1/*
2 * arch/arm/kernel/kprobes-test.c
3 *
4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11/*
12 * This file contains test code for ARM kprobes.
13 *
14 * The top level function run_all_tests() executes tests for all of the
15 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
16 * fall into two categories; run_api_tests() checks basic functionality of the
17 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
18 * instruction decoding and simulation.
19 *
20 * run_test_cases() first checks the kprobes decoding table for self consistency
21 * (using table_test()) then executes a series of test cases for each of the CPU
22 * instruction forms. coverage_start() and coverage_end() are used to verify
23 * that these test cases cover all of the possible combinations of instructions
24 * described by the kprobes decoding tables.
25 *
26 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
27 * which use the macros defined in kprobes-test.h. The rest of this
28 * documentation will describe the operation of the framework used by these
29 * test cases.
30 */
31
32/*
33 * TESTING METHODOLOGY
34 * -------------------
35 *
36 * The methodology used to test an ARM instruction 'test_insn' is to use
37 * inline assembler like:
38 *
39 * test_before: nop
40 * test_case:	test_insn
41 * test_after:	nop
42 *
43 * When the test case is run a kprobe is placed of each nop. The
44 * post-handler of the test_before probe is used to modify the saved CPU
45 * register context to that which we require for the test case. The
46 * pre-handler of the of the test_after probe saves a copy of the CPU
47 * register context. In this way we can execute test_insn with a specific
48 * register context and see the results afterwards.
49 *
50 * To actually test the kprobes instruction emulation we perform the above
51 * step a second time but with an additional kprobe on the test_case
52 * instruction itself. If the emulation is accurate then the results seen
53 * by the test_after probe will be identical to the first run which didn't
54 * have a probe on test_case.
55 *
56 * Each test case is run several times with a variety of variations in the
57 * flags value of stored in CPSR, and for Thumb code, different ITState.
58 *
59 * For instructions which can modify PC, a second test_after probe is used
60 * like this:
61 *
62 * test_before: nop
63 * test_case:	test_insn
64 * test_after:	nop
65 *		b test_done
66 * test_after2: nop
67 * test_done:
68 *
69 * The test case is constructed such that test_insn branches to
70 * test_after2, or, if testing a conditional instruction, it may just
71 * continue to test_after. The probes inserted at both locations let us
72 * determine which happened. A similar approach is used for testing
73 * backwards branches...
74 *
75 *		b test_before
76 *		b test_done  @ helps to cope with off by 1 branches
77 * test_after2: nop
78 *		b test_done
79 * test_before: nop
80 * test_case:	test_insn
81 * test_after:	nop
82 * test_done:
83 *
84 * The macros used to generate the assembler instructions describe above
85 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
86 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
87 * 99 represent: test_before, test_case, test_after2 and test_done.
88 *
89 * FRAMEWORK
90 * ---------
91 *
92 * Each test case is wrapped between the pair of macros TESTCASE_START and
93 * TESTCASE_END. As well as performing the inline assembler boilerplate,
94 * these call out to the kprobes_test_case_start() and
95 * kprobes_test_case_end() functions which drive the execution of the test
96 * case. The specific arguments to use for each test case are stored as
97 * inline data constructed using the various TEST_ARG_* macros. Putting
98 * this all together, a simple test case may look like:
99 *
100 *	TESTCASE_START("Testing mov r0, r7")
101 *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
102 *	TEST_ARG_END("")
103 *	TEST_INSTRUCTION("mov r0, r7")
104 *	TESTCASE_END
105 *
106 * Note, in practice the single convenience macro TEST_R would be used for this
107 * instead.
108 *
109 * The above would expand to assembler looking something like:
110 *
111 *	@ TESTCASE_START
112 *	bl	__kprobes_test_case_start
113 *	@ start of inline data...
114 *	.ascii "mov r0, r7"	@ text title for test case
115 *	.byte	0
116 *	.align	2
117 *
118 *	@ TEST_ARG_REG
119 *	.byte	ARG_TYPE_REG
120 *	.byte	7
121 *	.short	0
122 *	.word	0x1234567
123 *
124 *	@ TEST_ARG_END
125 *	.byte	ARG_TYPE_END
126 *	.byte	TEST_ISA	@ flags, including ISA being tested
127 *	.short	50f-0f		@ offset of 'test_before'
128 *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
129 *	.short	99f-0f		@ offset of 'test_done'
130 *	@ start of test case code...
131 *	0:
132 *	.code	TEST_ISA	@ switch to ISA being tested
133 *
134 *	@ TEST_INSTRUCTION
135 *	50:	nop		@ location for 'test_before' probe
136 *	1:	mov r0, r7	@ the test case instruction 'test_insn'
137 *		nop		@ location for 'test_after' probe
138 *
139 *	// TESTCASE_END
140 *	2:
141 *	99:	bl __kprobes_test_case_end_##TEST_ISA
142 *	.code	NONMAL_ISA
143 *
144 * When the above is execute the following happens...
145 *
146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
147 * for a stack buffer and calls the C function kprobes_test_case_start().
148 * This C function will do some initial processing of the inline data and
149 * setup some global state. It then inserts the test_before and test_after
150 * kprobes and returns a value which causes the assembler wrapper to jump
151 * to the start of the test case code, (local label '0').
152 *
153 * When the test case code executes, the test_before probe will be hit and
154 * test_before_post_handler will call setup_test_context(). This fills the
155 * stack buffer and CPU registers with a test pattern and then processes
156 * the test case arguments. In our example there is one TEST_ARG_REG which
157 * indicates that R7 should be loaded with the value 0x12345678.
158 *
159 * When the test_before probe ends, the test case continues and executes
160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
161 * pre-handler for this (test_after_pre_handler) will save a copy of the
162 * CPU register context. This should now have R0 holding the same value as
163 * R7.
164 *
165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
166 * an assembler wrapper which switches back to the ISA used by the test
167 * code and calls the C function kprobes_test_case_end().
