vmstat.c revision 79134171df238171daa4c024a42b77b401ccb00b
1/*
2 *  linux/mm/vmstat.c
3 *
4 *  Manages VM statistics
5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 *
7 *  zoned VM statistics
8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
9 *		Christoph Lameter <christoph@lameter.com>
10 */
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/cpu.h>
17#include <linux/vmstat.h>
18#include <linux/sched.h>
19#include <linux/math64.h>
20#include <linux/writeback.h>
21#include <linux/compaction.h>
22
23#ifdef CONFIG_VM_EVENT_COUNTERS
24DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27static void sum_vm_events(unsigned long *ret)
28{
29	int cpu;
30	int i;
31
32	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34	for_each_online_cpu(cpu) {
35		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38			ret[i] += this->event[i];
39	}
40}
41
42/*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46*/
47void all_vm_events(unsigned long *ret)
48{
49	get_online_cpus();
50	sum_vm_events(ret);
51	put_online_cpus();
52}
53EXPORT_SYMBOL_GPL(all_vm_events);
54
55#ifdef CONFIG_HOTPLUG
56/*
57 * Fold the foreign cpu events into our own.
58 *
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
61 */
62void vm_events_fold_cpu(int cpu)
63{
64	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65	int i;
66
67	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68		count_vm_events(i, fold_state->event[i]);
69		fold_state->event[i] = 0;
70	}
71}
72#endif /* CONFIG_HOTPLUG */
73
74#endif /* CONFIG_VM_EVENT_COUNTERS */
75
76/*
77 * Manage combined zone based / global counters
78 *
79 * vm_stat contains the global counters
80 */
81atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82EXPORT_SYMBOL(vm_stat);
83
84#ifdef CONFIG_SMP
85
86int calculate_pressure_threshold(struct zone *zone)
87{
88	int threshold;
89	int watermark_distance;
90
91	/*
92	 * As vmstats are not up to date, there is drift between the estimated
93	 * and real values. For high thresholds and a high number of CPUs, it
94	 * is possible for the min watermark to be breached while the estimated
95	 * value looks fine. The pressure threshold is a reduced value such
96	 * that even the maximum amount of drift will not accidentally breach
97	 * the min watermark
98	 */
99	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101
102	/*
103	 * Maximum threshold is 125
104	 */
105	threshold = min(125, threshold);
106
107	return threshold;
108}
109
110int calculate_normal_threshold(struct zone *zone)
111{
112	int threshold;
113	int mem;	/* memory in 128 MB units */
114
115	/*
116	 * The threshold scales with the number of processors and the amount
117	 * of memory per zone. More memory means that we can defer updates for
118	 * longer, more processors could lead to more contention.
119 	 * fls() is used to have a cheap way of logarithmic scaling.
120	 *
121	 * Some sample thresholds:
122	 *
123	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
124	 * ------------------------------------------------------------------
125	 * 8		1		1	0.9-1 GB	4
126	 * 16		2		2	0.9-1 GB	4
127	 * 20 		2		2	1-2 GB		5
128	 * 24		2		2	2-4 GB		6
129	 * 28		2		2	4-8 GB		7
130	 * 32		2		2	8-16 GB		8
131	 * 4		2		2	<128M		1
132	 * 30		4		3	2-4 GB		5
133	 * 48		4		3	8-16 GB		8
134	 * 32		8		4	1-2 GB		4
135	 * 32		8		4	0.9-1GB		4
136	 * 10		16		5	<128M		1
137	 * 40		16		5	900M		4
138	 * 70		64		7	2-4 GB		5
139	 * 84		64		7	4-8 GB		6
140	 * 108		512		9	4-8 GB		6
141	 * 125		1024		10	8-16 GB		8
142	 * 125		1024		10	16-32 GB	9
143	 */
144
145	mem = zone->present_pages >> (27 - PAGE_SHIFT);
146
147	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148
149	/*
150	 * Maximum threshold is 125
151	 */
152	threshold = min(125, threshold);
153
154	return threshold;
155}
156
157/*
158 * Refresh the thresholds for each zone.
159 */
160static void refresh_zone_stat_thresholds(void)
161{
162	struct zone *zone;
163	int cpu;
164	int threshold;
165
166	for_each_populated_zone(zone) {
167		unsigned long max_drift, tolerate_drift;
168
169		threshold = calculate_normal_threshold(zone);
170
171		for_each_online_cpu(cpu)
172			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173							= threshold;
174
175		/*
176		 * Only set percpu_drift_mark if there is a danger that
177		 * NR_FREE_PAGES reports the low watermark is ok when in fact
178		 * the min watermark could be breached by an allocation
179		 */
180		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181		max_drift = num_online_cpus() * threshold;
182		if (max_drift > tolerate_drift)
183			zone->percpu_drift_mark = high_wmark_pages(zone) +
184					max_drift;
185	}
186}
187
188void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189				int (*calculate_pressure)(struct zone *))
190{
191	struct zone *zone;
192	int cpu;
193	int threshold;
194	int i;
195
196	for (i = 0; i < pgdat->nr_zones; i++) {
197		zone = &pgdat->node_zones[i];
198		if (!zone->percpu_drift_mark)
199			continue;
200
201		threshold = (*calculate_pressure)(zone);
202		for_each_possible_cpu(cpu)
203			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204							= threshold;
205	}
206}
207
208/*
209 * For use when we know that interrupts are disabled.
