process is currently in __generic_file_aio_write() against
475	 * this page's queue, we can perform writeback even if that
476	 * will block.
477	 *
478	 * If the page is swapcache, write it back even if that would
479	 * block, for some throttling. This happens by accident, because
480	 * swap_backing_dev_info is bust: it doesn't reflect the
481	 * congestion state of the swapdevs.  Easy to fix, if needed.
482	 */
483	if (!is_page_cache_freeable(page))
484		return PAGE_KEEP;
485	if (!mapping) {
486		/*
487		 * Some data journaling orphaned pages can have
488		 * page->mapping == NULL while being dirty with clean buffers.
489		 */
490		if (page_has_private(page)) {
491			if (try_to_free_buffers(page)) {
492				ClearPageDirty(page);
493				printk("%s: orphaned page\n", __func__);
494				return PAGE_CLEAN;
495			}
496		}
497		return PAGE_KEEP;
498	}
499	if (mapping->a_ops->writepage == NULL)
500		return PAGE_ACTIVATE;
501	if (!may_write_to_queue(mapping->backing_dev_info, sc))
502		return PAGE_KEEP;
503
504	if (clear_page_dirty_for_io(page)) {
505		int res;
506		struct writeback_control wbc = {
507			.sync_mode = WB_SYNC_NONE,
508			.nr_to_write = SWAP_CLUSTER_MAX,
509			.range_start = 0,
510			.range_end = LLONG_MAX,
511			.for_reclaim = 1,
512		};
513
514		SetPageReclaim(page);
515		res = mapping->a_ops->writepage(page, &wbc);
516		if (res < 0)
517			handle_write_error(mapping, page, res);
518		if (res == AOP_WRITEPAGE_ACTIVATE) {
519			ClearPageReclaim(page);
520			return PAGE_ACTIVATE;
521		}
522
523		if (!PageWriteback(page)) {
524			/* synchronous write or broken a_ops? */
525			ClearPageReclaim(page);
526		}
527		trace_mm_vmscan_writepage(page,
528			trace_reclaim_flags(page, sc->reclaim_mode));
529		inc_zone_page_state(page, NR_VMSCAN_WRITE);
530		return PAGE_SUCCESS;
531	}
532
533	return PAGE_CLEAN;
534}
535
536/*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540static int __remove_mapping(struct address_space *mapping, struct page *page)
541{
542	BUG_ON(!PageLocked(page));
543	BUG_ON(mapping != page_mapping(page));
544
545	spin_lock_irq(&mapping->tree_lock);
546	/*
547	 * The non racy check for a busy page.
548	 *
549	 * Must be careful with the order of the tests. When someone has
550	 * a ref to the page, it may be possible that they dirty it then
551	 * drop the reference. So if PageDirty is tested before page_count
552	 * here, then the following race may occur:
553	 *
554	 * get_user_pages(&page);
555	 * [user mapping goes away]
556	 * write_to(page);
557	 *				!PageDirty(page)    [good]
558	 * SetPageDirty(page);
559	 * put_page(page);
560	 *				!page_count(page)   [good, discard it]
561	 *
562	 * [oops, our write_to data is lost]
563	 *
564	 * Reversing the order of the tests ensures such a situation cannot
565	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566	 * load is not satisfied before that of page->_count.
567	 *
568	 * Note that if SetPageDirty is always performed via set_page_dirty,
569	 * and thus under tree_lock, then this ordering is not required.
570	 */
571	if (!page_freeze_refs(page, 2))
572		goto cannot_free;
573	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574	if (unlikely(PageDirty(page))) {
575		page_unfreeze_refs(page, 2);
576		goto cannot_free;
577	}
578
579	if (PageSwapCache(page)) {
580		swp_entry_t swap = { .val = page_private(page) };
581		__delete_from_swap_cache(page);
582		spin_unlock_irq(&mapping->tree_lock);
583		swapcache_free(swap, page);
584	} else {
585		void (*freepage)(struct page *);
586
587		freepage = mapping->a_ops->freepage;
588
589		__delete_from_page_cache(page);
590		spin_unlock_irq(&mapping->tree_lock);
591		mem_cgroup_uncharge_cache_page(page);
592
593		if (freepage != NULL)
594			freepage(page);
595	}
596
597	return 1;
598
599cannot_free:
600	spin_unlock_irq(&mapping->tree_lock);
601	return 0;
602}
603
604/*
605 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
606 * someone else has a ref on the page, abort and return 0.  If it was
607 * successfully detached, return 1.  Assumes the caller has a single ref on
608 * this page.
609 */
610int remove_mapping(struct address_space *mapping, struct page *page)
611{
612	if (__remove_mapping(mapping, page)) {
613		/*
614		 * Unfreezing the refcount with 1 rather than 2 effectively
615		 * drops the pagecache ref for us without requiring another
616		 * atomic operation.
617		 */
618		page_unfreeze_refs(page, 1);
619		return 1;
620	}
621	return 0;
622}
623
624/**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633void putback_lru_page(struct page *page)
634{
635	int lru;
636	int active = !!TestClearPageActive(page);
637	int was_unevictable = PageUnevictable(page);
638
639	VM_BUG_ON(PageLRU(page));
640
641redo:
642	ClearPageUnevictable(page);
643
644	if (page_evictable(page, NULL)) {
645		/*
646		 * For evictable pages, we can use the cache.
647		 * In event of a race, worst case is we end up with an
648		 * unevictable page on [in]active list.
649		 * We know how to handle that.
650		 */
651		lru = active + page_lru_base_type(page);
652		lru_cache_add_lru(page, lru);
653	} else {
654		/*
655		 * Put unevictable pages directly on zone's unevictable
656		 * list.
657		 */
658		lru = LRU_UNEVICTABLE;
659		add_page_to_unevictable_list(page);
660		/*
661		 * When racing with an mlock or AS_UNEVICTABLE clearing
662		 * (page is unlocked) make sure that if the other thread
663		 * does not observe our setting of PG_lru and fails
664		 * isolation/check_move_unevictable_page,
665		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666		 * the page back to the evictable list.
667		 *
668		 * The other side is TestClearPageMlocked() or shmem_lock().
669		 */
670		smp_mb();
671	}
672
673	/*
674	 * page's status can change while we move it among lru. If an evictable
675	 * page is on unevictable list, it never be freed. To avoid that,
676	 * check after we added it to the list, again.
677	 */
678	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679		if (!isolate_lru_page(page)) {
680			put_page(page);
681			goto redo;
682		}
683		/* This means someone else dropped this page from LRU
684		 * So, it will be freed or putback to LRU again. There is
685		 * nothing to do here.
686		 */
687	}
688
689	if (was_unevictable && lru != LRU_UNEVICTABLE)
690		count_vm_event(UNEVICTABLE_PGRESCUED);
691	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692		count_vm_event(UNEVICTABLE_PGCULLED);
693
694	put_page(page);		/* drop ref from isolate */
695}
696
697enum page_references {
698	PAGEREF_RECLAIM,
699	PAGEREF_RECLAIM_CLEAN,
700	PAGEREF_KEEP,
701	PAGEREF_ACTIVATE,
702};
703
704static enum page_references page_check_references(struct page *page,
705						  struct mem_cgroup_zone *mz,
706						  struct scan_control *sc)
707{
708	int referenced_ptes, referenced_page;
709	unsigned long vm_flags;
710
711	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712	referenced_page = TestClearPageReferenced(page);
713
714	/* Lumpy reclaim - ignore references */
715	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716		return PAGEREF_RECLAIM;
717
718	/*
719	 * Mlock lost the isolation race with us.  Let try_to_unmap()
720	 * move the page to the unevictable list.
721	 */
722	if (vm_flags & VM_LOCKED)
723		return PAGEREF_RECLAIM;
724
725	if (referenced_ptes) {
726		if (PageAnon(page))
727			return PAGEREF_ACTIVATE;
728		/*
729		 * All mapped pages start out with page table
730		 * references from the instantiating fault, so we need
731		 * to look twice if a mapped file page is used more
732		 * than once.
733		 *
734		 * Mark it and spare it for another trip around the
735		 * inactive list.  Another page table reference will
736		 * lead to its activation.
737		 *
738		 * Note: the mark is set for activated pages as well
739		 * so that recently deactivated but used pages are
740		 * quickly recovered.
741		 */
742		SetPageReferenced(page);
743
744		if (referenced_page || referenced_ptes > 1)
745			return PAGEREF_ACTIVATE;
746
747		/*
748		 * Activate file-backed executable pages after first usage.
749		 */
750		if (vm_flags & VM_EXEC)
751			return PAGEREF_ACTIVATE;
752
753		return PAGEREF_KEEP;
754	}
755
756	/* Reclaim if clean, defer dirty pages to writeback */
757	if (referenced_page && !PageSwapBacked(page))
758		return PAGEREF_RECLAIM_CLEAN;
759
760	return PAGEREF_RECLAIM;
761}
762
763/*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766static unsigned long shrink_page_list(struct list_head *page_list,
767				      struct mem_cgroup_zone *mz,
768				      struct scan_control *sc,
769				      int priority,
770				      unsigned long *ret_nr_dirty,
771				      unsigned long *ret_nr_writeback)
772{
773	LIST_HEAD(ret_pages);
774	LIST_HEAD(free_pages);
775	int pgactivate = 0;
776	unsigned long nr_dirty = 0;
777	unsigned long nr_congested = 0;
778	unsigned long nr_reclaimed = 0;
779	unsigned long nr_writeback = 0;
780
781	cond_resched();
782
783	while (!list_empty(page_list)) {
784		enum page_references references;
785		struct address_space *mapping;
786		struct page *page;
787		int may_enter_fs;
788
789		cond_resched();
790
791		page = lru_to_page(page_list);
792		list_del(&page->lru);
793
794		if (!trylock_page(page))
795			goto keep;
796
797		VM_BUG_ON(PageActive(page));
798		VM_BUG_ON(page_zone(page) != mz->zone);
799
800		sc->nr_scanned++;
801
802		if (unlikely(!page_evictable(page, NULL)))
803			goto cull_mlocked;
804
805		if (!sc->may_unmap && page_mapped(page))
806			goto keep_locked;
807
808		/* Double the slab pressure for mapped and swapcache pages */
809		if (page_mapped(page) || PageSwapCache(page))
810			sc->nr_scanned++;
811
812		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815		if (PageWriteback(page)) {
816			nr_writeback++;
817			/*
818			 * Synchronous reclaim cannot queue pages for
819			 * writeback due to the possibility of stack overflow
820			 * but if it encounters a page under writeback, wait
821			 * for the IO to complete.
822			 */
823			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824			    may_enter_fs)
825				wait_on_page_writeback(page);
826			else {
827				unlock_page(page);
828				goto keep_lumpy;
829			}
830		}
831
832		references = page_check_references(page, mz, sc);
833		switch (references) {
834		case PAGEREF_ACTIVATE:
835			goto activate_locked;
836		case PAGEREF_KEEP:
837			goto keep_locked;
838		case PAGEREF_RECLAIM:
839		case PAGEREF_RECLAIM_CLEAN:
840			; /* try to reclaim the page below */
841		}
842
843		/*
844		 * Anonymous process memory has backing store?
845		 * Try to allocate it some swap space here.
846		 */
847		if (PageAnon(page) && !PageSwapCache(page)) {
848			if (!(sc->gfp_mask & __GFP_IO))
849				goto keep_locked;
850			if (!add_to_swap(page))
851				goto activate_locked;
852			may_enter_fs = 1;
853		}
854
855		mapping = page_mapping(page);
856
857		/*
858		 * The page is mapped into the page tables of one or more
859		 * processes. Try to unmap it here.
860		 */
861		if (page_mapped(page) && mapping) {
862			switch (try_to_unmap(page, TTU_UNMAP)) {
863			case SWAP_FAIL:
864				goto activate_locked;
865			case SWAP_AGAIN:
866				goto keep_locked;
867			case SWAP_MLOCK:
868				goto cull_mlocked;
869			case SWAP_SUCCESS:
870				; /* try to free the page below */
871			}
872		}
873
874		if (PageDirty(page)) {
875			nr_dirty++;
876
877			/*
878			 * Only kswapd can writeback filesystem pages to
879			 * avoid risk of stack overflow but do not writeback
880			 * unless under significant pressure.