168 *
169 * For each run through the test case, test_case_run_count is incremented
170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
171 * register and stack buffer contents from the test case just run. It then
172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
173 * value to cause the test case code to be re-run.
174 *
175 * For odd numbered runs, kprobes_test_case_end() compares the register and
176 * stack buffer contents to those that were saved on the previous even
177 * numbered run (the one without the kprobe on test_insn). These should be
178 * the same if the kprobe instruction simulation routine is correct.
179 *
180 * The pair of test case runs is repeated with different combinations of
181 * flag values in CPSR and, for Thumb, different ITState. This is
182 * controlled by test_context_cpsr().
183 *
184 * BUILDING TEST CASES
185 * -------------------
186 *
187 *
188 * As an aid to building test cases, the stack buffer is initialised with
189 * some special values:
190 *
191 *   [SP+13*4]	Contains SP+120. This can be used to test instructions
192 *		which load a value into SP.
193 *
194 *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
195 *		this holds the target address of the branch, 'test_after2'.
196 *		This can be used to test instructions which load a PC value
197 *		from memory.
198 */
199
200#include <linux/kernel.h>
201#include <linux/module.h>
202#include <linux/slab.h>
203#include <linux/kprobes.h>
204
205#include <asm/opcodes.h>
206
207#include "kprobes.h"
208#include "kprobes-test.h"
209
210
211#define BENCHMARKING	1
212
213
214/*
215 * Test basic API
216 */
217
218static bool test_regs_ok;
219static int test_func_instance;
220static int pre_handler_called;
221static int post_handler_called;
222static int jprobe_func_called;
223static int kretprobe_handler_called;
224
225#define FUNC_ARG1 0x12345678
226#define FUNC_ARG2 0xabcdef
227
228
229#ifndef CONFIG_THUMB2_KERNEL
230
231long arm_func(long r0, long r1);
232
233static void __used __naked __arm_kprobes_test_func(void)
234{
235	__asm__ __volatile__ (
236		".arm					\n\t"
237		".type arm_func, %%function		\n\t"
238		"arm_func:				\n\t"
239		"adds	r0, r0, r1			\n\t"
240		"bx	lr				\n\t"
241		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
242		: : : "r0", "r1", "cc"
243	);
244}
245
246#else /* CONFIG_THUMB2_KERNEL */
247
248long thumb16_func(long r0, long r1);
249long thumb32even_func(long r0, long r1);
250long thumb32odd_func(long r0, long r1);
251
252static void __used __naked __thumb_kprobes_test_funcs(void)
253{
254	__asm__ __volatile__ (
255		".type thumb16_func, %%function		\n\t"
256		"thumb16_func:				\n\t"
257		"adds.n	r0, r0, r1			\n\t"
258		"bx	lr				\n\t"
259
260		".align					\n\t"
261		".type thumb32even_func, %%function	\n\t"
262		"thumb32even_func:			\n\t"
263		"adds.w	r0, r0, r1			\n\t"
264		"bx	lr				\n\t"
265
266		".align					\n\t"
267		"nop.n					\n\t"
268		".type thumb32odd_func, %%function	\n\t"
269		"thumb32odd_func:			\n\t"
270		"adds.w	r0, r0, r1			\n\t"
271		"bx	lr				\n\t"
272
273		: : : "r0", "r1", "cc"
274	);
275}
276
277#endif /* CONFIG_THUMB2_KERNEL */
278
279
280static int call_test_func(long (*func)(long, long), bool check_test_regs)
281{
282	long ret;
283
284	++test_func_instance;
285	test_regs_ok = false;
286
287	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
288	if (ret != FUNC_ARG1 + FUNC_ARG2) {
289		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
290		return false;
291	}
292
293	if (check_test_regs && !test_regs_ok) {
294		pr_err("FAIL: test regs not OK\n");
295		return false;
296	}
297
298	return true;
299}
300
301static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
302{
303	pre_handler_called = test_func_instance;
304	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
305		test_regs_ok = true;
306	return 0;
307}
308
309static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
310				unsigned long flags)
311{
312	post_handler_called = test_func_instance;
313	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
314		test_regs_ok = false;
315}
316
317static struct kprobe the_kprobe = {
318	.addr		= 0,
319	.pre_handler	= pre_handler,
320	.post_handler	= post_handler
321};
322
323static int test_kprobe(long (*func)(long, long))
324{
325	int ret;
326
327	the_kprobe.addr = (kprobe_opcode_t *)func;
328	ret = register_kprobe(&the_kprobe);
329	if (ret < 0) {
330		pr_err("FAIL: register_kprobe failed with %d\n", ret);
331		return ret;
332	}
333
334	ret = call_test_func(func, true);
335
336	unregister_kprobe(&the_kprobe);
337	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
338
339	if (!ret)
340		return -EINVAL;
341	if (pre_handler_called != test_func_instance) {
342		pr_err("FAIL: kprobe pre_handler not called\n");
343		return -EINVAL;
344	}
345	if (post_handler_called != test_func_instance) {
346		pr_err("FAIL: kprobe post_handler not called\n");
347		return -EINVAL;
348	}
349	if (!call_test_func(func, false))
350		return -EINVAL;
351	if (pre_handler_called == test_func_instance ||
352				post_handler_called == test_func_instance) {
353		pr_err("FAIL: probe called after unregistering\n");
354		return -EINVAL;
355	}
356
357	return 0;