210 */
211void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212				int delta)
213{
214	struct per_cpu_pageset __percpu *pcp = zone->pageset;
215	s8 __percpu *p = pcp->vm_stat_diff + item;
216	long x;
217	long t;
218
219	x = delta + __this_cpu_read(*p);
220
221	t = __this_cpu_read(pcp->stat_threshold);
222
223	if (unlikely(x > t || x < -t)) {
224		zone_page_state_add(x, zone, item);
225		x = 0;
226	}
227	__this_cpu_write(*p, x);
228}
229EXPORT_SYMBOL(__mod_zone_page_state);
230
231/*
232 * Optimized increment and decrement functions.
233 *
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
237 *
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
242 * be omitted.
243 *
244 * NOTE: These functions are very performance sensitive. Change only
245 * with care.
246 *
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
253 */
254void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255{
256	struct per_cpu_pageset __percpu *pcp = zone->pageset;
257	s8 __percpu *p = pcp->vm_stat_diff + item;
258	s8 v, t;
259
260	v = __this_cpu_inc_return(*p);
261	t = __this_cpu_read(pcp->stat_threshold);
262	if (unlikely(v > t)) {
263		s8 overstep = t >> 1;
264
265		zone_page_state_add(v + overstep, zone, item);
266		__this_cpu_write(*p, -overstep);
267	}
268}
269
270void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271{
272	__inc_zone_state(page_zone(page), item);
273}
274EXPORT_SYMBOL(__inc_zone_page_state);
275
276void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277{
278	struct per_cpu_pageset __percpu *pcp = zone->pageset;
279	s8 __percpu *p = pcp->vm_stat_diff + item;
280	s8 v, t;
281
282	v = __this_cpu_dec_return(*p);
283	t = __this_cpu_read(pcp->stat_threshold);
284	if (unlikely(v < - t)) {
285		s8 overstep = t >> 1;
286
287		zone_page_state_add(v - overstep, zone, item);
288		__this_cpu_write(*p, overstep);
289	}
290}
291
292void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293{
294	__dec_zone_state(page_zone(page), item);
295}
296EXPORT_SYMBOL(__dec_zone_page_state);
297
298#ifdef CONFIG_CMPXCHG_LOCAL
299/*
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302 *
303 * mod_state() modifies the zone counter state through atomic per cpu
304 * operations.
305 *
306 * Overstep mode specifies how overstep should handled:
307 *     0       No overstepping
308 *     1       Overstepping half of threshold
309 *     -1      Overstepping minus half of threshold
310*/
311static inline void mod_state(struct zone *zone,
312       enum zone_stat_item item, int delta, int overstep_mode)
313{
314	struct per_cpu_pageset __percpu *pcp = zone->pageset;
315	s8 __percpu *p = pcp->vm_stat_diff + item;
316	long o, n, t, z;
317
318	do {
319		z = 0;  /* overflow to zone counters */
320
321		/*
322		 * The fetching of the stat_threshold is racy. We may apply
323		 * a counter threshold to the wrong the cpu if we get
324		 * rescheduled while executing here. However, the following
325		 * will apply the threshold again and therefore bring the
326		 * counter under the threshold.