881			 */
882			if (page_is_file_cache(page) &&
883					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884				/*
885				 * Immediately reclaim when written back.
886				 * Similar in principal to deactivate_page()
887				 * except we already have the page isolated
888				 * and know it's dirty
889				 */
890				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891				SetPageReclaim(page);
892
893				goto keep_locked;
894			}
895
896			if (references == PAGEREF_RECLAIM_CLEAN)
897				goto keep_locked;
898			if (!may_enter_fs)
899				goto keep_locked;
900			if (!sc->may_writepage)
901				goto keep_locked;
902
903			/* Page is dirty, try to write it out here */
904			switch (pageout(page, mapping, sc)) {
905			case PAGE_KEEP:
906				nr_congested++;
907				goto keep_locked;
908			case PAGE_ACTIVATE:
909				goto activate_locked;
910			case PAGE_SUCCESS:
911				if (PageWriteback(page))
912					goto keep_lumpy;
913				if (PageDirty(page))
914					goto keep;
915
916				/*
917				 * A synchronous write - probably a ramdisk.  Go
918				 * ahead and try to reclaim the page.
919				 */
920				if (!trylock_page(page))
921					goto keep;
922				if (PageDirty(page) || PageWriteback(page))
923					goto keep_locked;
924				mapping = page_mapping(page);
925			case PAGE_CLEAN:
926				; /* try to free the page below */
927			}
928		}
929
930		/*
931		 * If the page has buffers, try to free the buffer mappings
932		 * associated with this page. If we succeed we try to free
933		 * the page as well.
934		 *
935		 * We do this even if the page is PageDirty().
936		 * try_to_release_page() does not perform I/O, but it is
937		 * possible for a page to have PageDirty set, but it is actually
938		 * clean (all its buffers are clean).  This happens if the
939		 * buffers were written out directly, with submit_bh(). ext3
940		 * will do this, as well as the blockdev mapping.
941		 * try_to_release_page() will discover that cleanness and will
942		 * drop the buffers and mark the page clean - it can be freed.
943		 *
944		 * Rarely, pages can have buffers and no ->mapping.  These are
945		 * the pages which were not successfully invalidated in
946		 * truncate_complete_page().  We try to drop those buffers here
947		 * and if that worked, and the page is no longer mapped into
948		 * process address space (page_count == 1) it can be freed.
949		 * Otherwise, leave the page on the LRU so it is swappable.
950		 */
951		if (page_has_private(page)) {
952			if (!try_to_release_page(page, sc->gfp_mask))
953				goto activate_locked;
954			if (!mapping && page_count(page) == 1) {
955				unlock_page(page);
956				if (put_page_testzero(page))
957					goto free_it;
958				else {
959					/*
960					 * rare race with speculative reference.
961					 * the speculative reference will free
962					 * this page shortly, so we may
963					 * increment nr_reclaimed here (and
964					 * leave it off the LRU).
965					 */
966					nr_reclaimed++;
967					continue;
968				}
969			}
970		}
971
972		if (!mapping || !__remove_mapping(mapping, page))
973			goto keep_locked;
974
975		/*
976		 * At this point, we have no other references and there is
977		 * no way to pick any more up (removed from LRU, removed
978		 * from pagecache). Can use non-atomic bitops now (and
979		 * we obviously don't have to worry about waking up a process
980		 * waiting on the page lock, because there are no references.
981		 */
982		__clear_page_locked(page);
983free_it:
984		nr_reclaimed++;
985
986		/*
987		 * Is there need to periodically free_page_list? It would
988		 * appear not as the counts should be low
989		 */
990		list_add(&page->lru, &free_pages);
991		continue;
992
993cull_mlocked:
994		if (PageSwapCache(page))
995			try_to_free_swap(page);
996		unlock_page(page);
997		putback_lru_page(page);
998		reset_reclaim_mode(sc);
999		continue;
1000
1001activate_locked:
1002		/* Not a candidate for swapping, so reclaim swap space. */
1003		if (PageSwapCache(page) && vm_swap_full())
1004			try_to_free_swap(page);
1005		VM_BUG_ON(PageActive(page));
1006		SetPageActive(page);
1007		pgactivate++;
1008keep_locked:
1009		unlock_page(page);
1010keep:
1011		reset_reclaim_mode(sc);
1012keep_lumpy:
1013		list_add(&page->lru, &ret_pages);
1014		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015	}
1016
1017	/*
1018	 * Tag a zone as congested if all the dirty pages encountered were
1019	 * backed by a congested BDI. In this case, reclaimers should just
1020	 * back off and wait for congestion to clear because further reclaim
1021	 * will encounter the same problem
1022	 */
1023	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024		zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026	free_hot_cold_page_list(&free_pages, 1);
1027
1028	list_splice(&ret_pages, page_list);
1029	count_vm_events(PGACTIVATE, pgactivate);
1030	*ret_nr_dirty += nr_dirty;
1031	*ret_nr_writeback += nr_writeback;
1032	return nr_reclaimed;
1033}
1034
1035/*
1036 * Attempt to remove the specified page from its LRU.  Only take this page
1037 * if it is of the appropriate PageActive status.  Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page:	page to consider
1041 * mode:	one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046{
1047	bool all_lru_mode;
1048	int ret = -EINVAL;
1049
1050	/* Only take pages on the LRU. */
1051	if (!PageLRU(page))
1052		return ret;
1053
1054	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057	/*
1058	 * When checking the active state, we need to be sure we are
1059	 * dealing with comparible boolean values.  Take the logical not
1060	 * of each.
1061	 */
1062	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063		return ret;
1064
1065	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066		return ret;
1067
1068	/*
1069	 * When this function is being called for lumpy reclaim, we
1070	 * initially look into all LRU pages, active, inactive and
1071	 * unevictable; only give shrink_page_list evictable pages.
1072	 */
1073	if (PageUnevictable(page))
1074		return ret;
1075
1076	ret = -EBUSY;
1077
1078	/*
1079	 * To minimise LRU disruption, the caller can indicate that it only
1080	 * wants to isolate pages it will be able to operate on without
1081	 * blocking - clean pages for the most part.
1082	 *
1083	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084	 * is used by reclaim when it is cannot write to backing storage
1085	 *
1086	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087	 * that it is possible to migrate without blocking
1088	 */
1089	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090		/* All the caller can do on PageWriteback is block */
1091		if (PageWriteback(page))
1092			return ret;
1093
1094		if (PageDirty(page)) {
1095			struct address_space *mapping;
1096
1097			/* ISOLATE_CLEAN means only clean pages */
1098			if (mode & ISOLATE_CLEAN)
1099				return ret;
1100
1101			/*
1102			 * Only pages without mappings or that have a
1103			 * ->migratepage callback are possible to migrate
1104			 * without blocking
1105			 */
1106			mapping = page_mapping(page);
1107			if (mapping && !mapping->a_ops->migratepage)
1108				return ret;
1109		}
1110	}
1111
1112	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113		return ret;
1114
1115	if (likely(get_page_unless_zero(page))) {
1116		/*
1117		 * Be careful not to clear PageLRU until after we're
1118		 * sure the page is not being freed elsewhere -- the
1119		 * page release code relies on it.
1120		 */
1121		ClearPageLRU(page);
1122		ret = 0;
1123	}
1124
1125	return ret;
1126}
1127
1128/*
1129 * zone->lru_lock is heavily contended.  Some of the functions that
1130 * shrink the lists perform better by taking out a batch of pages
1131 * and working on them outside the LRU lock.
1132 *
1133 * For pagecache intensive workloads, this function is the hottest
1134 * spot in the kernel (apart from copy_*_user functions).
1135 *
1136 * Appropriate locks must be held before calling this function.
1137 *
1138 * @nr_to_scan:	The number of pages to look through on the list.
1139 * @src:	The LRU list to pull pages off.
1140 * @dst:	The temp list to put pages on to.
1141 * @scanned:	The number of pages that were scanned.
1142 * @order:	The caller's attempted allocation order
1143 * @mode:	One of the LRU isolation modes
1144 * @file:	True [1] if isolating file [!anon] pages
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
1148static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149		struct list_head *src, struct list_head *dst,
1150		unsigned long *scanned, int order, isolate_mode_t mode,
1151		int file)
1152{
1153	unsigned long nr_taken = 0;
1154	unsigned long nr_lumpy_taken = 0;
1155	unsigned long nr_lumpy_dirty = 0;
1156	unsigned long nr_lumpy_failed = 0;
1157	unsigned long scan;
1158
1159	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1160		struct page *page;
1161		unsigned long pfn;
1162		unsigned long end_pfn;
1163		unsigned long page_pfn;
1164		int zone_id;
1165
1166		page = lru_to_page(src);
1167		prefetchw_prev_lru_page(page, src, flags);
1168
1169		VM_BUG_ON(!PageLRU(page));
1170
1171		switch (__isolate_lru_page(page, mode, file)) {
1172		case 0:
1173			mem_cgroup_lru_del(page);
1174			list_move(&page->lru, dst);
1175			nr_taken += hpage_nr_pages(page);
1176			break;
1177
1178		case -EBUSY:
1179			/* else it is being freed elsewhere */
1180			list_move(&page->lru, src);
1181			continue;
1182
1183		default:
1184			BUG();
1185		}
1186
1187		if (!order)
1188			continue;
1189
1190		/*
1191		 * Attempt to take all pages in the order aligned region
1192		 * surrounding the tag page.  Only take those pages of
1193		 * the same active state as that tag page.  We may safely
1194		 * round the target page pfn down to the requested order
1195		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1196		 * where that page is in a different zone we will detect
1197		 * it from its zone id and abort this block scan.
1198		 */
1199		zone_id = page_zone_id(page);
1200		page_pfn = page_to_pfn(page);
1201		pfn = page_pfn & ~((1 << order) - 1);
1202		end_pfn = pfn + (1 << order);
1203		for (; pfn < end_pfn; pfn++) {
1204			struct page *cursor_page;
1205
1206			/* The target page is in the block, ignore it. */
1207			if (unlikely(pfn == page_pfn))
1208				continue;
1209
1210			/* Avoid holes within the zone. */
1211			if (unlikely(!pfn_valid_within(pfn)))
1212				break;
1213
1214			cursor_page = pfn_to_page(pfn);
1215
1216			/* Check that we have not crossed a zone boundary. */
1217			if (unlikely(page_zone_id(cursor_page) != zone_id))
1218				break;
1219
1220			/*
1221			 * If we don't have enough swap space, reclaiming of
1222			 * anon page which don't already have a swap slot is
1223			 * pointless.
1224			 */
1225			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1226			    !PageSwapCache(cursor_page))
1227				break;
1228
1229			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1230				unsigned int isolated_pages;
1231
1232				mem_cgroup_lru_del(cursor_page);
1233				list_move(&cursor_page->lru, dst);
1234				isolated_pages = hpage_nr_pages(cursor_page);
1235				nr_taken += isolated_pages;
1236				nr_lumpy_taken += isolated_pages;
1237				if (PageDirty(cursor_page))
1238					nr_lumpy_dirty += isolated_pages;
1239				scan++;
1240				pfn += isolated_pages - 1;
1241			} else {
1242				/*
1243				 * Check if the page is freed already.
1244				 *
1245				 * We can't use page_count() as that
1246				 * requires compound_head and we don't
1247				 * have a pin on the page here. If a
1248				 * page is tail, we may or may not
1249				 * have isolated the head, so assume
1250				 * it's not free, it'd be tricky to
1251				 * track the head status without a
1252				 * page pin.
1253				 */
1254				if (!PageTail(cursor_page) &&
1255				    !atomic_read(&cursor_page->_count))
1256					continue;
1257				break;
1258			}
1259		}
1260
1261		/* If we break out of the loop above, lumpy reclaim failed */
1262		if (pfn < end_pfn)
1263			nr_lumpy_failed++;
1264	}
1265
1266	*scanned = scan;
1267
1268	trace_mm_vmscan_lru_isolate(order,
1269			nr_to_scan, scan,
1270			nr_taken,
1271			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1272			mode, file);
1273	return nr_taken;
1274}
1275
1276static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
1277				   struct list_head *dst,
1278				   unsigned long *scanned, int order,
1279				   isolate_mode_t mode, int active, int file)
1280{
1281	struct lruvec *lruvec;
1282	int lru = LRU_BASE;
1283
1284	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1285	if (active)
1286		lru += LRU_ACTIVE;
1287	if (file)
1288		lru += LRU_FILE;
1289	return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1290				 scanned, order, mode, file);
1291}
1292
1293/*
1294 * clear_active_flags() is a helper for shrink_active_list(), clearing
1295 * any active bits from the pages in the list.