358}
359
360static void __kprobes jprobe_func(long r0, long r1)
361{
362	jprobe_func_called = test_func_instance;
363	if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
364		test_regs_ok = true;
365	jprobe_return();
366}
367
368static struct jprobe the_jprobe = {
369	.entry		= jprobe_func,
370};
371
372static int test_jprobe(long (*func)(long, long))
373{
374	int ret;
375
376	the_jprobe.kp.addr = (kprobe_opcode_t *)func;
377	ret = register_jprobe(&the_jprobe);
378	if (ret < 0) {
379		pr_err("FAIL: register_jprobe failed with %d\n", ret);
380		return ret;
381	}
382
383	ret = call_test_func(func, true);
384
385	unregister_jprobe(&the_jprobe);
386	the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
387
388	if (!ret)
389		return -EINVAL;
390	if (jprobe_func_called != test_func_instance) {
391		pr_err("FAIL: jprobe handler function not called\n");
392		return -EINVAL;
393	}
394	if (!call_test_func(func, false))
395		return -EINVAL;
396	if (jprobe_func_called == test_func_instance) {
397		pr_err("FAIL: probe called after unregistering\n");
398		return -EINVAL;
399	}
400
401	return 0;
402}
403
404static int __kprobes
405kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
406{
407	kretprobe_handler_called = test_func_instance;
408	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
409		test_regs_ok = true;
410	return 0;
411}
412
413static struct kretprobe the_kretprobe = {
414	.handler	= kretprobe_handler,
415};
416
417static int test_kretprobe(long (*func)(long, long))
418{
419	int ret;
420
421	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
422	ret = register_kretprobe(&the_kretprobe);
423	if (ret < 0) {
424		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
425		return ret;
426	}
427
428	ret = call_test_func(func, true);
429
430	unregister_kretprobe(&the_kretprobe);
431	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
432
433	if (!ret)
434		return -EINVAL;
435	if (kretprobe_handler_called != test_func_instance) {
436		pr_err("FAIL: kretprobe handler not called\n");
437		return -EINVAL;
438	}
439	if (!call_test_func(func, false))
440		return -EINVAL;
441	if (jprobe_func_called == test_func_instance) {
442		pr_err("FAIL: kretprobe called after unregistering\n");
443		return -EINVAL;
444	}
445
446	return 0;
447}
448
449static int run_api_tests(long (*func)(long, long))
450{
451	int ret;
452
453	pr_info("    kprobe\n");
454	ret = test_kprobe(func);
455	if (ret < 0)
456		return ret;
457
458	pr_info("    jprobe\n");
459	ret = test_jprobe(func);
460	if (ret < 0)
461		return ret;
462
463	pr_info("    kretprobe\n");
464	ret = test_kretprobe(func);
465	if (ret < 0)
466		return ret;
467
468	return 0;
469}
470
471
472/*
473 * Benchmarking
474 */
475
476#if BENCHMARKING
477
478static void __naked benchmark_nop(void)
479{
480	__asm__ __volatile__ (
481		"nop		\n\t"
482		"bx	lr"
483	);
484}
485
486#ifdef CONFIG_THUMB2_KERNEL
487#define wide ".w"
488#else
489#define wide
490#endif
491
492static void __naked benchmark_pushpop1(void)
493{
494	__asm__ __volatile__ (
495		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
496		"ldmia"wide"	sp!, {r3-r11,pc}"
497	);
498}
499
500static void __naked benchmark_pushpop2(void)
501{
502	__asm__ __volatile__ (
503		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
504		"ldmia"wide"	sp!, {r0-r8,pc}"
505	);
506}
507
508static void __naked benchmark_pushpop3(void)
509{
510	__asm__ __volatile__ (
511		"stmdb"wide"	sp!, {r4,lr}  \n\t"
512		"ldmia"wide"	sp!, {r4,pc}"
513	);
514}
515
516static void __naked benchmark_pushpop4(void)
517{
518	__asm__ __volatile__ (
519		"stmdb"wide"	sp!, {r0,lr}  \n\t"
520		"ldmia"wide"	sp!, {r0,pc}"
521	);
522}
523
524
525#ifdef CONFIG_THUMB2_KERNEL
526
527static void __naked benchmark_pushpop_thumb(void)
528{
529	__asm__ __volatile__ (
530		"push.n	{r0-r7,lr}  \n\t"
531		"pop.n	{r0-r7,pc}"
532	);
533}
534
535#endif
536
537static int __kprobes
538benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
539{
540	return 0;
541}
542
543static int benchmark(void(*fn)(void))
544{
545	unsigned n, i, t, t0;
546
547	for (n = 1000; ; n *= 2) {
548		t0 = sched_clock();
549		for (i = n; i > 0; --i)
550			fn();
551		t = sched_clock() - t0;
552		if (t >= 250000000)
553			break; /* Stop once we took more than 0.25 seconds */
554	}
555	return t / n; /* Time for one iteration in nanoseconds */
556};
557
558static int kprobe_benchmark(void(*fn)(void), unsigned offset)
559{
560	struct kprobe k = {
561		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
562		.pre_handler	= benchmark_pre_handler,
563	};
564
565	int ret = register_kprobe(&k);
566	if (ret < 0) {
567		pr_err("FAIL: register_kprobe failed with %d\n", ret);
568		return ret;
569	}
570
571	ret = benchmark(fn);
572
573	unregister_kprobe(&k);
574	return ret;
575};
576
577struct benchmarks {
578	void		(*fn)(void);
579	unsigned	offset;
580	const char	*title;
581};
582
583static int run_benchmarks(void)
584{
585	int ret;
586	struct benchmarks list[] = {
587		{&benchmark_nop, 0, "nop"},
588		/*
589		 * benchmark_pushpop{1,3} will have the optimised
590		 * instruction emulation, whilst benchmark_pushpop{2,4} will
591		 * be the equivalent unoptimised instructions.