327		 */
328		t = this_cpu_read(pcp->stat_threshold);
329
330		o = this_cpu_read(*p);
331		n = delta + o;
332
333		if (n > t || n < -t) {
334			int os = overstep_mode * (t >> 1) ;
335
336			/* Overflow must be added to zone counters */
337			z = n + os;
338			n = -os;
339		}
340	} while (this_cpu_cmpxchg(*p, o, n) != o);
341
342	if (z)
343		zone_page_state_add(z, zone, item);
344}
345
346void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
347					int delta)
348{
349	mod_state(zone, item, delta, 0);
350}
351EXPORT_SYMBOL(mod_zone_page_state);
352
353void inc_zone_state(struct zone *zone, enum zone_stat_item item)
354{
355	mod_state(zone, item, 1, 1);
356}
357
358void inc_zone_page_state(struct page *page, enum zone_stat_item item)
359{
360	mod_state(page_zone(page), item, 1, 1);
361}
362EXPORT_SYMBOL(inc_zone_page_state);
363
364void dec_zone_page_state(struct page *page, enum zone_stat_item item)
365{
366	mod_state(page_zone(page), item, -1, -1);
367}
368EXPORT_SYMBOL(dec_zone_page_state);
369#else
370/*
371 * Use interrupt disable to serialize counter updates
372 */
373void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
374					int delta)
375{
376	unsigned long flags;
377
378	local_irq_save(flags);
379	__mod_zone_page_state(zone, item, delta);
380	local_irq_restore(flags);
381}
382EXPORT_SYMBOL(mod_zone_page_state);
383
384void inc_zone_state(struct zone *zone, enum zone_stat_item item)
385{
386	unsigned long flags;
387
388	local_irq_save(flags);
389	__inc_zone_state(zone, item);
390	local_irq_restore(flags);
391}
392
393void inc_zone_page_state(struct page *page, enum zone_stat_item item)
394{
395	unsigned long flags;
396	struct zone *zone;
397
398	zone = page_zone(page);
399	local_irq_save(flags);
400	__inc_zone_state(zone, item);
401	local_irq_restore(flags);
402}
403EXPORT_SYMBOL(inc_zone_page_state);
404
405void dec_zone_page_state(struct page *page, enum zone_stat_item item)
406{
407	unsigned long flags;
408
409	local_irq_save(flags);
410	__dec_zone_page_state(page, item);
411	local_irq_restore(flags);
412}
413EXPORT_SYMBOL(dec_zone_page_state);
414#endif
415
416/*
417 * Update the zone counters for one cpu.
418 *
419 * The cpu specified must be either the current cpu or a processor that
420 * is not online. If it is the current cpu then the execution thread must
421 * be pinned to the current cpu.
422 *
423 * Note that refresh_cpu_vm_stats strives to only access
424 * node local memory. The per cpu pagesets on remote zones are placed
425 * in the memory local to the processor using that pageset. So the
426 * loop over all zones will access a series of cachelines local to
427 * the processor.
428 *
429 * The call to zone_page_state_add updates the cachelines with the
430 * statistics in the remote zone struct as well as the global cachelines
431 * with the global counters. These could cause remote node cache line
432 * bouncing and will have to be only done when necessary.
433 */
434void refresh_cpu_vm_stats(int cpu)
435{
436	struct zone *zone;
437	int i;
438	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
439
440	for_each_populated_zone(zone) {
441		struct per_cpu_pageset *p;
442
443		p = per_cpu_ptr(zone->pageset, cpu);
444
445		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
446			if (p->vm_stat_diff[i]) {
447				unsigned long flags;
448				int v;
449
450				local_irq_save(flags);
451				v = p->vm_stat_diff[i];
452				p->vm_stat_diff[i] = 0;
453				local_irq_restore(flags);
454				atomic_long_add(v, &zone->vm_stat[i]);
455				global_diff[i] += v;
456#ifdef CONFIG_NUMA
457				/* 3 seconds idle till flush */
458				p->expire = 3;
459#endif
460			}
461		cond_resched();
462#ifdef CONFIG_NUMA
463		/*
464		 * Deal with draining the remote pageset of this
465		 * processor
466		 *
467		 * Check if there are pages remaining in this pageset
468		 * if not then there is nothing to expire.
469		 */
470		if (!p->expire || !p->pcp.count)
471			continue;
472
473		/*
474		 * We never drain zones local to this processor.
475		 */
476		if (zone_to_nid(zone) == numa_node_id()) {
477			p->expire = 0;
478			continue;
479		}
480
481		p->expire--;
482		if (p->expire)
483			continue;
484
485		if (p->pcp.count)
486			drain_zone_pages(zone, &p->pcp);
487#endif
488	}
489
490	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
491		if (global_diff[i])
492			atomic_long_add(global_diff[i], &vm_stat[i]);
493}
494
495#endif
496
497#ifdef CONFIG_NUMA
498/*
499 * zonelist = the list of zones passed to the allocator
500 * z 	    = the zone from which the allocation occurred.
501 *
502 * Must be called with interrupts disabled.
503 */
504void zone_statistics(struct zone *preferred_zone, struct zone *z)
505{
506	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
507		__inc_zone_state(z, NUMA_HIT);
508	} else {
509		__inc_zone_state(z, NUMA_MISS);
510		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
511	}
512	if (z->node == numa_node_id())
513		__inc_zone_state(z, NUMA_LOCAL);
514	else
515		__inc_zone_state(z, NUMA_OTHER);
516}
517#endif
518
519#ifdef CONFIG_COMPACTION
520
521struct contig_page_info {
522	unsigned long free_pages;
523	unsigned long free_blocks_total;
524	unsigned long free_blocks_suitable;
525};
526
527/*
528 * Calculate the number of free pages in a zone, how many contiguous
529 * pages are free and how many are large enough to satisfy an allocation of
530 * the target size. Note that this function makes no attempt to estimate
531 * how many suitable free blocks there *might* be if MOVABLE pages were
532 * migrated. Calculating that is possible, but expensive and can be
533 * figured out from userspace
534 */
535static void fill_contig_page_info(struct zone *zone,
536				unsigned int suitable_order,
537				struct contig_page_info *info)
538{
539	unsigned int order;
540
541	info->free_pages = 0;
542	info->free_blocks_total = 0;
543	info->free_blocks_suitable = 0;
544
545	for (order = 0; order < MAX_ORDER; order++) {
546		unsigned long blocks;
547
548		/* Count number of free blocks */
549		blocks = zone->free_area[order].nr_free;
550		info->free_blocks_total += blocks;
551
552		/* Count free base pages */
553		info->free_pages += blocks << order;
554
555		/* Count the suitable free blocks */
556		if (order >= suitable_order)
557			info->free_blocks_suitable += blocks <<
558						(order - suitable_order);
559	}
560}
561
562/*
563 * A fragmentation index only makes sense if an allocation of a requested
564 * size would fail. If that is true, the fragmentation index indicates
565 * whether external fragmentation or a lack of memory was the problem.