1296 */
1297static unsigned long clear_active_flags(struct list_head *page_list,
1298					unsigned int *count)
1299{
1300	int nr_active = 0;
1301	int lru;
1302	struct page *page;
1303
1304	list_for_each_entry(page, page_list, lru) {
1305		int numpages = hpage_nr_pages(page);
1306		lru = page_lru_base_type(page);
1307		if (PageActive(page)) {
1308			lru += LRU_ACTIVE;
1309			ClearPageActive(page);
1310			nr_active += numpages;
1311		}
1312		if (count)
1313			count[lru] += numpages;
1314	}
1315
1316	return nr_active;
1317}
1318
1319/**
1320 * isolate_lru_page - tries to isolate a page from its LRU list
1321 * @page: page to isolate from its LRU list
1322 *
1323 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1324 * vmstat statistic corresponding to whatever LRU list the page was on.
1325 *
1326 * Returns 0 if the page was removed from an LRU list.
1327 * Returns -EBUSY if the page was not on an LRU list.
1328 *
1329 * The returned page will have PageLRU() cleared.  If it was found on
1330 * the active list, it will have PageActive set.  If it was found on
1331 * the unevictable list, it will have the PageUnevictable bit set. That flag
1332 * may need to be cleared by the caller before letting the page go.
1333 *
1334 * The vmstat statistic corresponding to the list on which the page was
1335 * found will be decremented.
1336 *
1337 * Restrictions:
1338 * (1) Must be called with an elevated refcount on the page. This is a
1339 *     fundamentnal difference from isolate_lru_pages (which is called
1340 *     without a stable reference).
1341 * (2) the lru_lock must not be held.
1342 * (3) interrupts must be enabled.
1343 */
1344int isolate_lru_page(struct page *page)
1345{
1346	int ret = -EBUSY;
1347
1348	VM_BUG_ON(!page_count(page));
1349
1350	if (PageLRU(page)) {
1351		struct zone *zone = page_zone(page);
1352
1353		spin_lock_irq(&zone->lru_lock);
1354		if (PageLRU(page)) {
1355			int lru = page_lru(page);
1356			ret = 0;
1357			get_page(page);
1358			ClearPageLRU(page);
1359
1360			del_page_from_lru_list(zone, page, lru);
1361		}
1362		spin_unlock_irq(&zone->lru_lock);
1363	}
1364	return ret;
1365}
1366
1367/*
1368 * Are there way too many processes in the direct reclaim path already?
1369 */
1370static int too_many_isolated(struct zone *zone, int file,
1371		struct scan_control *sc)
1372{
1373	unsigned long inactive, isolated;
1374
1375	if (current_is_kswapd())
1376		return 0;
1377
1378	if (!global_reclaim(sc))
1379		return 0;
1380
1381	if (file) {
1382		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1383		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1384	} else {
1385		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1386		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1387	}
1388
1389	return isolated > inactive;
1390}
1391
1392/*
1393 * TODO: Try merging with migrations version of putback_lru_pages
1394 */
1395static noinline_for_stack void
1396putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1397		  unsigned long nr_anon, unsigned long nr_file,
1398		  struct list_head *page_list)
1399{
1400	struct page *page;
1401	struct pagevec pvec;
1402	struct zone *zone = mz->zone;
1403	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404
1405	pagevec_init(&pvec, 1);
1406
1407	/*
1408	 * Put back any unfreeable pages.
1409	 */
1410	spin_lock(&zone->lru_lock);
1411	while (!list_empty(page_list)) {
1412		int lru;
1413		page = lru_to_page(page_list);
1414		VM_BUG_ON(PageLRU(page));
1415		list_del(&page->lru);
1416		if (unlikely(!page_evictable(page, NULL))) {
1417			spin_unlock_irq(&zone->lru_lock);
1418			putback_lru_page(page);
1419			spin_lock_irq(&zone->lru_lock);
1420			continue;
1421		}
1422		SetPageLRU(page);
1423		lru = page_lru(page);
1424		add_page_to_lru_list(zone, page, lru);
1425		if (is_active_lru(lru)) {
1426			int file = is_file_lru(lru);
1427			int numpages = hpage_nr_pages(page);
1428			reclaim_stat->recent_rotated[file] += numpages;
1429		}
1430		if (!pagevec_add(&pvec, page)) {
1431			spin_unlock_irq(&zone->lru_lock);
1432			__pagevec_release(&pvec);
1433			spin_lock_irq(&zone->lru_lock);
1434		}
1435	}
1436	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1437	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1438
1439	spin_unlock_irq(&zone->lru_lock);
1440	pagevec_release(&pvec);
1441}
1442
1443static noinline_for_stack void
1444update_isolated_counts(struct mem_cgroup_zone *mz,
1445		       struct scan_control *sc,
1446		       unsigned long *nr_anon,
1447		       unsigned long *nr_file,
1448		       struct list_head *isolated_list)
1449{
1450	unsigned long nr_active;
1451	struct zone *zone = mz->zone;
1452	unsigned int count[NR_LRU_LISTS] = { 0, };
1453	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1454
1455	nr_active = clear_active_flags(isolated_list, count);
1456	__count_vm_events(PGDEACTIVATE, nr_active);
1457
1458	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1459			      -count[LRU_ACTIVE_FILE]);
1460	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1461			      -count[LRU_INACTIVE_FILE]);
1462	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1463			      -count[LRU_ACTIVE_ANON]);
1464	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1465			      -count[LRU_INACTIVE_ANON]);
1466
1467	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1468	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1469	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1470	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1471
1472	reclaim_stat->recent_scanned[0] += *nr_anon;
1473	reclaim_stat->recent_scanned[1] += *nr_file;
1474}
1475
1476/*
1477 * Returns true if a direct reclaim should wait on pages under writeback.
1478 *
1479 * If we are direct reclaiming for contiguous pages and we do not reclaim
1480 * everything in the list, try again and wait for writeback IO to complete.
1481 * This will stall high-order allocations noticeably. Only do that when really
1482 * need to free the pages under high memory pressure.
1483 */
1484static inline bool should_reclaim_stall(unsigned long nr_taken,
1485					unsigned long nr_freed,
1486					int priority,
1487					struct scan_control *sc)
1488{
1489	int lumpy_stall_priority;
1490
1491	/* kswapd should not stall on sync IO */
1492	if (current_is_kswapd())
1493		return false;
1494
1495	/* Only stall on lumpy reclaim */
1496	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1497		return false;
1498
1499	/* If we have reclaimed everything on the isolated list, no stall */
1500	if (nr_freed == nr_taken)
1501		return false;
1502
1503	/*
1504	 * For high-order allocations, there are two stall thresholds.
1505	 * High-cost allocations stall immediately where as lower
1506	 * order allocations such as stacks require the scanning
1507	 * priority to be much higher before stalling.
1508	 */
1509	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1510		lumpy_stall_priority = DEF_PRIORITY;
1511	else
1512		lumpy_stall_priority = DEF_PRIORITY / 3;
1513
1514	return priority <= lumpy_stall_priority;
1515}
1516
1517/*
1518 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1519 * of reclaimed pages
1520 */
1521static noinline_for_stack unsigned long
1522shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1523		     struct scan_control *sc, int priority, int file)
1524{
1525	LIST_HEAD(page_list);
1526	unsigned long nr_scanned;
1527	unsigned long nr_reclaimed = 0;
1528	unsigned long nr_taken;
1529	unsigned long nr_anon;
1530	unsigned long nr_file;
1531	unsigned long nr_dirty = 0;
1532	unsigned long nr_writeback = 0;
1533	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1534	struct zone *zone = mz->zone;
1535
1536	while (unlikely(too_many_isolated(zone, file, sc))) {
1537		congestion_wait(BLK_RW_ASYNC, HZ/10);
1538
1539		/* We are about to die and free our memory. Return now. */
1540		if (fatal_signal_pending(current))
1541			return SWAP_CLUSTER_MAX;
1542	}
1543
1544	set_reclaim_mode(priority, sc, false);
1545	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1546		reclaim_mode |= ISOLATE_ACTIVE;
1547
1548	lru_add_drain();
1549
1550	if (!sc->may_unmap)
1551		reclaim_mode |= ISOLATE_UNMAPPED;
1552	if (!sc->may_writepage)
1553		reclaim_mode |= ISOLATE_CLEAN;
1554
1555	spin_lock_irq(&zone->lru_lock);
1556
1557	nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
1558				 &nr_scanned, sc->order,
1559				 reclaim_mode, 0, file);
1560	if (global_reclaim(sc)) {
1561		zone->pages_scanned += nr_scanned;
1562		if (current_is_kswapd())
1563			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1564					       nr_scanned);
1565		else
1566			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1567					       nr_scanned);
1568	}
1569
1570	if (nr_taken == 0) {
1571		spin_unlock_irq(&zone->lru_lock);
1572		return 0;
1573	}
1574
1575	update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1576
1577	spin_unlock_irq(&zone->lru_lock);
1578
1579	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1580						&nr_dirty, &nr_writeback);
1581
1582	/* Check if we should syncronously wait for writeback */
1583	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1584		set_reclaim_mode(priority, sc, true);
1585		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1586					priority, &nr_dirty, &nr_writeback);
1587	}
1588
1589	local_irq_disable();
1590	if (current_is_kswapd())
1591		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1592	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1593
1594	putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1595
1596	/*
1597	 * If reclaim is isolating dirty pages under writeback, it implies
1598	 * that the long-lived page allocation rate is exceeding the page
1599	 * laundering rate. Either the global limits are not being effective
1600	 * at throttling processes due to the page distribution throughout
1601	 * zones or there is heavy usage of a slow backing device. The
1602	 * only option is to throttle from reclaim context which is not ideal
1603	 * as there is no guarantee the dirtying process is throttled in the
1604	 * same way balance_dirty_pages() manages.
1605	 *
1606	 * This scales the number of dirty pages that must be under writeback
1607	 * before throttling depending on priority. It is a simple backoff
1608	 * function that has the most effect in the range DEF_PRIORITY to
1609	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1610	 * in trouble and reclaim is considered to be in trouble.
1611	 *
1612	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1613	 * DEF_PRIORITY-1  50% must be PageWriteback
1614	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1615	 * ...
1616	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1617	 *                     isolated page is PageWriteback
1618	 */
1619	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1620		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1621
1622	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1623		zone_idx(zone),
1624		nr_scanned, nr_reclaimed,
1625		priority,
1626		trace_shrink_flags(file, sc->reclaim_mode));
1627	return nr_reclaimed;
1628}
1629
1630/*
1631 * This moves pages from the active list to the inactive list.
1632 *
1633 * We move them the other way if the page is referenced by one or more
1634 * processes, from rmap.
1635 *
1636 * If the pages are mostly unmapped, the processing is fast and it is
1637 * appropriate to hold zone->lru_lock across the whole operation.  But if
1638 * the pages are mapped, the processing is slow (page_referenced()) so we
1639 * should drop zone->lru_lock around each page.  It's impossible to balance
1640 * this, so instead we remove the pages from the LRU while processing them.
1641 * It is safe to rely on PG_active against the non-LRU pages in here because
1642 * nobody will play with that bit on a non-LRU page.
1643 *
1644 * The downside is that we have to touch page->_count against each page.
1645 * But we had to alter page->flags anyway.