592		 */
593		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
594		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
595		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
596		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
597		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
598		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
599		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
600		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
601#ifdef CONFIG_THUMB2_KERNEL
602		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
603		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
604#endif
605		{0}
606	};
607
608	struct benchmarks *b;
609	for (b = list; b->fn; ++b) {
610		ret = kprobe_benchmark(b->fn, b->offset);
611		if (ret < 0)
612			return ret;
613		pr_info("    %dns for kprobe %s\n", ret, b->title);
614	}
615
616	pr_info("\n");
617	return 0;
618}
619
620#endif /* BENCHMARKING */
621
622
623/*
624 * Decoding table self-consistency tests
625 */
626
627static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
628	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
629	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
630	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
631	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
632	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
633	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
634};
635
636static int table_iter(const union decode_item *table,
637			int (*fn)(const struct decode_header *, void *),
638			void *args)
639{
640	const struct decode_header *h = (struct decode_header *)table;
641	int result;
642
643	for (;;) {
644		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
645
646		if (type == DECODE_TYPE_END)
647			return 0;
648
649		result = fn(h, args);
650		if (result)
651			return result;
652
653		h = (struct decode_header *)
654			((uintptr_t)h + decode_struct_sizes[type]);
655
656	}
657}
658
659static int table_test_fail(const struct decode_header *h, const char* message)
660{
661
662	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
663					message, h->mask.bits, h->value.bits);
664	return -EINVAL;
665}
666
667struct table_test_args {
668	const union decode_item *root_table;
669	u32			parent_mask;
670	u32			parent_value;
671};
672
673static int table_test_fn(const struct decode_header *h, void *args)
674{
675	struct table_test_args *a = (struct table_test_args *)args;
676	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
677
678	if (h->value.bits & ~h->mask.bits)
679		return table_test_fail(h, "Match value has bits not in mask");
680
681	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
682		return table_test_fail(h, "Mask has bits not in parent mask");
683
684	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
685		return table_test_fail(h, "Value is inconsistent with parent");
686
687	if (type == DECODE_TYPE_TABLE) {
688		struct decode_table *d = (struct decode_table *)h;
689		struct table_test_args args2 = *a;
690		args2.parent_mask = h->mask.bits;
691		args2.parent_value = h->value.bits;
692		return table_iter(d->table.table, table_test_fn, &args2);
693	}
694
695	return 0;
696}
697
698static int table_test(const union decode_item *table)
699{
700	struct table_test_args args = {
701		.root_table	= table,
702		.parent_mask	= 0,
703		.parent_value	= 0
704	};
705	return table_iter(args.root_table, table_test_fn, &args);
706}
707
708
709/*
710 * Decoding table test coverage analysis
711 *
712 * coverage_start() builds a coverage_table which contains a list of
713 * coverage_entry's to match each entry in the specified kprobes instruction
714 * decoding table.
715 *
716 * When test cases are run, coverage_add() is called to process each case.
717 * This looks up the corresponding entry in the coverage_table and sets it as
718 * being matched, as well as clearing the regs flag appropriate for the test.
719 *
720 * After all test cases have been run, coverage_end() is called to check that
721 * all entries in coverage_table have been matched and that all regs flags are
722 * cleared. I.e. that all possible combinations of instructions described by
723 * the kprobes decoding tables have had a test case executed for them.
724 */
725
726bool coverage_fail;
727
728#define MAX_COVERAGE_ENTRIES 256
729
730struct coverage_entry {
731	const struct decode_header	*header;
732	unsigned			regs;
733	unsigned			nesting;
734	char				matched;
735};
736
737struct coverage_table {
738	struct coverage_entry	*base;
739	unsigned		num_entries;
740	unsigned		nesting;
741};
742
743struct coverage_table coverage;
744
745#define COVERAGE_ANY_REG	(1<<0)
746#define COVERAGE_SP		(1<<1)
747#define COVERAGE_PC		(1<<2)
748#define COVERAGE_PCWB		(1<<3)
749
750static const char coverage_register_lookup[16] = {
751	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
752	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
753	[REG_TYPE_SP]		= COVERAGE_SP,
754	[REG_TYPE_PC]		= COVERAGE_PC,
755	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
756	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
757	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
758	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
759	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
760	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
761};
762
763unsigned coverage_start_registers(const struct decode_header *h)
764{
765	unsigned regs = 0;
766	int i;
767	for (i = 0; i < 20; i += 4) {
768		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
769		regs |= coverage_register_lookup[r] << i;
770	}
771	return regs;
772}
773
774static int coverage_start_fn(const struct decode_header *h, void *args)
775{
776	struct coverage_table *coverage = (struct coverage_table *)args;
777	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
778	struct coverage_entry *entry = coverage->base + coverage->num_entries;
779
780	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
781		pr_err("FAIL: Out of space for test coverage data");
782		return -ENOMEM;
783	}
784
785	++coverage->num_entries;
786
787	entry->header = h;
788	entry->regs = coverage_start_registers(h);
789	entry->nesting = coverage->nesting;
790	entry->matched = false;
791