566 * The value can be used to determine if page reclaim or compaction
567 * should be used
568 */
569static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
570{
571	unsigned long requested = 1UL << order;
572
573	if (!info->free_blocks_total)
574		return 0;
575
576	/* Fragmentation index only makes sense when a request would fail */
577	if (info->free_blocks_suitable)
578		return -1000;
579
580	/*
581	 * Index is between 0 and 1 so return within 3 decimal places
582	 *
583	 * 0 => allocation would fail due to lack of memory
584	 * 1 => allocation would fail due to fragmentation
585	 */
586	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
587}
588
589/* Same as __fragmentation index but allocs contig_page_info on stack */
590int fragmentation_index(struct zone *zone, unsigned int order)
591{
592	struct contig_page_info info;
593
594	fill_contig_page_info(zone, order, &info);
595	return __fragmentation_index(order, &info);
596}
597#endif
598
599#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
600#include <linux/proc_fs.h>
601#include <linux/seq_file.h>
602
603static char * const migratetype_names[MIGRATE_TYPES] = {
604	"Unmovable",
605	"Reclaimable",
606	"Movable",
607	"Reserve",
608	"Isolate",
609};
610
611static void *frag_start(struct seq_file *m, loff_t *pos)
612{
613	pg_data_t *pgdat;
614	loff_t node = *pos;
615	for (pgdat = first_online_pgdat();
616	     pgdat && node;
617	     pgdat = next_online_pgdat(pgdat))
618		--node;
619
620	return pgdat;
621}
622
623static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
624{
625	pg_data_t *pgdat = (pg_data_t *)arg;
626
627	(*pos)++;
628	return next_online_pgdat(pgdat);
629}
630
631static void frag_stop(struct seq_file *m, void *arg)
632{
633}
634
635/* Walk all the zones in a node and print using a callback */
636static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
637		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
638{
639	struct zone *zone;
640	struct zone *node_zones = pgdat->node_zones;
641	unsigned long flags;
642
643	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
644		if (!populated_zone(zone))
645			continue;
646
647		spin_lock_irqsave(&zone->lock, flags);
648		print(m, pgdat, zone);
649		spin_unlock_irqrestore(&zone->lock, flags);
650	}
651}
652#endif
653
654#ifdef CONFIG_PROC_FS
655static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
656						struct zone *zone)
657{
658	int order;
659
660	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
661	for (order = 0; order < MAX_ORDER; ++order)
662		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
663	seq_putc(m, '\n');
664}
665
666/*
667 * This walks the free areas for each zone.