1646 */
1647
1648static void move_active_pages_to_lru(struct zone *zone,
1649				     struct list_head *list,
1650				     enum lru_list lru)
1651{
1652	unsigned long pgmoved = 0;
1653	struct pagevec pvec;
1654	struct page *page;
1655
1656	pagevec_init(&pvec, 1);
1657
1658	while (!list_empty(list)) {
1659		struct lruvec *lruvec;
1660
1661		page = lru_to_page(list);
1662
1663		VM_BUG_ON(PageLRU(page));
1664		SetPageLRU(page);
1665
1666		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1667		list_move(&page->lru, &lruvec->lists[lru]);
1668		pgmoved += hpage_nr_pages(page);
1669
1670		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1671			spin_unlock_irq(&zone->lru_lock);
1672			if (buffer_heads_over_limit)
1673				pagevec_strip(&pvec);
1674			__pagevec_release(&pvec);
1675			spin_lock_irq(&zone->lru_lock);
1676		}
1677	}
1678	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1679	if (!is_active_lru(lru))
1680		__count_vm_events(PGDEACTIVATE, pgmoved);
1681}
1682
1683static void shrink_active_list(unsigned long nr_pages,
1684			       struct mem_cgroup_zone *mz,
1685			       struct scan_control *sc,
1686			       int priority, int file)
1687{
1688	unsigned long nr_taken;
1689	unsigned long pgscanned;
1690	unsigned long vm_flags;
1691	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1692	LIST_HEAD(l_active);
1693	LIST_HEAD(l_inactive);
1694	struct page *page;
1695	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1696	unsigned long nr_rotated = 0;
1697	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1698	struct zone *zone = mz->zone;
1699
1700	lru_add_drain();
1701
1702	if (!sc->may_unmap)
1703		reclaim_mode |= ISOLATE_UNMAPPED;
1704	if (!sc->may_writepage)
1705		reclaim_mode |= ISOLATE_CLEAN;
1706
1707	spin_lock_irq(&zone->lru_lock);
1708
1709	nr_taken = isolate_pages(nr_pages, mz, &l_hold,
1710				 &pgscanned, sc->order,
1711				 reclaim_mode, 1, file);
1712
1713	if (global_reclaim(sc))
1714		zone->pages_scanned += pgscanned;
1715
1716	reclaim_stat->recent_scanned[file] += nr_taken;
1717
1718	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1719	if (file)
1720		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1721	else
1722		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1723	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1724	spin_unlock_irq(&zone->lru_lock);
1725
1726	while (!list_empty(&l_hold)) {
1727		cond_resched();
1728		page = lru_to_page(&l_hold);
1729		list_del(&page->lru);
1730
1731		if (unlikely(!page_evictable(page, NULL))) {
1732			putback_lru_page(page);
1733			continue;
1734		}
1735
1736		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1737			nr_rotated += hpage_nr_pages(page);
1738			/*
1739			 * Identify referenced, file-backed active pages and
1740			 * give them one more trip around the active list. So
1741			 * that executable code get better chances to stay in
1742			 * memory under moderate memory pressure.  Anon pages
1743			 * are not likely to be evicted by use-once streaming
1744			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1745			 * so we ignore them here.
1746			 */
1747			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1748				list_add(&page->lru, &l_active);
1749				continue;
1750			}
1751		}
1752
1753		ClearPageActive(page);	/* we are de-activating */
1754		list_add(&page->lru, &l_inactive);
1755	}
1756
1757	/*
1758	 * Move pages back to the lru list.
1759	 */
1760	spin_lock_irq(&zone->lru_lock);
1761	/*
1762	 * Count referenced pages from currently used mappings as rotated,
1763	 * even though only some of them are actually re-activated.  This
1764	 * helps balance scan pressure between file and anonymous pages in
1765	 * get_scan_ratio.
1766	 */
1767	reclaim_stat->recent_rotated[file] += nr_rotated;
1768
1769	move_active_pages_to_lru(zone, &l_active,
1770						LRU_ACTIVE + file * LRU_FILE);
1771	move_active_pages_to_lru(zone, &l_inactive,
1772						LRU_BASE   + file * LRU_FILE);
1773	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1774	spin_unlock_irq(&zone->lru_lock);
1775}
1776
1777#ifdef CONFIG_SWAP
1778static int inactive_anon_is_low_global(struct zone *zone)
1779{
1780	unsigned long active, inactive;
1781
1782	active = zone_page_state(zone, NR_ACTIVE_ANON);
1783	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1784
1785	if (inactive * zone->inactive_ratio < active)
1786		return 1;
1787
1788	return 0;
1789}
1790
1791/**
1792 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1793 * @zone: zone to check
1794 * @sc:   scan control of this context
1795 *
1796 * Returns true if the zone does not have enough inactive anon pages,
1797 * meaning some active anon pages need to be deactivated.
1798 */
1799static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1800{
1801	/*
1802	 * If we don't have swap space, anonymous page deactivation
1803	 * is pointless.
1804	 */
1805	if (!total_swap_pages)
1806		return 0;
1807
1808	if (!scanning_global_lru(mz))
1809		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1810						       mz->zone);
1811
1812	return inactive_anon_is_low_global(mz->zone);
1813}
1814#else
1815static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1816{
1817	return 0;
1818}
1819#endif
1820
1821static int inactive_file_is_low_global(struct zone *zone)
1822{
1823	unsigned long active, inactive;
1824
1825	active = zone_page_state(zone, NR_ACTIVE_FILE);
1826	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1827
1828	return (active > inactive);
1829}
1830
1831/**
1832 * inactive_file_is_low - check if file pages need to be deactivated
1833 * @mz: memory cgroup and zone to check
1834 *
1835 * When the system is doing streaming IO, memory pressure here
1836 * ensures that active file pages get deactivated, until more
1837 * than half of the file pages are on the inactive list.
1838 *
1839 * Once we get to that situation, protect the system's working
1840 * set from being evicted by disabling active file page aging.
1841 *
1842 * This uses a different ratio than the anonymous pages, because
1843 * the page cache uses a use-once replacement algorithm.
1844 */
1845static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1846{
1847	if (!scanning_global_lru(mz))
1848		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1849						       mz->zone);
1850
1851	return inactive_file_is_low_global(mz->zone);
1852}
1853
1854static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1855{
1856	if (file)
1857		return inactive_file_is_low(mz);
1858	else
1859		return inactive_anon_is_low(mz);
1860}
1861
1862static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1863				 struct mem_cgroup_zone *mz,
1864				 struct scan_control *sc, int priority)
1865{
1866	int file = is_file_lru(lru);
1867
1868	if (is_active_lru(lru)) {
1869		if (inactive_list_is_low(mz, file))
1870			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1871		return 0;
1872	}
1873
1874	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1875}
1876
1877static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1878			     struct scan_control *sc)
1879{
1880	if (global_reclaim(sc))
1881		return vm_swappiness;
1882	return mem_cgroup_swappiness(mz->mem_cgroup);
1883}
1884
1885/*
1886 * Determine how aggressively the anon and file LRU lists should be
1887 * scanned.  The relative value of each set of LRU lists is determined
1888 * by looking at the fraction of the pages scanned we did rotate back
1889 * onto the active list instead of evict.
1890 *
1891 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1892 */
1893static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1894			   unsigned long *nr, int priority)
1895{
1896	unsigned long anon, file, free;
1897	unsigned long anon_prio, file_prio;
1898	unsigned long ap, fp;
1899	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1900	u64 fraction[2], denominator;
1901	enum lru_list l;
1902	int noswap = 0;
1903	bool force_scan = false;
1904
1905	/*
1906	 * If the zone or memcg is small, nr[l] can be 0.  This
1907	 * results in no scanning on this priority and a potential
1908	 * priority drop.  Global direct reclaim can go to the next
1909	 * zone and tends to have no problems. Global kswapd is for
1910	 * zone balancing and it needs to scan a minimum amount. When
1911	 * reclaiming for a memcg, a priority drop can cause high
1912	 * latencies, so it's better to scan a minimum amount there as
1913	 * well.
1914	 */
1915	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1916		force_scan = true;
1917	if (!global_reclaim(sc))
1918		force_scan = true;
1919
1920	/* If we have no swap space, do not bother scanning anon pages. */
1921	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1922		noswap = 1;
1923		fraction[0] = 0;
1924		fraction[1] = 1;
1925		denominator = 1;
1926		goto out;
1927	}
1928
1929	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1930		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1931	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1932		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1933
1934	if (global_reclaim(sc)) {
1935		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1936		/* If we have very few page cache pages,
1937		   force-scan anon pages. */
1938		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1939			fraction[0] = 1;
1940			fraction[1] = 0;
1941			denominator = 1;
1942			goto out;
1943		}
1944	}
1945
1946	/*
1947	 * With swappiness at 100, anonymous and file have the same priority.
1948	 * This scanning priority is essentially the inverse of IO cost.
1949	 */
1950	anon_prio = vmscan_swappiness(mz, sc);
1951	file_prio = 200 - vmscan_swappiness(mz, sc);
1952
1953	/*
1954	 * OK, so we have swap space and a fair amount of page cache
1955	 * pages.  We use the recently rotated / recently scanned
1956	 * ratios to determine how valuable each cache is.
1957	 *
1958	 * Because workloads change over time (and to avoid overflow)
1959	 * we keep these statistics as a floating average, which ends
1960	 * up weighing recent references more than old ones.
1961	 *
1962	 * anon in [0], file in [1]
1963	 */
1964	spin_lock_irq(&mz->zone->lru_lock);
1965	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1966		reclaim_stat->recent_scanned[0] /= 2;
1967		reclaim_stat->recent_rotated[0] /= 2;
1968	}
1969
1970	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1971		reclaim_stat->recent_scanned[1] /= 2;
1972		reclaim_stat->recent_rotated[1] /= 2;
1973	}
1974
1975	/*
1976	 * The amount of pressure on anon vs file pages is inversely
1977	 * proportional to the fraction of recently scanned pages on
1978	 * each list that were recently referenced and in active use.
1979	 */
1980	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1981	ap /= reclaim_stat->recent_rotated[0] + 1;
1982
1983	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1984	fp /= reclaim_stat->recent_rotated[1] + 1;
1985	spin_unlock_irq(&mz->zone->lru_lock);
1986
1987	fraction[0] = ap;
1988	fraction[1] = fp;
1989	denominator = ap + fp + 1;
1990out:
1991	for_each_evictable_lru(l) {
1992		int file = is_file_lru(l);
1993		unsigned long scan;
1994
1995		scan = zone_nr_lru_pages(mz, l);
1996		if (priority || noswap) {
1997			scan >>= priority;
1998			if (!scan && force_scan)
1999				scan = SWAP_CLUSTER_MAX;
2000			scan = div64_u64(scan * fraction[file], denominator);
2001		}
2002		nr[l] = scan;
2003	}
2004}
2005
2006/*
2007 * Reclaim/compaction depends on a number of pages being freed. To avoid
2008 * disruption to the system, a small number of order-0 pages continue to be
2009 * rotated and reclaimed in the normal fashion. However, by the time we get
2010 * back to the allocator and call try_to_compact_zone(), we ensure that
2011 * there are enough free pages for it to be likely successful
2012 */
2013static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2014					unsigned long nr_reclaimed,
2015					unsigned long nr_scanned,
2016					struct scan_control *sc)
2017{
2018	unsigned long pages_for_compaction;
2019	unsigned long inactive_lru_pages;
2020
2021	/* If not in reclaim/compaction mode, stop */
2022	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2023		return false;
2024
2025	/* Consider stopping depending on scan and reclaim activity */
2026	if (sc->gfp_mask & __GFP_REPEAT) {
2027		/*
2028		 * For __GFP_REPEAT allocations, stop reclaiming if the
2029		 * full LRU list has been scanned and we are still failing
2030		 * to reclaim pages. This full LRU scan is potentially
2031		 * expensive but a __GFP_REPEAT caller really wants to succeed
2032		 */
2033		if (!nr_reclaimed && !nr_scanned)
2034			return false;
2035	} else {
2036		/*
2037		 * For non-__GFP_REPEAT allocations which can presumably
2038		 * fail without consequence, stop if we failed to reclaim
2039		 * any pages from the last SWAP_CLUSTER_MAX number of
2040		 * pages that were scanned. This will return to the
2041		 * caller faster at the risk reclaim/compaction and
2042		 * the resulting allocation attempt fails
2043		 */
2044		if (!nr_reclaimed)
2045			return false;
2046	}
2047
2048	/*
2049	 * If we have not reclaimed enough pages for compaction and the
2050	 * inactive lists are large enough, continue reclaiming
2051	 */
2052	pages_for_compaction = (2UL << sc->order);
2053	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2054	if (nr_swap_pages > 0)
2055		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2056	if (sc->nr_reclaimed < pages_for_compaction &&
2057			inactive_lru_pages > pages_for_compaction)
2058		return true;
2059
2060	/* If compaction would go ahead or the allocation would succeed, stop */
2061	switch (compaction_suitable(mz->zone, sc->order)) {
2062	case COMPACT_PARTIAL:
2063	case COMPACT_CONTINUE:
2064		return false;
2065	default:
2066		return true;
2067	}
2068}
2069
2070/*
2071 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2072 */
2073static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2074				   struct scan_control *sc)
2075{
2076	unsigned long nr[NR_LRU_LISTS];
2077	unsigned long nr_to_scan;
2078	enum lru_list l;
2079	unsigned long nr_reclaimed, nr_scanned;
2080	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2081	struct blk_plug plug;
2082
2083restart:
2084	nr_reclaimed = 0;
2085	nr_scanned = sc->nr_scanned;
2086	get_scan_count(mz, sc, nr, priority);
2087
2088	blk_start_plug(&plug);
2089	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2090					nr[LRU_INACTIVE_FILE]) {
2091		for_each_evictable_lru(l) {
2092			if (nr[l]) {
2093				nr_to_scan = min_t(unsigned long,
2094						   nr[l], SWAP_CLUSTER_MAX);
2095				nr[l] -= nr_to_scan;
2096
2097				nr_reclaimed += shrink_list(l, nr_to_scan,
2098							    mz, sc, priority);
2099			}
2100		}
2101		/*
2102		 * On large memory systems, scan >> priority can become
2103		 * really large. This is fine for the starting priority;
2104		 * we want to put equal scanning pressure on each zone.