792	if (type == DECODE_TYPE_TABLE) {
793		struct decode_table *d = (struct decode_table *)h;
794		int ret;
795		++coverage->nesting;
796		ret = table_iter(d->table.table, coverage_start_fn, coverage);
797		--coverage->nesting;
798		return ret;
799	}
800
801	return 0;
802}
803
804static int coverage_start(const union decode_item *table)
805{
806	coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
807				sizeof(struct coverage_entry), GFP_KERNEL);
808	coverage.num_entries = 0;
809	coverage.nesting = 0;
810	return table_iter(table, coverage_start_fn, &coverage);
811}
812
813static void
814coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
815{
816	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
817	int i;
818	for (i = 0; i < 20; i += 4) {
819		enum decode_reg_type reg_type = (regs >> i) & 0xf;
820		int reg = (insn >> i) & 0xf;
821		int flag;
822
823		if (!reg_type)
824			continue;
825
826		if (reg == 13)
827			flag = COVERAGE_SP;
828		else if (reg == 15)
829			flag = COVERAGE_PC;
830		else
831			flag = COVERAGE_ANY_REG;
832		entry->regs &= ~(flag << i);
833
834		switch (reg_type) {
835
836		case REG_TYPE_NONE:
837		case REG_TYPE_ANY:
838		case REG_TYPE_SAMEAS16:
839			break;
840
841		case REG_TYPE_SP:
842			if (reg != 13)
843				return;
844			break;
845
846		case REG_TYPE_PC:
847			if (reg != 15)
848				return;
849			break;
850
851		case REG_TYPE_NOSP:
852			if (reg == 13)
853				return;
854			break;
855
856		case REG_TYPE_NOSPPC:
857		case REG_TYPE_NOSPPCX:
858			if (reg == 13 || reg == 15)
859				return;
860			break;
861
862		case REG_TYPE_NOPCWB:
863			if (!is_writeback(insn))
864				break;
865			if (reg == 15) {
866				entry->regs &= ~(COVERAGE_PCWB << i);
867				return;
868			}
869			break;
870
871		case REG_TYPE_NOPC:
872		case REG_TYPE_NOPCX:
873			if (reg == 15)
874				return;
875			break;
876		}
877
878	}
879}
880
881static void coverage_add(kprobe_opcode_t insn)
882{
883	struct coverage_entry *entry = coverage.base;
884	struct coverage_entry *end = coverage.base + coverage.num_entries;
885	bool matched = false;
886	unsigned nesting = 0;
887
888	for (; entry < end; ++entry) {
889		const struct decode_header *h = entry->header;
890		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
891
892		if (entry->nesting > nesting)
893			continue; /* Skip sub-table we didn't match */
894
895		if (entry->nesting < nesting)
896			break; /* End of sub-table we were scanning */
897
898		if (!matched) {
899			if ((insn & h->mask.bits) != h->value.bits)
900				continue;
901			entry->matched = true;
902		}
903
904		switch (type) {
905
906		case DECODE_TYPE_TABLE:
907			++nesting;
908			break;
909
910		case DECODE_TYPE_CUSTOM:
911		case DECODE_TYPE_SIMULATE:
912		case DECODE_TYPE_EMULATE:
913			coverage_add_registers(entry, insn);
914			return;
915
916		case DECODE_TYPE_OR:
917			matched = true;
918			break;
919
920		case DECODE_TYPE_REJECT:
921		default:
922			return;
923		}
924
925	}
926}
927
928static void coverage_end(void)
929{
930	struct coverage_entry *entry = coverage.base;
931	struct coverage_entry *end = coverage.base + coverage.num_entries;
932
933	for (; entry < end; ++entry) {
934		u32 mask = entry->header->mask.bits;
935		u32 value = entry->header->value.bits;
936
937		if (entry->regs) {
938			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
939				mask, value, entry->regs);
940			coverage_fail = true;
941		}
942		if (!entry->matched) {
943			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
944				mask, value);
945			coverage_fail = true;
946		}
947	}
948
949	kfree(coverage.base);
950}
951
952
953/*
954 * Framework for instruction set test cases
955 */
956
957void __naked __kprobes_test_case_start(void)
958{
959	__asm__ __volatile__ (
960		"stmdb	sp!, {r4-r11}				\n\t"
961		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
962		"bic	r0, lr, #1  @ r0 = inline title string	\n\t"
963		"mov	r1, sp					\n\t"
964		"bl	kprobes_test_case_start			\n\t"
965		"bx	r0					\n\t"
966	);
967}
968
969#ifndef CONFIG_THUMB2_KERNEL
970
971void __naked __kprobes_test_case_end_32(void)
972{
973	__asm__ __volatile__ (
974		"mov	r4, lr					\n\t"
975		"bl	kprobes_test_case_end			\n\t"
976		"cmp	r0, #0					\n\t"
977		"movne	pc, r0					\n\t"
978		"mov	r0, r4					\n\t"
979		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
980		"ldmia	sp!, {r4-r11}				\n\t"
981		"mov	pc, r0					\n\t"
982	);
983}
984
985#else /* CONFIG_THUMB2_KERNEL */
986
987void __naked __kprobes_test_case_end_16(void)
988{
989	__asm__ __volatile__ (
990		"mov	r4, lr					\n\t"
991		"bl	kprobes_test_case_end			\n\t"
992		"cmp	r0, #0					\n\t"
993		"bxne	r0					\n\t"
994		"mov	r0, r4					\n\t"
995		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
996		"ldmia	sp!, {r4-r11}				\n\t"
997		"bx	r0					\n\t"
998	);
999}
1000
1001void __naked __kprobes_test_case_end_32(void)
1002{
1003	__asm__ __volatile__ (
1004		".arm						\n\t"
1005		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
1006		"ldr	pc, 1f					\n\t"
1007		"1:						\n\t"
1008		".word	__kprobes_test_case_end_16		\n\t"
1009	);
1010}
1011
1012#endif
1013
1014
1015int kprobe_test_flags;
1016int kprobe_test_cc_position;
1017
1018static int test_try_count;
1019static int test_pass_count;
1020static int test_fail_count;
1021
1022static struct pt_regs initial_regs;
1023static struct pt_regs expected_regs;
1024static struct pt_regs result_regs;
1025
1026static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1027
1028static const char *current_title;
1029static struct test_arg *current_args;
1030static u32 *current_stack;
1031static uintptr_t current_branch_target;
1032
1033static uintptr_t current_code_start;
1034static kprobe_opcode_t current_instruction;
1035
1036
1037#define TEST_CASE_PASSED -1
1038#define TEST_CASE_FAILED -2
1039
1040static int test_case_run_count;
1041static bool test_case_is_thumb;
1042static int test_instance;
1043
1044/*
1045 * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
1046 * can change randomly as the kernel doesn't take care to preserve or initialise
1047 * this across context switches. Also, with Security Extentions, the flag may
1048 * not be under control of the kernel; for this reason we ignore the state of
1049 * the FIQ disable flag CPSR.F as well.