668 */
669static int frag_show(struct seq_file *m, void *arg)
670{
671	pg_data_t *pgdat = (pg_data_t *)arg;
672	walk_zones_in_node(m, pgdat, frag_show_print);
673	return 0;
674}
675
676static void pagetypeinfo_showfree_print(struct seq_file *m,
677					pg_data_t *pgdat, struct zone *zone)
678{
679	int order, mtype;
680
681	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
682		seq_printf(m, "Node %4d, zone %8s, type %12s ",
683					pgdat->node_id,
684					zone->name,
685					migratetype_names[mtype]);
686		for (order = 0; order < MAX_ORDER; ++order) {
687			unsigned long freecount = 0;
688			struct free_area *area;
689			struct list_head *curr;
690
691			area = &(zone->free_area[order]);
692
693			list_for_each(curr, &area->free_list[mtype])
694				freecount++;
695			seq_printf(m, "%6lu ", freecount);
696		}
697		seq_putc(m, '\n');
698	}
699}
700
701/* Print out the free pages at each order for each migatetype */
702static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
703{
704	int order;
705	pg_data_t *pgdat = (pg_data_t *)arg;
706
707	/* Print header */
708	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
709	for (order = 0; order < MAX_ORDER; ++order)
710		seq_printf(m, "%6d ", order);
711	seq_putc(m, '\n');
712
713	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
714
715	return 0;
716}
717
718static void pagetypeinfo_showblockcount_print(struct seq_file *m,
719					pg_data_t *pgdat, struct zone *zone)
720{
721	int mtype;
722	unsigned long pfn;
723	unsigned long start_pfn = zone->zone_start_pfn;
724	unsigned long end_pfn = start_pfn + zone->spanned_pages;
725	unsigned long count[MIGRATE_TYPES] = { 0, };
726
727	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
728		struct page *page;
729
730		if (!pfn_valid(pfn))
731			continue;
732
733		page = pfn_to_page(pfn);
734
735		/* Watch for unexpected holes punched in the memmap */
736		if (!memmap_valid_within(pfn, page, zone))
737			continue;
738
739		mtype = get_pageblock_migratetype(page);
740
741		if (mtype < MIGRATE_TYPES)
742			count[mtype]++;
743	}
744
745	/* Print counts */
746	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
747	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
748		seq_printf(m, "%12lu ", count[mtype]);
749	seq_putc(m, '\n');
750}
751
752/* Print out the free pages at each order for each migratetype */
753static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
754{
755	int mtype;
756	pg_data_t *pgdat = (pg_data_t *)arg;
757
758	seq_printf(m, "\n%-23s", "Number of blocks type ");
759	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
760		seq_printf(m, "%12s ", migratetype_names[mtype]);
761	seq_putc(m, '\n');
762	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
763
764	return 0;
765}
766
767/*
768 * This prints out statistics in relation to grouping pages by mobility.
769 * It is expensive to collect so do not constantly read the file.
770 */
771static int pagetypeinfo_show(struct seq_file *m, void *arg)
772{
773	pg_data_t *pgdat = (pg_data_t *)arg;
774
775	/* check memoryless node */
776	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
777		return 0;
778
779	seq_printf(m, "Page block order: %d\n", pageblock_order);
780	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
781	seq_putc(m, '\n');
782	pagetypeinfo_showfree(m, pgdat);
783	pagetypeinfo_showblockcount(m, pgdat);
784
785	return 0;
786}
787
788static const struct seq_operations fragmentation_op = {
789	.start	= frag_start,
790	.next	= frag_next,
791	.stop	= frag_stop,
792	.show	= frag_show,
793};
794
795static int fragmentation_open(struct inode *inode, struct file *file)
796{
797	return seq_open(file, &fragmentation_op);
798}
799
800static const struct file_operations fragmentation_file_operations = {
801	.open		= fragmentation_open,
802	.read		= seq_read,
803	.llseek		= seq_lseek,
804	.release	= seq_release,
805};
806
807static const struct seq_operations pagetypeinfo_op = {
808	.start	= frag_start,
809	.next	= frag_next,
810	.stop	= frag_stop,
811	.show	= pagetypeinfo_show,
812};
813
814static int pagetypeinfo_open(struct inode *inode, struct file *file)
815{
816	return seq_open(file, &pagetypeinfo_op);
817}
818
819static const struct file_operations pagetypeinfo_file_ops = {
820	.open		= pagetypeinfo_open,
821	.read		= seq_read,
822	.llseek		= seq_lseek,
823	.release	= seq_release,
824};
825
826#ifdef CONFIG_ZONE_DMA
827#define TEXT_FOR_DMA(xx) xx "_dma",