2105		 * However, if the VM has a harder time of freeing pages,
2106		 * with multiple processes reclaiming pages, the total
2107		 * freeing target can get unreasonably large.
2108		 */
2109		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2110			break;
2111	}
2112	blk_finish_plug(&plug);
2113	sc->nr_reclaimed += nr_reclaimed;
2114
2115	/*
2116	 * Even if we did not try to evict anon pages at all, we want to
2117	 * rebalance the anon lru active/inactive ratio.
2118	 */
2119	if (inactive_anon_is_low(mz))
2120		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2121
2122	/* reclaim/compaction might need reclaim to continue */
2123	if (should_continue_reclaim(mz, nr_reclaimed,
2124					sc->nr_scanned - nr_scanned, sc))
2125		goto restart;
2126
2127	throttle_vm_writeout(sc->gfp_mask);
2128}
2129
2130static void shrink_zone(int priority, struct zone *zone,
2131			struct scan_control *sc)
2132{
2133	struct mem_cgroup *root = sc->target_mem_cgroup;
2134	struct mem_cgroup_reclaim_cookie reclaim = {
2135		.zone = zone,
2136		.priority = priority,
2137	};
2138	struct mem_cgroup *memcg;
2139
2140	memcg = mem_cgroup_iter(root, NULL, &reclaim);
2141	do {
2142		struct mem_cgroup_zone mz = {
2143			.mem_cgroup = memcg,
2144			.zone = zone,
2145		};
2146
2147		shrink_mem_cgroup_zone(priority, &mz, sc);
2148		/*
2149		 * Limit reclaim has historically picked one memcg and
2150		 * scanned it with decreasing priority levels until
2151		 * nr_to_reclaim had been reclaimed.  This priority
2152		 * cycle is thus over after a single memcg.
2153		 *
2154		 * Direct reclaim and kswapd, on the other hand, have
2155		 * to scan all memory cgroups to fulfill the overall
2156		 * scan target for the zone.
2157		 */
2158		if (!global_reclaim(sc)) {
2159			mem_cgroup_iter_break(root, memcg);
2160			break;
2161		}
2162		memcg = mem_cgroup_iter(root, memcg, &reclaim);
2163	} while (memcg);
2164}
2165
2166/* Returns true if compaction should go ahead for a high-order request */
2167static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2168{
2169	unsigned long balance_gap, watermark;
2170	bool watermark_ok;
2171
2172	/* Do not consider compaction for orders reclaim is meant to satisfy */
2173	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2174		return false;
2175
2176	/*
2177	 * Compaction takes time to run and there are potentially other
2178	 * callers using the pages just freed. Continue reclaiming until
2179	 * there is a buffer of free pages available to give compaction
2180	 * a reasonable chance of completing and allocating the page
2181	 */
2182	balance_gap = min(low_wmark_pages(zone),
2183		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2184			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2185	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2186	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2187
2188	/*
2189	 * If compaction is deferred, reclaim up to a point where
2190	 * compaction will have a chance of success when re-enabled
2191	 */
2192	if (compaction_deferred(zone))
2193		return watermark_ok;
2194
2195	/* If compaction is not ready to start, keep reclaiming */
2196	if (!compaction_suitable(zone, sc->order))
2197		return false;
2198
2199	return watermark_ok;
2200}
2201
2202/*
2203 * This is the direct reclaim path, for page-allocating processes.  We only
2204 * try to reclaim pages from zones which will satisfy the caller's allocation
2205 * request.
2206 *
2207 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2208 * Because:
2209 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2210 *    allocation or
2211 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2212 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2213 *    zone defense algorithm.
2214 *
2215 * If a zone is deemed to be full of pinned pages then just give it a light
2216 * scan then give up on it.
2217 *
2218 * This function returns true if a zone is being reclaimed for a costly
2219 * high-order allocation and compaction is ready to begin. This indicates to
2220 * the caller that it should retry the allocation or fail.
2221 */
2222static bool shrink_zones(int priority, struct zonelist *zonelist,
2223					struct scan_control *sc)
2224{
2225	struct zoneref *z;
2226	struct zone *zone;
2227	unsigned long nr_soft_reclaimed;
2228	unsigned long nr_soft_scanned;
2229	bool should_abort_reclaim = false;
2230
2231	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2232					gfp_zone(sc->gfp_mask), sc->nodemask) {
2233		if (!populated_zone(zone))
2234			continue;
2235		/*
2236		 * Take care memory controller reclaiming has small influence
2237		 * to global LRU.
2238		 */
2239		if (global_reclaim(sc)) {
2240			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2241				continue;
2242			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2243				continue;	/* Let kswapd poll it */
2244			if (COMPACTION_BUILD) {
2245				/*
2246				 * If we already have plenty of memory free for
2247				 * compaction in this zone, don't free any more.
2248				 * Even though compaction is invoked for any
2249				 * non-zero order, only frequent costly order
2250				 * reclamation is disruptive enough to become a
2251				 * noticable problem, like transparent huge page
2252				 * allocations.
2253				 */
2254				if (compaction_ready(zone, sc)) {
2255					should_abort_reclaim = true;
2256					continue;
2257				}
2258			}
2259			/*
2260			 * This steals pages from memory cgroups over softlimit
2261			 * and returns the number of reclaimed pages and
2262			 * scanned pages. This works for global memory pressure
2263			 * and balancing, not for a memcg's limit.
2264			 */
2265			nr_soft_scanned = 0;
2266			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2267						sc->order, sc->gfp_mask,
2268						&nr_soft_scanned);
2269			sc->nr_reclaimed += nr_soft_reclaimed;
2270			sc->nr_scanned += nr_soft_scanned;
2271			/* need some check for avoid more shrink_zone() */
2272		}
2273
2274		shrink_zone(priority, zone, sc);
2275	}
2276
2277	return should_abort_reclaim;
2278}
2279
2280static bool zone_reclaimable(struct zone *zone)
2281{
2282	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2283}
2284
2285/* All zones in zonelist are unreclaimable? */
2286static bool all_unreclaimable(struct zonelist *zonelist,
2287		struct scan_control *sc)
2288{
2289	struct zoneref *z;
2290	struct zone *zone;
2291
2292	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2293			gfp_zone(sc->gfp_mask), sc->nodemask) {
2294		if (!populated_zone(zone))
2295			continue;
2296		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2297			continue;
2298		if (!zone->all_unreclaimable)
2299			return false;
2300	}
2301
2302	return true;
2303}
2304
2305/*
2306 * This is the main entry point to direct page reclaim.
2307 *
2308 * If a full scan of the inactive list fails to free enough memory then we
2309 * are "out of memory" and something needs to be killed.
2310 *
2311 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2312 * high - the zone may be full of dirty or under-writeback pages, which this
2313 * caller can't do much about.  We kick the writeback threads and take explicit
2314 * naps in the hope that some of these pages can be written.  But if the
2315 * allocating task holds filesystem locks which prevent writeout this might not
2316 * work, and the allocation attempt will fail.
2317 *
2318 * returns:	0, if no pages reclaimed
2319 * 		else, the number of pages reclaimed
2320 */
2321static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2322					struct scan_control *sc,
2323					struct shrink_control *shrink)
2324{
2325	int priority;
2326	unsigned long total_scanned = 0;
2327	struct reclaim_state *reclaim_state = current->reclaim_state;
2328	struct zoneref *z;
2329	struct zone *zone;
2330	unsigned long writeback_threshold;
2331	bool should_abort_reclaim;
2332
2333	get_mems_allowed();
2334	delayacct_freepages_start();
2335
2336	if (global_reclaim(sc))
2337		count_vm_event(ALLOCSTALL);
2338
2339	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2340		sc->nr_scanned = 0;
2341		if (!priority)
2342			disable_swap_token(sc->target_mem_cgroup);
2343		should_abort_reclaim = shrink_zones(priority, zonelist, sc);
2344		if (should_abort_reclaim)
2345			break;
2346
2347		/*
2348		 * Don't shrink slabs when reclaiming memory from
2349		 * over limit cgroups
2350		 */
2351		if (global_reclaim(sc)) {
2352			unsigned long lru_pages = 0;
2353			for_each_zone_zonelist(zone, z, zonelist,
2354					gfp_zone(sc->gfp_mask)) {
2355				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2356					continue;
2357
2358				lru_pages += zone_reclaimable_pages(zone);
2359			}
2360
2361			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2362			if (reclaim_state) {
2363				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2364				reclaim_state->reclaimed_slab = 0;
2365			}
2366		}
2367		total_scanned += sc->nr_scanned;
2368		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2369			goto out;
2370
2371		/*
2372		 * Try to write back as many pages as we just scanned.  This
2373		 * tends to cause slow streaming writers to write data to the
2374		 * disk smoothly, at the dirtying rate, which is nice.   But
2375		 * that's undesirable in laptop mode, where we *want* lumpy
2376		 * writeout.  So in laptop mode, write out the whole world.
2377		 */
2378		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2379		if (total_scanned > writeback_threshold) {
2380			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2381						WB_REASON_TRY_TO_FREE_PAGES);
2382			sc->may_writepage = 1;
2383		}
2384
2385		/* Take a nap, wait for some writeback to complete */
2386		if (!sc->hibernation_mode && sc->nr_scanned &&
2387		    priority < DEF_PRIORITY - 2) {
2388			struct zone *preferred_zone;
2389
2390			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2391						&cpuset_current_mems_allowed,
2392						&preferred_zone);
2393			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2394		}
2395	}
2396
2397out:
2398	delayacct_freepages_end();
2399	put_mems_allowed();
2400
2401	if (sc->nr_reclaimed)
2402		return sc->nr_reclaimed;
2403
2404	/*
2405	 * As hibernation is going on, kswapd is freezed so that it can't mark
2406	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2407	 * check.