1050 */
1051#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
1052
1053static unsigned long test_check_cc(int cc, unsigned long cpsr)
1054{
1055	int ret = arm_check_condition(cc << 28, cpsr);
1056
1057	return (ret != ARM_OPCODE_CONDTEST_FAIL);
1058}
1059
1060static int is_last_scenario;
1061static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1062static int memory_needs_checking;
1063
1064static unsigned long test_context_cpsr(int scenario)
1065{
1066	unsigned long cpsr;
1067
1068	probe_should_run = 1;
1069
1070	/* Default case is that we cycle through 16 combinations of flags */
1071	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1072	cpsr |= (scenario & 0xf) << 16; /* GE flags */
1073	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1074
1075	if (!test_case_is_thumb) {
1076		/* Testing ARM code */
1077		int cc = current_instruction >> 28;
1078
1079		probe_should_run = test_check_cc(cc, cpsr) != 0;
1080		if (scenario == 15)
1081			is_last_scenario = true;
1082
1083	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1084		/* Testing Thumb code without setting ITSTATE */
1085		if (kprobe_test_cc_position) {
1086			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1087			probe_should_run = test_check_cc(cc, cpsr) != 0;
1088		}
1089
1090		if (scenario == 15)
1091			is_last_scenario = true;
1092
1093	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1094		/* Testing Thumb code with all combinations of ITSTATE */
1095		unsigned x = (scenario >> 4);
1096		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1097		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1098
1099		if (mask > 0x1f) {
1100			/* Finish by testing state from instruction 'itt al' */
1101			cond_base = 7;
1102			mask = 0x4;
1103			if ((scenario & 0xf) == 0xf)
1104				is_last_scenario = true;
1105		}
1106
1107		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
1108		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
1109		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
1110		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
1111		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
1112		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */
1113
1114		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1115
1116	} else {
1117		/* Testing Thumb code with several combinations of ITSTATE */
1118		switch (scenario) {
1119		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1120			cpsr = 0x00000800;
1121			probe_should_run = 0;
1122			break;
1123		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1124			cpsr = 0xf0007800;
1125			probe_should_run = 0;
1126			break;
1127		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1128			cpsr = 0x00009800;
1129			break;
1130		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1131			cpsr = 0xf0002800;
1132			is_last_scenario = true;
1133			break;
1134		}
1135	}
1136
1137	return cpsr;
1138}
1139
1140static void setup_test_context(struct pt_regs *regs)
1141{
1142	int scenario = test_case_run_count>>1;
1143	unsigned long val;
1144	struct test_arg *args;
1145	int i;
1146
1147	is_last_scenario = false;
1148	memory_needs_checking = false;
1149
1150	/* Initialise test memory on stack */
1151	val = (scenario & 1) ? VALM : ~VALM;
1152	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1153		current_stack[i] = val + (i << 8);
1154	/* Put target of branch on stack for tests which load PC from memory */
1155	if (current_branch_target)
1156		current_stack[15] = current_branch_target;
1157	/* Put a value for SP on stack for tests which load SP from memory */
1158	current_stack[13] = (u32)current_stack + 120;
1159
1160	/* Initialise register values to their default state */
1161	val = (scenario & 2) ? VALR : ~VALR;
1162	for (i = 0; i < 13; ++i)
1163		regs->uregs[i] = val ^ (i << 8);
1164	regs->ARM_lr = val ^ (14 << 8);
1165	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1166	regs->ARM_cpsr |= test_context_cpsr(scenario);
1167
1168	/* Perform testcase specific register setup  */
1169	args = current_args;
1170	for (; args[0].type != ARG_TYPE_END; ++args)
1171		switch (args[0].type) {
1172		case ARG_TYPE_REG: {
1173			struct test_arg_regptr *arg =
1174				(struct test_arg_regptr *)args;
1175			regs->uregs[arg->reg] = arg->val;
1176			break;
1177		}
1178		case ARG_TYPE_PTR: {
1179			struct test_arg_regptr *arg =
1180				(struct test_arg_regptr *)args;
1181			regs->uregs[arg->reg] =
1182				(unsigned long)current_stack + arg->val;
1183			memory_needs_checking = true;
1184			break;
1185		}
1186		case ARG_TYPE_MEM: {
1187			struct test_arg_mem *arg = (struct test_arg_mem *)args;
1188			current_stack[arg->index] = arg->val;
1189			break;
1190		}
1191		default:
1192			break;
1193		}
1194}
1195
1196struct test_probe {
1197	struct kprobe	kprobe;
1198	bool		registered;
1199	int		hit;
1200};
1201
1202static void unregister_test_probe(struct test_probe *probe)
1203{
1204	if (probe->registered) {
1205		unregister_kprobe(&probe->kprobe);
1206		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1207	}
1208	probe->registered = false;
1209}
1210
1211static int register_test_probe(struct test_probe *probe)
1212{
1213	int ret;
1214
1215	if (probe->registered)
1216		BUG();
1217
1218	ret = register_kprobe(&probe->kprobe);
1219	if (ret >= 0) {
1220		probe->registered = true;
1221		probe->hit = -1;
1222	}
1223	return ret;
1224}
1225
1226static int __kprobes
1227test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1228{
1229	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1230	return 0;
1231}
1232
1233static void __kprobes
1234test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1235							unsigned long flags)
1236{
1237	setup_test_context(regs);
1238	initial_regs = *regs;
1239	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1240}
1241
1242static int __kprobes
1243test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1244{
1245	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1246	return 0;
1247}
1248
1249static int __kprobes
1250test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1251{
1252	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1253		return 0; /* Already run for this test instance */
1254
1255	result_regs = *regs;
1256	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1257
1258	/* Undo any changes done to SP by the test case */
1259	regs->ARM_sp = (unsigned long)current_stack;
1260
1261	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1262	return 0;
1263}
1264
1265static struct test_probe test_before_probe = {
1266	.kprobe.pre_handler	= test_before_pre_handler,
1267	.kprobe.post_handler	= test_before_post_handler,
1268};
1269
1270static struct test_probe test_case_probe = {
1271	.kprobe.pre_handler	= test_case_pre_handler,
1272};
1273
1274static struct test_probe test_after_probe = {
1275	.kprobe.pre_handler	= test_after_pre_handler,
1276};
1277
1278static struct test_probe test_after2_probe = {
1279	.kprobe.pre_handler	= test_after_pre_handler,
1280};
1281
1282static void test_case_cleanup(void)
1283{