828#else
829#define TEXT_FOR_DMA(xx)
830#endif
831
832#ifdef CONFIG_ZONE_DMA32
833#define TEXT_FOR_DMA32(xx) xx "_dma32",
834#else
835#define TEXT_FOR_DMA32(xx)
836#endif
837
838#ifdef CONFIG_HIGHMEM
839#define TEXT_FOR_HIGHMEM(xx) xx "_high",
840#else
841#define TEXT_FOR_HIGHMEM(xx)
842#endif
843
844#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
845					TEXT_FOR_HIGHMEM(xx) xx "_movable",
846
847static const char * const vmstat_text[] = {
848	/* Zoned VM counters */
849	"nr_free_pages",
850	"nr_inactive_anon",
851	"nr_active_anon",
852	"nr_inactive_file",
853	"nr_active_file",
854	"nr_unevictable",
855	"nr_mlock",
856	"nr_anon_pages",
857	"nr_mapped",
858	"nr_file_pages",
859	"nr_dirty",
860	"nr_writeback",
861	"nr_slab_reclaimable",
862	"nr_slab_unreclaimable",
863	"nr_page_table_pages",
864	"nr_kernel_stack",
865	"nr_unstable",
866	"nr_bounce",
867	"nr_vmscan_write",
868	"nr_writeback_temp",
869	"nr_isolated_anon",
870	"nr_isolated_file",
871	"nr_shmem",
872	"nr_dirtied",
873	"nr_written",
874
875#ifdef CONFIG_NUMA
876	"numa_hit",
877	"numa_miss",
878	"numa_foreign",
879	"numa_interleave",
880	"numa_local",
881	"numa_other",
882#endif
883	"nr_anon_transparent_hugepages",
884	"nr_dirty_threshold",
885	"nr_dirty_background_threshold",
886
887#ifdef CONFIG_VM_EVENT_COUNTERS
888	"pgpgin",
889	"pgpgout",
890	"pswpin",
891	"pswpout",
892
893	TEXTS_FOR_ZONES("pgalloc")
894
895	"pgfree",
896	"pgactivate",
897	"pgdeactivate",
898
899	"pgfault",
900	"pgmajfault",
901
902	TEXTS_FOR_ZONES("pgrefill")
903	TEXTS_FOR_ZONES("pgsteal")
904	TEXTS_FOR_ZONES("pgscan_kswapd")
905	TEXTS_FOR_ZONES("pgscan_direct")
906
907#ifdef CONFIG_NUMA
908	"zone_reclaim_failed",
909#endif
910	"pginodesteal",
911	"slabs_scanned",
912	"kswapd_steal",
913	"kswapd_inodesteal",
914	"kswapd_low_wmark_hit_quickly",
915	"kswapd_high_wmark_hit_quickly",
916	"kswapd_skip_congestion_wait",
917	"pageoutrun",
918	"allocstall",
919
920	"pgrotated",
921
922#ifdef CONFIG_COMPACTION
923	"compact_blocks_moved",
924	"compact_pages_moved",
925	"compact_pagemigrate_failed",
926	"compact_stall",
927	"compact_fail",
928	"compact_success",
929#endif
930
931#ifdef CONFIG_HUGETLB_PAGE
932	"htlb_buddy_alloc_success",
933	"htlb_buddy_alloc_fail",
934#endif
935	"unevictable_pgs_culled",
936	"unevictable_pgs_scanned",
937	"unevictable_pgs_rescued",
938	"unevictable_pgs_mlocked",
939	"unevictable_pgs_munlocked",
940	"unevictable_pgs_cleared",
941	"unevictable_pgs_stranded",
942	"unevictable_pgs_mlockfreed",
943#endif
944};
945
946static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
947							struct zone *zone)
948{
949	int i;
950	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
951	seq_printf(m,
952		   "\n  pages free     %lu"
953		   "\n        min      %lu"
954		   "\n        low      %lu"
955		   "\n        high     %lu"
956		   "\n        scanned  %lu"
957		   "\n        spanned  %lu"
958		   "\n        present  %lu",
959		   zone_page_state(zone, NR_FREE_PAGES),
960		   min_wmark_pages(zone),
961		   low_wmark_pages(zone),
962		   high_wmark_pages(zone),
963		   zone->pages_scanned,
964		   zone->spanned_pages,
965		   zone->present_pages);
966
967	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
968		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
969				zone_page_state(zone, i));
970
971	seq_printf(m,
972		   "\n        protection: (%lu",
973		   zone->lowmem_reserve[0]);
974	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
975		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
976	seq_printf(m,
977		   ")"
978		   "\n  pagesets");
979	for_each_online_cpu(i) {
980		struct per_cpu_pageset *pageset;
981
982		pageset = per_cpu_ptr(zone->pageset, i);
983		seq_printf(m,
984			   "\n    cpu: %i"
985			   "\n              count: %i"
986			   "\n              high:  %i"
987			   "\n              batch: %i",
988			   i,
989			   pageset->pcp.count,
990			   pageset->pcp.high,
991			   pageset->pcp.batch);
992#ifdef CONFIG_SMP
993		seq_printf(m, "\n  vm stats threshold: %d",
994				pageset->stat_threshold);
995#endif
996	}
997	seq_printf(m,
998		   "\n  all_unreclaimable: %u"
999		   "\n  start_pfn:         %lu"
1000		   "\n  inactive_ratio:    %u",
1001		   zone->all_unreclaimable,
1002		   zone->zone_start_pfn,
1003		   zone->inactive_ratio);
1004	seq_putc(m, '\n');
1005}
1006
1007/*
1008 * Output information about zones in @pgdat.