2408	 */
2409	if (oom_killer_disabled)
2410		return 0;
2411
2412	/* Aborting reclaim to try compaction? don't OOM, then */
2413	if (should_abort_reclaim)
2414		return 1;
2415
2416	/* top priority shrink_zones still had more to do? don't OOM, then */
2417	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2418		return 1;
2419
2420	return 0;
2421}
2422
2423unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2424				gfp_t gfp_mask, nodemask_t *nodemask)
2425{
2426	unsigned long nr_reclaimed;
2427	struct scan_control sc = {
2428		.gfp_mask = gfp_mask,
2429		.may_writepage = !laptop_mode,
2430		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2431		.may_unmap = 1,
2432		.may_swap = 1,
2433		.order = order,
2434		.target_mem_cgroup = NULL,
2435		.nodemask = nodemask,
2436	};
2437	struct shrink_control shrink = {
2438		.gfp_mask = sc.gfp_mask,
2439	};
2440
2441	trace_mm_vmscan_direct_reclaim_begin(order,
2442				sc.may_writepage,
2443				gfp_mask);
2444
2445	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2446
2447	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2448
2449	return nr_reclaimed;
2450}
2451
2452#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2453
2454unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2455						gfp_t gfp_mask, bool noswap,
2456						struct zone *zone,
2457						unsigned long *nr_scanned)
2458{
2459	struct scan_control sc = {
2460		.nr_scanned = 0,
2461		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2462		.may_writepage = !laptop_mode,
2463		.may_unmap = 1,
2464		.may_swap = !noswap,
2465		.order = 0,
2466		.target_mem_cgroup = memcg,
2467	};
2468	struct mem_cgroup_zone mz = {
2469		.mem_cgroup = memcg,
2470		.zone = zone,
2471	};
2472
2473	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2474			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2475
2476	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2477						      sc.may_writepage,
2478						      sc.gfp_mask);
2479
2480	/*
2481	 * NOTE: Although we can get the priority field, using it
2482	 * here is not a good idea, since it limits the pages we can scan.
2483	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2484	 * will pick up pages from other mem cgroup's as well. We hack
2485	 * the priority and make it zero.
2486	 */
2487	shrink_mem_cgroup_zone(0, &mz, &sc);
2488
2489	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2490
2491	*nr_scanned = sc.nr_scanned;
2492	return sc.nr_reclaimed;
2493}
2494
2495unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2496					   gfp_t gfp_mask,
2497					   bool noswap)
2498{
2499	struct zonelist *zonelist;
2500	unsigned long nr_reclaimed;
2501	int nid;
2502	struct scan_control sc = {
2503		.may_writepage = !laptop_mode,
2504		.may_unmap = 1,
2505		.may_swap = !noswap,
2506		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2507		.order = 0,
2508		.target_mem_cgroup = memcg,
2509		.nodemask = NULL, /* we don't care the placement */
2510		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2511				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2512	};
2513	struct shrink_control shrink = {
2514		.gfp_mask = sc.gfp_mask,
2515	};
2516
2517	/*
2518	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2519	 * take care of from where we get pages. So the node where we start the
2520	 * scan does not need to be the current node.
2521	 */
2522	nid = mem_cgroup_select_victim_node(memcg);
2523
2524	zonelist = NODE_DATA(nid)->node_zonelists;
2525
2526	trace_mm_vmscan_memcg_reclaim_begin(0,
2527					    sc.may_writepage,
2528					    sc.gfp_mask);
2529
2530	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2531
2532	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2533
2534	return nr_reclaimed;
2535}
2536#endif
2537
2538static void age_active_anon(struct zone *zone, struct scan_control *sc,
2539			    int priority)
2540{
2541	struct mem_cgroup *memcg;
2542
2543	if (!total_swap_pages)
2544		return;
2545
2546	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2547	do {
2548		struct mem_cgroup_zone mz = {
2549			.mem_cgroup = memcg,
2550			.zone = zone,
2551		};
2552
2553		if (inactive_anon_is_low(&mz))
2554			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2555					   sc, priority, 0);
2556
2557		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2558	} while (memcg);
2559}
2560
2561/*
2562 * pgdat_balanced is used when checking if a node is balanced for high-order
2563 * allocations. Only zones that meet watermarks and are in a zone allowed
2564 * by the callers classzone_idx are added to balanced_pages. The total of
2565 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2566 * for the node to be considered balanced. Forcing all zones to be balanced
2567 * for high orders can cause excessive reclaim when there are imbalanced zones.
2568 * The choice of 25% is due to
2569 *   o a 16M DMA zone that is balanced will not balance a zone on any
2570 *     reasonable sized machine
2571 *   o On all other machines, the top zone must be at least a reasonable
2572 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2573 *     would need to be at least 256M for it to be balance a whole node.
2574 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2575 *     to balance a node on its own. These seemed like reasonable ratios.
2576 */
2577static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2578						int classzone_idx)
2579{
2580	unsigned long present_pages = 0;
2581	int i;
2582
2583	for (i = 0; i <= classzone_idx; i++)
2584		present_pages += pgdat->node_zones[i].present_pages;
2585
2586	/* A special case here: if zone has no page, we think it's balanced */
2587	return balanced_pages >= (present_pages >> 2);
2588}
2589
2590/* is kswapd sleeping prematurely? */
2591static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2592					int classzone_idx)
2593{
2594	int i;
2595	unsigned long balanced = 0;
2596	bool all_zones_ok = true;
2597
2598	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2599	if (remaining)
2600		return true;
2601
2602	/* Check the watermark levels */
2603	for (i = 0; i <= classzone_idx; i++) {
2604		struct zone *zone = pgdat->node_zones + i;
2605
2606		if (!populated_zone(zone))
2607			continue;
2608
2609		/*
2610		 * balance_pgdat() skips over all_unreclaimable after
2611		 * DEF_PRIORITY. Effectively, it considers them balanced so
2612		 * they must be considered balanced here as well if kswapd
2613		 * is to sleep
2614		 */
2615		if (zone->all_unreclaimable) {
2616			balanced += zone->present_pages;
2617			continue;
2618		}
2619
2620		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2621							i, 0))
2622			all_zones_ok = false;
2623		else
2624			balanced += zone->present_pages;
2625	}
2626
2627	/*
2628	 * For high-order requests, the balanced zones must contain at least
2629	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2630	 * must be balanced
2631	 */
2632	if (order)
2633		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2634	else
2635		return !all_zones_ok;
2636}
2637
2638/*
2639 * For kswapd, balance_pgdat() will work across all this node's zones until
2640 * they are all at high_wmark_pages(zone).
2641 *
2642 * Returns the final order kswapd was reclaiming at
2643 *
2644 * There is special handling here for zones which are full of pinned pages.
2645 * This can happen if the pages are all mlocked, or if they are all used by
2646 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2647 * What we do is to detect the case where all pages in the zone have been
2648 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2649 * dead and from now on, only perform a short scan.  Basically we're polling
2650 * the zone for when the problem goes away.
2651 *
2652 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2653 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2654 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2655 * lower zones regardless of the number of free pages in the lower zones. This
2656 * interoperates with the page allocator fallback scheme to ensure that aging
2657 * of pages is balanced across the zones.
2658 */
2659static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2660							int *classzone_idx)
2661{
2662	int all_zones_ok;
2663	unsigned long balanced;
2664	int priority;
2665	int i;
2666	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2667	unsigned long total_scanned;
2668	struct reclaim_state *reclaim_state = current->reclaim_state;
2669	unsigned long nr_soft_reclaimed;
2670	unsigned long nr_soft_scanned;
2671	struct scan_control sc = {
2672		.gfp_mask = GFP_KERNEL,
2673		.may_unmap = 1,
2674		.may_swap = 1,
2675		/*
2676		 * kswapd doesn't want to be bailed out while reclaim. because
2677		 * we want to put equal scanning pressure on each zone.
2678		 */
2679		.nr_to_reclaim = ULONG_MAX,
2680		.order = order,
2681		.target_mem_cgroup = NULL,
2682	};
2683	struct shrink_control shrink = {
2684		.gfp_mask = sc.gfp_mask,
2685	};
2686loop_again:
2687	total_scanned = 0;
2688	sc.nr_reclaimed = 0;
2689	sc.may_writepage = !laptop_mode;
2690	count_vm_event(PAGEOUTRUN);
2691
2692	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2693		unsigned long lru_pages = 0;
2694		int has_under_min_watermark_zone = 0;
2695
2696		/* The swap token gets in the way of swapout... */
2697		if (!priority)
2698			disable_swap_token(NULL);
2699
2700		all_zones_ok = 1;
2701		balanced = 0;
2702
2703		/*
2704		 * Scan in the highmem->dma direction for the highest
2705		 * zone which needs scanning
2706		 */
2707		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2708			struct zone *zone = pgdat->node_zones + i;
2709
2710			if (!populated_zone(zone))
2711				continue;
2712
2713			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2714				continue;
2715
2716			/*
2717			 * Do some background aging of the anon list, to give
2718			 * pages a chance to be referenced before reclaiming.
2719			 */
2720			age_active_anon(zone, &sc, priority);
2721
2722			if (!zone_watermark_ok_safe(zone, order,
2723					high_wmark_pages(zone), 0, 0)) {
2724				end_zone = i;
2725				break;
2726			} else {
2727				/* If balanced, clear the congested flag */
2728				zone_clear_flag(zone, ZONE_CONGESTED);
2729			}
2730		}
2731		if (i < 0)
2732			goto out;
2733
2734		for (i = 0; i <= end_zone; i++) {
2735			struct zone *zone = pgdat->node_zones + i;
2736
2737			lru_pages += zone_reclaimable_pages(zone);
2738		}
2739
2740		/*
2741		 * Now scan the zone in the dma->highmem direction, stopping
2742		 * at the last zone which needs scanning.
2743		 *
2744		 * We do this because the page allocator works in the opposite
2745		 * direction.  This prevents the page allocator from allocating
2746		 * pages behind kswapd's direction of progress, which would
2747		 * cause too much scanning of the lower zones.
2748		 */
2749		for (i = 0; i <= end_zone; i++) {
2750			struct zone *zone = pgdat->node_zones + i;
2751			int nr_slab;
2752			unsigned long balance_gap;
2753
2754			if (!populated_zone(zone))
2755				continue;
2756
2757			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2758				continue;
2759
2760			sc.nr_scanned = 0;
2761
2762			nr_soft_scanned = 0;
2763			/*
2764			 * Call soft limit reclaim before calling shrink_zone.
2765			 */
2766			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2767							order, sc.gfp_mask,
2768							&nr_soft_scanned);
2769			sc.nr_reclaimed += nr_soft_reclaimed;
2770			total_scanned += nr_soft_scanned;
2771
2772			/*
2773			 * We put equal pressure on every zone, unless
2774			 * one zone has way too many pages free
2775			 * already. The "too many pages" is defined
2776			 * as the high wmark plus a "gap" where the
2777			 * gap is either the low watermark or 1%
2778			 * of the zone, whichever is smaller.
2779			 */
2780			balance_gap = min(low_wmark_pages(zone),
2781				(zone->present_pages +
2782					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2783				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2784			if (!zone_watermark_ok_safe(zone, order,
2785					high_wmark_pages(zone) + balance_gap,
2786					end_zone, 0)) {
2787				shrink_zone(priority, zone, &sc);
2788
2789				reclaim_state->reclaimed_slab = 0;
2790				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2791				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2792				total_scanned += sc.nr_scanned;
2793
2794				if (nr_slab == 0 && !zone_reclaimable(zone))
2795					zone->all_unreclaimable = 1;
2796			}
2797
2798			/*
2799			 * If we've done a decent amount of scanning and
2800			 * the reclaim ratio is low, start doing writepage
2801			 * even in laptop mode
2802			 */
2803			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2804			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2805				sc.may_writepage = 1;
2806
2807			if (zone->all_unreclaimable) {
2808				if (end_zone && end_zone == i)
2809					end_zone--;
2810				continue;
2811			}
2812
2813			if (!zone_watermark_ok_safe(zone, order,
2814					high_wmark_pages(zone), end_zone, 0)) {
2815				all_zones_ok = 0;
2816				/*
2817				 * We are still under min water mark.  This
2818				 * means that we have a GFP_ATOMIC allocation
2819				 * failure risk. Hurry up!
2820				 */
2821				if (!zone_watermark_ok_safe(zone, order,
2822					    min_wmark_pages(zone), end_zone, 0))
2823					has_under_min_watermark_zone = 1;
2824			} else {
2825				/*
2826				 * If a zone reaches its high watermark,
2827				 * consider it to be no longer congested. It's
2828				 * possible there are dirty pages backed by
2829				 * congested BDIs but as pressure is relieved,
2830				 * spectulatively avoid congestion waits
2831				 */
2832				zone_clear_flag(zone, ZONE_CONGESTED);
2833				if (i <= *classzone_idx)
2834					balanced += zone->present_pages;
2835			}
2836
2837		}
2838		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2839			break;		/* kswapd: all done */
2840		/*
2841		 * OK, kswapd is getting into trouble.  Take a nap, then take
2842		 * another pass across the zones.