1284	unregister_test_probe(&test_before_probe);
1285	unregister_test_probe(&test_case_probe);
1286	unregister_test_probe(&test_after_probe);
1287	unregister_test_probe(&test_after2_probe);
1288}
1289
1290static void print_registers(struct pt_regs *regs)
1291{
1292	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1293		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1294	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1295		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1296	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1297		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1298	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1299		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1300	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1301}
1302
1303static void print_memory(u32 *mem, size_t size)
1304{
1305	int i;
1306	for (i = 0; i < size / sizeof(u32); i += 4)
1307		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1308						mem[i+2], mem[i+3]);
1309}
1310
1311static size_t expected_memory_size(u32 *sp)
1312{
1313	size_t size = sizeof(expected_memory);
1314	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1315	if (offset > 0)
1316		size -= offset;
1317	return size;
1318}
1319
1320static void test_case_failed(const char *message)
1321{
1322	test_case_cleanup();
1323
1324	pr_err("FAIL: %s\n", message);
1325	pr_err("FAIL: Test %s\n", current_title);
1326	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1327}
1328
1329static unsigned long next_instruction(unsigned long pc)
1330{
1331#ifdef CONFIG_THUMB2_KERNEL
1332	if ((pc & 1) && !is_wide_instruction(*(u16 *)(pc - 1)))
1333		return pc + 2;
1334	else
1335#endif
1336	return pc + 4;
1337}
1338
1339static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
1340{
1341	struct test_arg *args;
1342	struct test_arg_end *end_arg;
1343	unsigned long test_code;
1344
1345	args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
1346
1347	current_title = title;
1348	current_args = args;
1349	current_stack = stack;
1350
1351	++test_try_count;
1352
1353	while (args->type != ARG_TYPE_END)
1354		++args;
1355	end_arg = (struct test_arg_end *)args;
1356
1357	test_code = (unsigned long)(args + 1); /* Code starts after args */
1358
1359	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1360	if (test_case_is_thumb)
1361		test_code |= 1;
1362
1363	current_code_start = test_code;
1364
1365	current_branch_target = 0;
1366	if (end_arg->branch_offset != end_arg->end_offset)
1367		current_branch_target = test_code + end_arg->branch_offset;
1368
1369	test_code += end_arg->code_offset;
1370	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371
1372	test_code = next_instruction(test_code);
1373	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1374
1375	if (test_case_is_thumb) {
1376		u16 *p = (u16 *)(test_code & ~1);
1377		current_instruction = p[0];
1378		if (is_wide_instruction(current_instruction)) {
1379			current_instruction <<= 16;
1380			current_instruction |= p[1];
1381		}
1382	} else {
1383		current_instruction = *(u32 *)test_code;
1384	}
1385
1386	if (current_title[0] == '.')
1387		verbose("%s\n", current_title);
1388	else
1389		verbose("%s\t@ %0*x\n", current_title,
1390					test_case_is_thumb ? 4 : 8,
1391					current_instruction);
1392
1393	test_code = next_instruction(test_code);
1394	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1395
1396	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1397		if (!test_case_is_thumb ||
1398			is_wide_instruction(current_instruction)) {
1399				test_case_failed("expected 16-bit instruction");
1400				goto fail;
1401		}
1402	} else {
1403		if (test_case_is_thumb &&
1404			!is_wide_instruction(current_instruction)) {
1405				test_case_failed("expected 32-bit instruction");
1406				goto fail;
1407		}
1408	}
1409
1410	coverage_add(current_instruction);
1411
1412	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1413		if (register_test_probe(&test_case_probe) < 0)
1414			goto pass;
1415		test_case_failed("registered probe for unsupported instruction");
1416		goto fail;
1417	}
1418
1419	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1420		if (register_test_probe(&test_case_probe) >= 0)
1421			goto pass;
1422		test_case_failed("couldn't register probe for supported instruction");
1423		goto fail;
1424	}
1425
1426	if (register_test_probe(&test_before_probe) < 0) {
1427		test_case_failed("register test_before_probe failed");
1428		goto fail;
1429	}
1430	if (register_test_probe(&test_after_probe) < 0) {
1431		test_case_failed("register test_after_probe failed");
1432		goto fail;
1433	}
1434	if (current_branch_target) {
1435		test_after2_probe.kprobe.addr =
1436				(kprobe_opcode_t *)current_branch_target;
1437		if (register_test_probe(&test_after2_probe) < 0) {
1438			test_case_failed("register test_after2_probe failed");
1439			goto fail;
1440		}
1441	}
1442
1443	/* Start first run of test case */
1444	test_case_run_count = 0;
1445	++test_instance;
1446	return current_code_start;
1447pass:
1448	test_case_run_count = TEST_CASE_PASSED;
1449	return (uintptr_t)test_after_probe.kprobe.addr;
1450fail:
1451	test_case_run_count = TEST_CASE_FAILED;
1452	return (uintptr_t)test_after_probe.kprobe.addr;
1453}
1454
1455static bool check_test_results(void)
1456{
1457	size_t mem_size = 0;
1458	u32 *mem = 0;
1459
1460	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1461		test_case_failed("registers differ");
1462		goto fail;
1463	}
1464
1465	if (memory_needs_checking) {
1466		mem = (u32 *)result_regs.ARM_sp;
1467		mem_size = expected_memory_size(mem);
1468		if (memcmp(expected_memory, mem, mem_size)) {
1469			test_case_failed("test memory differs");
1470			goto fail;
1471		}
1472	}
1473
1474	return true;
1475
1476fail:
1477	pr_err("initial_regs:\n");
1478	print_registers(&initial_regs);
1479	pr_err("expected_regs:\n");
1480	print_registers(&expected_regs);
1481	pr_err("result_regs:\n");
1482	print_registers(&result_regs);
1483
1484	if (mem) {
1485		pr_err("current_stack=%p\n", current_stack);
1486		pr_err("expected_memory:\n");
1487		print_memory(expected_memory, mem_size);
1488		pr_err("result_memory:\n");
1489		print_memory(mem, mem_size);
1490	}
1491
1492	return false;
1493}
1494
1495static uintptr_t __used kprobes_test_case_end(void)
1496{
1497	if (test_case_run_count < 0) {
1498		if (test_case_run_count == TEST_CASE_PASSED)
1499			/* kprobes_test_case_start did all the needed testing */
1500			goto pass;
1501		else
1502			/* kprobes_test_case_start failed */
1503			goto fail;
1504	}
1505
1506	if (test_before_probe.hit != test_instance) {
1507		test_case_failed("test_before_handler not run");
1508		goto fail;
1509	}
1510
1511	if (test_after_probe.hit != test_instance &&
1512				test_after2_probe.hit != test_instance) {
1513		test_case_failed("test_after_handler not run");
1514		goto fail;
1515	}
1516
1517	/*
1518	 * Even numbered test runs ran without a probe on the test case so
1519	 * we can gather reference results. The subsequent odd numbered run
1520	 * will have the probe inserted.