1009 */
1010static int zoneinfo_show(struct seq_file *m, void *arg)
1011{
1012	pg_data_t *pgdat = (pg_data_t *)arg;
1013	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1014	return 0;
1015}
1016
1017static const struct seq_operations zoneinfo_op = {
1018	.start	= frag_start, /* iterate over all zones. The same as in
1019			       * fragmentation. */
1020	.next	= frag_next,
1021	.stop	= frag_stop,
1022	.show	= zoneinfo_show,
1023};
1024
1025static int zoneinfo_open(struct inode *inode, struct file *file)
1026{
1027	return seq_open(file, &zoneinfo_op);
1028}
1029
1030static const struct file_operations proc_zoneinfo_file_operations = {
1031	.open		= zoneinfo_open,
1032	.read		= seq_read,
1033	.llseek		= seq_lseek,
1034	.release	= seq_release,
1035};
1036
1037enum writeback_stat_item {
1038	NR_DIRTY_THRESHOLD,
1039	NR_DIRTY_BG_THRESHOLD,
1040	NR_VM_WRITEBACK_STAT_ITEMS,
1041};
1042
1043static void *vmstat_start(struct seq_file *m, loff_t *pos)
1044{
1045	unsigned long *v;
1046	int i, stat_items_size;
1047
1048	if (*pos >= ARRAY_SIZE(vmstat_text))
1049		return NULL;
1050	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1051			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1052
1053#ifdef CONFIG_VM_EVENT_COUNTERS
1054	stat_items_size += sizeof(struct vm_event_state);
1055#endif
1056
1057	v = kmalloc(stat_items_size, GFP_KERNEL);
1058	m->private = v;
1059	if (!v)
1060		return ERR_PTR(-ENOMEM);
1061	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1062		v[i] = global_page_state(i);
1063	v += NR_VM_ZONE_STAT_ITEMS;
1064
1065	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1066			    v + NR_DIRTY_THRESHOLD);
1067	v += NR_VM_WRITEBACK_STAT_ITEMS;
1068
1069#ifdef CONFIG_VM_EVENT_COUNTERS
1070	all_vm_events(v);
1071	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1072	v[PGPGOUT] /= 2;
1073#endif
1074	return (unsigned long *)m->private + *pos;
1075}
1076
1077static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1078{
1079	(*pos)++;
1080	if (*pos >= ARRAY_SIZE(vmstat_text))
1081		return NULL;
1082	return (unsigned long *)m->private + *pos;
1083}
1084
1085static int vmstat_show(struct seq_file *m, void *arg)
1086{
1087	unsigned long *l = arg;
1088	unsigned long off = l - (unsigned long *)m->private;
1089
1090	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1091	return 0;
1092}
1093
1094static void vmstat_stop(struct seq_file *m, void *arg)
1095{
1096	kfree(m->private);
1097	m->private = NULL;
1098}
1099
1100static const struct seq_operations vmstat_op = {
1101	.start	= vmstat_start,
1102	.next	= vmstat_next,
1103	.stop	= vmstat_stop,
1104	.show	= vmstat_show,
1105};
1106
1107static int vmstat_open(struct inode *inode, struct file *file)
1108{
1109	return seq_open(file, &vmstat_op);
1110}
1111
1112static const struct file_operations proc_vmstat_file_operations = {
1113	.open		= vmstat_open,
1114	.read		= seq_read,
1115	.llseek		= seq_lseek,
1116	.release	= seq_release,
1117};
1118#endif /* CONFIG_PROC_FS */
1119
1120#ifdef CONFIG_SMP
1121static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1122int sysctl_stat_interval __read_mostly = HZ;
1123
1124static void vmstat_update(struct work_struct *w)
1125{
1126	refresh_cpu_vm_stats(smp_processor_id());
1127	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1128		round_jiffies_relative(sysctl_stat_interval));
1129}
1130
1131static void __cpuinit start_cpu_timer(int cpu)
1132{
1133	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1134
1135	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1136	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1137}
1138
1139/*
1140 * Use the cpu notifier to insure that the thresholds are recalculated
1141 * when necessary.
1142 */
1143static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1144		unsigned long action,
1145		void *hcpu)
1146{
1147	long cpu = (long)hcpu;
1148
1149	switch (action) {
1150	case CPU_ONLINE:
1151	case CPU_ONLINE_FROZEN:
1152		refresh_zone_stat_thresholds();
1153		start_cpu_timer(cpu);
1154		node_set_state(cpu_to_node(cpu), N_CPU);
1155		break;
1156	case CPU_DOWN_PREPARE:
1157	case CPU_DOWN_PREPARE_FROZEN:
1158		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1159		per_cpu(vmstat_work, cpu).work.func = NULL;
1160		break;
1161	case CPU_DOWN_FAILED:
1162	case CPU_DOWN_FAILED_FROZEN:
1163		start_cpu_timer(cpu);
1164		break;
1165	case CPU_DEAD:
1166	case CPU_DEAD_FROZEN:
1167		refresh_zone_stat_thresholds();
1168		break;
1169	default:
1170		break;
1171	}
1172	return NOTIFY_OK;
1173}
1174
1175static struct notifier_block __cpuinitdata vmstat_notifier =
1176	{ &vmstat_cpuup_callback, NULL, 0 };
1177#endif
1178
1179static int __init setup_vmstat(void)
1180{
1181#ifdef CONFIG_SMP
1182	int cpu;
1183
1184	refresh_zone_stat_thresholds();
1185	register_cpu_notifier(&vmstat_notifier);
1186
1187	for_each_online_cpu(cpu)
1188		start_cpu_timer(cpu);
1189#endif
1190#ifdef CONFIG_PROC_FS
1191	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1192	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1193	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1194	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1195#endif
1196	return 0;
1197}
1198module_init(setup_vmstat)
1199
1200#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1201#include <linux/debugfs.h>
1202
1203static struct dentry *extfrag_debug_root;
1204
1205/*
1206 * Return an index indicating how much of the available free memory is
1207 * unusable for an allocation of the requested size.