2843		 */
2844		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2845			if (has_under_min_watermark_zone)
2846				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2847			else
2848				congestion_wait(BLK_RW_ASYNC, HZ/10);
2849		}
2850
2851		/*
2852		 * We do this so kswapd doesn't build up large priorities for
2853		 * example when it is freeing in parallel with allocators. It
2854		 * matches the direct reclaim path behaviour in terms of impact
2855		 * on zone->*_priority.
2856		 */
2857		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2858			break;
2859	}
2860out:
2861
2862	/*
2863	 * order-0: All zones must meet high watermark for a balanced node
2864	 * high-order: Balanced zones must make up at least 25% of the node
2865	 *             for the node to be balanced
2866	 */
2867	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2868		cond_resched();
2869
2870		try_to_freeze();
2871
2872		/*
2873		 * Fragmentation may mean that the system cannot be
2874		 * rebalanced for high-order allocations in all zones.
2875		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2876		 * it means the zones have been fully scanned and are still
2877		 * not balanced. For high-order allocations, there is
2878		 * little point trying all over again as kswapd may
2879		 * infinite loop.
2880		 *
2881		 * Instead, recheck all watermarks at order-0 as they
2882		 * are the most important. If watermarks are ok, kswapd will go
2883		 * back to sleep. High-order users can still perform direct
2884		 * reclaim if they wish.
2885		 */
2886		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2887			order = sc.order = 0;
2888
2889		goto loop_again;
2890	}
2891
2892	/*
2893	 * If kswapd was reclaiming at a higher order, it has the option of
2894	 * sleeping without all zones being balanced. Before it does, it must
2895	 * ensure that the watermarks for order-0 on *all* zones are met and
2896	 * that the congestion flags are cleared. The congestion flag must
2897	 * be cleared as kswapd is the only mechanism that clears the flag
2898	 * and it is potentially going to sleep here.
2899	 */
2900	if (order) {
2901		for (i = 0; i <= end_zone; i++) {
2902			struct zone *zone = pgdat->node_zones + i;
2903
2904			if (!populated_zone(zone))
2905				continue;
2906
2907			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2908				continue;
2909
2910			/* Confirm the zone is balanced for order-0 */
2911			if (!zone_watermark_ok(zone, 0,
2912					high_wmark_pages(zone), 0, 0)) {
2913				order = sc.order = 0;
2914				goto loop_again;
2915			}
2916
2917			/* If balanced, clear the congested flag */
2918			zone_clear_flag(zone, ZONE_CONGESTED);
2919			if (i <= *classzone_idx)
2920				balanced += zone->present_pages;
2921		}
2922	}
2923
2924	/*
2925	 * Return the order we were reclaiming at so sleeping_prematurely()
2926	 * makes a decision on the order we were last reclaiming at. However,
2927	 * if another caller entered the allocator slow path while kswapd
2928	 * was awake, order will remain at the higher level
2929	 */
2930	*classzone_idx = end_zone;
2931	return order;
2932}
2933
2934static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2935{
2936	long remaining = 0;
2937	DEFINE_WAIT(wait);
2938
2939	if (freezing(current) || kthread_should_stop())
2940		return;
2941
2942	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2943
2944	/* Try to sleep for a short interval */
2945	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2946		remaining = schedule_timeout(HZ/10);
2947		finish_wait(&pgdat->kswapd_wait, &wait);
2948		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2949	}
2950
2951	/*
2952	 * After a short sleep, check if it was a premature sleep. If not, then
2953	 * go fully to sleep until explicitly woken up.
2954	 */
2955	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2956		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2957
2958		/*
2959		 * vmstat counters are not perfectly accurate and the estimated
2960		 * value for counters such as NR_FREE_PAGES can deviate from the
2961		 * true value by nr_online_cpus * threshold. To avoid the zone
2962		 * watermarks being breached while under pressure, we reduce the
2963		 * per-cpu vmstat threshold while kswapd is awake and restore
2964		 * them before going back to sleep.
2965		 */
2966		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2967		schedule();
2968		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2969	} else {
2970		if (remaining)
2971			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2972		else
2973			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2974	}
2975	finish_wait(&pgdat->kswapd_wait, &wait);
2976}
2977
2978/*
2979 * The background pageout daemon, started as a kernel thread
2980 * from the init process.
2981 *
2982 * This basically trickles out pages so that we have _some_
2983 * free memory available even if there is no other activity
2984 * that frees anything up. This is needed for things like routing
2985 * etc, where we otherwise might have all activity going on in
2986 * asynchronous contexts that cannot page things out.
2987 *
2988 * If there are applications that are active memory-allocators
2989 * (most normal use), this basically shouldn't matter.
2990 */
2991static int kswapd(void *p)
2992{
2993	unsigned long order, new_order;
2994	unsigned balanced_order;
2995	int classzone_idx, new_classzone_idx;
2996	int balanced_classzone_idx;
2997	pg_data_t *pgdat = (pg_data_t*)p;
2998	struct task_struct *tsk = current;
2999
3000	struct reclaim_state reclaim_state = {
3001		.reclaimed_slab = 0,
3002	};
3003	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3004
3005	lockdep_set_current_reclaim_state(GFP_KERNEL);
3006
3007	if (!cpumask_empty(cpumask))
3008		set_cpus_allowed_ptr(tsk, cpumask);
3009	current->reclaim_state = &reclaim_state;
3010
3011	/*
3012	 * Tell the memory management that we're a "memory allocator",
3013	 * and that if we need more memory we should get access to it
3014	 * regardless (see "__alloc_pages()"). "kswapd" should
3015	 * never get caught in the normal page freeing logic.
3016	 *
3017	 * (Kswapd normally doesn't need memory anyway, but sometimes
3018	 * you need a small amount of memory in order to be able to
3019	 * page out something else, and this flag essentially protects
3020	 * us from recursively trying to free more memory as we're
3021	 * trying to free the first piece of memory in the first place).
3022	 */
3023	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3024	set_freezable();
3025
3026	order = new_order = 0;
3027	balanced_order = 0;
3028	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3029	balanced_classzone_idx = classzone_idx;
3030	for ( ; ; ) {
3031		int ret;
3032
3033		/*
3034		 * If the last balance_pgdat was unsuccessful it's unlikely a
3035		 * new request of a similar or harder type will succeed soon
3036		 * so consider going to sleep on the basis we reclaimed at
3037		 */
3038		if (balanced_classzone_idx >= new_classzone_idx &&
3039					balanced_order == new_order) {
3040			new_order = pgdat->kswapd_max_order;
3041			new_classzone_idx = pgdat->classzone_idx;
3042			pgdat->kswapd_max_order =  0;
3043			pgdat->classzone_idx = pgdat->nr_zones - 1;
3044		}
3045
3046		if (order < new_order || classzone_idx > new_classzone_idx) {
3047			/*
3048			 * Don't sleep if someone wants a larger 'order'
3049			 * allocation or has tigher zone constraints
3050			 */
3051			order = new_order;
3052			classzone_idx = new_classzone_idx;
3053		} else {
3054			kswapd_try_to_sleep(pgdat, balanced_order,
3055						balanced_classzone_idx);
3056			order = pgdat->kswapd_max_order;
3057			classzone_idx = pgdat->classzone_idx;
3058			new_order = order;
3059			new_classzone_idx = classzone_idx;
3060			pgdat->kswapd_max_order = 0;
3061			pgdat->classzone_idx = pgdat->nr_zones - 1;
3062		}
3063
3064		ret = try_to_freeze();
3065		if (kthread_should_stop())
3066			break;
3067
3068		/*
3069		 * We can speed up thawing tasks if we don't call balance_pgdat
3070		 * after returning from the refrigerator
3071		 */
3072		if (!ret) {
3073			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3074			balanced_classzone_idx = classzone_idx;
3075			balanced_order = balance_pgdat(pgdat, order,
3076						&balanced_classzone_idx);
3077		}
3078	}
3079	return 0;
3080}
3081
3082/*
3083 * A zone is low on free memory, so wake its kswapd task to service it.
3084 */
3085void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3086{
3087	pg_data_t *pgdat;
3088
3089	if (!populated_zone(zone))
3090		return;
3091
3092	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3093		return;
3094	pgdat = zone->zone_pgdat;
3095	if (pgdat->kswapd_max_order < order) {
3096		pgdat->kswapd_max_order = order;
3097		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3098	}
3099	if (!waitqueue_active(&pgdat->kswapd_wait))
3100		return;
3101	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3102		return;
3103
3104	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3105	wake_up_interruptible(&pgdat->kswapd_wait);
3106}
3107
3108/*
3109 * The reclaimable count would be mostly accurate.
3110 * The less reclaimable pages may be
3111 * - mlocked pages, which will be moved to unevictable list when encountered
3112 * - mapped pages, which may require several travels to be reclaimed
3113 * - dirty pages, which is not "instantly" reclaimable
3114 */
3115unsigned long global_reclaimable_pages(void)
3116{
3117	int nr;
3118
3119	nr = global_page_state(NR_ACTIVE_FILE) +
3120	     global_page_state(NR_INACTIVE_FILE);
3121
3122	if (nr_swap_pages > 0)
3123		nr += global_page_state(NR_ACTIVE_ANON) +
3124		      global_page_state(NR_INACTIVE_ANON);
3125
3126	return nr;
3127}
3128
3129unsigned long zone_reclaimable_pages(struct zone *zone)
3130{
3131	int nr;
3132
3133	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3134	     zone_page_state(zone, NR_INACTIVE_FILE);
3135
3136	if (nr_swap_pages > 0)
3137		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3138		      zone_page_state(zone, NR_INACTIVE_ANON);
3139
3140	return nr;
3141}
3142
3143#ifdef CONFIG_HIBERNATION
3144/*
3145 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3146 * freed pages.
3147 *
3148 * Rather than trying to age LRUs the aim is to preserve the overall
3149 * LRU order by reclaiming preferentially
3150 * inactive > active > active referenced > active mapped
3151 */
3152unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3153{
3154	struct reclaim_state reclaim_state;
3155	struct scan_control sc = {
3156		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3157		.may_swap = 1,
3158		.may_unmap = 1,
3159		.may_writepage = 1,
3160		.nr_to_reclaim = nr_to_reclaim,
3161		.hibernation_mode = 1,
3162		.order = 0,
3163	};
3164	struct shrink_control shrink = {
3165		.gfp_mask = sc.gfp_mask,
3166	};
3167	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3168	struct task_struct *p = current;
3169	unsigned long nr_reclaimed;
3170
3171	p->flags |= PF_MEMALLOC;
3172	lockdep_set_current_reclaim_state(sc.gfp_mask);
3173	reclaim_state.reclaimed_slab = 0;
3174	p->reclaim_state = &reclaim_state;
3175
3176	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3177
3178	p->reclaim_state = NULL;
3179	lockdep_clear_current_reclaim_state();
3180	p->flags &= ~PF_MEMALLOC;
3181
3182	return nr_reclaimed;
3183}
3184#endif /* CONFIG_HIBERNATION */
3185
3186/* It's optimal to keep kswapds on the same CPUs as their memory, but
3187   not required for correctness.  So if the last cpu in a node goes
3188   away, we get changed to run anywhere: as the first one comes back,
3189   restore their cpu bindings. */
3190static int __devinit cpu_callback(struct notifier_block *nfb,
3191				  unsigned long action, void *hcpu)
3192{
3193	int nid;
3194
3195	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3196		for_each_node_state(nid, N_HIGH_MEMORY) {
3197			pg_data_t *pgdat = NODE_DATA(nid);
3198			const struct cpumask *mask;
3199
3200			mask = cpumask_of_node(pgdat->node_id);
3201
3202			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3203				/* One of our CPUs online: restore mask */
3204				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3205		}
3206	}
3207	return NOTIFY_OK;
3208}
3209
3210/*
3211 * This kswapd start function will be called by init and node-hot-add.
3212 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3213 */
3214int kswapd_run(int nid)
3215{
3216	pg_data_t *pgdat = NODE_DATA(nid);
3217	int ret = 0;
3218
3219	if (pgdat->kswapd)
3220		return 0;
3221
3222	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3223	if (IS_ERR(pgdat->kswapd)) {
3224		/* failure at boot is fatal */
3225		BUG_ON(system_state == SYSTEM_BOOTING);
3226		printk("Failed to start kswapd on node %d\n",nid);
3227		ret = -1;
3228	}
3229	return ret;
3230}
3231
3232/*
3233 * Called by memory hotplug when all memory in a node is offlined.