1521	*/
1522	if ((test_case_run_count & 1) == 0) {
1523		/* Save results from run without probe */
1524		u32 *mem = (u32 *)result_regs.ARM_sp;
1525		expected_regs = result_regs;
1526		memcpy(expected_memory, mem, expected_memory_size(mem));
1527
1528		/* Insert probe onto test case instruction */
1529		if (register_test_probe(&test_case_probe) < 0) {
1530			test_case_failed("register test_case_probe failed");
1531			goto fail;
1532		}
1533	} else {
1534		/* Check probe ran as expected */
1535		if (probe_should_run == 1) {
1536			if (test_case_probe.hit != test_instance) {
1537				test_case_failed("test_case_handler not run");
1538				goto fail;
1539			}
1540		} else if (probe_should_run == 0) {
1541			if (test_case_probe.hit == test_instance) {
1542				test_case_failed("test_case_handler ran");
1543				goto fail;
1544			}
1545		}
1546
1547		/* Remove probe for any subsequent reference run */
1548		unregister_test_probe(&test_case_probe);
1549
1550		if (!check_test_results())
1551			goto fail;
1552
1553		if (is_last_scenario)
1554			goto pass;
1555	}
1556
1557	/* Do next test run */
1558	++test_case_run_count;
1559	++test_instance;
1560	return current_code_start;
1561fail:
1562	++test_fail_count;
1563	goto end;
1564pass:
1565	++test_pass_count;
1566end:
1567	test_case_cleanup();
1568	return 0;
1569}
1570
1571
1572/*
1573 * Top level test functions
1574 */
1575
1576static int run_test_cases(void (*tests)(void), const union decode_item *table)
1577{
1578	int ret;
1579
1580	pr_info("    Check decoding tables\n");
1581	ret = table_test(table);
1582	if (ret)
1583		return ret;
1584
1585	pr_info("    Run test cases\n");
1586	ret = coverage_start(table);
1587	if (ret)
1588		return ret;
1589
1590	tests();
1591
1592	coverage_end();
1593	return 0;
1594}
1595
1596
1597static int __init run_all_tests(void)
1598{
1599	int ret = 0;
1600
1601	pr_info("Begining kprobe tests...\n");
1602
1603#ifndef CONFIG_THUMB2_KERNEL
1604
1605	pr_info("Probe ARM code\n");
1606	ret = run_api_tests(arm_func);
1607	if (ret)
1608		goto out;
1609
1610	pr_info("ARM instruction simulation\n");
1611	ret = run_test_cases(kprobe_arm_test_cases, kprobe_decode_arm_table);
1612	if (ret)
1613		goto out;
1614
1615#else /* CONFIG_THUMB2_KERNEL */
1616
1617	pr_info("Probe 16-bit Thumb code\n");
1618	ret = run_api_tests(thumb16_func);
1619	if (ret)
1620		goto out;
1621
1622	pr_info("Probe 32-bit Thumb code, even halfword\n");
1623	ret = run_api_tests(thumb32even_func);
1624	if (ret)
1625		goto out;
1626
1627	pr_info("Probe 32-bit Thumb code, odd halfword\n");
1628	ret = run_api_tests(thumb32odd_func);
1629	if (ret)
1630		goto out;
1631
1632	pr_info("16-bit Thumb instruction simulation\n");
1633	ret = run_test_cases(kprobe_thumb16_test_cases,
1634				kprobe_decode_thumb16_table);
1635	if (ret)
1636		goto out;
1637
1638	pr_info("32-bit Thumb instruction simulation\n");
1639	ret = run_test_cases(kprobe_thumb32_test_cases,
1640				kprobe_decode_thumb32_table);
1641	if (ret)
1642		goto out;
1643#endif
1644
1645	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1646		test_try_count, test_pass_count, test_fail_count);
1647	if (test_fail_count) {
1648		ret = -EINVAL;
1649		goto out;
1650	}
1651
1652#if BENCHMARKING
1653	pr_info("Benchmarks\n");
1654	ret = run_benchmarks();
1655	if (ret)
1656		goto out;
1657#endif
1658
1659#if __LINUX_ARM_ARCH__ >= 7
1660	/* We are able to run all test cases so coverage should be complete */
1661	if (coverage_fail) {
1662		pr_err("FAIL: Test coverage checks failed\n");
1663		ret = -EINVAL;
1664		goto out;
1665	}
1666#endif
1667
1668out:
1669	if (ret == 0)
1670		pr_info("Finished kprobe tests OK\n");
1671	else
1672		pr_err("kprobe tests failed\n");
1673
1674	return ret;
1675}
1676
1677
1678/*
1679 * Module setup
1680 */
1681
1682#ifdef MODULE
1683
1684static void __exit kprobe_test_exit(void)
1685{
1686}
1687
1688module_init(run_all_tests)
1689module_exit(kprobe_test_exit)
1690MODULE_LICENSE("GPL");
1691
1692#else /* !MODULE */
1693
1694late_initcall(run_all_tests);
1695
1696#endif
1697