1208 */
1209static int unusable_free_index(unsigned int order,
1210				struct contig_page_info *info)
1211{
1212	/* No free memory is interpreted as all free memory is unusable */
1213	if (info->free_pages == 0)
1214		return 1000;
1215
1216	/*
1217	 * Index should be a value between 0 and 1. Return a value to 3
1218	 * decimal places.
1219	 *
1220	 * 0 => no fragmentation
1221	 * 1 => high fragmentation
1222	 */
1223	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1224
1225}
1226
1227static void unusable_show_print(struct seq_file *m,
1228					pg_data_t *pgdat, struct zone *zone)
1229{
1230	unsigned int order;
1231	int index;
1232	struct contig_page_info info;
1233
1234	seq_printf(m, "Node %d, zone %8s ",
1235				pgdat->node_id,
1236				zone->name);
1237	for (order = 0; order < MAX_ORDER; ++order) {
1238		fill_contig_page_info(zone, order, &info);
1239		index = unusable_free_index(order, &info);
1240		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1241	}
1242
1243	seq_putc(m, '\n');
1244}
1245
1246/*
1247 * Display unusable free space index
1248 *
1249 * The unusable free space index measures how much of the available free
1250 * memory cannot be used to satisfy an allocation of a given size and is a
1251 * value between 0 and 1. The higher the value, the more of free memory is
1252 * unusable and by implication, the worse the external fragmentation is. This
1253 * can be expressed as a percentage by multiplying by 100.
1254 */
1255static int unusable_show(struct seq_file *m, void *arg)
1256{
1257	pg_data_t *pgdat = (pg_data_t *)arg;
1258
1259	/* check memoryless node */
1260	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1261		return 0;
1262
1263	walk_zones_in_node(m, pgdat, unusable_show_print);
1264
1265	return 0;
1266}
1267
1268static const struct seq_operations unusable_op = {
1269	.start	= frag_start,
1270	.next	= frag_next,
1271	.stop	= frag_stop,
1272	.show	= unusable_show,
1273};
1274
1275static int unusable_open(struct inode *inode, struct file *file)
1276{
1277	return seq_open(file, &unusable_op);
1278}
1279
1280static const struct file_operations unusable_file_ops = {
1281	.open		= unusable_open,
1282	.read		= seq_read,
1283	.llseek		= seq_lseek,
1284	.release	= seq_release,
1285};
1286
1287static void extfrag_show_print(struct seq_file *m,
1288					pg_data_t *pgdat, struct zone *zone)
1289{
1290	unsigned int order;
1291	int index;
1292
1293	/* Alloc on stack as interrupts are disabled for zone walk */
1294	struct contig_page_info info;
1295
1296	seq_printf(m, "Node %d, zone %8s ",
1297				pgdat->node_id,
1298				zone->name);
1299	for (order = 0; order < MAX_ORDER; ++order) {
1300		fill_contig_page_info(zone, order, &info);
1301		index = __fragmentation_index(order, &info);
1302		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1303	}
1304
1305	seq_putc(m, '\n');
1306}
1307
1308/*
1309 * Display fragmentation index for orders that allocations would fail for
1310 */
1311static int extfrag_show(struct seq_file *m, void *arg)
1312{
1313	pg_data_t *pgdat = (pg_data_t *)arg;
1314
1315	walk_zones_in_node(m, pgdat, extfrag_show_print);
1316
1317	return 0;
1318}
1319
1320static const struct seq_operations extfrag_op = {
1321	.start	= frag_start,
1322	.next	= frag_next,
1323	.stop	= frag_stop,
1324	.show	= extfrag_show,
1325};
1326
1327static int extfrag_open(struct inode *inode, struct file *file)
1328{
1329	return seq_open(file, &extfrag_op);
1330}
1331
1332static const struct file_operations extfrag_file_ops = {
1333	.open		= extfrag_open,
1334	.read		= seq_read,
1335	.llseek		= seq_lseek,
1336	.release	= seq_release,
1337};
1338
1339static int __init extfrag_debug_init(void)
1340{
1341	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1342	if (!extfrag_debug_root)
1343		return -ENOMEM;
1344
1345	if (!debugfs_create_file("unusable_index", 0444,
1346			extfrag_debug_root, NULL, &unusable_file_ops))
1347		return -ENOMEM;
1348
1349	if (!debugfs_create_file("extfrag_index", 0444,
1350			extfrag_debug_root, NULL, &extfrag_file_ops))
1351		return -ENOMEM;
1352
1353	return 0;
1354}
1355
1356module_init(extfrag_debug_init);
1357#endif
1358