3234 */
3235void kswapd_stop(int nid)
3236{
3237	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3238
3239	if (kswapd)
3240		kthread_stop(kswapd);
3241}
3242
3243static int __init kswapd_init(void)
3244{
3245	int nid;
3246
3247	swap_setup();
3248	for_each_node_state(nid, N_HIGH_MEMORY)
3249 		kswapd_run(nid);
3250	hotcpu_notifier(cpu_callback, 0);
3251	return 0;
3252}
3253
3254module_init(kswapd_init)
3255
3256#ifdef CONFIG_NUMA
3257/*
3258 * Zone reclaim mode
3259 *
3260 * If non-zero call zone_reclaim when the number of free pages falls below
3261 * the watermarks.
3262 */
3263int zone_reclaim_mode __read_mostly;
3264
3265#define RECLAIM_OFF 0
3266#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3267#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3268#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3269
3270/*
3271 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3272 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3273 * a zone.
3274 */
3275#define ZONE_RECLAIM_PRIORITY 4
3276
3277/*
3278 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3279 * occur.
3280 */
3281int sysctl_min_unmapped_ratio = 1;
3282
3283/*
3284 * If the number of slab pages in a zone grows beyond this percentage then
3285 * slab reclaim needs to occur.
3286 */
3287int sysctl_min_slab_ratio = 5;
3288
3289static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3290{
3291	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3292	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3293		zone_page_state(zone, NR_ACTIVE_FILE);
3294
3295	/*
3296	 * It's possible for there to be more file mapped pages than
3297	 * accounted for by the pages on the file LRU lists because
3298	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3299	 */
3300	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3301}
3302
3303/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3304static long zone_pagecache_reclaimable(struct zone *zone)
3305{
3306	long nr_pagecache_reclaimable;
3307	long delta = 0;
3308
3309	/*
3310	 * If RECLAIM_SWAP is set, then all file pages are considered
3311	 * potentially reclaimable. Otherwise, we have to worry about
3312	 * pages like swapcache and zone_unmapped_file_pages() provides
3313	 * a better estimate
3314	 */
3315	if (zone_reclaim_mode & RECLAIM_SWAP)
3316		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3317	else
3318		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3319
3320	/* If we can't clean pages, remove dirty pages from consideration */
3321	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3322		delta += zone_page_state(zone, NR_FILE_DIRTY);
3323
3324	/* Watch for any possible underflows due to delta */
3325	if (unlikely(delta > nr_pagecache_reclaimable))
3326		delta = nr_pagecache_reclaimable;
3327
3328	return nr_pagecache_reclaimable - delta;
3329}
3330
3331/*
3332 * Try to free up some pages from this zone through reclaim.
3333 */
3334static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3335{
3336	/* Minimum pages needed in order to stay on node */
3337	const unsigned long nr_pages = 1 << order;
3338	struct task_struct *p = current;
3339	struct reclaim_state reclaim_state;
3340	int priority;
3341	struct scan_control sc = {
3342		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3343		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3344		.may_swap = 1,
3345		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3346				       SWAP_CLUSTER_MAX),
3347		.gfp_mask = gfp_mask,
3348		.order = order,
3349	};
3350	struct shrink_control shrink = {
3351		.gfp_mask = sc.gfp_mask,
3352	};
3353	unsigned long nr_slab_pages0, nr_slab_pages1;
3354
3355	cond_resched();
3356	/*
3357	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3358	 * and we also need to be able to write out pages for RECLAIM_WRITE
3359	 * and RECLAIM_SWAP.
3360	 */
3361	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3362	lockdep_set_current_reclaim_state(gfp_mask);
3363	reclaim_state.reclaimed_slab = 0;
3364	p->reclaim_state = &reclaim_state;
3365
3366	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3367		/*
3368		 * Free memory by calling shrink zone with increasing
3369		 * priorities until we have enough memory freed.
3370		 */
3371		priority = ZONE_RECLAIM_PRIORITY;
3372		do {
3373			shrink_zone(priority, zone, &sc);
3374			priority--;
3375		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3376	}
3377
3378	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3379	if (nr_slab_pages0 > zone->min_slab_pages) {
3380		/*
3381		 * shrink_slab() does not currently allow us to determine how
3382		 * many pages were freed in this zone. So we take the current
3383		 * number of slab pages and shake the slab until it is reduced
3384		 * by the same nr_pages that we used for reclaiming unmapped
3385		 * pages.
3386		 *
3387		 * Note that shrink_slab will free memory on all zones and may
3388		 * take a long time.
3389		 */
3390		for (;;) {
3391			unsigned long lru_pages = zone_reclaimable_pages(zone);
3392
3393			/* No reclaimable slab or very low memory pressure */
3394			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3395				break;
3396
3397			/* Freed enough memory */
3398			nr_slab_pages1 = zone_page_state(zone,
3399							NR_SLAB_RECLAIMABLE);
3400			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3401				break;
3402		}
3403
3404		/*
3405		 * Update nr_reclaimed by the number of slab pages we
3406		 * reclaimed from this zone.
3407		 */
3408		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3409		if (nr_slab_pages1 < nr_slab_pages0)
3410			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3411	}
3412
3413	p->reclaim_state = NULL;
3414	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3415	lockdep_clear_current_reclaim_state();
3416	return sc.nr_reclaimed >= nr_pages;
3417}
3418
3419int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3420{
3421	int node_id;
3422	int ret;
3423
3424	/*
3425	 * Zone reclaim reclaims unmapped file backed pages and
3426	 * slab pages if we are over the defined limits.
3427	 *
3428	 * A small portion of unmapped file backed pages is needed for
3429	 * file I/O otherwise pages read by file I/O will be immediately
3430	 * thrown out if the zone is overallocated. So we do not reclaim
3431	 * if less than a specified percentage of the zone is used by
3432	 * unmapped file backed pages.
3433	 */
3434	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3435	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3436		return ZONE_RECLAIM_FULL;
3437
3438	if (zone->all_unreclaimable)
3439		return ZONE_RECLAIM_FULL;
3440
3441	/*
3442	 * Do not scan if the allocation should not be delayed.
3443	 */
3444	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3445		return ZONE_RECLAIM_NOSCAN;
3446
3447	/*
3448	 * Only run zone reclaim on the local zone or on zones that do not
3449	 * have associated processors. This will favor the local processor
3450	 * over remote processors and spread off node memory allocations
3451	 * as wide as possible.
3452	 */
3453	node_id = zone_to_nid(zone);
3454	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3455		return ZONE_RECLAIM_NOSCAN;
3456
3457	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3458		return ZONE_RECLAIM_NOSCAN;
3459
3460	ret = __zone_reclaim(zone, gfp_mask, order);
3461	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3462
3463	if (!ret)
3464		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3465
3466	return ret;
3467}
3468#endif
3469
3470/*
3471 * page_evictable - test whether a page is evictable
3472 * @page: the page to test
3473 * @vma: the VMA in which the page is or will be mapped, may be NULL
3474 *
3475 * Test whether page is evictable--i.e., should be placed on active/inactive
3476 * lists vs unevictable list.  The vma argument is !NULL when called from the
3477 * fault path to determine how to instantate a new page.
3478 *
3479 * Reasons page might not be evictable:
3480 * (1) page's mapping marked unevictable
3481 * (2) page is part of an mlocked VMA
3482 *
3483 */
3484int page_evictable(struct page *page, struct vm_area_struct *vma)
3485{
3486
3487	if (mapping_unevictable(page_mapping(page)))
3488		return 0;
3489
3490	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3491		return 0;
3492
3493	return 1;
3494}
3495
3496/**
3497 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3498 * @page: page to check evictability and move to appropriate lru list
3499 * @zone: zone page is in
3500 *
3501 * Checks a page for evictability and moves the page to the appropriate
3502 * zone lru list.
3503 *
3504 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3505 * have PageUnevictable set.
3506 */
3507static void check_move_unevictable_page(struct page *page, struct zone *zone)
3508{
3509	struct lruvec *lruvec;
3510
3511	VM_BUG_ON(PageActive(page));
3512retry:
3513	ClearPageUnevictable(page);
3514	if (page_evictable(page, NULL)) {
3515		enum lru_list l = page_lru_base_type(page);
3516
3517		__dec_zone_state(zone, NR_UNEVICTABLE);
3518		lruvec = mem_cgroup_lru_move_lists(zone, page,
3519						   LRU_UNEVICTABLE, l);
3520		list_move(&page->lru, &lruvec->lists[l]);
3521		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3522		__count_vm_event(UNEVICTABLE_PGRESCUED);
3523	} else {
3524		/*
3525		 * rotate unevictable list
3526		 */
3527		SetPageUnevictable(page);
3528		lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3529						   LRU_UNEVICTABLE);
3530		list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3531		if (page_evictable(page, NULL))
3532			goto retry;
3533	}
3534}
3535
3536/**
3537 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3538 * @mapping: struct address_space to scan for evictable pages
3539 *
3540 * Scan all pages in mapping.  Check unevictable pages for
3541 * evictability and move them to the appropriate zone lru list.
3542 */
3543void scan_mapping_unevictable_pages(struct address_space *mapping)
3544{
3545	pgoff_t next = 0;
3546	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3547			 PAGE_CACHE_SHIFT;
3548	struct zone *zone;
3549	struct pagevec pvec;
3550
3551	if (mapping->nrpages == 0)
3552		return;
3553
3554	pagevec_init(&pvec, 0);
3555	while (next < end &&
3556		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3557		int i;
3558		int pg_scanned = 0;
3559
3560		zone = NULL;
3561
3562		for (i = 0; i < pagevec_count(&pvec); i++) {
3563			struct page *page = pvec.pages[i];
3564			pgoff_t page_index = page->index;
3565			struct zone *pagezone = page_zone(page);
3566
3567			pg_scanned++;
3568			if (page_index > next)
3569				next = page_index;
3570			next++;
3571
3572			if (pagezone != zone) {
3573				if (zone)
3574					spin_unlock_irq(&zone->lru_lock);
3575				zone = pagezone;
3576				spin_lock_irq(&zone->lru_lock);
3577			}
3578
3579			if (PageLRU(page) && PageUnevictable(page))
3580				check_move_unevictable_page(page, zone);
3581		}
3582		if (zone)
3583			spin_unlock_irq(&zone->lru_lock);
3584		pagevec_release(&pvec);
3585
3586		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3587	}
3588
3589}
3590
3591static void warn_scan_unevictable_pages(void)
3592{
3593	printk_once(KERN_WARNING
3594		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3595		    "disabled for lack of a legitimate use case.  If you have "
3596		    "one, please send an email to linux-mm@kvack.org.\n",
3597		    current->comm);
3598}
3599
3600/*
3601 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3602 * all nodes' unevictable lists for evictable pages
3603 */
3604unsigned long scan_unevictable_pages;
3605
3606int scan_unevictable_handler(struct ctl_table *table, int write,
3607			   void __user *buffer,
3608			   size_t *length, loff_t *ppos)
3609{
3610	warn_scan_unevictable_pages();
3611	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3612	scan_unevictable_pages = 0;
3613	return 0;
3614}
3615
3616#ifdef CONFIG_NUMA
3617/*
3618 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3619 * a specified node's per zone unevictable lists for evictable pages.
3620 */
3621
3622static ssize_t read_scan_unevictable_node(struct device *dev,
3623					  struct device_attribute *attr,
3624					  char *buf)
3625{
3626	warn_scan_unevictable_pages();
3627	return sprintf(buf, "0\n");	/* always zero; should fit... */
3628}
3629
3630static ssize_t write_scan_unevictable_node(struct device *dev,
3631					   struct device_attribute *attr,
3632					const char *buf, size_t count)
3633{
3634	warn_scan_unevictable_pages();
3635	return 1;
3636}
3637
3638
3639static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3640			read_scan_unevictable_node,
3641			write_scan_unevictable_node);
3642
3643int scan_unevictable_register_node(struct node *node)
3644{
3645	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3646}
3647
3648void scan_unevictable_unregister_node(struct node *node)
3649{
3650	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3651}
3652#endif
3653